1
|
Broadwater C, Guo J, Liu J, Tobin I, Whitmore MA, Kaiser MG, Lamont SJ, Zhang G. Breed-specific responses to coccidiosis in chickens: identification of intestinal bacteria linked to disease resistance. J Anim Sci Biotechnol 2025; 16:65. [PMID: 40336071 PMCID: PMC12060511 DOI: 10.1186/s40104-025-01202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Coccidiosis, caused by Eimeria parasites, is a major enteric disease in poultry, significantly impacting animal health, production performance, and welfare. This disease imposes a substantial economic burden, costing the global poultry industry up to $13 billion annually. However, effective mitigation strategies for coccidiosis remain elusive. While different chicken breeds exhibit varying resistance to coccidiosis, no commensal bacteria have been directly linked to this resistance. METHODS To assess relative resistance of different breeds to coccidiosis, 10-day-old Fayoumi M5.1, Leghorn Ghs6, and Cobb chickens were challenged with 50,000 sporulated Eimeria maxima oocysts or mock-infected. Body weight changes, small intestinal lesions, and fecal oocyst shedding were evaluated on d 17. Ileal and cecal digesta were collected from individual animals on d 17 and subjected to microbiome analysis using 16S rRNA gene sequencing. RESULTS: Fayoumi M5.1 chickens showed the lowest growth retardation, intestinal lesion score, fecal oocyst shedding, and pathobiont proliferation compared to Ghs6 and Cobb chickens. The intestinal microbiota of M5.1 chickens also differed markedly from the other two breeds under both healthy and coccidiosis conditions. Notably, group A Lactobacillus and Ligilactobacillus salivarius were the least prevalent in both the ileum and cecum of healthy M5.1 chickens, but became highly enriched and comparable to Ghs6 and Cobb chickens in response to coccidiosis. Conversely, Weissella, Staphylococcus gallinarum, and Enterococcus durans/hirae were more abundant in the ileum of healthy M5.1 chickens than in the other two breeds. Despite being reduced by Eimeria, these bacteria retained higher abundance in M5.1 chickens compared to the other breeds. CONCLUSIONS Fayoumi M5.1 chickens exhibit greater resistance to coccidiosis than Leghorn Ghs6 layers and Cobb broilers. Several commensal bacteria, including group A Lactobacillus, L. salivarius, Weissella, S. gallinarum, and E. durans/hirae, are differentially enriched in Fayoumi M5.1 chickens with strong correlation with coccidiosis resistance. These bacteria hold potential as probiotics for coccidiosis mitigation.
Collapse
Affiliation(s)
- Chace Broadwater
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jiaqing Guo
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jing Liu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Melanie A Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael G Kaiser
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
2
|
Miao X, Liu J, Gong Q, Li F, Zhang Y, Liang Q, Li D, Ning Z. Transcriptomic and Metabolomic Analysis of the Uterine Tissue of Yaoshan Chicken and Its Crossbreeds to Reveal the Molecular Mechanism Influencing Eggshell Quality. Genes (Basel) 2025; 16:383. [PMID: 40282343 PMCID: PMC12027243 DOI: 10.3390/genes16040383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Eggshell quality is a critical factor influencing consumer preference and the economic benefits of poultry enterprises, and the uterus is the key site for eggshell synthesis. Yaoshan chicken (YS), an indigenous chicken breed in China, is renowned for its flavorful meat and high-quality eggs. However, its egg production is lower compared to specialized strains. Therefore, the GYR crossbreed was developed by three-line hybridization for YS chicken, which can produce green-shelled eggs with better eggshell thickness and strength than YS chicken (p < 0.01). To explore the molecular mechanisms underlying the differences in eggshell quality between GYR and YS chickens, we conducted an integrated transcriptomic and metabolomic analysis. Methods: Twelve uterus samples (six from GYR and six from YS chickens) were collected during the period of eggshell calcification at 260 days of age. RNA sequencing (RNA-seq) and liquid chromatography-mass spectrometry (LC-MS/MS) were performed to identify differentially expressed genes (DEGs) and differential metabolites (DMs), respectively. Results: A total of 877 DEGs were identified in the GYR group, including 196 upregulated and 681 downregulated genes (|log2 (fold change)| > 1, p-value < 0.05). Additionally, 79 DMs were detected, comprising 50 upregulated and 29 downregulated metabolites (|log₂ (fold change)| > 1, VIP > 1). Notably, the key DEGs (SLCO1B3, SLCO1B1, PTGR1, LGR6, MELTF, CRISP2, GVINP1, and OVSTL), important DMs (prostaglandin-related DMs and biliverdin) and signaling pathways (calcium signaling, neuroactive ligand-receptor interaction, arachidonic acid metabolism, bile secretion, and primary bile acid biosynthesis) were major regulators of the eggshell quality. Furthermore, an integrated transcriptomic and metabolomic analysis revealed two significant gene-metabolite pairs associated with eggshell quality: PTGDS-prostaglandin E2 and PTGS1-prostaglandin E2. Conclusions: This study provides a theoretical foundation for the improved eggshell quality of Yaoshan chicken.
Collapse
Affiliation(s)
- Xiaomeng Miao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.M.); (Y.Z.); (Q.L.)
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Jia Liu
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guizhou Provincial Department of Agriculture and Rural Affairs, Guiyang 550001, China; (J.L.); (Q.G.)
| | - Qian Gong
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guizhou Provincial Department of Agriculture and Rural Affairs, Guiyang 550001, China; (J.L.); (Q.G.)
| | - Fugui Li
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, Tarim University, Alar 843300, China;
| | - Yalan Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.M.); (Y.Z.); (Q.L.)
| | - Qiyue Liang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.M.); (Y.Z.); (Q.L.)
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.M.); (Y.Z.); (Q.L.)
| |
Collapse
|
3
|
Kaiser M, Kaufman J, Lamont SJ. Different MHC class I cell surface expression levels in diverse chicken lines, associations with B blood group, and proposed relationship to antigen-binding repertoire. Poult Sci 2025; 104:104569. [PMID: 39642749 PMCID: PMC11665679 DOI: 10.1016/j.psj.2024.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024] Open
Abstract
The Major Histocompatibility Complex (MHC) is a cluster of genes with primarily immune-related functions. The MHC class I genes are responsible for self- versus non-self-recognition and viral antigen presentation to T lymphocytes. The chicken MHC class I protein binds its cognate antigen(s) over a repertoire spectrum ranging from promiscuous (generalist) to fastidious (specialist). The MHC class I protein expression level at the cell surface is inversely related to the promiscuity of its peptide-binding repertoire. In our study, erythrocytes from 6 diverse and highly inbred lines of chickens, a closed broiler line, and a highly advanced intercross line were evaluated for MHC class I antigen expression level by flow cytometry using monoclonal antibodies to chicken MHC class I molecules. In chickens, the B blood group antigens include the MHC class I antigen expressed from the MHC. Thus, the B blood group has historically been used as a genetic marker for Marek's Disease virus response. Erythrocytes of the inbred lines were blood typed by serology. The B21 blood type is widely recognized as relatively resistant to Marek's disease and regarded as an MHC class I generalist with low MHC class I expression. The Spanish line, which types serologically as B21.1 (similar to B21), was the lowest MHC class I expressing line. The two sublines (B5.1 and B15.2) of the Fayoumi breed, which significantly differed in their MHC class I expression, also differ in response to multiple pathogens. These defined genetic lines of chickens, with distinct MHC class I expression levels, provide an excellent platform to further interrogate the hypothesis of high or low MHC class I expression (antigenic specialists or generalists, respectively) determining diverse responses to pathogens.
Collapse
Affiliation(s)
- Michael Kaiser
- Department of Animal Science, Iowa State University, 806 Stange Road, 2255 Kildee Hall, Ames, IA 50011, USA
| | - Jim Kaufman
- University of Edinburgh, School of Biological Science, Institute of Immunology and Infection Research, Edinburgh EH9 3FL, United Kingdom
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, 806 Stange Road, 2255 Kildee Hall, Ames, IA 50011, USA.
| |
Collapse
|
4
|
Arjin C, Hnokaew P, Tasuksai P, Thongkham M, Pringproa K, Arunorat J, Yano T, Seel-audom M, Rachtanapun P, Sringarm K, Chuammitri P. Transcriptome Analysis of Porcine Immune Cells Stimulated by Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Caesalpinia sappan Extract. Int J Mol Sci 2024; 25:12285. [PMID: 39596350 PMCID: PMC11595159 DOI: 10.3390/ijms252212285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The current level of knowledge on transcriptome responses triggered by Caesalpinia sappan (CS) extract in porcine peripheral blood mononuclear cells (PBMCs) after porcine reproductive and respiratory syndrome virus (PRRSV) infection is limited. Therefore, in the present study, we aimed to detect significant genes and pathways involved in CS extract supplementation responsiveness of PBMCs after PRRSV infection. RNA sequencing was conducted on PBMCs, which were isolated from six weaned piglets. The resultant transcriptional responses were examined by mRNA sequencing. Differential expression analysis identified 263 and 274 differentially expressed genes (DEGs) between the PRRSV and CTRL groups, and the PRRSV+CS and CTRL groups, respectively. Among these, ZNF646 and KAT5 emerged as the most promising candidate genes, potentially influencing the interaction between PRRSV-infected PBMCs and CS extract supplementation through the regulation of gene networks and cellular homeostasis during stress. Two pathways were detected to be associated with CS extract supplementation responsiveness: the cellular response to stress pathway and the NF-kB signaling pathway. Consequently, our study reveals a novel mechanism underlying cellular stress response and the NF-κB signaling pathway in PRRSV-infected PBMCs, and identifies a potential application of CS extract for activating the NF-κB signaling pathway. In conclusion, by supplementing CS extract in PBMC cells infected with PRRSV, we found that CS extract modulates PRRSV infection by inducing cellular stress, which is regulated by the NF-κB signaling pathway. This induced stress creates an adverse environment for PRRSV survival. This study contributes to a deeper understanding of the therapeutic targets and pathogenesis of PRRSV infection. Importantly, our results demonstrate that CS extract has the potential to be a candidate for modulating PRRSV infection.
Collapse
Affiliation(s)
- Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Patipan Hnokaew
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patchara Tasuksai
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Marninphan Thongkham
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Kidsadagon Pringproa
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Jirapat Arunorat
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Terdsak Yano
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Mintra Seel-audom
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phongsakorn Chuammitri
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| |
Collapse
|
5
|
Vanamamalai VK, Priyanka E, Kannaki TR, Sharma S. Integrative study of chicken lung transcriptome to understand the host immune response during Newcastle disease virus challenge. Front Cell Infect Microbiol 2024; 14:1368887. [PMID: 39290979 PMCID: PMC11405381 DOI: 10.3389/fcimb.2024.1368887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Newcastle disease is one of the significant issues in the poultry industry, having catastrophic effects worldwide. The lung is one of the essential organs which harbours Bronchus-associated lymphoid tissue and plays a vital role in the immune response. Leghorn and Fayoumi breeds are known to have differences in resistance to Newcastle disease. Along with genes and long non-coding RNAs (lncRNAs) are also known to regulate various biological pathways through gene regulation. Methods This study analysed the lung transcriptome data and identified the role of genes and long non-coding RNAs in differential immune resistance. The computational pipeline, FHSpipe, as used in our previous studies on analysis of harderian gland and trachea transcriptome was used to identify genes and lncRNAs. This was followed by differential expression analysis, functional annotation of genes and lncRNAs, identification of transcription factors, microRNAs and finally validation using qRT-PCR. Results and discussion A total of 8219 novel lncRNAs were identified. Of them, 1263 lncRNAs and 281 genes were differentially expressed. About 66 genes were annotated with either an immune-related GO term or pathway, and 12 were annotated with both. In challenge and breed-based analysis, most of these genes were upregulated in Fayoumi compared to Leghorn, and in timepoint-based analysis, Leghorn challenge chicken showed downregulation between time points. A similar trend was observed in the expression of lncRNAs. Co-expression analysis has revealed several lncRNAs co-expressing with immune genes with a positive correlation. Several genes annotated with non-immune pathways, including metabolism, signal transduction, transport of small molecules, extracellular matrix organization, developmental biology and cellular processes, were also impacted. With this, we can understand that Fayoumi chicken showed upregulated immune genes and positive cis-lncRNAs during both the non-challenged and NDV-challenge conditions, even without viral transcripts in the tissue. This finding shows that these immune-annotated genes and coexpressing cis-lncRNAs play a significant role in Fayoumi being comparatively resistant to NDV compared to Leghorn. Our study affirms and expands upon the outcomes of previous studies and highlights the crucial role of lncRNAs during the immune response to NDV. Conclusion This analysis clearly shows the differences in the gene expression patterns and lncRNA co-expression with the genes between Leghorn and Fayoumi, indicating that the lncRNAs and co-expressing genes might potentially have a role in differentiating these breeds. We hypothesise that these genes and lncRNAs play a vital role in the higher resistance of Fayoumi to NDV than Leghorn. This study can pave the way for future studies to unravel the biological mechanism behind the regulation of immune-related genes.
