1
|
Berni A, Kastner JD, Shen M, Cheng Y, Herrera G, Hiya F, Liu J, Wang L, Li J, El-Mulki OS, Beqiri S, Trivizki O, Waheed NK, O'Brien R, Gregori G, Wang RK, Rosenfeld PJ. Hyperreflective Foci Along the Retinal Pigment Epithelium Predict the Onset of Large Choroidal Hypertransmission Defects in Age-Related Macular Degeneration. Am J Ophthalmol 2025; 274:76-90. [PMID: 39987980 DOI: 10.1016/j.ajo.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE In eyes with intermediate age-related macular degeneration (iAMD), we separately quantified the hyperreflective foci (HRF) along the retinal pigment epithelium (rpeHRF) and the intraretinal HRF (iHRF) to determine if the location of the HRF predicted the progression from iAMD to the onset of large persistent choroidal hypertransmission defects (hyperTDs). DESIGN Post hoc subgroup cohort analysis of a prospective study. METHODS A retrospective analysis was performed on a prospective natural history database of eyes with AMD imaged using swept-source optical coherence tomography (SS-OCT). En face images derived from choroidal slabs positioned 64 to 400 µm beneath Bruch membrane were used with a semiautomated algorithm to identify and quantify hypotransmission defects (hypoTDs) attributable to either iHRF or rpeHRF within a 5-mm fovea-centered circle. iHRF were identified on corresponding B-scans as hyperreflective lesions within the neurosensory retina, and rpeHRF were identified as areas of retinal pigment epithelium thickening. Multivariable survival analysis was performed to determine if the area measurements of either iHRF or rpeHRF were more likely to predict the onset of the first large persistent hyperTD. RESULTS Of the 171 eyes with iAMD included in this study, 82 (48%) developed at least 1 large hyperTD during a median follow-up of 59.1 months. Univariable Cox regression analyses showed that rpeHRF area (P < .001), iHRF area (P = .003), and drusen volume (P < .001) were all significantly associated with the onset of the first large persistent hyperTD. However, a multivariable Cox regression model showed that only the rpeHRF area remained a significant predictor of disease progression (P < .001). CONCLUSIONS In iAMD eyes, the area of rpeHRF was more predictive of disease progression than either the drusen volume or iHRF, which suggests that these rpeHRF serve as harbingers of focal atrophy formation and may predict where hyperTDs form.
Collapse
Affiliation(s)
- Alessandro Berni
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (A.B., J.D.K., M.S., G.H., F.H., J.Liu, L.W., J.Li, O.S.E.-M., S.B., O.T., R.O., G.G., P.J.R.), Miami, Florida, USA; Department of Ophthalmology, IRCCS San Raffaele Scientific Institute (A.B.), Milan, Italy
| | - James D Kastner
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (A.B., J.D.K., M.S., G.H., F.H., J.Liu, L.W., J.Li, O.S.E.-M., S.B., O.T., R.O., G.G., P.J.R.), Miami, Florida, USA
| | - Mengxi Shen
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (A.B., J.D.K., M.S., G.H., F.H., J.Liu, L.W., J.Li, O.S.E.-M., S.B., O.T., R.O., G.G., P.J.R.), Miami, Florida, USA
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington (Y.C., R.K.W.), Seattle, Washington, USA
| | - Gissel Herrera
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (A.B., J.D.K., M.S., G.H., F.H., J.Liu, L.W., J.Li, O.S.E.-M., S.B., O.T., R.O., G.G., P.J.R.), Miami, Florida, USA
| | - Farhan Hiya
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (A.B., J.D.K., M.S., G.H., F.H., J.Liu, L.W., J.Li, O.S.E.-M., S.B., O.T., R.O., G.G., P.J.R.), Miami, Florida, USA
| | - Jeremy Liu
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (A.B., J.D.K., M.S., G.H., F.H., J.Liu, L.W., J.Li, O.S.E.-M., S.B., O.T., R.O., G.G., P.J.R.), Miami, Florida, USA; Department of Ophthalmology and Visual Science, Yale University School of Medicine (J.Liu), New Haven, Connecticut, USA
| | - Liang Wang
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (A.B., J.D.K., M.S., G.H., F.H., J.Liu, L.W., J.Li, O.S.E.-M., S.B., O.T., R.O., G.G., P.J.R.), Miami, Florida, USA
| | - Jianqing Li
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (A.B., J.D.K., M.S., G.H., F.H., J.Liu, L.W., J.Li, O.S.E.-M., S.B., O.T., R.O., G.G., P.J.R.), Miami, Florida, USA; Department of Ophthalmology, First Affiliated Hospital of Soochow University (J.Li), Suzhou, Jiangsu, China
| | - Omar S El-Mulki
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (A.B., J.D.K., M.S., G.H., F.H., J.Liu, L.W., J.Li, O.S.E.-M., S.B., O.T., R.O., G.G., P.J.R.), Miami, Florida, USA
| | - Sara Beqiri
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (A.B., J.D.K., M.S., G.H., F.H., J.Liu, L.W., J.Li, O.S.E.-M., S.B., O.T., R.O., G.G., P.J.R.), Miami, Florida, USA
| | - Omer Trivizki
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (A.B., J.D.K., M.S., G.H., F.H., J.Liu, L.W., J.Li, O.S.E.-M., S.B., O.T., R.O., G.G., P.J.R.), Miami, Florida, USA; Department of Ophthalmology, Tel Aviv Medical Center, University of Tel Aviv (O.T.), Tel Aviv, Israel
| | - Nadia K Waheed
- New England Eye Center, Tufts Medical Center, Tufts University School of Medicine (N.K.W.), Boston, Massachusetts, USA
| | - Robert O'Brien
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (A.B., J.D.K., M.S., G.H., F.H., J.Liu, L.W., J.Li, O.S.E.-M., S.B., O.T., R.O., G.G., P.J.R.), Miami, Florida, USA
| | - Giovanni Gregori
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (A.B., J.D.K., M.S., G.H., F.H., J.Liu, L.W., J.Li, O.S.E.-M., S.B., O.T., R.O., G.G., P.J.R.), Miami, Florida, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington (Y.C., R.K.W.), Seattle, Washington, USA; Department of Ophthalmology, University of Washington (R.K.W.), Seattle, Washington, USA
| | - Philip J Rosenfeld
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (A.B., J.D.K., M.S., G.H., F.H., J.Liu, L.W., J.Li, O.S.E.-M., S.B., O.T., R.O., G.G., P.J.R.), Miami, Florida, USA.
| |
Collapse
|
2
|
Lin Q, Yang F, Zhu X, Zou H, Xu W. Hyperglycemia and insulin treatment promote the proliferation of retinal pigment epithelium cells in early diabetes: an in vitro and in vivo study. J Histotechnol 2025:1-11. [PMID: 40377301 DOI: 10.1080/01478885.2025.2503520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/30/2025] [Indexed: 05/18/2025]
Abstract
The retinal pigment epithelium (RPE) is associated with the emergence and development of diabetic retinopathy. Interestingly, a previous clinical study observed that the atrophy of RPE cells surrounding the optic disc in type 1 diabetic children were significantly less pronounced compared to normal children, contradicting current reports. In order to explore the molecular mechanisms behind this contradictory phenomenon, we conducted a series of experiments and reached the following results. First, RPE cells proliferation increased in a glucose concentration-dependent manner in vitro, accompanied by elevated Brachyury and CTGF protein expression, but decreased overall cell viability. Secondly, in vitro experiments and diabetes mouse models confirmed that insulin promoted RPE cell proliferation in high glucose concentrations by activating ERK1/2 phosphorylation. Furthermore, insulin down-regulated the expression of Brachyury and CTGF proteins, possibly reducing high-glucose‒induced damage to RPE cells. In conclusion, the effect of insulin treatment on the proliferation of RPE cells was significantly more significant than that of hyperglycemia, which may be related to the activation of Erk1/2 or reduction of RPE cell damage by inhibiting the occurrence of EMT.
Collapse
Affiliation(s)
- Qiurong Lin
- Optometric Center, Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fan Yang
- Optometric Center, Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaofeng Zhu
- Optometric Center, Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haidong Zou
- Optometric Center, Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Xu
- Optometric Center, Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Sun Y, Hu Y, Luo S. Complement C5a promotes human retinal pigment epithelial cell viability and migration through SLC38A1-mediated glutamine metabolism. Med Microbiol Immunol 2025; 214:22. [PMID: 40358757 DOI: 10.1007/s00430-025-00832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/26/2025] [Indexed: 05/15/2025]
Abstract
The pathological basis of many visual disorders involves the abnormal viability and migration of retinal pigment epithelium (RPE) cells. Complement response disorder is a significant pathogenic factor causing some autoimmune and inflammation diseases. The complement activation product anaphylatoxin C5a signaling pathway may be associated with RPE cell dysfunction. This study aimed to analyze the molecular mechanisms by which C5a affects RPE cell viability and migration. Recombinant human complement component C5a protein stimulated RPE cells. Cell biological behavior, including cell viability, invasion, and migration were analyzed with Cell Counting Kit-8 and transwell methods. Bioinformatics analysis identified the differentially expressed genes (DEGs) involved in C5a-treated RPE cells based on RNA sequencing. SLC38A1 was knocked down or overexpressed by vector transfection to investigate its involvement in C5a-stimulated RPE cells. C5a promotes RPE cell viability and migration. C5a-induced DEGs are enriched in migration-associated pathways. C5a increased SLC38A1, and SLC38A1 knockdown or overexpression inhibited or promoted RPE cell viability and migration. Glutaminase inhibition abrogated the promoting effect of C5a and SLC38A1 on cell biological behaviors. METTL3-HNRNPC-mediated m6A modification mediated C5a-induced SLC38A1. C5a, METTL3, and SLC38A1 constituted a signaling axis in regulating cell biological behaviors of C5a-treated RPE cells. C5a promotes RPE cell viability and migration, and SLC38A1-mediated improved glutamine metabolism is the downstream signal pathway of the C5a complement pathway. The C5a complement system may target the SLC38A1 to promote RPE cell migration.
Collapse
Affiliation(s)
- Ye Sun
- Jiangnan University Wuxi School of Medicine, Wuxi No.2 People's Hospital (Jiangnan University Medical Center), Wuxi, 214000, China
| | - Yifan Hu
- Jiangnan University Wuxi School of Medicine, Wuxi No.2 People's Hospital (Jiangnan University Medical Center), Wuxi, 214000, China
| | - Shasha Luo
- Department of Ophthalmology, Wuxi No.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214000, China.
| |
Collapse
|
4
|
Park BS, Bang E, Lee H, Kim GY, Choi YH. Tagetes erecta Linn flower extract inhibits particulate matter 2.5-promoted epithelial-mesenchymal transition by attenuating reactive oxygen species generation in human retinal pigment epithelial ARPE-19 cells. Nutr Res Pract 2025; 19:170-185. [PMID: 40226757 PMCID: PMC11982690 DOI: 10.4162/nrp.2025.19.2.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Particulate matter 2.5 (PM2.5) exposure can promote epithelial-mesenchymal transition (EMT) in human retinal pigment epithelial (RPE) cells. The flowers of Tagetes erecta Linn, commonly known as marigold, are rich in diverse flavonoids and carotenoids and play a significant role in preventing cellular damage induced by oxidative stress, but the role of their extracts in RPE cells has not been reported. This study aimed to evaluate the influence of an ethanol extract of T. erecta Linn flower (TE) on PM2.5-induced EMT processes in RPE ARPE-19 cells. MATERIALS/METHODS To investigate the protective effect of TE against ARPE-19 cell damage following PM2.5 treatment, cells were exposed to TE for 1 h before exposure to PM2.5 for 24 h. We investigated whether the efficacy of TE on suppressing PM2.5-induced EMT was related to antioxidant activity and the effect on the expression changes of factors involved in EMT regulation. Additionally, we further explored the role of intracellular signaling pathways associated with EMT inhibition. RESULTS TE significantly blocked PM2.5-induced cytotoxicity while effectively preventing mitochondrial dysfunction, increased reactive oxygen species (ROS) generation, and mitochondrial membrane potential disruption. TE inhibited PM2.5-induced EMT and inflammatory response by suppressing the ROS-mediated transforming growth factor-β/suppressor of mothers against decapentaplegic/mitogen-activated protein kinases signaling pathway. CONCLUSION Our results suggest that marigold extract is a highly effective in protection against PM2.5-induced eye damage.
Collapse
Affiliation(s)
- Beom Su Park
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea
| | - EunJin Bang
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Yung Hyun Choi
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea
| |
Collapse
|
5
|
Brinkmeier ML, Wang SQ, Pittman HA, Cheung LY, Prasov L. Myelin regulatory factor (MYRF) is a critical early regulator of retinal pigment epithelial development. PLoS Genet 2025; 21:e1011670. [PMID: 40233131 PMCID: PMC12052213 DOI: 10.1371/journal.pgen.1011670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 05/05/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Myelin regulatory factor (Myrf) is a critical transcription factor in early retinal and retinal pigment epithelial development, and human variants in MYRF are a cause for nanophthalmos. Single cell RNA sequencing (scRNAseq) was performed on Myrf conditional knockout mice (Rx > Cre Myrffl/fl) at 3 developmental timepoints. Myrf was expressed specifically in the RPE, and expression was abrogated in Rx > Cre Myrffl/fl eyes. scRNAseq analysis revealed a loss of RPE cells at all timepoints resulting from cell death. GO-term analysis in the RPE revealed downregulation of melanogenesis and anatomic structure morphogenesis pathways, which were supported by electron microscopy and histologic analysis. Novel structural target genes including Ermn and Upk3b, along with macular degeneration and inherited retinal disease genes were identified as downregulated, and a strong upregulation of TGFß/BMP signaling and effectors was observed. Regulon analysis placed Myrf downstream or parallel to Pax6 and Mitf and upstream of Sox10 in RPE differentiation. Together, these results suggest a strong role for MYRF in the RPE maturation by regulating melanogenesis, cell survival, and cell structure, in part acting through suppression of TGFß signaling and activation of Sox10.
Collapse
Affiliation(s)
- Michelle L. Brinkmeier
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Su Qing Wang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hannah A. Pittman
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Leonard Y. Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Li J, Nagasaka Y, Shen H, Zhou X, Ma J, Trevisan-Silva D, Sherman NE, Ambati J, Gelfand BD, Guo LW. TMEM97 governs partial epithelial-mesenchymal transition of retinal pigment epithelial cells via the CTNND2-ADAM10 axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102460. [PMID: 39995975 PMCID: PMC11848774 DOI: 10.1016/j.omtn.2025.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025]
Abstract
Epithelial-mesenchymal transition (EMT) is associated with retinal pigment epithelium (RPE) dysfunction in degenerative retinal diseases. However, the role of partial EMT (pEMT), a hybrid state exhibiting both epithelial and mesenchymal markers, remains poorly understood in this context. Our previous research demonstrated that TMEM97 ablation in mice worsens photoreceptor loss in an oxidant-induced RPE damage model. Here, we link TMEM97 to pEMT in RPE cells and explore the underlying molecular mechanisms. We found that re-expressing TMEM97 in the RPE of TMEM97-knockout mice, via subretinal lentiviral delivery, mitigated oxidant (NaIO3)-induced photoreceptor loss. Interestingly, TMEM97 knockout in ARPE19 cells in vitro led to upregulation of cadherin/adhesion-binding pathways, even without oxidant exposure. Integrated proteomic, transcriptomic, segmentation, and immunoblot analyses revealed that TMEM97 ablation induces pEMT, marked by the concurrent expression of epithelial E-cadherin and mesenchymal N-cadherin, a process reversed upon TMEM97 re-expression. Furthermore, TMEM97 negatively regulated CTNND2 protein (catenin δ-2), but not the known EMT driver β-catenin, and CTNND2 was found to promote ADAM10, which sustains both E- and N-cadherin protein levels. These findings identify TMEM97 as a novel regulator of RPE-cell pEMT through the CTNND2-ADAM10 axis, highlighting potential new targets for therapeutic intervention in RPE-related pathophysiology.
Collapse
Affiliation(s)
- Jing Li
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Yosuke Nagasaka
- Department of Ophthalmology, University of Virginia, Charlottesville, VA 22903, USA
| | - Hongtao Shen
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Xinyu Zhou
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Dilza Trevisan-Silva
- School of Medicine Core Facilities, University of Virginia, Charlottesville, VA 22903, USA
| | - Nicholas E. Sherman
- School of Medicine Core Facilities, University of Virginia, Charlottesville, VA 22903, USA
| | - Jayakrishna Ambati
- Department of Ophthalmology, University of Virginia, Charlottesville, VA 22903, USA
| | - Bradley D. Gelfand
- Department of Ophthalmology, University of Virginia, Charlottesville, VA 22903, USA
| | - Lian-Wang Guo
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Ophthalmology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
7
|
Herrera G, Cheng Y, Attiku Y, Hiya FE, Shen M, Liu J, Lu J, Berni A, Trivizki O, Li J, O’Brien RC, Gregori G, Wang RK, Rosenfeld PJ. Comparison between Spectral-domain and Swept-source OCT Angiography Scans for the Measurement of Hyperreflective Foci in Age-related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2025; 5:100633. [PMID: 39758131 PMCID: PMC11699460 DOI: 10.1016/j.xops.2024.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 01/07/2025]
Abstract
Purpose Spectral-domain OCT angiography (SD-OCTA) scans were used in an algorithm developed for swept-source OCT angiography (SS-OCTA) scans to determine if SD-OCTA scans yielded similar results for the measurement of hyperreflective foci (HRF) in intermediate age-related macular degeneration (iAMD). Design Retrospective study. Participants Forty eyes from 35 patients with iAMD. Methods Patients underwent SD-OCTA and SS-OCTA imaging at the same visit using a 6 × 6 mm OCTA scan pattern. Hyperreflective foci were detected as hypotransmission defects on en face structural images generated from a custom slab positioned 64 to 400 μm beneath Bruch's membrane and confirmed on corresponding B-scans by the presence of well circumscribed lesions within the neurosensory retina or along the retinal pigment epithelium (RPE) that are of equal or greater reflectivity than that of the RPE. Two independent graders evaluated the en face images and B-scans for the presence of these lesions. Outlines of HRF on en face images were generated using a published semiautomated algorithm developed for SS-OCTA scans and manually corrected by the graders when necessary. The total area measurements of the HRF within the 5-mm circle centered on the fovea were obtained from the algorithm using each imaging method. Main Outcome Measures Agreement of the square root (sqrt) of the HRF total areas obtained from SS-OCTA and SD-OCTA. Results The sqrt total areas of the HRF from both imaging modalities were highly concordant, with Lin's concordance correlation coefficient (rc) of 0.94 (95% confidence interval: 0.86-0.97; P < 0.001). The mean sqrt of the total HRF area measurements identified using SS-OCTA and SD-OCTA imaging were 0.390 mm (standard deviation [SD]: 0.170) and 0.393 mm (SD: 0.187), respectively with mean difference of -0.003 (95% confidence interval: -0.021 to 0.015; P=0.76). Conclusions Spectral-domain OCT angiography scans yielded results similar to SS-OCTA scans when the same semiautomated algorithm was used to measure HRF in the central 5 mm of the macula, suggesting that either a single 6 × 6 mm SD-OCTA or a SS-OCTA scan pattern can be used to determine the total macular HRF burden in eyes with age-related macular degeneration. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Gissel Herrera
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Yamini Attiku
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Farhan E. Hiya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Mengxi Shen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeremy Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut
| | - Jie Lu
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Alessandro Berni
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Omer Trivizki
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
- Department of Ophthalmology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Jianqing Li
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Robert C. O’Brien
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Philip J. Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
8
|
Li H, Hu L, Zheng C, Kong Y, Liang M, Li Q. Ankrd1 as a potential biomarker for the transition from acute kidney injury to chronic kidney disease. Sci Rep 2025; 15:4659. [PMID: 39920300 PMCID: PMC11806044 DOI: 10.1038/s41598-025-88752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
Ischemia-reperfusion injury (IRI) is one of the leading causes of acute kidney injury (AKI), predisposing patients to chronic kidney disease (CKD) due to maladaptive renal repair. Nevertheless, the molecular mechanisms and biomarkers that cause maladaptive repair remain unclear. In this study, we used single-nucleus RNA sequencing data from GEO database (GSE139107) to identify molecular markers during the transition from AKI to CKD caused by IRI. Analysis of intercellular crosstalk, trajectory and machine learning algorithms revealed hub cell clusters and genes. Proximal tubule (PT) cells, especially a new cluster (New PT2), significantly interacted with fibroblasts during the transition. The expression levels of hub genes were validated using the bulk RNA-seq data (GSE98622) and further confirmed through RT-qPCR and immunohistochemical analysis in ischemia-reperfusion injury (uIRI) mice. Ankrd1, a hub gene in New PT2, showed sustained upregulation in the proximal tubule in AKI. Compared to the sham-operated group, the expression of Ankrd1 in mice increased at 0.5 days post-reperfusion, peaked at day 1, and remained significantly elevated up to 60 days. This study indicated that the upregulation of Ankrd1 was positively associated with the progression from AKI to CKD and may potentially serve as a valuable biomarker for this transitional process.
Collapse
Affiliation(s)
- Hailin Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Lemei Hu
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Changqing Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ying Kong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ming Liang
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China.
- Department of Nephrology, Guangzhou First People's Hospital, Guangzhou, People's Republic of China.
| | - Quhuan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
9
|
Chen Y, Jiang M, Li L, Yang S, Liu Z, Lin S, Wang W, Li J, Chen F, Hou Q, Ma X, Hou L. Absent in melanoma 2: a potent suppressor of retinal pigment epithelial-mesenchymal transition and experimental proliferative vitreoretinopathy. Cell Death Dis 2025; 16:49. [PMID: 39870644 PMCID: PMC11772762 DOI: 10.1038/s41419-025-07367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear. The present study demonstrated that AIM2 functions as a potent suppressor of RPE cell proliferation and EMT to maintain retinal homeostasis. Transcriptome analysis using RNA-sequencing (RNA-Seq) revealed that AIM2 was significantly downregulated in primary human RPE (phRPE) cells undergoing EMT and proliferation. Consequently, Aim2-deficient mice showed morphological changes and increased FN expression in RPE cells under physiological conditions, whereas AIM2 overexpression in phRPE cells inhibited EMT. In a retinal detachment-induced PVR mouse model, AIM2 deficiency promotes RPE-EMT, resulting in severe experimental PVR. Clinical samples further confirmed the downregulation of AIM2 in the PVR membranes from patients. Kyoto Encyclopedia of Genes and Genome analysis revealed that the PI3K-AKT signaling pathway was significantly related to RPE-EMT and that AIM2 inhibited AKT activation in RPE cells by reducing its phosphorylation. Moreover, treatment with eye drops containing an AKT inhibitor alleviated RPE-EMT and the severity of experimental PVR. These findings provide new insights into the complex mechanisms underlying RPE-EMT and PVR pathogenesis, with implications for rational strategies for potential therapeutic applications in PVR by targeting RPE-EMT.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mingyuan Jiang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Liping Li
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhengzhou Aier Eye Hospital, Zhengzhou, China
| | - Shanshan Yang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zuimeng Liu
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shiwen Lin
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wanxiao Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinyang Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiang Hou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
10
|
Harju N, Kauppinen A, Loukovaara S. Fibrotic Changes in Rhegmatogenous Retinal Detachment. Int J Mol Sci 2025; 26:1025. [PMID: 39940795 PMCID: PMC11817287 DOI: 10.3390/ijms26031025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Rhegmatogenous retinal detachment (RRD) is a sight-threatening condition involving retinal detachment and the accumulation of fluid in the subretinal space. Proliferative vitreoretinopathy (PVR) is a pathologic complication that develops after RRD surgery, and approximately 5-10% of RRD cases develop post-operative PVR. Prolonged inflammation in the wound healing process, epithelial-mesenchymal transition (EMT), retinal pigment epithelial (RPE) cell migration and proliferation, and epiretinal, intraretinal, and subretinal fibrosis are typical in the formation of PVR. RPE cells undergo EMT and become fibroblast-like cells that migrate to the retina and vitreous, promoting PVR formation. Fibroblasts transform into myofibroblasts, which promote fibrosis by overproducing the extracellular matrix (ECM). RPE cells, fibroblasts, glial cells, macrophages, T lymphocytes, and increased ECM production form contractile epiretinal membranes. Cytokine release, complement activation, RPE cells, glial cells, and endothelial cells are all involved in retinal immune responses. Normally, wounds heal within 4 to 6 weeks, including hemostasis, inflammation, proliferation, and remodeling phases. Properly initiated inflammation, complement activation, and the function of neutrophils and glial cells heal the wound in the first stage. In a retinal wound, glial cells proliferate and fill the injured area. Gliosis tries to protect the neurons and prevent damage, but it becomes harmful when it causes scarring. If healing is complicated, prolonged inflammation leads to pathological fibrosis. Currently, there is no preventive treatment for the formation of PVR, and it is worth studying in the future.