Collapse
Affiliation(s)
- Venkata Krishna Vanamamalai
- Bioinformatics Laboratory, DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - E Priyanka
- Laboratory of Avian Health and Pathology, ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - T R Kannaki
- Laboratory of Avian Health and Pathology, ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Shailesh Sharma
- Bioinformatics Laboratory, DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| |
Collapse
|
6
|
Comparative Analysis of Different Inbred Chicken Lines Highlights How a Hereditary Inflammatory State Affects Susceptibility to Avian Influenza Virus. Viruses 2023; 15:v15030591. [PMID: 36992300 PMCID: PMC10052641 DOI: 10.3390/v15030591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Evidence suggests that susceptibility to avian influenza A virus in chickens is influenced by host genetics, but the mechanisms are poorly understood. A previous study demonstrated that inbred line 0 chickens are more resistant to low-pathogenicity avian influenza (LPAI) infection than line CB.12 birds based on viral shedding, but the resistance was not associated with higher AIV-specific IFNγ responses or antibody titres. In this study, we investigated the proportions and cytotoxic capacity of T-cell subpopulations in the spleen and the early immune responses in the respiratory tract, analysing the innate immune transcriptome of lung-derived macrophages following in vitro stimulation with LPAI H7N1 or the TLR7 agonist R848. The more susceptible C.B12 line had a higher proportion of CD8αβ+ γδ and CD4+CD8αα+ αVβ1 T cells, and a significantly higher proportion of the CD8αβ+ γδ and CD8αβ+ αVβ1 T cells expressed CD107a, a surrogate marker of degranulation. Lung macrophages isolated from line C.B12 birds expressed higher levels of the negative regulator genes TRIM29 and IL17REL, whereas macrophages from line 0 birds expressed higher levels of antiviral genes including IRF10 and IRG1. After stimulation with R848, the macrophages from line 0 birds mounted a higher response compared to line C.B12 cells. Together, the higher proportion of unconventional T cells, the higher level of cytotoxic cell degranulation ex vivo and post-stimulation and the lower levels of antiviral gene expression suggest a potential role of immunopathology in mediating susceptibility in C.B12 birds.
Collapse
|
7
|
Meng G, Tang W, Huang E, Li Z, Feng H. A comprehensive assessment of cell type-specific differential expression methods in bulk data. Brief Bioinform 2023; 24:bbac516. [PMID: 36472568 PMCID: PMC9851321 DOI: 10.1093/bib/bbac516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/08/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Accounting for cell type compositions has been very successful at analyzing high-throughput data from heterogeneous tissues. Differential gene expression analysis at cell type level is becoming increasingly popular, yielding biomarker discovery in a finer granularity within a particular cell type. Although several computational methods have been developed to identify cell type-specific differentially expressed genes (csDEG) from RNA-seq data, a systematic evaluation is yet to be performed. Here, we thoroughly benchmark six recently published methods: CellDMC, CARseq, TOAST, LRCDE, CeDAR and TCA, together with two classical methods, csSAM and DESeq2, for a comprehensive comparison. We aim to systematically evaluate the performance of popular csDEG detection methods and provide guidance to researchers. In simulation studies, we benchmark available methods under various scenarios of baseline expression levels, sample sizes, cell type compositions, expression level alterations, technical noises and biological dispersions. Real data analyses of three large datasets on inflammatory bowel disease, lung cancer and autism provide evaluation in both the gene level and the pathway level. We find that csDEG calling is strongly affected by effect size, baseline expression level and cell type compositions. Results imply that csDEG discovery is a challenging task itself, with room to improvements on handling low signal-to-noise ratio and low expression genes.
Collapse
Affiliation(s)
- Guanqun Meng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, Ohio, USA
| | - Wen Tang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, Ohio, USA
| | - Emina Huang
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, 75390, Texas, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, Ohio, USA
| |
Collapse
|
8
|
Fries-Craft K, Lamont SJ, Bobeck EA. Implementing real-time immunometabolic assays and immune cell profiling to evaluate systemic immune response variations to Eimeria challenge in three novel layer genetic lines. Front Vet Sci 2023; 10:1179198. [PMID: 37143494 PMCID: PMC10153671 DOI: 10.3389/fvets.2023.1179198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Evaluating differences in immune responses to Eimeria spp. between poultry genetic lines could be valuable for understanding favorable traits to address coccidiosis, a costly poultry disease. The objective was to compare peripheral blood mononuclear cell (PBMC) immunometabolism and composition during Eimeria challenge in three distinct and highly inbred genetic lines; Leghorn Ghs6, Leghorn Ghs13, and Fayoumi M5.1. Methods At hatch, 180 chicks (60/ line) were placed in wire-floor cages (10 chicks/cage) and fed a commercial diet. Baseline PBMC were isolated on d21 (10 chicks/line) and 25 chicks/line were inoculated with 10X Merck CocciVac®-B52 (Kenilworth, NJ), creating 6 genetic line × Eimeria groups total. Chicks were euthanized on 1, 3, 7, and 10d post-inoculation (pi; 5 chicks/ line × Eimeria group) for PBMC isolation with body weight and feed intake recorded throughout. Immunometabolic assays to determine PBMC ATP production profiles and glycolytic activity were implemented along with flow cytometric immune cell profiling. Genetic line × Eimeria challenge, and line´challenge fixed effects were analyzed using the MIXED procedure (SAS 9.4; P ≤ 0.05). Results and Discussion Before inoculation, M5.1 chicks had 14.4-25.4% greater average daily gain (ADG) with 19.0-63.6% increased monocyte/macrophage+, Bu-1+ B cell, and CD3+ T cell populations compared to both Ghs lines (P < 0.0001) but similar immunometabolic phenotype. The Eimeria main effect reduced ADG by 61.3% from 3-7dpi (P = 0.009) except in M5.1 chicks, where no ADG difference due to challenge was found. At 3dpi, Eimeria-challenged M5.1 chicks had 28.9 and 33.2% reduced PBMC CD3+ T cells and CD3+CD8α+ cytotoxic T cells than unchallenged chicks, suggesting early and preferential recruitment from systemic circulation to tissues local to Eimeria challenge (i.e., intestine; P ≤ 0.01). Both Ghs lines displayed 46.4-49.8% T cell reductions at 10dpi with 16.5-58.9% recruitment favoring underlying CD3+CD4+ helper T cells. Immunometabolic responses in Eimeria-challenged Ghs6 and Ghs13 chicks were characterized by a 24.0-31.8% greater proportion of ATP from glycolysis compared to unchallenged counterparts at 10dpi (P = 0.04). These results suggest that variable T cell subtype recruitment timelines in addition to altered systemic immunometabolic requirements may work synergistically to determine favorable immune responses to Eimeria challenge.
Collapse
|
9
|
Jaton J, Lucero MS, Richetta M, Pinto S, Gravisaco MJ, Berinstein A, Gómez E, Chimeno Zoth S. Comparative Study of the Immune Response Induced by an Argentinian Classical Strain of IBDV in Two Chicken Breeds. Vet Med Int 2022; 2022:6255367. [PMID: 36483670 PMCID: PMC9726245 DOI: 10.1155/2022/6255367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/27/2023] Open
Abstract
The hybrid chicken Negra INTA, which originated at the National Institute of Agricultural Technology (INTA), is the product of the cross between Barred Plymouth Rock females and Rhode Island Red males, and it is used as a laying hen for egg consumption. It has been characterized by productive parameters, but the characterization from an immunological perspective has not been done yet. Infectious bursal disease virus (IBDV) causes a highly contagious viral disease that affects the bursa of Fabricius. Although most chickens are regularly vaccinated against IBDV, this virus still generates negative impacts on production with significant economic losses. The aim of the present work was to compare the immune responses of the Negra INTA hybrid and the White Leghorn layer line to the infection with a field isolate of IBDV. Four-week-old chickens were infected with a single dose of IBDV and at 3, 5, 7, and 30 days postinfection (dpi), bursae were removed, and different parameters were evaluated. Results showed that the reduction of the bursa body (BB) ratio and the histopathological damage were maximum on day 7 postinfection (pi). The viral load was greater in the hybrid Negra INTA at 5 dpi. The humoral immune response between both breeds was similar, although more animals from the commercial line showed higher titers of neutralizing antibodies. Flow cytometry analysis revealed that Bu+ bursal lymphocytes reached a minimum at 7 dpi. Meanwhile, T cell infiltration measured by the percentage of CD3+, CD4+, and CD8+ cells in the bursa was at its maximum at 5 dpi. To our knowledge, this work describes for the first time the pathogenesis and the immune response caused by an Argentinian IBDV isolate in two different chicken lines.
Collapse
Affiliation(s)
- Juan Jaton
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - María Soledad Lucero
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - Matías Richetta
- Gerencia de Gestión Estratégica de Procesos Complementarios, Centro de Investigación en Ciencias Veterinarias y Agronómicas, INTA, Buenos Aires, Argentina
| | - Silvina Pinto
- Cátedra de Patología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María José Gravisaco
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - Analía Berinstein
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - Evangelina Gómez
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - Silvina Chimeno Zoth
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
10
|
Gul H, Habib G, Khan IM, Rahman SU, Khan NM, Wang H, Khan NU, Liu Y. Genetic resilience in chickens against bacterial, viral and protozoal pathogens. Front Vet Sci 2022; 9:1032983. [PMID: 36439341 PMCID: PMC9691405 DOI: 10.3389/fvets.2022.1032983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 06/13/2024] Open
Abstract
The genome contributes to the uniqueness of an individual breed, and enables distinctive characteristics to be passed from one generation to the next. The allelic heterogeneity of a certain breed results in a different response to a pathogen with different genomic expression. Disease resistance in chicken is a polygenic trait that involves different genes that confer resistance against pathogens. Such resistance also involves major histocompatibility (MHC) molecules, immunoglobulins, cytokines, interleukins, T and B cells, and CD4+ and CD8+ T lymphocytes, which are involved in host protection. The MHC is associated with antigen presentation, antibody production, and cytokine stimulation, which highlight its role in disease resistance. The natural resistance-associated macrophage protein 1 (Nramp-1), interferon (IFN), myxovirus-resistance gene, myeloid differentiation primary response 88 (MyD88), receptor-interacting serine/threonine kinase 2 (RIP2), and heterophile cells are involved in disease resistance and susceptibility of chicken. Studies related to disease resistance genetics, epigenetics, and quantitative trait loci would enable the identification of resistance markers and the development of disease resistance breeds. Microbial infections are responsible for significant outbreaks and have blighted the poultry industry. Breeding disease-resistant chicken strains may be helpful in tackling pathogens and increasing the current understanding on host genetics in the fight against communicable diseases. Advanced technologies, such as the CRISPR/Cas9 system, whole genome sequencing, RNA sequencing, and high-density single nucleotide polymorphism (SNP) genotyping, aid the development of resistant breeds, which would significantly decrease the use of antibiotics and vaccination in poultry. In this review, we aimed to reveal the recent genetic basis of infection and genomic modification that increase resistance against different pathogens in chickens.