Collapse
Affiliation(s)
- Niina Harju
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Department of Ophthalmology, Helsinki University Central Hospital, 00029 Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
11
|
Goenka S. E-cigarette flavoring chemicals and vehicles adversely impact the functions of pigmented human retinal ARPE-19 cells. Toxicol Rep 2024; 13:101789. [PMID: 39526232 PMCID: PMC11550671 DOI: 10.1016/j.toxrep.2024.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Electronic cigarettes (ECs) have been shown to adversely impact the human eye's retinal pigment epithelium (RPE). Flavored e-liquids induced cytotoxicity in unpigmented human ARPE-19 cells independent of nicotine's presence in my previous study. In the current study, human ARPE-19 cells pigmented by sepia melanin were employed to examine the effects of four flavoring chemicals, vanillin, menthol, furanone, and cinnamaldehyde, and EC vehicles propylene glycol (PG)/vegetable glycerin (VG) ratios (0:100, 80:20, 100:0 % v/v), on metabolic activity, membrane integrity, oxidative stress, and wound healing capacity of these cells. Results demonstrate that cinnamaldehyde was the most cytotoxic flavoring, and all vehicles showed marked cytotoxicity at the highest concentration of 10 %. All four flavorings elicited a significant production of reactive oxygen species (ROS), while the three vehicles did not impact ROS levels. Vanillin significantly (p < 0.05) suppressed wound healing, while furanone and cinnamaldehyde had no effects, although menthol promoted wound healing at the lowest concentration. Moreover, the vehicles with two ratios of 0:100 PG/VG and 80:20 PG/VG suppressed wound healing. Together, these results suggest that vanillin and VG-containing vehicles exert the greatest adverse effects on ARPE-19 cells. These findings underscore the potential harm that exposure to ECs can cause to the human retina.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
12
|
Zhang Y, Wu F, Guo S, Yin R, Yuan M, Li X, Zhao X, Li X. Critical role of apoptosis in MeCP2-mediated epithelial-mesenchymal transition of ARPE-19 cells. J Cell Physiol 2024; 239:e31429. [PMID: 39238182 DOI: 10.1002/jcp.31429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Proliferative vitreoretinopathy (PVR) is a complex disease that significantly contributes to recurrent retinal detachment. Its development is notably affected by epithelial-mesenchymal transition (EMT), where apoptosis plays a crucial role as a regulator of EMT. However, the function of MeCP2 in governing apoptosis and EMT in retinal pigment epithelial (RPE) cells and its implications for PVR development have remained inadequately understood. Thus, we investigated the impact of MeCP2 on proliferation, migration, apoptosis and EMT in ARPE-19 cells to provide a fresh perspective on the etiology of PVR. The morphological changes in ARPE-19 cells induced by recombinant human MeCP2 protein and MeCP2 knockdown were observed. Wound healing assay were performed to verify the effects of recombinant human MeCP2 protein and MeCP2 knockdown on ARPE-19 cell migration. Furthermore, cell proliferation was assessed using the CCK-8 assay and flow cytometry. Western blot analysis, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and immunofluorescence analysis were conducted to measure the protein levels associated with apoptosis, cell cycle and EMT. Western blot analysis and immunofluorescence assays confirmed that MeCP2 promoted EMT formation in ARPE-19 cells. The CCK-8 assay revealed that MeCP2 treatment enhanced the proliferation of ARPE-19 cells, whereas MeCP2 knockdown inhibited ARPE-19 cell proliferation. Treatment with recombinant human MeCP2 protein and MeCP2 knockdown altered the morphology of ARPE-19 cells. Wound healing assay demonstrated that MeCP2 knockdown inhibited ARPE-19 cell migration, and MeCP2 treatment promoted ARPE-19 cell migration. MeCP2 knockdown induced a G0/G1 phase block, inhibiting cell growth, and qRT-PCR data indicated reduced expression of cell cycle-related genes. Increased apoptosis was observed after MeCP2 knockdown in ARPE-19 cells. Overall, MeCP2 treatment stimulates cell proliferation, migration and EMT formation; conversely, MeCP2 knockdown inhibits EMT, cell proliferation, migration and cell cycle G1/S phase transition, and induces apoptosis.
Collapse
Affiliation(s)
- Yongya Zhang
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Fei Wu
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Sibei Guo
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Xinxiang Medical University, Zhengzhou, China
| | - Ruijie Yin
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Min Yuan
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xue Li
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xueru Zhao
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xiaohua Li
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Xinxiang Medical University, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
13
|
Tzaridis S, Aguilar E, Dorrell MI, Friedlander M, Eade KT. Retinal pigment epithelial cells reduce vascular leak and proliferation in retinal neovessels. Angiogenesis 2024; 28:1. [PMID: 39601967 PMCID: PMC11602807 DOI: 10.1007/s10456-024-09954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
In multiple neurodegenerative diseases, including age-related macular degeneration, retinitis pigmentosa, and macular telangiectasia type 2 (MacTel), retinal pigment epithelial (RPE)-cells proliferate and migrate into the neuroretina, forming intraretinal pigment plaques. Though these pigmentary changes are hallmarks of disease progression, it is unknown if their presence is protective or detrimental.Here, we first evaluated the impact of pigment plaques on vascular changes and disease progression in MacTel. In a retrospective, longitudinal study, we analyzed multimodal retinal images of patients with MacTel and showed that pigment plaques were associated with decreased vascular leakage and stabilized neovascular growth. We then modeled the underlying pathomechanisms of pigment plaque formation in aberrant neovascular growth using the very-low-density lipoprotein receptor mutant (Vldlr-/-) mouse. Our data indicated that during RPE-proliferation, migration and accumulation along neovessels RPE-cells underwent epithelial-mesenchymal transition (EMT). Pharmacologic inhibition of EMT in Vldlr-/- mice decreased pigment coverage, and exacerbated neovascular growth and vascular leakage.Our findings indicate that the proliferation, migration and perivascular accumulation of RPE-cells stabilize vascular proliferation and exudation, thereby exerting a protective effect on the diseased retina. We conclude that interfering with this "natural repair mechanism" may have detrimental effects on the course of the disease and should thus be avoided.
Collapse
Affiliation(s)
- Simone Tzaridis
- The Lowy Medical Research Institute, La Jolla, CA, USA.
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| | - Edith Aguilar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael I Dorrell
- The Lowy Medical Research Institute, La Jolla, CA, USA
- Point Loma Nazarene University, San Diego, CA, USA
| | - Martin Friedlander
- The Lowy Medical Research Institute, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Kevin T Eade
- The Lowy Medical Research Institute, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
14
|
Feng Y, Yang F, Zheng J, Shi L, Xie T, Lin Y, Shi Q. Circular RNA HIPK3 mediates epithelial-mesenchymal transition of retinal pigment epithelial cells by sponging multiple microRNAs. Sci Rep 2024; 14:28872. [PMID: 39572643 PMCID: PMC11582593 DOI: 10.1038/s41598-024-71119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/26/2024] [Indexed: 11/24/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells plays key roles in the pathogenesis of multiple vitreoretinal diseases, leading to profound and permanent vision loss. Circular RNAs (circRNAs) are widespread and functional endogenous RNAs that could regulate gene expression in eukaryotes. The functions of circRNAs in mediating EMT has been reported in several diseases. In the current study, we investigated the role of circRNA HIPK3 (circHIPK3) in EMT process of RPE cells (RPE-EMT). circHIPK3 is one abundant circRNA generated from the second exon of HIPK3 mRNA. We found that circHIPK3 expression was significantly increased in TGF-β1-induced RPE-EMT model. Silencing of circHIPK3 attenuated TGF-β1-induced RPE-EMT process, whereas forced expression of circHIPK3 could trigger EMT in RPE cells. Mechanistically, circHIPK3 regulates RPE-EMT process via sponging multiple microRNAs (miRNAs). This study provides novel insights into the mechanism of RPE-EMT. Targeting circHIPK3 might serve as a therapeutic strategy in RPE-EMT associated vitreoretinal diseases.
Collapse
Affiliation(s)
- Yalan Feng
- Department of Ophthalmology, Yixing Eye Hospital, Wuxi School of Medicine, Jiangnan University, Intersection of Hongta Road Kang Ming Road, Yicheng Street, Yixing, 214200, Jiangsu, China
| | - Fan Yang
- Shanghai Eye Diseases Prevention & Treatment Center, Shanghai, China
| | - Jijia Zheng
- Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Lijun Shi
- Department of Ophthalmology, Yixing Eye Hospital, Wuxi School of Medicine, Jiangnan University, Intersection of Hongta Road Kang Ming Road, Yicheng Street, Yixing, 214200, Jiangsu, China
| | - Tianhua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yunzhi Lin
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qian Shi
- Department of Ophthalmology, Yixing Eye Hospital, Wuxi School of Medicine, Jiangnan University, Intersection of Hongta Road Kang Ming Road, Yicheng Street, Yixing, 214200, Jiangsu, China.
| |
Collapse
|
15
|
Zhao N, Li YY, Xu JM, Yang MY, Li YZ, Lam TC, Zhou L, Tong QH, Zhang JT, Wang SZ, Hu XX, Wu YF, Lu QK, Lang TY. Cone-rod homeobox transcriptionally activates TCF7 to promote the proliferation of retinal pigment epithelial and retinoblastoma cells in vitro. Int J Ophthalmol 2024; 17:1995-2006. [PMID: 39559312 PMCID: PMC11528266 DOI: 10.18240/ijo.2024.11.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/19/2024] [Indexed: 11/20/2024] Open
Abstract
AIM To investigate the proliferation regulatory effect of cone-rod homeobox (CRX) in retinal pigment epithelium (RPE) and retinoblastoma (RB) cells to explore the potential application and side effect (oncogenic potential) of CRX-based gene therapy in RPE-based retinopathies. METHODS Adult human retinal pigment epithelial (ARPE)-19 and human retinal pigment epithelial (RPE)-1 cells and Y79 RB cell were used in the study. Genetic manipulation was performed by lentivirus-based technology. The cell proliferation was determined by a CellTiter-Glo Reagent. The mRNA and protein levels were determined by quantitative real-time polymerase chain reaction (qPCR) and Western blot assay. The transcriptional activity of the promoter was determined by luciferase reporter gene assay. The bindings between CRX and transcription factor 7 (TCF7) promoter as well as TCF7 and the promoters of TCF7 target genes were examined by chromatin immunoprecipitation (ChIP) assay. The transcription of the TCF7 was determined by a modified nuclear run-on assay. RESULTS CRX overexpression and knockdown significantly increased (n=3, P<0.05 in all the cells) and decreased (n=3, P<0.01 in all the cells) the proliferation of RPE and RB cells. CRX overexpression and knockdown significantly increased and deceased the mRNA levels of Wnt signaling target genes [including MYC proto-oncogene (MYC), JUN, FOS like 1 (FOSL1), CCND1, cyclin D2 (CCND2), cyclin D3 (CCND3), cellular communication network factor 4 (CCN4), peroxisome proliferator activated receptor delta (PPARD), and matrix metallopeptidase 7 (MMP7)] and the luciferase activity driven by the Wnt signaling transcription factor (TCF7). TCF7 overexpression and knockdown significantly increased and decreased the proliferation of RPE and RB cells and depletion of TCF7 significantly abolished the stimulatory effect of CRX on the proliferation of RPE and RB cells. CRX overexpression and knockdown significantly increased and decreased the mRNA level of TCF7 and the promoter of TCF7 was significantly immunoprecipitated by CRX antibody. CONCLUSION CRX transcriptionally activates TCF7 to promote the proliferation of RPE and RB cells in vitro. CRX is a potential target for RPE-based regenerative medicine. The potential risk of this strategy, tumorigenic potential, should be considered.