Collapse
Affiliation(s)
- Haji Gul
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Sajid Ur Rahman
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Hongcheng Wang
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
11
|
Genome-wide transcriptome profiling of CSF virus challenged monocyte-derived macrophages provides distinct insights into immune response of Landrace and indigenous Ghurrah pigs. Genomics 2022; 114:110427. [PMID: 35803450 DOI: 10.1016/j.ygeno.2022.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022]
Abstract
The present study was undertaken to characterize the distinct immune response in indigenous Ghurrah and exotic Landrace pigs by challenging monocyte-derived macrophages (MDMs) with CSF virus under in-vitro conditions and assessing the variations in the transcriptome profile at 48 h post-infection (hpi). RNA-sequencing was carried out in infected and non-infected MDMs of Ghurrah (n = 3) and Landrace (n = 3) piglets prior- as well as post-stimulation. MDMs of Ghurrah showed greater immune regulation in response to CSF infection with 518 significantly differentially expressed genes (DEG) in infected versus non-infected MDMs, as compared to only 31 DEGs in Landrace MDMs. In Landrace, the principal regulators of inflammation (IL1α, IL1β and TNF) were upregulated in infected cells while in Ghurrah, these were downregulated. Overall, macrophages from indigenous Ghurrah showed more immunological dysregulation in response to virulent CSF virus infection as compared to the exotic Landrace pigs.
Collapse
|
12
|
Bhavana K, Foote DJ, Srikanth K, Balakrishnan CN, Prabhu VR, Sankaralingam S, Singha HS, Gopalakrishnan A, Nagarajan M. Comparative transcriptome analysis of Indian domestic duck reveals candidate genes associated with egg production. Sci Rep 2022; 12:10943. [PMID: 35768515 PMCID: PMC9243076 DOI: 10.1038/s41598-022-15099-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
Egg production is an important economic trait and a key indicator of reproductive performance in ducks. Egg production is regulated by several factors including genes. However the genes involved in egg production in duck remain unclear. In this study, we compared the ovarian transcriptome of high egg laying (HEL) and low egg laying (LEL) ducks using RNA-Seq to identify the genes involved in egg production. The HEL ducks laid on average 433 eggs while the LEL ducks laid 221 eggs over 93 weeks. A total of 489 genes were found to be significantly differentially expressed out of which 310 and 179 genes were up and downregulated, respectively, in the HEL group. Thirty-eight differentially expressed genes (DEGs), including LHX9, GRIA1, DBH, SYCP2L, HSD17B2, PAR6, CAPRIN2, STC2, and RAB27B were found to be potentially related to egg production and folliculogenesis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that DEGs were enriched for functions related to glutamate receptor activity, serine-type endopeptidase activity, immune function, progesterone mediated oocyte maturation and MAPK signaling. Protein-protein interaction network analysis (PPI) showed strong interaction between 32 DEGs in two distinct clusters. Together, these findings suggest a mix of genetic and immunological factors affect egg production, and highlights candidate genes and pathways, that provides an understanding of the molecular mechanisms regulating egg production in ducks and in birds more broadly.
Collapse
Affiliation(s)
- Karippadakam Bhavana
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Dustin J Foote
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Krishnamoorthy Srikanth
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Vandana R Prabhu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.,ICAR-Central Marine Fisheries Research Institute, Ernakulam North PO, Kochi, Kerala, 682 018, India
| | - Shanmugam Sankaralingam
- Department of Poultry Science, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, 680 651, India
| | - Hijam Surachandra Singha
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | | | - Muniyandi Nagarajan
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
13
|
Qu A, Bai Y, Zhang X, Zeng J, Pu F, Wu L, Xu P, Zhou T. Tissue-Specific Analysis of Alternative Splicing Events and Differential Isoform Expression in Large Yellow Croaker (Larimichthys crocea) After Cryptocaryon irritans Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:640-654. [PMID: 35624193 DOI: 10.1007/s10126-022-10133-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is one of the most important mariculture fish in China. Recently, cryptocaryonosis caused by Cryptocryon irritans infection has brought huge economic losses and threatens the healthy and sustainable development of the L. crocea industry. However, the molecular mechanism and regulation process for L. crocea resistance to C. irritans infection has not been fully researched. Alternative splicing (AS) is an important post-transcriptional regulatory mechanism that allows cells to produce transcriptional and proteomic diversity. The results of AS are tissue dependent, and the expression of tissue-specific transcription subtype genes is determined by AS and transcriptional regulation. However, studies on the tissue specificity of AS events in L. crocea following infection with C. irritans have not been performed. In this study, the L. crocea were artificially infected with C. irritans; their skin and gill were collected at 0 h, 24 h, 48 h, 72 h, and 96 h post infection. After sequencing and differential expression analysis, a set of 452, 692, 934, 711, 534, and 297 differential alternative splicing (DAS) events were identified in 0 h, 12 h, 24 h, 48 h, 72 h, and 96 h post infection respectively. Furthermore, 4160 differentially expressed isoforms (DEIs) and 4209 DEI genes were identified from all time point groups. GO enrichment and pathway analysis indicated that many genes of DAS and DEIs were rich in immune-related GO terms and KEGG pathways, such as the Toll and Imd signaling pathway, NOD-like receptor signaling pathway, TNF signaling pathway, and TNF signaling pathway. Among hub DEI genes, alternative splicing-related genes (cwc25, prpf8, and sf3a3), skin function-related gene (fa2h), and oxygen deprivation-related gene (hyo1) were found in DEI genes. This study provided insight into the temporal change of DAS and DEIs between skin and gill of L. crocea against C. irritans infection and revealed that these differences might play immune-related roles in the infection process.
Collapse
Affiliation(s)
- Ang Qu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xinyi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Junjia Zeng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Linni Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
14
|
Vannamahaxay S, Sornpet B, Pringproa K, Patchanee P, Chuammitri P. Transcriptome analysis of infected Crandell Rees Feline Kidney (CRFK) cells by canine parvovirus type 2c Laotian isolates. Gene X 2022; 822:146324. [PMID: 35182681 DOI: 10.1016/j.gene.2022.146324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/22/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
The advent of RNA sequencing technology provides insight into the dynamic nature of tremendous transcripts within Crandell-Reese feline kidney (CRFK) cells in response to canine parvovirus (CPV-2c) infection. A total of 1,603 genes displayed differentially expressed genes (DEGs), including 789 up-regulated genes and 814 downregulated genes in the infected cells. Gene expression profiles have shown a subtle pattern of defense mechanism and immune response to CPV through significant DEGs when extensively examined via Gene Ontology (GO) and pathway analysis. Prospective GO analysis was performed and identified several enriched GO biological process terms with significant participating roles in the immune system process and defense response to virus pathway. A Gene network was constructed using the 22 most significantly enriched genes of particular interests in defense response to virus pathways to illustrate the key pathways. Eleven genes (C1QBP, CD40, HYAL2, IFNB1, IFNG, IL12B, IL6, IRF3, LSM14A, MAVS, NLRC5) were identified, which are directly related to the defense response to the virus. Results of transcriptome profiling permit us to understand the heterogeneity of DEGs during in vitro experimental study of CPV infection, reflecting a unique transcriptome signature for the CPV virus. Our findings also demonstrate a distinct scenario of enhanced CPV responses in CRFK cells for viral clearance that involved multistep and perplexity of biological processes. Collectively, our data have given a fundamental role in anti-viral immunity as our highlights of this study, thus providing outlooks on future research priorities to be important in studying CPV.
Collapse
Affiliation(s)
- Soulasack Vannamahaxay
- Department of Veterinary Medicine, Faculty of Agriculture, National University of Laos, Vientiane, Lao Democratic People's Republic
| | - Benjaporn Sornpet
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Prapas Patchanee
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Integrative Research Center for Veterinary Preventive Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
15
|
Lee J, Hong Y, Vu TH, Lee S, Heo J, Truong AD, Lillehoj HS, Hong YH. Influenza A pathway analysis of highly pathogenic avian influenza virus (H5N1) infection in genetically disparate Ri chicken lines. Vet Immunol Immunopathol 2022; 246:110404. [DOI: 10.1016/j.vetimm.2022.110404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
|
16
|
Perlas A, Argilaguet J, Bertran K, Sánchez-González R, Nofrarías M, Valle R, Ramis A, Cortey M, Majó N. Dual Host and Pathogen RNA-Seq Analysis Unravels Chicken Genes Potentially Involved in Resistance to Highly Pathogenic Avian Influenza Virus Infection. Front Immunol 2022; 12:800188. [PMID: 35003125 PMCID: PMC8727699 DOI: 10.3389/fimmu.2021.800188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause severe systemic disease and high mortality rates in chickens, leading to a huge economic impact in the poultry sector. However, some chickens are resistant to the disease. This study aimed at evaluating the mechanisms behind HPAIV disease resistance. Chickens of different breeds were challenged with H7N1 HPAIV or clade 2.3.4.4b H5N8 HPAIV, euthanized at 3 days post-inoculation (dpi), and classified as resistant or susceptible depending on the following criteria: chickens that presented i) clinical signs, ii) histopathological lesions, and iii) presence of HPAIV antigen in tissues were classified as susceptible, while chickens lacking all these criteria were classified as resistant. Once classified, we performed RNA-Seq from lung and spleen samples in order to compare the transcriptomic signatures between resistant and susceptible chickens. We identified minor transcriptomic changes in resistant chickens in contrast with huge alterations observed in susceptible chickens. Interestingly, six differentially expressed genes were downregulated in resistant birds and upregulated in susceptible birds. Some of these genes belong to the NF-kappa B and/or mitogen-activated protein kinase signaling pathways. Among these six genes, the serine protease-encoding gene PLAU was of particular interest, being the most significantly downregulated gene in resistant chickens. Expression levels of this protease were further validated by RT-qPCR in a larger number of experimentally infected chickens. Furthermore, HPAIV quasi-species populations were constructed using 3 dpi oral swabs. No substantial changes were found in the viral segments that interact with the innate immune response and with the host cell receptors, reinforcing the role of the immune system of the host in the clinical outcome. Altogether, our results suggest that an early inactivation of important host genes could prevent an exaggerated immune response and/or viral replication, conferring resistance to HPAIV in chickens.
Collapse
Affiliation(s)
- Albert Perlas
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Jordi Argilaguet
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Kateri Bertran
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Raúl Sánchez-González
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Miquel Nofrarías
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Rosa Valle
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Antonio Ramis
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Natàlia Majó
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
17
|
Kaiser MG, Hsieh J, Kaiser P, Lamont SJ. Differential immunological response detected in mRNA expression profiles among diverse chicken lines in response to Salmonella challenge. Poult Sci 2022; 101:101605. [PMID: 34936953 PMCID: PMC8703071 DOI: 10.1016/j.psj.2021.101605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/13/2021] [Indexed: 10/28/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is a bacterial pathogen that contributes to poultry production losses and human foodborne illness. The bacterium elicits a broad immune response involving both the innate and adaptive components of the immune system. Coordination of the immune response is largely directed by cytokines. The objective of the current study was to characterize the expression of a select set of cytokines and regulatory immune genes in three genetically diverse chicken lines after infection with S. Enteritidis. Leghorn, Fayoumi and broiler day-old chicks were orally infected with pathogenic S. Enteritidis or culture medium. At 2 and 18 h postinfection, spleens and ceca were collected and mRNA expression levels for 7 genes (GM-CSF, IL2, IL15, TGF-β1, SOCS3, P20K, and MHC class IIβ) were evaluated by real-time quantitative PCR. Genetic line had a significant effect on mRNA expression levels of IL15, TGF-β1, SOCS3 and P20K in the spleen and on P20K and MHC class IIβ in the cecum. Comparing challenged vs. unchallenged birds, the expression of SOCS3 and P20K mRNA were significantly higher in the spleen and cecum, while MHC class IIβ mRNA was significantly lower in spleen. Combining the current RNA expression results with those of previously reported studies on the same samples reveals distinct RNA expression profiles among the three genetic chicken lines and the 2 tissues. This study illustrates that these diverse genetic lines have distinctively different immune response to S. Enteritidis challenge within the spleen and the cecum.
Collapse
Affiliation(s)
- Michael G Kaiser
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150, USA
| | - John Hsieh
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150, USA
| | - Pete Kaiser
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, United Kingdom
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150, USA.
| |
Collapse
|
18
|
Comparative Investigation of Gene Regulatory Processes Underlying Avian Influenza Viruses in Chicken and Duck. BIOLOGY 2022; 11:biology11020219. [PMID: 35205087 PMCID: PMC8868632 DOI: 10.3390/biology11020219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary Avian influenza poses a great risk to gallinaceous poultry, while mallard ducks can withstand most virus strains. To date, the mechanisms underlying the susceptibility of chicken and the effective immune response of duck have not been completely understood. In this study, our aim is to investigate the transcriptional gene regulation governing the expression of important avian-influenza-induced genes and to reveal the master regulators stimulating an effective immune response after virus infection in ducks while dysfunctioning in chicken. Abstract The avian influenza virus (AIV) mainly affects birds and not only causes animals’ deaths, but also poses a great risk of zoonotically infecting humans. While ducks and wild waterfowl are seen as a natural reservoir for AIVs and can withstand most virus strains, chicken mostly succumb to infection with high pathogenic avian influenza (HPAI). To date, the mechanisms underlying the susceptibility of chicken and the effective immune response of duck have not been completely unraveled. In this study, we investigate the transcriptional gene regulation underlying disease progression in chicken and duck after AIV infection. For this purpose, we use a publicly available RNA-sequencing dataset from chicken and ducks infected with low-pathogenic avian influenza (LPAI) H5N2 and HPAI H5N1 (lung and ileum tissues, 1 and 3 days post-infection). Unlike previous studies, we performed a promoter analysis based on orthologous genes to detect important transcription factors (TFs) and their cooperation, based on which we apply a systems biology approach to identify common and species-specific master regulators. We found master regulators such as EGR1, FOS, and SP1, specifically for chicken and ETS1 and SMAD3/4, specifically for duck, which could be responsible for the duck’s effective and the chicken’s ineffective immune response.
Collapse
|
19
|
Liu W, Sun Y, Qiu X, Meng C, Song C, Tan L, Liao Y, Liu X, Ding C. Genome-Wide Analysis of Alternative Splicing during Host-Virus Interactions in Chicken. Viruses 2021; 13:v13122409. [PMID: 34960678 PMCID: PMC8703359 DOI: 10.3390/v13122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
The chicken is a model animal for the study of evolution, immunity and development. In addition to their use as a model organism, chickens also represent an important agricultural product. Pathogen invasion has already been shown to modulate the expression of hundreds of genes, but the role of alternative splicing in avian virus infection remains unclear. We used RNA-seq data to analyze virus-induced changes in the alternative splicing of Gallus gallus, and found that a large number of alternative splicing events were induced by virus infection both in vivo and in vitro. Virus-responsive alternative splicing events preferentially occurred in genes involved in metabolism and transport. Many of the alternatively spliced transcripts were also expressed from genes with a function relating to splicing or immune response, suggesting a potential impact of virus infection on pre-mRNA splicing and immune gene regulation. Moreover, exon skipping was the most frequent AS event in chickens during virus infection. This is the first report describing a genome-wide analysis of alternative splicing in chicken and contributes to the genomic resources available for studying host-virus interaction in this species. Our analysis fills an important knowledge gap in understanding the extent of genome-wide alternative splicing dynamics occurring during avian virus infection and provides the impetus for the further exploration of AS in chicken defense signaling and homeostasis.
Collapse
Affiliation(s)
- Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Xiufan Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-21-3429-3441
| |
Collapse
|
20
|
Sajewicz-Krukowska J, Jastrzębski JP, Grzybek M, Domańska-Blicharz K, Tarasiuk K, Marzec-Kotarska B. Transcriptome Sequencing of the Spleen Reveals Antiviral Response Genes in Chickens Infected with CAstV. Viruses 2021; 13:2374. [PMID: 34960643 PMCID: PMC8708055 DOI: 10.3390/v13122374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Astrovirus infections pose a significant problem in the poultry industry, leading to multiple adverse effects such as a decreased egg production, breeding disorders, poor weight gain, and even increased mortality. The commonly observed chicken astrovirus (CAstV) was recently reported to be responsible for the "white chicks syndrome" associated with an increased embryo/chick mortality. CAstV-mediated pathogenesis in chickens occurs due to complex interactions between the infectious pathogen and the immune system. Many aspects of CAstV-chicken interactions remain unclear, and there is no information available regarding possible changes in gene expression in the chicken spleen in response to CAstV infection. We aim to investigate changes in gene expression triggered by CAstV infection. Ten 21-day-old SPF White Leghorn chickens were divided into two groups of five birds each. One group was inoculated with CAstV, and the other used as the negative control. At 4 days post infection, spleen samples were collected and immediately frozen at -70 °C for RNA isolation. We analyzed the isolated RNA, using RNA-seq to generate transcriptional profiles of the chickens' spleens and identify differentially expressed genes (DEGs). The RNA-seq findings were verified by quantitative reverse-transcription PCR (qRT-PCR). A total of 31,959 genes was identified in response to CAstV infection. Eventually, 45 DEGs (p-value < 0.05; log2 fold change > 1) were recognized in the spleen after CAstV infection (26 upregulated DEGs and 19 downregulated DEGs). qRT-PCR performed on four genes (IFIT5, OASL, RASD1, and DDX60) confirmed the RNA-seq results. The most differentially expressed genes encode putative IFN-induced CAstV restriction factors. Most DEGs were associated with the RIG-I-like signaling pathway or more generally with an innate antiviral response (upregulated: BLEC3, CMPK2, IFIT5, OASL, DDX60, and IFI6; downregulated: SPIK5, SELENOP, HSPA2, TMEM158, RASD1, and YWHAB). The study provides a global analysis of host transcriptional changes that occur during CAstV infection in vivo and proves that, in the spleen, CAstV infection in chickens predominantly affects the cell cycle and immune signaling.
Collapse
Affiliation(s)
- Joanna Sajewicz-Krukowska
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland; (K.D.-B.); (K.T.)
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Maciej Grzybek
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland;
| | - Katarzyna Domańska-Blicharz
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland; (K.D.-B.); (K.T.)
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland; (K.D.-B.); (K.T.)
| | - Barbara Marzec-Kotarska
- Department of Clinical Pathomorphology, The Medical University of Lublin, 20-090 Lublin, Poland;
| |
Collapse
|
21
|
Zamperin G, Bianco A, Smith J, Bortolami A, Vervelde L, Schivo A, Fortin A, Marciano S, Panzarin V, Mazzetto E, Milani A, Berhane Y, Digard P, Bonfante F, Monne I. Heterogeneity of Early Host Response to Infection with Four Low-Pathogenic H7 Viruses with a Different Evolutionary History in the Field. Viruses 2021; 13:2323. [PMID: 34835129 PMCID: PMC8620788 DOI: 10.3390/v13112323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Once low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes from wild birds enter into poultry species, there is the possibility of them mutating into highly pathogenic avian influenza viruses (HPAIVs), resulting in severe epizootics with up to 100% mortality. This mutation from a LPAIV to HPAIV strain is the main cause of an AIV's major economic impact on poultry production. Although AIVs are inextricably linked to their hosts in their evolutionary history, the contribution of host-related factors in the emergence of HPAI viruses has only been marginally explored so far. In this study, transcriptomic sequencing of tracheal tissue from chickens infected with four distinct LP H7 viruses, characterized by a different history of pathogenicity evolution in the field, was implemented. Despite the inoculation of a normalized infectious dose of viruses belonging to the same subtype (H7) and pathotype (LPAI), the use of animals of the same age, sex and species as well as the identification of a comparable viral load in the target samples, the analyses revealed a heterogeneity in the gene expression profile in response to infection with each of the H7 viruses administered.
Collapse
Affiliation(s)
- Gianpiero Zamperin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Alice Bianco
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Jacqueline Smith
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Lonneke Vervelde
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Alessia Schivo
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Andrea Fortin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Sabrina Marciano
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Valentina Panzarin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Eva Mazzetto
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington, Winnipeg, MB R3E 3M4, Canada;
| | - Paul Digard
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| |
Collapse
|
22
|
Alqazlan N, Emam M, Nagy É, Bridle B, Sargolzaei M, Sharif S. Transcriptomics of chicken cecal tonsils and intestine after infection with low pathogenic avian influenza virus H9N2. Sci Rep 2021; 11:20462. [PMID: 34650121 PMCID: PMC8517014 DOI: 10.1038/s41598-021-99182-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Influenza viruses cause severe respiratory infections in humans and birds, triggering global health concerns and economic burden. Influenza infection is a dynamic process involving complex biological host responses. The objective of this study was to illustrate global biological processes in ileum and cecal tonsils at early time points after chickens were infected with low pathogenic avian influenza virus (LPAIV) H9N2 through transcriptome analysis. Total RNA isolated from ileum and cecal tonsils of non-infected and infected layers at 12-, 24- and 72-h post-infection (hpi) was used for mRNA sequencing analyses to characterize differentially expressed genes and overrepresented pathways. Statistical analysis highlighted transcriptomic signatures significantly occurring 24 and 72 hpi, but not earlier at 12 hpi. Interferon (IFN)-inducible and IFN-stimulated gene (ISG) expression was increased, followed by continued expression of various heat-shock proteins (HSP), including HSP60, HSP70, HSP90 and HSP110. Some upregulated genes involved in innate antiviral responses included DDX60, MX1, RSAD2 and CMPK2. The ISG15 antiviral mechanism pathway was highly enriched in ileum and cecal tonsils at 24 hpi. Overall, most affected pathways were related to interferon production and the heat-shock response. Research on these candidate genes and pathways is warranted to decipher underlying mechanisms of immunity against LPAIV in chickens.
Collapse
Affiliation(s)
- Nadiyah Alqazlan
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Mehdi Emam
- grid.14709.3b0000 0004 1936 8649Department of Human Genetics, McGill University, Montreal, QC H3A 0E7 Canada
| | - Éva Nagy
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Byram Bridle
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Mehdi Sargolzaei
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada ,Select Sires, Inc., Plain City, OH 43064 USA
| | - Shayan Sharif
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
23
|
Chrzastek K, Leng J, Zakaria MK, Bialy D, La Ragione R, Shelton H. Low pathogenic avian influenza virus infection retards colon microbiota diversification in two different chicken lines. Anim Microbiome 2021; 3:64. [PMID: 34583770 PMCID: PMC8479891 DOI: 10.1186/s42523-021-00128-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/10/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A commensal microbiota regulates and is in turn regulated by viruses during host infection which can influence virus infectivity. In this study, analysis of colon microbiota population changes following a low pathogenicity avian influenza virus (AIV) of the H9N2 subtype infection of two different chicken breeds was conducted. METHODS Colon samples were taken from control and infected groups at various timepoints post infection. 16S rRNA sequencing on an Illumina MiSeq platform was performed on the samples and the data mapped to operational taxonomic units of bacterial using a QIIME based pipeline. Microbial community structure was then analysed in each sample by number of observed species and phylogenetic diversity of the population. RESULTS We found reduced microbiota alpha diversity in the acute period of AIV infection (day 2-3) in both Rhode Island Red and VALO chicken lines. From day 4 post infection a gradual increase in diversity of the colon microbiota was observed, but the diversity did not reach the same level as in uninfected chickens by day 10 post infection, suggesting that AIV infection retards the natural accumulation of colon microbiota diversity, which may further influence chicken health following recovery from infection. Beta diversity analysis indicated a bacterial species diversity difference between the chicken lines during and following acute influenza infection but at phylum and bacterial order level the colon microbiota dysbiosis was similar in the two different chicken breeds. CONCLUSION Our data suggest that H9N2 influenza A virus impacts the chicken colon microbiota in a predictable way that could be targeted via intervention to protect or mitigate disease.