Collapse
Affiliation(s)
- Na Zhao
- Ophthalmology Center, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
- Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Ying-Ying Li
- Ophthalmology Center, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
- Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Jia-Man Xu
- Reproductive Medicine Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mu-Yao Yang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yun-Zhe Li
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Chongqing Medical University; Department of Gynecology, The First Branch of The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042; State Key Laboratory of Maternal and Fetal Medicine of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong 999077, China
| | - Lei Zhou
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong 999077, China
- School of Optometry; Department of Applied Biology and Chemical Technology; Research Centre for SHARP Vision (RCSV); The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Qi-Hu Tong
- Ophthalmology Center, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
- Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Jun-Tao Zhang
- Ophthalmology Center, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
- Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Sheng-Zhan Wang
- Ophthalmology Center, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
- Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Xin-Xin Hu
- Ophthalmology Center, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
- Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yu-Fei Wu
- Ophthalmology Center, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
- Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Qin-Kang Lu
- Ophthalmology Center, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
- Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Ting-Yuan Lang
- Reproductive Medicine Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
16
|
Berni A, Shen M, Cheng Y, Herrera G, Hiya F, Liu J, Wang L, Li J, Zhou SW, Trivizki O, Waheed NK, O'Brien R, Gregori G, Wang RK, Rosenfeld PJ. The Total Macular Burden of Hyperreflective Foci and the Onset of Persistent Choroidal Hypertransmission Defects in Intermediate AMD. Am J Ophthalmol 2024; 267:61-75. [PMID: 38944135 PMCID: PMC11486582 DOI: 10.1016/j.ajo.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
PURPOSE The association between the total macular burden of hyperreflective foci (HRF) in eyes with intermediate AMD (iAMD) and the onset of persistent choroidal hypertransmission defects (hyperTDs) was studied using swept-source optical coherence tomography (SS-OCT). DESIGN Post hoc subgroup analysis of a prospective study. METHODS A retrospective review of iAMD eyes from subjects enrolled in a prospective SS-OCT study was performed. All eyes underwent 6×6 mm SS-OCT angiography (SS-OCTA) imaging at baseline and follow-up visits. En face sub-retinal pigment epithelium (subRPE) slabs with segmentation boundaries positioned 64 to 400 µm beneath Bruch's membrane (BM) were used to identify persistent choroidal hyperTDs. None of the eyes had persistent hyperTDs at baseline. The same subRPE slab was used to identify choroidal hypotransmission defects (hypoTDs) attributable to HRF located either intraretinally (iHRF) or along the RPE (rpeHRF) based on corresponding B-scans. A semiautomated algorithm was used by 2 independent graders to validate and refine the HRF outlines. The HRF area and the drusen volume within a 5 mm fovea-centered circle were measured at each visit. RESULTS The median follow-up time for the 171 eyes from 121 patients included in this study was 59.1 months (95% CI: 52.0-67.8 months). Of these, 149 eyes (87%) had HRF, and 82 (48%) developed at least one persistent hyperTD during the follow-up. Although univariable Cox regression analyses showed that both drusen volume and total HRF area were associated with the onset of the first persistent hyperTD, multivariable analysis showed that the area of total HRF was the sole significant predictor for the onset of hyperTDs (P < .001). ROC analysis identified an HRF area ≥ 0.07 mm² to predict the onset of persistent hyperTDs within 1 year with an area under the curve (AUC) of 0.661 (0.570-0.753), corresponding to a sensitivity of 55% and a specificity of 74% (P < .001). CONCLUSIONS The total macular burden of HRF, which includes both the HRF along the RPE and within the retina, is an important predictor of disease progression from iAMD to the onset of persistent hyperTDs and should serve as a key OCT biomarker to select iAMD patients at high risk for disease progression in future clinical trials.
Collapse
Affiliation(s)
- Alessandro Berni
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology (A.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mengxi Shen
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yuxuan Cheng
- Department of Bioengineering (Y.C., R.K.W.), University of Washington, Seattle, Washington, USA
| | - Gissel Herrera
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Farhan Hiya
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jeremy Liu
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology and Visual Science (J.L.), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Liang Wang
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jianqing Li
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology (J.L.), First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sandy Wenting Zhou
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology (W.Z.), Tan Tock Seng Hospital, National Health Group Eye Institute, Singapore
| | - Omer Trivizki
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Ophthalmology (O.T.), Tel Aviv Medical Center, University of Tel Aviv, Tel Aviv, Israel
| | - Nadia K Waheed
- New England Eye Center (N.K.W.), Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Robert O'Brien
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Giovanni Gregori
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ruikang K Wang
- Department of Bioengineering (Y.C., R.K.W.), University of Washington, Seattle, Washington, USA; Department of Ophthalmology (R.K.W.), University of Washington, Seattle, Washington, USA
| | - Philip J Rosenfeld
- From the Department of Ophthalmology (A.B., M.S., G.H., F.H., J.L., S.W.Z., O.T., R.O-B., G.G., P.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
17
|
Zong T, Mu T, Tan C, Xie T, Zhuang M, Wang Y, Li Z, Yang Q, Wu M, Cai J, Wang X, Yao Y. Tenascin-C induces transdifferentiation of retinal pigment epithelial cells in proliferative vitreoretinopathy. Exp Eye Res 2024; 248:110097. [PMID: 39284505 DOI: 10.1016/j.exer.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Proliferation and transdifferentiation of the retinal pigment epithelium (RPE) are hallmarks of proliferative vitreoretinopathy (PVR); however, the critical regulators of this process remain to be elucidated. Here, we investigated the role of tenascin-C in PVR development. In vitro, exposure of human ARPE-19 (hRPE) cells to TGF-β2 increased tenascin-C expression. Tenascin-C was shown to be involved in TGF-β2-induced transdifferentiation of hRPE cells, which was inhibited by pretreatment with tenascin-C siRNA. In PVR mouse models, a marked increase in the expression of tenascin-C mRNA and protein was observed. Additionally, immunofluorescence analysis demonstrated a dramatic increase in the colocalization of tenascin-C with RPE65 or α-smooth muscle actin(α-SMA) in the epiretinal membranes of patients with PVR. There was also abundant expression of integrin αV and β-catenin in the PVR membranes. ICG-001, a β-catenin inhibitor, efficiently attenuated PVR progression in a PVR animal model. These findings suggest that tenascin-C is secreted by transdifferentiated RPE cells and promotes the development of PVR via the integrin αV and β-catenin pathways. Therefore, tenascin-C could be a potential therapeutic target for the inhibition of epiretinal membrane development associated with PVR.
Collapse
Affiliation(s)
- Tianyi Zong
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Tong Mu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Chengye Tan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Miao Zhuang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Yan Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Ziwen Li
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Qian Yang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Meili Wu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Xiaolu Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China.
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China.
| |
Collapse
|
18
|
Nebbioso M, Mastrogiuseppe E, Gnolfo E, Artico M, Moramarco A, Mallone F, Taurone S, Vestri A, Lambiase A. Macular Alterations in a Cohort of Caucasian Patients Affected by Retinitis Pigmentosa. Diagnostics (Basel) 2024; 14:2409. [PMID: 39518376 PMCID: PMC11545790 DOI: 10.3390/diagnostics14212409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES Our objective was to investigate the prevalence of macular complications detected by spectral-domain optical coherence tomography (SD-OCT) in a large Caucasian cohort of RP patients, highlight the major alterations in chorioretinal structure, and compare the macular structural changes in eyes affected by retinal dystrophies with those in healthy controls. METHODS This was an observational, retrospective, and cross-sectional study. Three hundred and seven patients with RP were consecutively enrolled and underwent clinical assessment. In particular, SD-OCT images were used to ascertain the morphology of the posterior pole of patients with RP by evaluating the residual ellipsoid zone (EZ), the volume and thickness of the outer nuclear layer (ONLT), and subfoveal choroid thickness (SCT). At the same time, the pathological finding that the patients' vision was reduced under treatment was analyzed. RESULTS A total of 436 eyes of 218 patients with RP were studied. Considering all of the eyes studied, 103 had cystoid macular edema (CME) (23.62%), 123 (28.21%) had vitreomacular traction (VMT), and 199 (45.75%) had epiretinal membranes (ERMs). There were also 12 (2.75%) cases of lamellar macular holes (LMHs), of which 3 (1.38% of all patients) cases were bilateral. Only 137 eyes (31.42%) did not have the above-mentioned alterations. SCT was significantly reduced compared to that of the control group (193.03 µm ± 67.90 SD vs. 295 µm ± 69.04 SD), while the foveal central macular thickness (FCMT) was greater (270.91 μm ± 74.04 SD vs. 221 µm ± 37.25 SD). CONCLUSIONS This research highlights the high incidence of macular complications. The results of our study indicate the importance of regular monitoring of RP patients and early intervention to avoid further complications in this group of subjects with severe visual field impairment to avoid further central vision loss.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy; (E.M.); (E.G.); (M.A.); (A.M.); (F.M.); (A.L.)
| | - Elvia Mastrogiuseppe
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy; (E.M.); (E.G.); (M.A.); (A.M.); (F.M.); (A.L.)
| | - Eleonora Gnolfo
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy; (E.M.); (E.G.); (M.A.); (A.M.); (F.M.); (A.L.)
| | - Marco Artico
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy; (E.M.); (E.G.); (M.A.); (A.M.); (F.M.); (A.L.)
| | - Antonietta Moramarco
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy; (E.M.); (E.G.); (M.A.); (A.M.); (F.M.); (A.L.)
| | - Fabiana Mallone
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy; (E.M.); (E.G.); (M.A.); (A.M.); (F.M.); (A.L.)
| | - Samanta Taurone
- Department of Moviment, Human and Health Sciences, University of Rome, Foro Italico, 00135 Rome, Italy;
| | - Annarita Vestri
- Department of Public Health and Infectious Disease, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
| | - Alessandro Lambiase
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy; (E.M.); (E.G.); (M.A.); (A.M.); (F.M.); (A.L.)
| |
Collapse
|
19
|
Rajala A, Rajala RVS. Age-Related Changes in the Glycolytic Enzymes of M2-Isoform of Pyruvate Kinase and Fructose-1,6-Bisphosphate Aldolase: Implications to Age-Related Macular Degeneration. Aging Dis 2024; 15:2271-2283. [PMID: 38739943 PMCID: PMC11346409 DOI: 10.14336/ad.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Prior studies have emphasized a bioenergetic crisis in the retinal pigment epithelium (RPE) as a critical factor in the development of age-related macular degeneration (AMD). The isoforms Fructose-1,6-bisphosphate aldolase C (ALDOC) and pyruvate kinase M2 (PKM2) have been proposed to play a role in AMD pathogenesis. While PKM2 and ALDOC are crucial for aerobic glycolysis in the neural retina, they are not as essential for the RPE. In this study, we examined the expression and activity of PKM2 and ALDOC in both young and aged RPE cells, as well as in the retina and RPE tissue of mice, including an experimentally induced AMD mouse model. Our findings reveal an upregulation in PKM2 and ALDOC expression, accompanied by increased pyruvate kinase activity, in the aged and AMD mouse RPE. Conversely, there is a decrease in ALDOC expression but an increase in PKM2 expression and pyruvate kinase activity in the aged and AMD retina. Overall, our study indicates that aged and AMD RPE cells tend to favor aerobic glycolysis, while this tendency is diminished in the aged and AMD retina. These results underscore the significance of targeting PKM2 and ALDOC in the RPE as a promising therapeutic approach to address the bioenergetic crisis and prevent vision loss in AMD.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology
- Dean McGee Eye Institute, Oklahoma, Oklahoma 73104, USA.
| | - Raju V. S. Rajala
- Department of Ophthalmology
- Department of Biochemistry and Physiology, and
- Department of Cell Biology, University of Oklahoma Health Sciences Center
- Dean McGee Eye Institute, Oklahoma, Oklahoma 73104, USA.