Collapse
Affiliation(s)
| | - Joy Leng
- Department of Pathology and Infectious Disease, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Mohammad Khalid Zakaria
- The Pirbright Institute, Pirbright, Woking, Surrey, UK
- University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Dagmara Bialy
- The Pirbright Institute, Pirbright, Woking, Surrey, UK
| | - Roberto La Ragione
- Department of Pathology and Infectious Disease, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Holly Shelton
- The Pirbright Institute, Pirbright, Woking, Surrey, UK.
| |
Collapse
|
24
|
Vu TH, Hong Y, Truong AD, Lee J, Lee S, Song KD, Cha J, Dang HV, Tran HTT, Lillehoj HS, Hong YH. Cytokine-cytokine receptor interactions in the highly pathogenic avian influenza H5N1 virus-infected lungs of genetically disparate Ri chicken lines. Anim Biosci 2021; 35:367-376. [PMID: 34289580 PMCID: PMC8902228 DOI: 10.5713/ab.21.0163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Objective The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry as well as the economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for HPAIV resistance. Therefore, in this study, we investigated gene expression related to cytokine-cytokine receptor interactions by comparing resistant and susceptible Ri chicken lines for avian influenza virus infection. Methods Ri chickens of resistant (Mx/A; BF2/B21) and susceptible (Mx/G; BF2/B13) lines were selected by genotyping the Mx dynamin like GTPase (Mx) and major histocompatibility complex class I antigen BF2 genes. These chickens were then infected with influenza A virus subtype H5N1, and their lung tissues were collected for RNA sequencing. Results In total, 972 differentially expressed genes (DEGs) were observed between resistant and susceptible Ri chickens, according to the gene ontology and Kyoto encyclopedia of genes and genomes pathways. In particular, DEGs associated with cytokine-cytokine receptor interactions were most abundant. The expression levels of cytokines (interleukin-1β [IL-1β], IL-6, IL-8, and IL-18), chemokines (C-C Motif chemokine ligand 4 [CCL4] and CCL17), interferons (IFN-γ), and IFN-stimulated genes (Mx1, CCL19, 2′-5′-oligoadenylate synthase-like, and protein kinase R) were higher in H5N1-resistant chickens than in H5N1-susceptible chickens. Conclusion Resistant chickens show stronger immune responses and antiviral activity (cytokines, chemokines, and IFN-stimulated genes) than those of susceptible chickens against HPAIV infection.
Collapse
Affiliation(s)
- Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Jiae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sooyeon Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jihye Cha
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
25
|
Azli B, Ravi S, Hair-Bejo M, Omar AR, Ideris A, Mat Isa N. Functional prediction of de novo uni-genes from chicken transcriptomic data following infectious bursal disease virus at 3-days post-infection. BMC Genomics 2021; 22:461. [PMID: 34147086 PMCID: PMC8214787 DOI: 10.1186/s12864-021-07690-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infectious bursal disease (IBD) is an economically very important issue to the poultry industry and it is one of the major threats to the nation's food security. The pathogen, a highly pathogenic strain of a very virulent IBD virus causes high mortality and immunosuppression in chickens. The importance of understanding the underlying genes that could combat this disease is now of global interest in order to control future outbreaks. We had looked at identified novel genes that could elucidate the pathogenicity of the virus following infection and at possible disease resistance genes present in chickens. RESULTS A set of sequences retrieved from IBD virus-infected chickens that did not map to the chicken reference genome were de novo assembled, clustered and analysed. From six inbred chicken lines, we managed to assemble 10,828 uni-transcripts and screened 618 uni-transcripts which were the most significant sequences to known genes, as determined by BLASTX searches. Based on the differentially expressed genes (DEGs) analysis, 12 commonly upregulated and 18 downregulated uni-genes present in all six inbred lines were identified with false discovery rate of q-value < 0.05. Yet, only 9 upregulated and 13 downregulated uni-genes had BLAST hits against the Non-redundant and Swiss-Prot databases. The genome ontology enrichment keywords of these DEGs were associated with immune response, cell signalling and apoptosis. Consequently, the Weighted Gene Correlation Network Analysis R tool was used to predict the functional annotation of the remaining unknown uni-genes with no significant BLAST hits. Interestingly, the functions of the three upregulated uni-genes were predicted to be related to innate immune response, while the five downregulated uni-genes were predicted to be related to cell surface functions. These results further elucidated and supported the current molecular knowledge regarding the pathophysiology of chicken's bursal infected with IBDV. CONCLUSION Our data revealed the commonly up- and downregulated novel uni-genes identified to be immune- and extracellular binding-related, respectively. Besides, these novel findings are valuable contributions in improving the current existing integrative chicken transcriptomics annotation and may pave a path towards the control of viral particles especially towards the suppression of IBD and other infectious diseases in chickens.
Collapse
Affiliation(s)
- Bahiyah Azli
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Sharanya Ravi
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Mohd Hair-Bejo
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Aini Ideris
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Nurulfiza Mat Isa
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| |
Collapse
|
26
|
Aston EJ, Wang Y, Tracy KE, Gallardo RA, Lamont SJ, Zhou H. Comparison of cellular immune responses to avian influenza virus in two genetically distinct, highly inbred chicken lines. Vet Immunol Immunopathol 2021; 235:110233. [PMID: 33823380 DOI: 10.1016/j.vetimm.2021.110233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022]
Abstract
Low pathogenicity avian influenza causes mild disease involving the respiratory, gastrointestinal, and reproductive systems of wild and domestic birds. Avian influenza research often emphasizes the effect of the virus genetics on disease, but the influence of host genetics on resistance to infection is not well understood. The genetic determinants of enhanced resistance to influenza can be explored by using genetically distinct, highly inbred chicken lines that differ in susceptibility to influenza. In this study, we compared the mucosal cellular immune responses between the relatively resistant Fayoumi M43 chicken line and the relatively susceptible Leghorn GB2 chicken line after challenging with low pathogenicity avian influenza virus (LPAIV) H6N2. The birds were inoculated at 21 days of age with 107 50 % egg infective dose (EID50) LPAIV H6N2 via nasal and tracheal routes in two separate experiments. Clinical signs were recorded, tracheal swabs were collected to measure viral titer, and tracheas and lungs were harvested for flow cytometric analysis of macrophage, B cell, and T cell populations at 4 days post-infection (dpi) (Experiments 1 and 2) and 6 dpi (Experiment 2). Blood and tears were also collected at 7 and 14 dpi (Experiment 1) to measure antibody levels. Compared to both the non-challenged Fayoumis and the relatively susceptible Leghorn chickens, relatively resistant Fayoumi chickens challenged with LPAIV demonstrated enhanced MHC class I expression on antigen-presenting cells and increased macrophage, B cell, and T cell frequencies in the trachea, which were associated with reduced tracheal viral titers at 4 dpi. In contrast, MHC class I expression and immune cell frequencies in the trachea were not different between challenged Leghorns and non-challenged Leghorns. Furthermore, Leghorns shed higher virus titers in their trachea compared to Fayoumis. Challenged Fayoumis and Leghorns both produced AIV-specific IgY detected in the serum and tears, but AIV-specific IgA was not detected in the tears. In this study, we provide new insight into immune mechanisms of enhanced resistance to avian influenza in chickens, which may lead to improved vaccination strategies and breeding programs.
Collapse
Affiliation(s)
- Emily J Aston
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, United States
| | - Ying Wang
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, United States
| | - Karen E Tracy
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, United States
| | - Rodrigo A Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Huaijun Zhou
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, United States.
| |
Collapse
|
27
|
Deep sequencing of the transcriptome from murine lung infected with H5N8 subtype avian influenza virus with combined substitutions I283M and K526R in PB2 gene. INFECTION GENETICS AND EVOLUTION 2020; 87:104672. [PMID: 33309772 DOI: 10.1016/j.meegid.2020.104672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 01/04/2023]
Abstract
H5N8 subtype highly pathogenic avian influenza viruses (HPAIVs) pose a huge threat to poultry industry and general public health. Our previous study demonstrated that synergistic effect of 283M and 526R in PB2 gene was a critical factor for viral high pathogenicity in mammals. However, the potential pathogenic mechanism of the mutant virus is still unclear. Here, RNA-seq method was used to analyze the global host response of murine lungs after infecting with parental r-JY virus and JY-PB2-I283M-K526R mutant virus. We found that both amounts and the expression levels of host differentially expressed genes (DEGs) were higher in mutant virus-infected mice compared with the group of parental virus. Furthermore, the DEGs mainly related with innate immune response by GO and KEGG analysis. Especially, PB2-I283M-K526R mutation strongly induced a sharp expression of cytokine storm-related genes, including MX1, CXCL10, and IFN-γ, performed by qRT-PCR. We also found that PB2-I283M-K526R mutation accelerated the level of cell apoptosis by heat map analysis of apoptosis-related DEGs in lungs and apoptosis assay in vitro. Taken together, our data demonstrated that PB2-I283M-K526R of H5N8 subtype HPAIV exacerbated the innate immune response and the level of cell apoptosis, which might be a key pathogenic mechanism for the enhanced pathogenicity of mutants in mammals.
Collapse
|
28
|
Chanthavixay G, Kern C, Wang Y, Saelao P, Lamont SJ, Gallardo RA, Rincon G, Zhou H. Integrated Transcriptome and Histone Modification Analysis Reveals NDV Infection Under Heat Stress Affects Bursa Development and Proliferation in Susceptible Chicken Line. Front Genet 2020; 11:567812. [PMID: 33101389 PMCID: PMC7545831 DOI: 10.3389/fgene.2020.567812] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Two environmental factors, Newcastle disease and heat stress, are concurrently negatively impacting poultry worldwide and warrant greater attention into developing genetic resistance within chickens. Using two genetically distinct and highly inbred layer lines, Fayoumi and Leghorn, we explored how different genetic backgrounds affect the bursal response to a treatment of simultaneous Newcastle disease virus (NDV) infection at 6 days postinfection (dpi) while under chronic heat stress. The bursa is a primary lymphoid organ within birds and is crucial for the development of B cells. We performed RNA-seq and ChIP-seq targeting histone modifications on bursa tissue. Differential gene expression revealed that Leghorn, compared to Fayoumi, had significant down-regulation in genes involved in cell proliferation, cell cycle, and cell division. Interestingly, we also found greater differences in histone modification levels in response to treatment in Leghorns than Fayoumis, and biological processes enriched in associated target genes of H3K27ac and H3K4me1 were similarly associated with cell cycle and receptor signaling of lymphocytes. Lastly, we found candidate variants between the two genetic lines within exons of differentially expressed genes and regulatory elements with differential histone modification enrichment between the lines, which provides a strong foundation for understanding the effects of genetic variation on NDV resistance under heat stress. This study provides further understanding of the cellular mechanisms affected by NDV infection under heat stress in chicken bursa and identified potential genes and regulatory regions that may be targets for developing genetic resistance within chickens.
Collapse
Affiliation(s)
- Ganrea Chanthavixay
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | | | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
29
|
Wang Y, Saelao P, Kern C, Jin S, Gallardo RA, Kelly T, Dekkers JM, Lamont SJ, Zhou H. Liver Transcriptome Responses to Heat Stress and Newcastle Disease Virus Infection in Genetically Distinct Chicken Inbred Lines. Genes (Basel) 2020; 11:E1067. [PMID: 32932855 PMCID: PMC7563548 DOI: 10.3390/genes11091067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/21/2023] Open
Abstract
Heat stress results in reduced productivity, anorexia, and mortality in chickens. The objective of the study was to identify genes and signal pathways associated with heat stress and Newcastle disease virus (NDV) infection in the liver of chickens through RNA-seq analysis, using two highly inbred chicken lines (Leghorn and Fayoumi). All birds were held in the same environment until 14 days of age. On day 14, half the birds were exposed to 38 °C with 50% relative humidity for 4 h, then 35 °C until the end of the experiment. The remaining birds were kept at 25 °C throughout the experiment. The heat-treated birds were inoculated at 21 days of age with 107 EID50 (One EID50 unit is the amount of virus that will infect 50 percent of inoculated embryos) NDV La Sota strain to investigate the effects of both heat stress and NDV infection. Physiological parameters were recorded as blood phenotypes at three stages: acute heat (AH), chronic heat (CH1), and chronic heat combined with NDV infection (CH&NDV), at 4 h, 7 days, and 10 days post-initiation of heat treatment, respectively. Our previous work revealed that the heat-resilient Fayoumi line maintained a more stable acid-base balance in their blood compared to the Leghorn line. Liver samples were harvested on both AH and CH&NDV to characterize the transcriptome profiles of these two inbred lines. Both genetic lines and treatments had large impact on the liver transcriptome. Fayoumi birds had more differentially expressed genes (DEGs) than Leghorn birds for both treatments. Metabolic and immune-related genes were on the DEG list, with Fayoumi having more immune-related DEGs than Leghorns, which was confirmed by gene functional enrichment analysis. Weighted correlation network analysis (WGCNA) indicated that the driver genes such as Solute Carrier Family genes could be very important for stabilizing the acid-base balance in Fayoumi birds during heat stress. Therefore, candidate genes such solute carrier family genes could be potential genetic targets that are regulated by Fayoumis to maintain physical hemostasis under heat stress. Differential gene expression showed that Leghorns mainly performed metabolic regulation in response to heat stress and NDV infection, while Fayoumis regulated both immune and metabolic functions. This study provides novel insights and enhances our understandings of liver response to heat stress of heat resilient and susceptible inbred chicken lines.