| |
Collapse
|
20
|
Bernd J, Plastino F, Karayannis JJ, Kvanta A, Locri F, André H. Accelerated maturation of ARPE-19 cells for the translational assessment of gene therapy. FASEB J 2024; 38:e70020. [PMID: 39222301 DOI: 10.1096/fj.202301707rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The human retinal pigment epithelium (RPE) cell line ARPE-19 is widely used as an alternative to primary RPE despite losing many features of primary RPE. We aimed to determine whether a combination of RPE-specific laminin (LN) and nicotinamide (NAM) could improve ARPE-19 redifferentiation to resemble mature RPE and improve the assessment of RPE-specific gene therapy strategies. ARPE-19 cells were propagated on tissue culture plastic supplemented with NAM and human recombinant LN521-coating. RPE maturation was performed by immunocytochemistry and gene expression by qPCR. Viral transduction experiments with adeno-associated virus (AAV)1 or AAV2, carrying a VMD2-driven GFP, were assessed at 2- and 4-weeks post-plating in the different culturing conditions with a low multiplicity of infection. The combination of LN521 coating with NAM supplementation promoted cytoskeletal and tight junction protein reorganization. The expression of maturation markers bestrophin-1 and RPE 65 was promoted concomitantly with a reduction of several epithelial-mesenchymal transition markers, such as TNF-α, TGF-β, CDH2, and vimentin. Redifferentiated ARPE-19 transduced at low multiplicity of infection of both AAV1- and AAV2-VMD2-GFP. Expression of GFP was detected at 2 weeks and increased at 4 weeks post-plating. AAV1 exhibited a greater expression efficacy compared to AAV2 in maturated ARPE-19 cells already after 2 weeks with increased efficiency after 4 weeks. Our study demonstrates an improved maturation protocol for ARPE-19 cells in vitro, mimicking an in vivo phenotype with the expression of signature genes and improved morphology. Viral-mediated RPE-specific gene expression demonstrates that the combination cultures mimic in vivo AAV tropism essential to test new gene therapies for RPE-centered diseases.
Collapse
Affiliation(s)
- Jonathan Bernd
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Jackelin Karayannis
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anders Kvanta
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Filippo Locri
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Ohguro H, Watanabe M, Sato T, Nishikiori N, Umetsu A, Higashide M, Yano T, Suzuki H, Miyazaki A, Takada K, Uhara H, Furuhashi M, Hikage F. Application of Single Cell Type-Derived Spheroids Generated by Using a Hanging Drop Culture Technique in Various In Vitro Disease Models: A Narrow Review. Cells 2024; 13:1549. [PMID: 39329734 PMCID: PMC11430518 DOI: 10.3390/cells13181549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Cell culture methods are indispensable strategies for studies in biological sciences and for drug discovery and testing. Most cell cultures have been developed using two-dimensional (2D) culture methods, but three-dimensional (3D) culture techniques enable the establishment of in vitro models that replicate various pathogenic conditions and they provide valuable insights into the pathophysiology of various diseases as well as more precise results in tests for drug efficacy. However, one difficulty in the use of 3D cultures is selection of the appropriate 3D cell culture technique for the study purpose among the various techniques ranging from the simplest single cell type-derived spheroid culture to the more sophisticated organoid cultures. In the simplest single cell type-derived spheroid cultures, there are also various scaffold-assisted methods such as hydrogel-assisted cultures, biofilm-assisted cultures, particle-assisted cultures, and magnet particle-assisted cultures, as well as non-assisted methods, such as static suspension cultures, floating cultures, and hanging drop cultures. Since each method can be differently influenced by various factors such as gravity force, buoyant force, centrifugal force, and magnetic force, in addition to non-physiological scaffolds, each method has its own advantages and disadvantages, and the methods have different suitable applications. We have been focusing on the use of a hanging drop culture method for modeling various non-cancerous and cancerous diseases because this technique is affected only by gravity force and buoyant force and is thus the simplest method among the various single cell type-derived spheroid culture methods. We have found that the biological natures of spheroids generated even by the simplest method of hanging drop cultures are completely different from those of 2D cultured cells. In this review, we focus on the biological aspects of single cell type-derived spheroid culture and its applications in in vitro models for various diseases.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Toshiyuki Yano
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Hiromu Suzuki
- Departments of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Akihiro Miyazaki
- Departments of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Kohichi Takada
- Departments of Medical Oncology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Hisashi Uhara
- Departments of Dermatology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| |
Collapse
|
22
|
Bao Y, Ding G, Yu H, He Y, Wu J. Regulation of TGF-β2-induced epithelial-mesenchymal transition and autophagy in lens epithelial cells by the miR-492/ NPM1 axis. BIOMOLECULES & BIOMEDICINE 2024; 24:1273-1289. [PMID: 38662949 PMCID: PMC11378993 DOI: 10.17305/bb.2024.10249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 09/07/2024]
Abstract
A cataract is a clinically common blinding disease closely related to the ageing of the eye cells, which has become a major health killer in the elderly. Our research seeks to analyze the primary targets linked to the pathogenesis of cataracts during the ageing process. We performed bioinformatics analyses on the GSE101727 dataset to discover genes linked with ageing and cataracts. To explore the impacts of Nucleophosmin 1 (NPM1) on cell apoptosis, proliferation, as well as epithelial-mesenchymal transition (EMT) processes, in vitro tests such as western blotting, flow cytometry, and MTT were carried out. Additionally, the study incorporated transforming growth factor β2 (TGF-β2) to examine its function in cellular responses, chloroquine (CQ) to regulate autophagic flow, and H2O2 therapy to mimic oxidative stress. Our study discovered seven ageing-related genes, including NPM1, that had substantial relationships with cataracts. NPM1 overexpression was shown to boost cell proliferation and prevent apoptosis in SRA01/04 cells. Notably, NPM1 modulated the TGF-β signalling pathway, influencing cell proliferation and EMT processes. miR-429 was shown to be adversely regulating NPM1 and autophagy-related proteins, as demonstrated by changes in their expression in response to TGF-β2 treatment. Furthermore, NPM1 knockdown restored autophagy activity suppressed by miR-429 mimics, indicating a complex interaction of miR-429, NPM1, and TGF-β2 pathways in regulating autophagy and EMT. Lens epithelial cell proliferation and apoptosis were largely regulated by NPM1, as well as autophagy and EMT, which were significantly mediated by TGF-β2 and the miR-429/NPM1 axis. These results imply new possible targets for prognosis and therapy of cataracts.
Collapse
Affiliation(s)
- Yanqiong Bao
- Department of Ophthalmology, Zhenhai Longsai Hospital, Zhejiang, China
| | - Guangjie Ding
- Department of Ophthalmology, Zhenhai Longsai Hospital, Zhejiang, China
| | - Haiqing Yu
- Department of Ophthalmology, Zhenhai Longsai Hospital, Zhejiang, China
| | - Yawei He
- Department of Ophthalmology, Zhenhai Longsai Hospital, Zhejiang, China
| | - Jiayan Wu
- Department of Health Management Center, Zhenhai Longsai Hospital, Zhejiang, China
| |
Collapse
|
23
|
Yang G, Huang Y, Li D, Tang J, Li W, Huang X. Silencing the long noncoding RNA MALAT1 inhibits vitreous-induced epithelial-mesenchymal transition in RPE cells by regulating the PDGFRs/AKT axis. Int Ophthalmol 2024; 44:363. [PMID: 39227412 DOI: 10.1007/s10792-024-03295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE Epithelial-mesenchymal transition (EMT) is a crucial pathological process that contributes to proliferative vitreoretinopathy (PVR), and research indicates that factors present in the vitreous that target cells play pivotal roles in regulating EMT. Experimental studies have confirmed that rabbit vitreous (RV) promotes EMT in human retinal pigment epithelial (RPE) cells. The long noncoding RNA (lncRNA) MALAT1 has been implicated in EMT in various diseases. Thus, this study aimed to investigate the involvement of lncRNA MALAT1 in vitreous-induced EMT in RPE cells. METHODS MALAT1 was knocked down in ARPE-19 cells by short hairpin RNA (shRNA) transfection. Reverse transcription PCR (RT‒PCR) was used to evaluate MALAT1 expression, and Western blotting analysis was used to measure the expression of EMT-related proteins. Wound-healing, Transwell, and cell contraction assays were conducted to assess cell migration, invasion, and contraction, respectively. Additionally, cell proliferation was assessed using the CCK-8 assay, and cytoskeletal changes were examined by immunofluorescence. RESULTS MALAT1 expression was significantly increased in ARPE-19 cells cultured with RV. Silencing MALAT1 effectively suppressed EMT and downregulated the associated factors snail1 and E-cadherin. Furthermore, silencing MALAT1 inhibited the RV-induced migration, invasion, proliferation, and contraction of ARPE-19 cells. Silencing MALAT1 also decreased RV-induced AKT and P53 phosphorylation. CONCLUSIONS In conclusion, lncRNA MALAT1 participates in regulating vitreous-induced EMT in human RPE cells; these results provide new insight into the pathogenesis of PVR and offer a potential direction for the development of antiproliferative drugs.
Collapse
Affiliation(s)
- Gukun Yang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 571101, Hainan, People's Republic of China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 571101, Hainan, People's Republic of China
| | - Yikeng Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Duo Li
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 571101, Hainan, People's Republic of China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 571101, Hainan, People's Republic of China
| | - Jisen Tang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 571101, Hainan, People's Republic of China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 571101, Hainan, People's Republic of China
| | - Weihong Li
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 571101, Hainan, People's Republic of China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 571101, Hainan, People's Republic of China
| | - Xionggao Huang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 571101, Hainan, People's Republic of China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 571101, Hainan, People's Republic of China.
| |
Collapse
|
24
|
Gao F, Li M, Zhu L, Li J, Xu J, Jia S, Ou Q, Jin C, Tian H, Wang J, Xu J, Xu W, Xu GT, Lu L. Knockdown of HSPA13 Inhibits TGFβ1-Induced Epithelial-Mesenchymal Transition of RPE by Suppressing the PI3K/Akt Signaling Pathway. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 39226050 PMCID: PMC11373707 DOI: 10.1167/iovs.65.11.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE This study aimed to explore the impact of HSPA13 on epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells and proliferative vitreoretinopathy (PVR) development, along with its associated molecular mechanisms. METHODS HSPA13 expression was evaluated in epiretinal membranes (ERMs) from patients with PVR using immunohistochemistry. The effects of HSPA13 knockdown on TGFβ1-induced EMT in hESC-RPE cells were studied through quantitative PCR (qPCR), Western blot, and wound healing assays. Intracellular Ca2+ levels were measured using Fluo-8/AM incubation. A rat PVR model was induced by the intravitreal injection of RPE cells combined with platelet-rich plasma (PRP). RNA-seq was applied to study the molecular mechanism of HSPA13 knockdown-mediated EMT inhibition. RESULTS HSPA13 was found in human ERMs and its expression increased with TGFβ1 treatment in hESC-RPE cells. Knockdown of HSPA13 inhibited TGFβ1-induced EMT and migration. In the PVR rat model, HSPA13 was expressed in the ERMs and its knockdown in RPE cells reduced the development of PVR. Consistent with these observations, RNA-seq showed a global suppression of TGFβ1-induced EMT and migration by shHSPA13 in RPE cells. Mechanistically, TGFβ1 treatment increased intracellular Ca2+ levels, leading to an upregulation of HSPA13 expression. Downregulation of HSPA13 hindered the phosphorylation of PI3K/Akt in TGFβ1-induced RPE cells. CONCLUSIONS Our study revealed the involvement of HSPA13 in PVR development, as well as in TGFβ1-induced EMT of RPE through the PI3K/Akt signaling pathway. Targeting HSPA13-related pathways involved in regulating EMT in RPE cells could serve as a novel therapeutic approach for patients with PVR.