Collapse
Affiliation(s)
- Ying Wang
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
| | - Colin Kern
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
| | - Sihua Jin
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
| | - Rodrigo A. Gallardo
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Terra Kelly
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jack M. Dekkers
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Susan J. Lamont
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
| |
Collapse
|
30
|
Del Vesco AP, Kaiser MG, Monson MS, Zhou H, Lamont SJ. Genetic responses of inbred chicken lines illustrate importance of eIF2 family and immune-related genes in resistance to Newcastle disease virus. Sci Rep 2020; 10:6155. [PMID: 32273535 PMCID: PMC7145804 DOI: 10.1038/s41598-020-63074-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Newcastle disease virus (NDV) replication depends on the translation machinery of the host cell; therefore, the eukaryotic translation initiation factor 2 (eIF2) gene family is a likely candidate for control of viral replication. We hypothesized that differential expression of host genes related to translation and innate immune response could contribute to differential resistance to NDV in inbred Fayoumi and Leghorn lines. The expression of twenty-one genes related to the interferon signaling pathway and the eIF2 family was evaluated at two- and six-days post infection (dpi) in the spleen from both lines, either challenged by NDV or nonchallenged. Higher expression of OASL in NDV challenged versus nonchallenged spleen was observed in Leghorns at 2 dpi. Lower expression of EIF2B5 was found in NDV challenged than nonchallenged Fayoumis and Leghorns at 2 dpi. At 2 dpi, NDV challenged Fayoumis had lower expression of EIF2B5 and EIF2S3 than NDV challenged Leghorns. At 6 dpi, NDV challenged Fayoumis had lower expression of EIF2S3 and EIF2B4 than NDV challenged Leghorns. The genetic line differences in expression of eIF2-related genes may contribute to their differential resistance to NDV and also to understanding the interaction between protein synthesis shut-off and virus control in chickens.
Collapse
Affiliation(s)
- Ana Paula Del Vesco
- Department of Animal Science, Iowa State University, Ames, IA, USA
- Department of Animal Science, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Michael G Kaiser
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Melissa S Monson
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
31
|
Deist MS, Gallardo RA, Dekkers JCM, Zhou H, Lamont SJ. Novel Combined Tissue Transcriptome Analysis After Lentogenic Newcastle Disease Virus Challenge in Inbred Chicken Lines of Differential Resistance. Front Genet 2020; 11:11. [PMID: 32117434 PMCID: PMC7013128 DOI: 10.3389/fgene.2020.00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Disease has large negative impacts on poultry production. A more comprehensive understanding of host-pathogen interaction can lead to new and improved strategies to maintain health. In particular, host genetic factors can lead to a more effective response to pathogens, hereafter termed resistance. Fayoumi and Leghorn chicken lines have demonstrated relative resistance and susceptibility, respectively, to the Newcastle disease virus (NDV) vaccine strain and many other pathogens. This biological model was used to better understand the host response to a vaccine strain of NDV across three tissues and time points, using RNA-seq. Analyzing the Harderian gland, trachea, and lung tissues together using weighted gene co-expression network analysis (WGCNA) identified important genes that were co-expressed and associated with parameters including: genetic line, days post-infection (dpi), challenge status, sex, and tissue. Pathways and driver genes, such as EIF2AK2, MPEG1, and TNFSF13B, associated with challenge status, dpi, and genetic line were of particular interest as candidates for disease resistance. Overall, by jointly analyzing the three tissues, this study identified genes and gene networks that led to a more comprehensive understanding of the whole animal response to lentogenic NDV than that obtained by analyzing the tissues individually.
Collapse
Affiliation(s)
- Melissa S Deist
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Rodrigo A Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
32
|
|
33
|
Li J, Zhang K, Fan W, Zhang S, Li Y, Gu J, Zhou J, Liu W. Transcriptome Profiling Reveals Differential Effect of Interleukin-17A Upon Influenza Virus Infection in Human Cells. Front Microbiol 2019; 10:2344. [PMID: 31681209 PMCID: PMC6798183 DOI: 10.3389/fmicb.2019.02344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023] Open
Abstract
Influenza A virus (IAV) has developed elegant strategies to utilize cellular proteins and pathways to promote replication and evade the host antiviral response. Identification of these sabotaged host factors could increase the number of potential antiviral drug targets. Here, IAV A/PR/8/34 (PR8)- and A/California/04/2009-infected A549 and 293T cells displayed differential virus replication. To determine the host cellular responses of A549 and 293T cells to IAV infection, RNA-seq was used to identify differentially expressed genes. Our data revealed that IAV-infected A549 cells activated stronger virus-sensing signals and highly expressed cytokines, which play significant roles in initiating the innate immune and inflammatory responses. In addition, IAV-infected 293T cells displayed weak immune signaling and cytokine production. Remarkably, IL-17A and associated genes were highly enriched in IAV-infected 293T cells. Furthermore, IL-17A can partially facilitate A549 cell infection by the PR8 strain and PR8-infected IL-17A knock-out mice consistently exhibited decreased weight loss and reduced lung immunopathology, as compared to controls. This work uncovered the differential responses of cells infected with two H1N1 IAV strains and the potential roles of IL-17A in modulating virus infection.
Collapse
Affiliation(s)
- Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Kun Zhang
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yun Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinyan Gu
- MOE Joint International Research Laboratory of Animal Immunology, Nanjing Agricultural University, Nanjing, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Li J, Hu Y, Li L, Wang Y, Li Q, Feng C, Lan H, Gu X, Zhao Y, Larsson M, Hu X, Li N. A Discovery of a Genetic Mutation Causing Reduction of Atrogin-1 Expression in Broiler Chicken Muscle. Front Genet 2019; 10:716. [PMID: 31475031 PMCID: PMC6704234 DOI: 10.3389/fgene.2019.00716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022] Open
Abstract
Chickens are bred all over the world and have significant economic value as one of the major agricultural animals. The growth rate of commercial broiler chickens is several times higher than its Red Jungle fowl (RJF) ancestor. To further improve the meat production of commercial chickens, it is quite important to decipher the genetic mechanism of chicken growth traits. In this study, we found that broiler chickens exhibited lower levels of E3 ubiquitin ligase muscle atrophy F-box (MAFbx or Atrogin-1) relative to its RJF ancestor. As a ubiquitin ligase, Atrogin-1 plays a crucial role in muscle development in which its up-regulation often indicates the activation of muscle atrophic pathways. Here, we showed that the Atrogin-1 expression variance partly affects chicken muscle growth rates among different breeds. Furthermore, we demonstrated that the reduced expression of Atrogin-1 in broiler chickens was ascribed to a single nucleotide polymorphism (SNP), which inhibited the binding of transcription regulators and attenuated the enhancer activity. The decreased Atrogin-1 in broiler chickens suppresses the catabolism of muscle protein and preserves muscle mass. Our study facilitates the understanding of the molecular mechanism of chicken muscle development and has a high translational impact in chicken breeding.
Collapse
Affiliation(s)
- Jinxiu Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yiqing Hu
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Li Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yuzhe Wang
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Qinghe Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Chungang Feng
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - He Lan
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Xiaorong Gu
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yiqiang Zhao
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Mårten Larsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Xiaoxiang Hu
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
35
|
A Homeostasis Hypothesis of Avian Influenza Resistance in Chickens. Genes (Basel) 2019; 10:genes10070543. [PMID: 31319606 PMCID: PMC6678902 DOI: 10.3390/genes10070543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Avian influenza has caused significant damage to the poultry industry globally. Consequently, efforts have been made to elucidate the disease mechanisms as well as the mechanisms of disease resistance. Here, by investigating two chicken breeds with distinct responses to avian influenza virus (AIV), Leghorn GB2 and Fayoumi M43, we compared their genome, methylation, and transcriptome differences. MX1, HSP90AB1, and HSP90B1 exhibited high degrees of genetic differentiation (FST) between the two species. Except for the MX1-involved direct anti-virus mechanism, we found that at the methylation and transcriptome levels, the more AIV-resistant breed, Fayoumi, exhibited less variation compared with Leghorn after AIV inoculation, which included change trends in differentially expressed regions, top-fold change genes with FDR-corrected p < 0.05, immune response related genes, and housekeeping genes. Fayoumi also showed better consistency regarding changes in methylation and changes at the transcriptome level. Our results suggest a homeostasis hypothesis for avian influenza resistance, with Fayoumi maintaining superior homeostasis at both the epigenetic and gene expression levels. Three candidate genes—MX1, HSP90AB1, and HSP90B1—showed genetic differentiation and altered gene expression, methylation, and protein expression, which merit attention in further functional studies.
Collapse
|
36
|
Than VT, Tran HTT, Ly DV, Dang HV, Nguyen MN, Truong AD. Bioinformatic identification and expression analysis of the chicken B cell lymphoma (BCL) gene. Genes Genomics 2019; 41:1195-1206. [PMID: 31313104 DOI: 10.1007/s13258-019-00849-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 07/03/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND B cell lymphoma (BCL) families play an important role in apoptosis as a growth factor, cell death programming, cytokine expression and immune-related genes expression. OBJECTIVES In this study, to investigate the roles of BCLs, we performed genome-wide identification, expression and functional analyses of the BCL family in chicken. METHODS Chicken BCLs genes were identified and analyzed by using bioinformatics approach. Expression profiles and Hierarchical cluster analysis of the BCLs genes in different chicken tissues were obtained from the genome-wide RNA-seq in the GEO, and Cluster and Java Treeview, respectively. RESULTS A total of 16 BCLs genes were identified from the chicken genome, which could be further classified into five distinct groups in the phylogenetic tree. On the other hand, the interaction among BCLs proteins and between BCLs proteins with NF-κB subunits are limited, indicating that the remaining the functions of BCLs protein could be investigated in chicken. Moreover, KEGG pathway analysis indicated that BCL gene family was involved in regulation of apoptotic and immune response. Finally, BCL gene family was differentially expressed in chicken tissues, pathogen infection and growth stages of early chicken early embryo. CONCLUSION This study provides significant insights into the potential functions of BCLs in chicken, including the regulation of apoptosis, cell death and expression of immune-related genes.
Collapse
Affiliation(s)
- Van Thai Than
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam.
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Vietnam
| | - Duc Viet Ly
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Vietnam
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Vietnam
| | - Minh Nam Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Vietnam.
| |
Collapse
|
37
|
Drobik-Czwarno W, Wolc A, Kucharska K, Martyniuk E. Genetic determinants of resistance to highly pathogenic avian influenza in chickens. ROCZNIKI NAUKOWE POLSKIEGO TOWARZYSTWA ZOOTECHNICZNEGO 2019. [DOI: 10.5604/01.3001.0013.5065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) poses a huge threat to poultry production and also introduces an epidemiological risk in the human population. Thus far, HPAI has been controlled mainly through widespread implementation of biosecurity, and in the case of an outbreak, liquidation of flocks and establishment of protection zones. Alternative strategies for combating HPAI include the use of vaccines, genetic modification, and genetic selection for increased general and specific immunity in birds. These kinds of strategies often require identification of the genes involved in the immune response to the pathogen. Many genes have been identified as potentially associated with differences in the response to HPAI between poultry species and between individuals. Thus far, the most attention has been focused on genes taking part in regulating the innate immune response, which is responsible for preventing infection and limiting the replication and spread of the virus. The most commonly mentioned candidates for layer chickens include interferon-stimulated genes (ISGs) and RIG-I-like receptors. Proteins encoded by genes of the BTLN family, defensins, and proteins involved in apoptosis have also been associated with differences in the response to HPAI. Recent years have seen an increasing number of studies on the genetic determinants of individual differences in the response to HPAI in chickens. Data from HPAI outbreaks in the US in the spring of 2015 and Mexico in the years 2012-2016 have enabled a more precise analysis of this problem. A number of genes have been identified as associated with the immune response, but their specific role in determining the survival of birds requires further study. Preliminary results indicate that genetic determinants of resistance to HPAI are highly complex and can vary depending on the virus strain and the genetic line of birds.