Collapse
Affiliation(s)
- Furong Gao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Mengwen Li
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Lilin Zhu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Li
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Jie Xu
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Song Jia
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jingying Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wei Xu
- Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Rizwan S, Toothman B, Li B, Engel AJ, Lim RR, Niernberger S, Lu J, Ratliff C, Xiang Y, Eminhizer M, Chao JR, Du J. Metabolic Phenotyping of Healthy and Diseased Human RPE Cells. Invest Ophthalmol Vis Sci 2024; 65:5. [PMID: 39230994 PMCID: PMC11379083 DOI: 10.1167/iovs.65.11.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024] Open
Abstract
Purpose Metabolic defects in the retinal pigment epithelium (RPE) underlie many retinal degenerative diseases. This study aims to identify the nutrient requirements of healthy and diseased human RPE cells. Methods We profiled nutrient use of various human RPE cells, including differentiated and dedifferentiated fetal RPE (fRPE), induced pluripotent stem cell-derived RPE (iPSC RPE), Sorsby fundus dystrophy (SFD) patient-derived iPSC RPE, CRISPR-corrected isogenic SFD (cSFD) iPSC RPE, and ARPE-19 cell lines using Biolog Phenotype MicroArray Assays. Results Differentiated fRPE cells and healthy iPSC RPE cells can use 51 and 48 nutrients respectively, including sugars, intermediates from glycolysis and tricarboxylic acid (TCA) cycle, fatty acids, ketone bodies, amino acids, and dipeptides. However, when fRPE cells lose their epithelial phenotype through dedifferentiation, nutrient use becomes restricted to 17 nutrients, primarily sugar and glutamine-related amino acids. SFD RPE cells can use 37 nutrients; however, compared to cSFD RPE and healthy iPSC RPE, they are unable to use lactate, some TCA cycle intermediates, and short-chain fatty acids. Nonetheless, they show increased use of branch-chain amino acids (BCAAs) and BCAA-containing dipeptides. Dedifferentiated ARPE-19 cells grown in traditional culture media cannot use lactate and ketone bodies. In contrast, nicotinamide supplementation promotes differentiation toward an epithelial phenotype, restoring the ability to use these nutrients. Conclusions Epithelial phenotype confers metabolic flexibility to healthy RPE for using various nutrients. SFD RPE cells have reduced metabolic flexibility, relying on the oxidation of BCAAs. Our findings highlight the potentially important roles of nutrient availability and use in RPE differentiation and diseases.
Collapse
Affiliation(s)
- Saira Rizwan
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Beverly Toothman
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Bo Li
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
- Department of Ophthalmology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Abbi J. Engel
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Rayne R. Lim
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Sheldon Niernberger
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jinyu Lu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Cloe Ratliff
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Yinxiao Xiang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Mark Eminhizer
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
26
|
Ma X, Wu W, Hara M, Zhou J, Panzarin C, Schafer CM, Griffin CT, Cai J, Ma JX, Takahashi Y. Deficient RPE mitochondrial energetics leads to subretinal fibrosis in age-related neovascular macular degeneration. Commun Biol 2024; 7:1075. [PMID: 39223298 PMCID: PMC11369096 DOI: 10.1038/s42003-024-06773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Subretinal fibrosis permanently impairs the vision of patients with neovascular age-related macular degeneration. Despite emerging evidence revealing the association between disturbed metabolism in retinal pigment epithelium (RPE) and subretinal fibrosis, the underlying mechanism remains unclear. In the present study, single-cell RNA sequencing revealed, prior to subretinal fibrosis, genes in mitochondrial fatty acid oxidation are downregulated in the RPE lacking very low-density lipoprotein receptor (VLDLR), especially the rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A). We found that overexpression of CPT1A in the RPE of Vldlr-/- mice suppresses epithelial-to-mesenchymal transition and fibrosis. Mechanistically, TGFβ2 induces fibrosis by activating a Warburg-like effect, i.e. increased glycolysis and decreased mitochondrial respiration through ERK-dependent CPT1A degradation. Moreover, VLDLR blocks the formation of the TGFβ receptor I/II complex by interacting with unglycosylated TGFβ receptor II. In conclusion, VLDLR suppresses fibrosis by attenuating TGFβ2-induced metabolic reprogramming, and CPT1A is a potential target for treating subretinal fibrosis.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Wenjing Wu
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Miwa Hara
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Junwen Zhou
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Carolina Panzarin
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas-UNICAMP, Limeira, Brazil
| | - Christopher M Schafer
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jiyang Cai
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Yusuke Takahashi
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
27
|
Liao M, Zhu X, Lu Y, Yi X, Hu Y, Zhao Y, Ye Z, Guo X, Liang M, Jin X, Zhang H, Wang X, Zhao Z, Chen Y, Yan H. Multi-omics profiling of retinal pigment epithelium reveals enhancer-driven activation of RANK-NFATc1 signaling in traumatic proliferative vitreoretinopathy. Nat Commun 2024; 15:7324. [PMID: 39183203 PMCID: PMC11345415 DOI: 10.1038/s41467-024-51624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
During the progression of proliferative vitreoretinopathy (PVR) following ocular trauma, previously quiescent retinal pigment epithelial (RPE) cells transition into a state of rapid proliferation, migration, and secretion. The elusive molecular mechanisms behind these changes have hindered the development of effective pharmacological treatments, presenting a pressing clinical challenge. In this study, by monitoring the dynamic changes in chromatin accessibility and various histone modifications, we chart the comprehensive epigenetic landscape of RPE cells in male mice subjected to traumatic PVR. Coupled with transcriptomic analysis, we reveal a robust correlation between enhancer activation and the upregulation of the PVR-associated gene programs. Furthermore, by constructing transcription factor regulatory networks, we identify the aberrant activation of enhancer-driven RANK-NFATc1 pathway as PVR advanced. Importantly, we demonstrate that intraocular interventions, including nanomedicines inhibiting enhancer activity, gene therapies targeting NFATc1 and antibody therapeutics against RANK pathway, effectively mitigate PVR progression. Together, our findings elucidate the epigenetic basis underlying the activation of PVR-associated genes during RPE cell fate transitions and offer promising therapeutic avenues targeting epigenetic modulation and the RANK-NFATc1 axis for PVR management.
Collapse
Affiliation(s)
- Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xu Zhu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yumei Lu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoping Yi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Youhui Hu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yumeng Zhao
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Zhisheng Ye
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xu Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Minghui Liang
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ziming Zhao
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Yupeng Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
28
|
Hu ZL, Wang YX, Lin ZY, Ren WS, Liu B, Zhao H, Qin Q. Regulatory factors of Nrf2 in age-related macular degeneration pathogenesis. Int J Ophthalmol 2024; 17:1344-1362. [PMID: 39026906 PMCID: PMC11246936 DOI: 10.18240/ijo.2024.07.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 07/20/2024] Open
Abstract
Age-related macular degeneration (AMD) is a complicated disease that causes irreversible visual impairment. Increasing evidences pointed retinal pigment epithelia (RPE) cells as the decisive cell involved in the progress of AMD, and the function of anti-oxidant capacity of PRE plays a fundamental physiological role. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes. Its functions of protecting RPE cells against oxidative stress (OS) and ensuing physiological changes, including inflammation, mitochondrial damage and autophagy dysregulation, have already been elucidated. Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis. For the first time, this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis, including proteins and miRNAs, and their underlying molecular mechanisms, which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.
Collapse
Affiliation(s)
- Zi-Ling Hu
- Five Year Program of Ophthalmology and Optometry 2019, Beijing Tong Ren Hospital, Capital Medical University, Beijing 100054, China
| | - Yu-Xuan Wang
- Four Year Program of Traditional Chinese Pharmacy 2020, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zi-Yue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wen-Shuo Ren
- Four Year Program of Traditional Chinese Pharmacy 2020, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Bo Liu
- Five Year Program of Ophthalmology and Optometry 2021, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Qiong Qin
- Biochemistry & Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
29
|
Rizwan S, Toothman B, Li B, Engel AJ, Lim RR, Niernberger S, Lu J, Ratliff C, Xiang Y, Eminhizer M, Chao JR, Du J. Metabolic phenotyping of healthy and diseased human RPE cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582405. [PMID: 38464098 PMCID: PMC10925320 DOI: 10.1101/2024.02.28.582405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Purpose Metabolic defects in the retinal pigment epithelium (RPE) underlie many retinal degenerative diseases. This study aims to identify the nutrient requirements of healthy and diseased human RPE cells. Methods We profiled nutrient utilization of various human RPE cells, including differentiated and dedifferentiated fetal RPE (fRPE), induced pluripotent stem cell derived-RPE (iPSC RPE), Sorsby fundus dystrophy (SFD) patient-derived iPSC RPE, CRISPR-corrected isogenic SFD (cSFD) iPSC RPE, and ARPE-19 cell lines using Biolog Phenotype MicroArray Assays. Results Differentiated fRPE cells and healthy iPSC RPE cells can utilize 51 and 48 nutrients respectively, including sugars, intermediates from glycolysis and tricarboxylic acid (TCA) cycle, fatty acids, ketone bodies, amino acids, and dipeptides. However, when fRPE cells lose their epithelial phenotype through dedifferentiation, nutrient utilization becomes restricted to 17 nutrients, primarily sugar and glutamine-related amino acids. SFD RPE cells can utilize 37 nutrients; however, compared to cSFD RPE and healthy iPSC RPE, they are unable to utilize lactate, some TCA cycle intermediates, and short-chain fatty acids. Nonetheless, they show increased utilization of branch-chain amino acids (BCAAs) and BCAA-containing dipeptides. Dedifferentiated ARPE-19 cells grown in traditional culture media cannot utilize lactate and ketone bodies. In contrast, nicotinamide supplementation promotes differentiation towards an epithelial phenotype, restoring the ability to use these nutrients. Conclusions Epithelial phenotype confers metabolic flexibility to healthy RPE for utilizing various nutrients. SFD RPE cells have reduced metabolic flexibility, relying on the oxidation of BCAAs. Our findings highlight the potentially important roles of nutrient availability and utilization in RPE differentiation and diseases.
Collapse
|
30
|
You W, Azuma K, Iwagawa T, Watanabe S, Aihara M, Shiraya T, Ueta T. The role of lipid peroxidation in epithelial-mesenchymal transition of retinal pigment epithelial cells. Sci Rep 2024; 14:16498. [PMID: 39020017 PMCID: PMC11255318 DOI: 10.1038/s41598-024-67587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Epithelial-Mesenchymal Transition (EMT) of retinal pigment epithelial (RPE) cells is recognized as pivotal in various retinal diseases. Previous studies have suggested a reciprocal regulation between reactive oxygen species (ROS) and EMT, though the involvement of peroxidized lipids or the effects of reducing them has remained unclear. The present study disclosed that EMT of ARPE-19 cells induced by TGF-β2 and TNF-α involves increased lipid peroxidation, and Ferrostatin-1 (Fer-1), a lipophilic antioxidative agent, successfully inhibited the increase in lipid peroxidation. Fer-1 suppressed the formation of EMT-associated fibrotic deposits, while EMT induction or Fer-1 treatment did not influence the cell viability or proliferation. Functionally, Fer-1 impeded EMT-driven cell migration and reduction in transepithelial electrical resistance. It demonstrated regulatory prowess by downregulating the mesenchymal marker fibronectin, upregulating the epithelial marker ZO-1, and inhibiting the EMT-associated transcriptional factor ZEB1. Additionally, VEGF, a major pathogenic cytokine in various retinal diseases, is also upregulated during EMT, and Fer-1 significantly mitigated the effect. The present study disclosed the involvement of lipid peroxidation in EMT of RPE cells, and suggests the suppression of lipid peroxidation may be a potential therapeutic target in retinal diseases in which EMT is implicated.
Collapse
Affiliation(s)
- Wang You
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Kunihiro Azuma
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Toshiro Iwagawa
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
- Department of Retinal Biology and Pathology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Sumiko Watanabe
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
- Department of Retinal Biology and Pathology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Tomoyasu Shiraya
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Takashi Ueta
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
31
|
Shoda C, Lee D, Miwa Y, Yamagami S, Nakashizuka H, Nimura K, Okamoto K, Kawagishi H, Negishi K, Kurihara T. Inhibition of hypoxia-inducible factors suppresses subretinal fibrosis. FASEB J 2024; 38:e23792. [PMID: 38953555 DOI: 10.1096/fj.202400540rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Age-related macular degeneration (AMD) is a common cause of vision loss. The aggressive form of AMD is associated with ocular neovascularization and subretinal fibrosis, representing a responsive outcome against neovascularization mediated by epithelial-mesenchymal transition of retinal pigment epithelium (RPE) cells. A failure of the current treatment (anti-vascular endothelial growth factor therapy) has also been attributed to the progression of subretinal fibrosis. Hypoxia-inducible factors (HIFs) increase gene expressions to promote fibrosis and neovascularization. HIFs act as a central pathway in the pathogenesis of AMD. HIF inhibitors may suppress ocular neovascularization. Nonetheless, further investigation is required to unravel the aspects of subretinal fibrosis. In this study, we used RPE-specific HIFs or von Hippel-Lindau (VHL, a regulator of HIFs) conditional knockout (cKO) mice, along with pharmacological HIF inhibitors, to demonstrate the suppression of subretinal fibrosis. Fibrosis was suppressed by treatments of HIF inhibitors, and similar suppressive effects were detected in RPE-specific Hif1a/Hif2a- and Hif1a-cKO mice. Promotive effects were observed in RPE-specific Vhl-cKO mice, where fibrosis-mediated pathologic processes were evident. Marine products' extracts and their component taurine suppressed fibrosis as HIF inhibitors. Our study shows critical roles of HIFs in the progression of fibrosis, linking them to the potential development of therapeutics for AMD.
Collapse
Affiliation(s)
- Chiho Shoda
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | - Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Aichi Animal Eye Clinic, Nagoya, Aichi, Japan
| | - Satoru Yamagami
- Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | | | - Kazumi Nimura
- Shizuoka Prefectural Research Institute of Fishery and Ocean, Shizuoka, Japan
| | - Kazutoshi Okamoto
- Shizuoka Prefectural Research Institute of Fishery and Ocean, Shizuoka, Japan
- Marine Open Innovation Institute, Shizuoka, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
| | - Kazuno Negishi
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Bailey JK, Ma D, Clegg DO. Initial Characterization of WDR5B Reveals a Role in the Proliferation of Retinal Pigment Epithelial Cells. Cells 2024; 13:1189. [PMID: 39056772 PMCID: PMC11275010 DOI: 10.3390/cells13141189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The chromatin-associated protein WDR5 has been widely studied due to its role in histone modification and its potential as a pharmacological target for the treatment of cancer. In humans, the protein with highest sequence homology to WDR5 is encoded by the retrogene WDR5B, which remains unexplored. Here, we used CRISPR-Cas9 genome editing to generate WDR5B knockout and WDR5B-FLAG knock-in cell lines for further characterization. In contrast to WDR5, WDR5B exhibits low expression in pluripotent cells and is upregulated upon neural differentiation. Loss or shRNA depletion of WDR5B impairs cell growth and increases the fraction of non-viable cells in proliferating retinal pigment epithelial (RPE) cultures. CUT&RUN chromatin profiling in RPE and neural progenitors indicates minimal WDR5B enrichment at established WDR5 binding sites. These results suggest that WDR5 and WDR5B exhibit several divergent biological properties despite sharing a high degree of sequence homology.
Collapse
Affiliation(s)
- Jeffrey K. Bailey
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Dennis O. Clegg
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
33
|
Wang S, Chen CY, Liu CC, Stavropoulos D, Rao M, Petrash JM, Chang KC. GDF-15 Attenuates the Epithelium-Mesenchymal Transition and Alleviates TGFβ2-Induced Lens Opacity. Transl Vis Sci Technol 2024; 13:2. [PMID: 38949633 PMCID: PMC11221611 DOI: 10.1167/tvst.13.7.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/11/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose We sought to evaluate the efficacy of growth differentiation factor (GDF)-15 treatment for suppressing epithelial-mesenchymal transition (EMT) and alleviating transforming growth factor β2 (TGFβ2)-induced lens opacity. Methods To test whether GDF-15 is a molecule that prevents EMT, we pretreated the culture with GDF-15 in neural progenitor cells, retinal pigment epithelial cells, and lens epithelial cells and then treated with factors that promote EMT, GDF-11, and TGFβ2, respectively. To further investigate the efficacy of GDF-15 on alleviating lens opacity, we used mouse lens explant culture to mimic secondary cataracts. We pretreated the lens culture with GDF-15 and then added TGFβ2 to develop lens opacity (n = 3 for each group). Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to measure EMT protein and gene expression, respectively. Results In cell culture, GDF-15 pretreatment significantly attenuated EMT marker expression in cultured cells induced by treatment with GDF-11 or TGFβ2. In the lens explant culture, GDF-15 pretreatment also reduced mouse lens opacity induced by exposure to TGFβ2. Conclusions Our results indicate that GDF-15 could alleviate TGFβ2-induced EMT and is a potential therapeutic agent to slow or prevent posterior capsular opacification (PCO) progression after cataract surgery. Translational Relevance Cataracts are the leading cause of blindness worldwide, with the only current treatment involving surgical removal of the lens and replacement with an artificial lens. However, PCO, also known as secondary cataract, is a common complication after cataract surgery. The development of an adjuvant that slows the progression of PCO will be beneficial to the field of anterior complications.
Collapse
Affiliation(s)
- Shining Wang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chi-Yu Chen
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chia-Chun Liu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dimitrios Stavropoulos
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J. Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
34
|
Nishikiori N, Sato T, Ogawa T, Higashide M, Umetsu A, Suzuki S, Furuhashi M, Ohguro H, Watanabe M. TGF-β Isoforms and Local Environments Greatly Modulate Biological Nature of Human Retinal Pigment Epithelium Cells. Bioengineering (Basel) 2024; 11:581. [PMID: 38927817 PMCID: PMC11201039 DOI: 10.3390/bioengineering11060581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
To characterize transforming growth factor-β (TGF-β) isoform (TGF-β1~3)-b's biological effects on the human retinal pigment epithelium (RPE) under normoxia and hypoxia conditions, ARPE19 cells cultured by 2D (two-dimensional) and 3D (three-dimensional) conditions were subjected to various analyses, including (1) an analysis of barrier function by trans-epithelial electrical resistance (TEER) measurements; (2) qPCR analysis of major ECM molecules including collagen 1 (COL1), COL4, and COL6; α-smooth muscle actin (αSMA); hypoxia-inducible factor 1α (HIF1α); and peroxisome proliferator-activated receptor-gamma coactivator (PGC1α), a master regulator for mitochondrial respiration;, tight junction-related molecules, Zonula occludens-1 (ZO1) and E-cadherin; and vascular endothelial growth factor (VEGF); (3) physical property measurements of 3D spheroids; and (4) cellular metabolic analysis. Diverse effects among TGF-β isoforms were observed, and those effects were also different between normoxia and hypoxia conditions: (1) TGF-β1 and TGF-β3 caused a marked increase in TEER values, and TGF-β2 caused a substantial increase in TEER values under normoxia conditions and hypoxia conditions, respectively; (2) the results of qPCR analysis supported data obtained by TEER; (3) 3D spheroid sizes were decreased by TGF-β isoforms, among which TGF-β1 had the most potent effect under both oxygen conditions; (4) 3D spheroid stiffness was increased by TGF-β2 and TGF-β3 or by TGF-β1 and TGF-β3 under normoxia conditions and hypoxia conditions, respectively; and (5) the TGF-β isoform altered mitochondrial and glycolytic functions differently under oxygen conditions and/or culture conditions. These collective findings indicate that the TGF-β-induced biological effects of 2D and 3D cultures of ARPE19 cells were substantially diverse depending on the three TGF-β isoforms and oxygen levels, suggesting that pathological conditions including epithelial-mesenchymal transition (EMT) of the RPE may be exclusively modulated by both factors.
Collapse
Affiliation(s)
- Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Soma Suzuki
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| |
Collapse
|
35
|
Yang YC, Chien Y, Yarmishyn AA, Lim LY, Tsai HY, Kuo WC, Tsai PH, Yang SH, Hong SI, Chen SJ, Hwang DK, Yang YP, Chiou SH. Inhibition of oxidative stress-induced epithelial-mesenchymal transition in retinal pigment epithelial cells of age-related macular degeneration model by suppressing ERK activation. J Adv Res 2024; 60:141-157. [PMID: 37328058 PMCID: PMC11156608 DOI: 10.1016/j.jare.2023.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/05/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023] Open
Abstract
INTRODUCTION Epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is related to the pathogenesis of various retinopathies including age-related macular degeneration (AMD). Oxidative stress is the major factor that induces degeneration of RPE cells associated with the etiology of AMD. OBJECTIVES Sodium iodate (NaIO3) generates intracellular reactive oxygen species (ROS) and is widely used to establish a model of AMD due to the selective induction of retinal degeneration. This study was performed to clarify the effects of multiple NaIO3-stimulated signaling pathways on EMT in RPE cells. METHODS The EMT characteristics in NaIO3-treated human ARPE-19 cells and RPE cells of the mouse eyes were analyzed. Multiple oxidative stress-induced modulators were investigated and the effects of pre-treatment with Ca2+ chelator, extracellular signal-related kinase (ERK) inhibitor, or epidermal growth factor receptor (EGFR) inhibitor on NaIO3-induced EMT were determined. The efficacy of post-treatment with ERK inhibitor on the regulation of NaIO3-induced signaling pathways was dissected and its role in retinal thickness and morphology was evaluated by using histological cross-sections and spectral domain optical coherence tomography. RESULTS We found that NaIO3 induced EMT in ARPE-19 cells and in RPE cells of the mouse eyes. The intracellular ROS, Ca2+, endoplasmic reticulum (ER) stress marker, phospho-ERK, and phospho-EGFR were increased in NaIO3-stimulated cells. Our results showed that pre-treatment with Ca2+ chelator, ERK inhibitor, or EGFR inhibitor decreased NaIO3-induced EMT, interestingly, the inhibition of ERK displayed the most prominent effect. Furthermore, post-treatment with FR180204, a specific ERK inhibitor, reduced intracellular ROS and Ca2+ levels, downregulated phospho-EGFR and ER stress marker, attenuated EMT of RPE cells, and prevented structural disorder of the retina induced by NaIO3. CONCLUSIONS ERK is a crucial regulator of multiple NaIO3-induced signaling pathways that coordinate EMT program in RPE cells. Inhibition of ERK may be a potential therapeutic strategy for the treatment of AMD.
Collapse
Affiliation(s)
- Ya-Chi Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Aliaksandr A Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Lee-Yieng Lim
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Hao-Yu Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wen-Chuan Kuo
- Institute of Biophotonics, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Sheng-Hsien Yang
- Institute of Biophotonics, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shao-I Hong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shih-Jen Chen
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - De-Kuang Hwang
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan; Genomic Research Center, Academia Sinica, Taipei 115024, Taiwan.
| |
Collapse
|
36
|
Ikeda T, Jin D, Takai S, Nakamura K, Nemoto E, Kojima S, Oku H. Blastocyst-like Structures in the Peripheral Retina of Young Adult Beagles. Int J Mol Sci 2024; 25:6045. [PMID: 38892233 PMCID: PMC11172769 DOI: 10.3390/ijms25116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
In this immunohistological study on the peripheral retina of 3-year-old beagle dogs, excised retina specimens were immunostained with antibodies against nestin, Oct4, Nanog, Sox2, CDX2, cytokeratin 18 (CK 18), RPE65, and YAP1, as well as hematoxylin and DAPI, two nuclear stains. Our findings revealed solitary cysts of various sizes in the inner retina. Intriguingly, a mass of small round cells with scant cytoplasms was observed in the cavity of small cysts, while many disorganized cells partially occupied the cavity of the large cysts. The small cysts were strongly positive for nestin, Oct4, Nanog, Sox2, CDX2, CK18, and YAP1. RPE65-positive cells were exclusively observed in the tissue surrounding the cysts. Since RPE65 is a specific marker of retinal pigment epithelial (RPE) cells, the surrounding cells of the peripheral cysts were presumably derived from RPE cells that migrated intraretinally. In the small cysts, intense positive staining for nestin, a marker of retinal stem cells, seemed to indicate that they were derived from retinal stem cells. The morphology and positive staining for markers of blastocyst and RPE cells indicated that the small cysts may have formed structures resembling the blastocyst, possibly caused by the interaction between retinal stem cells and migrated RPE cells.