Collapse
Affiliation(s)
- Wioleta Drobik-Czwarno
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wydział Nauk o Zwierzętach Katedra Genetyki i Ogólnej Hodowli Zwierząt
| | - Anna Wolc
- Iowa State University Department of Animal Science
| | - Kornelia Kucharska
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wydział Nauk o Zwierzętach Katedra Biologii Środowiska Zwierząt, Zakład Zoologii
| | - Elżbieta Martyniuk
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie; Wydział Nauk o Zwierzętach
| |
Collapse
|
38
|
Long JS, Idoko-Akoh A, Mistry B, Goldhill D, Staller E, Schreyer J, Ross C, Goodbourn S, Shelton H, Skinner MA, Sang H, McGrew MJ, Barclay W. Species specific differences in use of ANP32 proteins by influenza A virus. eLife 2019; 8:e45066. [PMID: 31159925 PMCID: PMC6548507 DOI: 10.7554/elife.45066] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022] Open
Abstract
Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP32A and ANP32B homologues both support function of human-adapted influenza polymerase but do not support efficient activity of avian IAV polymerase which requires avian ANP32A. We show here that the gene currently designated as avian ANP32B is evolutionarily distinct from mammalian ANP32B, and that chicken ANP32B does not support IAV polymerase activity even of human-adapted viruses. Consequently, IAV relies solely on chicken ANP32A to support its replication in chicken cells. Amino acids 129I and 130N, accounted for the inactivity of chicken ANP32B. Transfer of these residues to chicken ANP32A abolished support of IAV polymerase. Understanding ANP32 function will help develop antiviral strategies and aid the design of influenza virus resilient genome edited chickens.
Collapse
Affiliation(s)
- Jason S Long
- Section of Molecular VirologyImperial College LondonLondonUnited Kingdom
| | - Alewo Idoko-Akoh
- The Roslin Institute, Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUnited Kingdom
| | - Bhakti Mistry
- Section of Molecular VirologyImperial College LondonLondonUnited Kingdom
| | - Daniel Goldhill
- Section of Molecular VirologyImperial College LondonLondonUnited Kingdom
| | - Ecco Staller
- Section of Molecular VirologyImperial College LondonLondonUnited Kingdom
| | - Jocelyn Schreyer
- Section of Molecular VirologyImperial College LondonLondonUnited Kingdom
| | - Craig Ross
- Institute for Infection and ImmunitySt. George's, University of LondonLondonUnited Kingdom
| | - Steve Goodbourn
- Institute for Infection and ImmunitySt. George's, University of LondonLondonUnited Kingdom
| | - Holly Shelton
- Influenza VirusesThe Pirbright InstituteSurreyUnited Kingdom
| | - Michael A Skinner
- Section of Molecular VirologyImperial College LondonLondonUnited Kingdom
| | - Helen Sang
- The Roslin Institute, Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUnited Kingdom
| | - Michael J McGrew
- The Roslin Institute, Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUnited Kingdom
| | - Wendy Barclay
- Section of Molecular VirologyImperial College LondonLondonUnited Kingdom
| |
Collapse
|
39
|
Schilling MA, Memari S, Cavanaugh M, Katani R, Deist MS, Radzio-Basu J, Lamont SJ, Buza JJ, Kapur V. Conserved, breed-dependent, and subline-dependent innate immune responses of Fayoumi and Leghorn chicken embryos to Newcastle disease virus infection. Sci Rep 2019; 9:7209. [PMID: 31076577 PMCID: PMC6510893 DOI: 10.1038/s41598-019-43483-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
Newcastle disease virus (NDV) is a threat to the global poultry industry, but particularly for smallholder farmers in low- and middle-income countries. Previous reports suggest that some breeds of chickens are less susceptible to NDV infection, however, the mechanisms contributing to this are unknown. We here examined the comparative transcriptional responses of innate immune genes to NDV infection in inbred sublines of the Fayoumi and Leghorn breeds known to differ in their relative susceptibility to infection as well as at the microchromosome bearing the major histocompatability complex (MHC) locus. The analysis identified a set of five core genes, Mx1, IRF1, IRF7, STAT1, and SOCS1, that are up-regulated regardless of subline. Several genes were differentially expressed in a breed- or subline-dependent manner. The breed-dependent response involved TLR3, NOS2, LITAF, and IFIH1 in the Fayoumi versus IL8, CAMP, and CCL4 in the Leghorn. Further analysis identified subline-dependent differences in the pro-inflammatory response within the Fayoumi breed that are likely influenced by the MHC. These results have identified conserved, breed-dependent, and subline-dependent innate immune responses to NDV infection in chickens, and provide a strong framework for the future characterization of the specific roles of genes and pathways that influence the susceptibility of chickens to NDV infection.
Collapse
Affiliation(s)
- Megan A Schilling
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA.,The Nelson Mandela African Institution of Science and Technology, School of Life Science and Bioengineering, Arusha, Tanzania
| | - Sahar Memari
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA
| | - Meredith Cavanaugh
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA
| | - Robab Katani
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA.,The Pennsylvania State University, Applied Biological and Biosafety Research Laboratory, University Park, PA, 16802, USA
| | - Melissa S Deist
- The Iowa State University, Department of Animal Science, Ames, IA, 50011, USA
| | - Jessica Radzio-Basu
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Applied Biological and Biosafety Research Laboratory, University Park, PA, 16802, USA
| | - Susan J Lamont
- The Iowa State University, Department of Animal Science, Ames, IA, 50011, USA
| | - Joram J Buza
- The Nelson Mandela African Institution of Science and Technology, School of Life Science and Bioengineering, Arusha, Tanzania
| | - Vivek Kapur
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA. .,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA. .,The Nelson Mandela African Institution of Science and Technology, School of Life Science and Bioengineering, Arusha, Tanzania. .,The Pennsylvania State University, Applied Biological and Biosafety Research Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
40
|
Saelao P, Wang Y, Chanthavixay G, Yu V, Gallardo RA, Dekkers JCM, Lamont SJ, Kelly T, Zhou H. Integrated Proteomic and Transcriptomic Analysis of Differential Expression of Chicken Lung Tissue in Response to NDV Infection during Heat Stress. Genes (Basel) 2018; 9:genes9120579. [PMID: 30486457 PMCID: PMC6316021 DOI: 10.3390/genes9120579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
Newcastle disease virus (NDV) is a devastating worldwide poultry pathogen with major implications for global food security. In this study, two highly inbred and genetically distinct chicken lines, Fayoumis and Leghorns, were exposed to a lentogenic strain of NDV, while under the effects of heat stress, in order to understand the genetic mechanisms of resistance during high ambient temperatures. Fayoumis, which are relatively more resistant to pathogens than Leghorns, had larger numbers of differentially expressed genes (DEGs) during the early stages of infection when compared to Leghorns and subsequently down-regulated their immune response at the latter stages to return to homeostasis. Leghorns had very few DEGs across all observed time points, with the majority of DEGs involved with metabolic and glucose-related functions. Proteomic analysis corroborates findings made within Leghorns, while also identifying interesting candidate genes missed by expression profiling. Poor correlation between changes observed in the proteomic and transcriptomic datasets highlights the potential importance of integrative approaches to understand the mechanisms of disease response. Overall, this study provides novel insights into global protein and expression profiles of these two genetic lines, and provides potential genetic targets involved with NDV resistance during heat stress in poultry.
Collapse
Affiliation(s)
- Perot Saelao
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA.
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Ying Wang
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Ganrea Chanthavixay
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA.
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Vivian Yu
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Terra Kelly
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Huaijun Zhou
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| |
Collapse
|
41
|
Creating Disease Resistant Chickens: A Viable Solution to Avian Influenza? Viruses 2018; 10:v10100561. [PMID: 30326625 PMCID: PMC6213529 DOI: 10.3390/v10100561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus (IAV) represents an ongoing threat to human and animal health worldwide. The generation of IAV-resistant chickens through genetic modification and/or selective breeding may help prevent viral spread. The feasibility of creating genetically modified birds has already been demonstrated with the insertion of transgenes that target IAV into the genomes of chickens. This approach has been met with some success in minimising the spread of IAV but has limitations in terms of its ability to prevent the emergence of disease. An alternate approach is the use of genetic engineering to improve host resistance by targeting the antiviral immune responses of poultry to IAV. Harnessing such resistance mechanisms in a “genetic restoration” approach may hold the greatest promise yet for generating disease resistant chickens. Continuing to identify genes associated with natural resistance in poultry provides the opportunity to identify new targets for genetic modification and/or selective breeding. However, as with any new technology, economic, societal, and legislative barriers will need to be overcome before we are likely to see commercialisation of genetically modified birds.
Collapse
|
42
|
Saelao P, Wang Y, Gallardo RA, Lamont SJ, Dekkers JM, Kelly T, Zhou H. Novel insights into the host immune response of chicken Harderian gland tissue during Newcastle disease virus infection and heat treatment. BMC Vet Res 2018; 14:280. [PMID: 30208883 PMCID: PMC6134752 DOI: 10.1186/s12917-018-1583-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023] Open
Abstract
Background Newcastle disease virus, in its most pathogenic form, threatens the livelihood of rural poultry farmers where there is a limited infrastructure and service for vaccinations to prevent outbreaks of the virus. Previously reported studies on the host response to Newcastle disease in chickens have not examined the disease under abiotic stressors, such as heat, which commonly experienced by chickens in regions such as Africa. The objective of this study was to elucidate the underlying biological mechanisms that contribute to disease resistance in chickens to the Newcastle disease virus while under the effects of heat stress. Results Differential gene expression analysis identified genes differentially expressed between treated and non-treated birds across three time points (2, 6, and 10 days post-infection) in Fayoumi and Leghorn birds. Across the three time points, Fayoumi had very few genes differentially expressed between treated and non-treated groups at 2 and 6 days post-infection. However, 202 genes were differentially expressed at 10 days post-infection. Alternatively, Leghorn had very few genes differentially expressed at 2 and 10 days post-infection but had 167 differentially expressed genes at 6 days post-infection. Very few differentially expressed genes were shared between the two genetic lines, and pathway analysis found unique signaling pathways specific to each genetic line. Fayoumi had significantly lower viral load, higher viral clearance, higher anti-NDV antibody levels, and fewer viral transcripts detected compared to Leghorns. Fayoumis activated immune related pathways including SAPK/JNK and p38 MAPK signaling pathways at earlier time points, while Leghorn would activate these same pathways at a later time. Further analysis revealed activation of the GP6 signaling pathway that may be responsible for the susceptible Leghorn response. Conclusions The findings in this study confirmed our hypothesis that the Fayoumi line was more resistant to Newcastle disease virus infection compared to the Leghorn line. Within line and interaction analysis demonstrated substantial differences in response patterns between the two genetic lines that was not observed from the within line contrasts. This study has provided novel insights into the transcriptome response of the Harderian gland tissue during Newcastle disease virus infection while under heat stress utilizing a unique resistant and susceptible model. Electronic supplementary material The online version of this article (10.1186/s12917-018-1583-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Perot Saelao
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, 95616, USA.,Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA, 95616, USA.,Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Ying Wang
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA, 95616, USA.,Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Jack M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Terra Kelly
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA, 95616, USA.,One Health Institute, University of California, Davis, CA, 95616, USA
| | - Huaijun Zhou
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA, 95616, USA. .,Department of Animal Science, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
43
|
Rowland K, Wolc A, Gallardo RA, Kelly T, Zhou H, Dekkers JCM, Lamont SJ. Genetic Analysis of a Commercial Egg Laying Line Challenged With Newcastle Disease Virus. Front Genet 2018; 9:326. [PMID: 30177951 PMCID: PMC6110172 DOI: 10.3389/fgene.2018.00326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/30/2018] [Indexed: 01/17/2023] Open
Abstract
In low income countries, chickens play a vital role in daily life. They provide a critical source of protein through egg production and meat. Newcastle disease, caused by avian paramyxovirus type 1, has been ranked as the most devastating disease for scavenging chickens in Africa and Asia. High mortality among flocks infected with velogenic strains leads to a devastating loss of dietary protein and buying power for rural households. Improving the genetic resistance of chickens to Newcastle Disease virus (NDV), in addition to vaccination, is a practical target for improvement of poultry production in low income countries. Because response to NDV has a component of genetic control, it can be influenced through selective breeding. Adding genomic information to a breeding program can increase the amount of genetic progress per generation. In this study, we challenged a commercial egg-laying line with a lentogenic strain of NDV, measured phenotypic responses, collected genotypes, and associated genotypes with phenotypes. Collected phenotypes included viral load at 2 and 6 days post-infection (dpi), antibody levels pre-challenge and 10 dpi, and growth rates pre- and post-challenge. Six suggestive QTL associated with response to NDV and/or growth were identified, including novel and known QTL confirming previously reported associations with related traits. Additionally, previous RNA-seq analysis provided support for several of the genes located in or near the identified QTL. Considering the trend of negative genetic correlation between antibody and Newcastle Disease tolerance (growth under disease) and estimates of moderate to high heritability, we provide evidence that these NDV response traits can be influenced through selective breeding. Producing chickens that perform favorably in challenging environments will ultimately increase the supply of quality protein for human consumption.
Collapse
Affiliation(s)
- Kaylee Rowland
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Anna Wolc
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Hy-Line International, Dallas Center, IA, United States
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Terra Kelly
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
44
|
Wang Y, Saelao P, Chanthavixay K, Gallardo R, Bunn D, Lamont SJ, Dekkers JM, Kelly T, Zhou H. Physiological responses to heat stress in two genetically distinct chicken inbred lines. Poult Sci 2018; 97:770-780. [PMID: 29267901 DOI: 10.3382/ps/pex363] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/01/2017] [Indexed: 12/19/2022] Open
Abstract
High ambient temperature is one of the most important environmental factors negatively impacting poultry production and health. Genetics is an important contributor in mitigating the stress response to heat. Two genetically distinct highly inbred lines of similar body size (Leghorn and Fayoumi) were characterized for phenotypic differences in response to heat. At 14 days of age, birds were exposed to 38°C with 50% humidity for 4 hours, then 35°C until the conclusion of the experiment. Non-treated individuals were kept at 29.4°C for the first week and then 25°C throughout the experiment. Birds in the heat-stress group were inoculated at day (d) 21 with Newcastle disease virus (NDV) La Sota strain to investigate the effects of heat stress and NDV infection. Thirteen blood parameters were measured using the iSTAT blood analyzer at three stages: 4 h, 6 d, and 9 d post heat-stress treatment, representing acute heat (AH) exposure, chronic heat (CH1) exposure, and chronic heat exposure after virus infection (CH2), respectively. Most blood parameters were significantly changed with heat stress in Leghorns at AH and in Fayoumis at CH1 and CH2. The Leghorn line had significant acute responses with disrupted acid-base balance and metabolic disorders. The heat-resilient Fayoumis maintained a relatively well-balanced acid-base balance. The current study provides the comprehensive profile of biomarker signatures in blood associated with heat tolerance and suggests that PO2, TCO2, HCO3, and base excess can be served as potential biomarkers that can be used to genetically improve heat tolerance in poultry.
Collapse
Affiliation(s)
- Y Wang
- Department of Animal Science, University of California, Davis, CA 95616
| | - P Saelao
- Department of Animal Science, University of California, Davis, CA 95616
| | - K Chanthavixay
- Department of Animal Science, University of California, Davis, CA 95616
| | - R Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - D Bunn
- Department of Animal Science, University of California, Davis, CA 95616
| | - S J Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - J M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - T Kelly
- One Health Institute, University of California, Davis, CA 95616
| | - H Zhou
- Department of Animal Science, University of California, Davis, CA 95616
| |
Collapse
|
45
|
Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken. BMC Genomics 2018; 19:594. [PMID: 30086717 PMCID: PMC6081845 DOI: 10.1186/s12864-018-4972-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
Background The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues. Results Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development. Conclusion Expression profiles obtained from public RNA-seq datasets – despite being generated by different laboratories using different methodologies – can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species. Electronic supplementary material The online version of this article (10.1186/s12864-018-4972-7) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Next-generation sequencing library preparation method for identification of RNA viruses on the Ion Torrent Sequencing Platform. Virus Genes 2018; 54:536-542. [PMID: 29744712 PMCID: PMC7088580 DOI: 10.1007/s11262-018-1568-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
Abstract
Next generation sequencing (NGS) is a powerful tool for the characterization, discovery, and molecular identification of RNA viruses. There were multiple NGS library preparation methods published for strand-specific RNA-seq, but some methods are not suitable for identifying and characterizing RNA viruses. In this study, we report a NGS library preparation method to identify RNA viruses using the Ion Torrent PGM platform. The NGS sequencing adapters were directly inserted into the sequencing library through reverse transcription and polymerase chain reaction, without fragmentation and ligation of nucleic acids. The results show that this method is simple to perform, able to identify multiple species of RNA viruses in clinical samples.
Collapse
|
47
|
Wolc A, Drobik-Czwarno W, Fulton JE, Arango J, Jankowski T, Dekkers JCM. Genomic prediction of avian influenza infection outcome in layer chickens. Genet Sel Evol 2018; 50:21. [PMID: 29720082 PMCID: PMC5930871 DOI: 10.1186/s12711-018-0393-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/24/2018] [Indexed: 11/10/2022] Open
Abstract
Avian influenza (AI) is a devastating poultry disease that currently can be controlled only by liquidation of affected flocks. In spite of typically very high mortality rates, a group of survivors was identified and genotyped on a 600K single nucleotide polymorphism (SNP) chip to identify genetic differences between survivors, and age- and genetics-matched controls from unaffected flocks.
In a previous analysis of this dataset, a heritable component was identified and several regions that are associated with outcome of the infection were localized but none with a large effect. For complex traits that are determined by many genes, genomic prediction models using all SNPs across the genome simultaneously are expected to optimally exploit genomic information. In this study, we evaluated the diagnostic value of genomic estimated breeding values for predicting AI infection outcome within and across two highly pathogenic avian influenza viral strains and two genetic lines of layer chickens using receiver operating curves. We show that genomic prediction based on the 600K SNP chip has the potential to predict disease outcome especially within the same strain of virus (area under receiver operating curve above 0.7), but did not predict well across genetic varieties (area under receiver operating curve of 0.43).
Collapse
Affiliation(s)
- Anna Wolc
- Department of Animal Science, Iowa State University, 806 Stange Road, 239E Kildee Hall, Ames, IA, 50010, USA. .,Hy-Line International, 2583 240th Street, Dallas Center, IA, 50063, USA.
| | - Wioleta Drobik-Czwarno
- Department of Animal Genetics and Breeding, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Janet E Fulton
- Hy-Line International, 2583 240th Street, Dallas Center, IA, 50063, USA
| | - Jesus Arango
- Hy-Line International, 2583 240th Street, Dallas Center, IA, 50063, USA
| | - Tomasz Jankowski
- Hy-Line International, 2583 240th Street, Dallas Center, IA, 50063, USA.,Nutribiogen, Witkowska 15/1, 61-039, Poznan, Poland
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, 806 Stange Road, 239E Kildee Hall, Ames, IA, 50010, USA
| |
Collapse
|
48
|
Bai H, Sun Y, Liu N, Liu Y, Xue F, Li Y, Xu S, Ni A, Ye J, Chen Y, Chen J. Genome-wide detection of CNVs associated with beak deformity in chickens using high-density 600K SNP arrays. Anim Genet 2018; 49:226-236. [PMID: 29642269 DOI: 10.1111/age.12652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 11/30/2022]
Abstract
Beak deformity (crossed beaks) is found in several indigenous chicken breeds including Beijing-You studied here. Birds with deformed beaks have reduced feed intake and poor production performance. Recently, copy number variation (CNV) has been examined in many species and is recognized as a source of genetic variation, especially for disease phenotypes. In this study, to unravel the genetic mechanisms underlying beak deformity, we performed genome-wide CNV detection using Affymetrix chicken high-density 600K data on 48 deformed-beak and 48 normal birds using penncnv. As a result, two and eight CNV regions (CNVRs) covering 0.32 and 2.45 Mb respectively on autosomes were identified in deformed-beak and normal birds respectively. Further RT-qPCR studies validated nine of the 10 CNVRs. The ratios of six CNVRs were significantly different between deformed-beak and normal birds (P < 0.01). Within these six regions, three and 21 known genes were identified in deformed-beak and normal birds respectively. Bioinformatics analysis showed that these genes were enriched in six GO terms and one KEGG pathway. Five candidate genes in the CNVRs were further validated using RT-qPCR. The expression of LRIG2 (leucine rich repeats and immunoglobulin like domains 2) was lower in birds with deformed beaks (P < 0.01). Therefore, the LRIG2 gene could be considered a key factor in view of its known functions and its potential roles in beak deformity. Overall, our results will be helpful for future investigations of the genomic structural variations underlying beak deformity in chickens.
Collapse
Affiliation(s)
- H Bai
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y Sun
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - N Liu
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y Liu
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - F Xue
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y Li
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - S Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - A Ni
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - J Ye
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y Chen
- Beijing General Station of Animal Husbandry Service, Beijing, 102200, China
| | - J Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
49
|
Oh SJ, Choi YK, Shin OS. Systems Biology-Based Platforms to Accelerate Research of Emerging Infectious Diseases. Yonsei Med J 2018; 59:176-186. [PMID: 29436184 PMCID: PMC5823818 DOI: 10.3349/ymj.2018.59.2.176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 12/29/2022] Open
Abstract
Emerging infectious diseases (EIDs) pose a major threat to public health and security. Given the dynamic nature and significant impact of EIDs, the most effective way to prevent and protect against them is to develop vaccines in advance. Systems biology approaches provide an integrative way to understand the complex immune response to pathogens. They can lead to a greater understanding of EID pathogenesis and facilitate the evaluation of newly developed vaccine-induced immunity in a timely manner. In recent years, advances in high throughput technologies have enabled researchers to successfully apply systems biology methods to analyze immune responses to a variety of pathogens and vaccines. Despite recent advances, computational and biological challenges impede wider application of systems biology approaches. This review highlights recent advances in the fields of systems immunology and vaccinology, and presents ways that systems biology-based platforms can be applied to accelerate a deeper understanding of the molecular mechanisms of immunity against EIDs.
Collapse
Affiliation(s)
- Soo Jin Oh
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Korea.
| |
Collapse
|
50
|
Zhang J, Kaiser MG, Deist MS, Gallardo RA, Bunn DA, Kelly TR, Dekkers JCM, Zhou H, Lamont SJ. Transcriptome Analysis in Spleen Reveals Differential Regulation of Response to Newcastle Disease Virus in Two Chicken Lines. Sci Rep 2018; 8:1278. [PMID: 29352240 PMCID: PMC5775430 DOI: 10.1038/s41598-018-19754-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/05/2018] [Indexed: 01/13/2023] Open
Abstract
Enhancing genetic resistance of chickens to Newcastle Disease Virus (NDV) provides a promising way to improve poultry health, and to alleviate poverty and food insecurity in developing countries. In this study, two inbred chicken lines with different responses to NDV, Fayoumi and Leghorn, were challenged with LaSota NDV strain at 21 days of age. Through transcriptome analysis, gene expression in spleen at 2 and 6 days post-inoculation was compared between NDV-infected and control groups, as well as between chicken lines. At a false discovery rate <0.05, Fayoumi chickens, which are relatively more resistant to NDV, showed fewer differentially expressed genes (DEGs) than Leghorn chickens. Several interferon-stimulated genes were identified as important DEGs regulating immune response to NDV in chicken. Pathways predicted by IPA analysis, such as "EIF-signaling", "actin cytoskeleton organization nitric oxide production" and "coagulation system" may contribute to resistance to NDV in Fayoumi chickens. The identified DEGs and predicted pathways may contribute to differential responses to NDV between the two chicken lines and provide potential targets for breeding chickens that are more resistant to NDV.
Collapse
Affiliation(s)
- Jibin Zhang
- Department of Animal Science, Iowa State University, 806 Stange Rd, 2255 Kildee Hall, Ames, IA, 50011, USA
| | - Michael G Kaiser
- Department of Animal Science, Iowa State University, 806 Stange Rd, 2255 Kildee Hall, Ames, IA, 50011, USA
| | - Melissa S Deist
- Department of Animal Science, Iowa State University, 806 Stange Rd, 2255 Kildee Hall, Ames, IA, 50011, USA
| | - Rodrigo A Gallardo
- Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - David A Bunn
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Terra R Kelly
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, 806 Stange Rd, 2255 Kildee Hall, Ames, IA, 50011, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, 806 Stange Rd, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|