Collapse
Affiliation(s)
- Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Kaisei Hospital, Osaka 532-0003, Osaka, Japan
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (E.N.); (S.K.); (H.O.)
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (D.J.); (S.T.)
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (D.J.); (S.T.)
| | | | - Emika Nemoto
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (E.N.); (S.K.); (H.O.)
| | - Shota Kojima
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (E.N.); (S.K.); (H.O.)
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (E.N.); (S.K.); (H.O.)
| |
Collapse
|
37
|
Martins B, Pires M, Ambrósio AF, Girão H, Fernandes R. Contribution of extracellular vesicles for the pathogenesis of retinal diseases: shedding light on blood-retinal barrier dysfunction. J Biomed Sci 2024; 31:48. [PMID: 38730462 PMCID: PMC11088087 DOI: 10.1186/s12929-024-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Retinal degenerative diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), loom as threats to vision, causing detrimental effects on the structure and function of the retina. Central to understanding these diseases, is the compromised state of the blood-retinal barrier (BRB), an effective barrier that regulates the influx of immune and inflammatory components. Whether BRB breakdown initiates retinal distress, or is a consequence of disease progression, remains enigmatic. Nevertheless, it is an indication of retinal dysfunction and potential vision loss.The intricate intercellular dialogues among retinal cell populations remain unintelligible in the complex retinal milieu, under conditions of inflammation and oxidative stress. The retina, a specialized neural tissue, sustains a ceaseless demand for oxygen and nutrients from two vascular networks. The BRB orchestrates the exchange of molecules and fluids within this specialized region, comprising the inner BRB (iBRB) and the outer BRB (oBRB). Extracellular vesicles (EVs) are small membranous structures, and act as messengers facilitating intercellular communication in this milieu.EVs, both from retinal and peripheral immune cells, increase complexity to BRB dysfunction in DR and AMD. Laden with bioactive cargoes, these EVs can modulate the retinal microenvironment, influencing disease progression. Our review delves into the multifaceted role of EVs in retinal degenerative diseases, elucidating the molecular crosstalk they orchestrate, and their microRNA (miRNA) content. By shedding light on these nanoscale messengers, from their biogenesis, release, to interaction and uptake by target cells, we aim to deepen the comprehension of BRB dysfunction and explore their therapeutic potential, therefore increasing our understanding of DR and AMD pathophysiology.
Collapse
Affiliation(s)
- Beatriz Martins
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
| | - Maria Pires
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
| | - António Francisco Ambrósio
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548, Portugal
| | - Henrique Girão
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal
| | - Rosa Fernandes
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal.
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal.
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal.
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548, Portugal.
| |
Collapse
|
38
|
Álvarez-Barrios A, Álvarez L, Pereiro R, González-Iglesias H. Elemental mass spectrometry to study metallo-transcriptomic changes during the in vitro degeneration of the retinal pigment epithelium. Anal Bioanal Chem 2024; 416:2699-2710. [PMID: 37507467 PMCID: PMC11009741 DOI: 10.1007/s00216-023-04880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Trace elements play crucial roles in cellular biology. Their improper homeostasis may contribute to the progress of eye diseases, exacerbated during ageing. The retinal pigment epithelium (RPE) is progressively deteriorated during age-related neurodegeneration and metal homeostasis may be compromised. In this study, elemental mass spectrometry (MS) was combined with cellular and molecular biology techniques to identify changes in trace elements during the in vitro degeneration of human RPE cells. Cells were collected at 21, 91, and 133 days and processed for RNA sequencing; Ca, Na, P, Mg, and Cu quantification by flow injection analysis and inductively coupled plasma-MS; and protein analysis by immunocytochemistry. Four-month-old RPE cultures showed depigmentation, impaired barrier function, and antioxidant protection, manifesting signs of epithelial-to-mesenchymal transition. Na and P significantly increased in the cytosol of degenerated RPE cells (from 15 ± 20 to 13495 ± 638 ng·µg-1 and from 30.6 ± 9.5 to 116.8 ± 16.8 ng·µg-1, respectively). Mg decreased in both the cytosol and insoluble fraction of cells (from 2.83 ± 0.40 to 1.58 ± 0.56 ng·µg-1 and from 247.57 ± 11.06 to 30 ± 8 ng·g-1, respectively), while P and Cu decreased in the insoluble fraction after 133 days in culture (from 9471 ± 1249 to 4555 ± 985 ng·µg-1 and from 2251 ± 79 to 1054 ± 235 ng·g-1, respectively), along with changes in metal-dependent antioxidant enzymes and Cu transporters. This RPE model reflected metal homeostatic changes, providing additional perspectives on effects of metal regulation during ageing.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Fundación de Investigación Oftalmológica, Avda. Dres. Fernández-Vega. 34, 33012, Oviedo, Spain
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Lydia Álvarez
- Fundación de Investigación Oftalmológica, Avda. Dres. Fernández-Vega. 34, 33012, Oviedo, Spain.
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012, Oviedo, Spain.
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.
| |
Collapse
|
39
|
Brinkmeier ML, Wang SQ, Pittman H, Cheung LY, Prasov L. Myelin regulatory factor ( Myrf ) is a critical early regulator of retinal pigment epithelial development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591281. [PMID: 38746430 PMCID: PMC11092522 DOI: 10.1101/2024.04.26.591281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Myelin regulatory factor (Myrf) is a critical transcription factor in early retinal and retinal pigment epithelial development, and human variants in MYRF are a cause for nanophthalmos. Single cell RNA sequencing (scRNAseq) was performed on Myrf conditional knockout mice ( Rx>Cre Myrf fl/fl ) at 3 developmental timepoints. Myrf was expressed specifically in the RPE, and expression was abrogated in Rx>Cre Myrf fl/fl eyes. scRNAseq analysis revealed a loss of RPE cells at all timepoints resulting from cell death. GO-term analysis in the RPE revealed downregulation of melanogenesis and anatomic structure morphogenesis pathways, which were supported by electron microscopy and histologic analysis. Novel structural target genes including Ermn and Upk3b , along with macular degeneration and inherited retinal disease genes were identified as downregulated, and a strong upregulation of TGFß/BMP signaling and effectors was observed. Regulon analysis placed Myrf downstream of Pax6 and Mitf and upstream of Sox10 in RPE differentiation. Together, these results suggest a strong role for Myrf in the RPE maturation by regulating melanogenesis, cell survival, and cell structure, in part acting through suppression of TGFß signaling and activation of Sox10 . SUMMARY STATEMENT Myrf regulates RPE development, melanogenesis, and is important for cell structure and survival, in part through regulation of Ermn , Upk3b and Sox10, and BMP/TGFb signaling.
Collapse
|
40
|
Xu M, Gao Y, Yin W, Liu Q, Yuan S. RNA-sequencing expression profile and functional analysis of retinal pigment epithelium in atrophic age-related macular degeneration. J Biomed Res 2024; 38:1-12. [PMID: 38808557 PMCID: PMC11461538 DOI: 10.7555/jbr.37.20230320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 05/30/2024] Open
Abstract
The retinal pigment epithelium (RPE) is fundamental to sustaining retinal homeostasis. RPE abnormality leads to visual defects and blindness, including age-related macular degeneration (AMD). Although breakthroughs have been made in the treatment of neovascular AMD, effective intervention for atrophic AMD is largely absent. The inadequate knowledge of RPE pathology is hindered by a lack of patient RPE datasets, especially at the single-cell resolution. In this study, we delved into a large-scale single-cell resource of AMD donors in which RPE cells were occupied in a substantial proportion. Bulk RNA-seq datasets of atrophic AMD were integrated to extract molecular characteristics of RPE in the pathogenesis of atrophic AMD. Both in vivo and in vitro models revealed that carboxypeptidase X, M14 family member 2 (CPXM2) was specifically expressed in the RPE cells of atrophic AMD, which might be induced by oxidative stress and involved in the epithelial-mesenchymal transition of RPE cells. Additionally, silencing of CPXM2 inhibited the mesenchymal phenotype of RPE cells in an oxidative stress cell model. Thus, our results demonstrate that CPXM2 plays a crucial role in regulating atrophic AMD and may serve as a potential therapeutic target for atrophic AMD.
Collapse
Affiliation(s)
- Miao Xu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yan Gao
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenjie Yin
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qinghuai Liu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Songtao Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
41
|
Hansman D, Ma Y, Thomas D, Smith J, Casson R, Peet D. Metabolic reprogramming of the retinal pigment epithelium by cytokines associated with age-related macular degeneration. Biosci Rep 2024; 44:BSR20231904. [PMID: 38567515 PMCID: PMC11043024 DOI: 10.1042/bsr20231904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024] Open
Abstract
The complex metabolic relationship between the retinal pigment epithelium (RPE) and photoreceptors is essential for maintaining retinal health. Recent evidence indicates the RPE acts as an adjacent lactate sink, suppressing glycolysis in the epithelium in order to maximize glycolysis in the photoreceptors. Dysregulated metabolism within the RPE has been implicated in the pathogenesis of age-related macular degeneration (AMD), a leading cause of vision loss. In the present study, we investigate the effects of four cytokines associated with AMD, TNFα, TGF-β2, IL-6, and IL-1β, as well as a cocktail containing all four cytokines, on RPE metabolism using ARPE-19 cells, primary human RPE cells, and ex vivo rat eyecups. Strikingly, we found cytokine-specific changes in numerous metabolic markers including lactate production, glucose consumption, extracellular acidification rate, and oxygen consumption rate accompanied by increases in total mitochondrial volume and ATP production. Together, all four cytokines could potently override the constitutive suppression of glycolysis in the RPE, through a mechanism independent of PI3K/AKT, MEK/ERK, or NF-κB. Finally, we observed changes in glycolytic gene expression with cytokine treatment, including in lactate dehydrogenase subunit and glucose transporter expression. Our findings provide new insights into the metabolic changes in the RPE under inflammatory conditions and highlight potential therapeutic targets for AMD.
Collapse
Affiliation(s)
- David S. Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Yuefang Ma
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Daniel Thomas
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Robert J. Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J. Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
42
|
Li X, Zhao X, Yin R, Yuan M, Zhang Y, Li X. TGF-β2-induced alterations of m6A methylation in hTERT RPE-1 cells. Exp Eye Res 2024; 241:109839. [PMID: 38395214 DOI: 10.1016/j.exer.2024.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
N6-methyladenosine (m6A) is a major type of RNA modification implicated in various pathophysiological processes. Transforming growth factor β2 (TGF-β2) induces epithelial-mesenchymal transition (EMT) in retinal pigmental epithelial (RPE) cells and promotes the progression of proliferative vitreoretinopathy (PVR). However, the role of m6A methylation in the EMT of human telomerase reverse transcriptase (hTERT) retinal pigmental epithelium (RPE)-1 cells has not been clarified. Here, we extracted RNA from RPE cells subjected to 0 or 20 ng/mL TGF-β2 for 72 h and identified differentially methylated genes (DMGs) by m6A-Seq and differentially expressed genes (DEGs) by RNA-Seq. We selected the genes related to EMT by conjoint m6A-Seq/RNA-Seq analysis and verified them by qRT-PCR. We then confirmed the function of m6A methylation in the EMT of RPE cells by knocking down the methyltransferase METTL3 and the m6A reading protein YTHDF1. Sequencing yielded 5814 DMGs and 1607 DEGs. Conjoint analysis selected 467 genes altered at the m6A and RNA levels that are closely associated with the EMT-related TGF-β, AGE-RAGE, PI3K-Akt, P53, and Wnt signaling pathways. We also identified ten core EMT genes ACTG2, BMP6, CDH2, LOXL2, SNAIL1, SPARC, BMP4, EMP3, FOXM1, and MYC. Their RNA levels were evaluated by qRT-PCR and were consistent with the sequencing results. We observed that METTL3 knockdown enhanced RPE cell migration and significantly upregulated the EMT markers N-cadherin (encoded by CDH2), fibronectin (FN), Snail family transcription repressor (SLUG), and vimentin. However, YTHDF1 knockdown had the opposite effects and decreased both cell migration and the N-cadherin, FN, and SLUG expression levels. The present study clarified TGF-β2-induced m6A- and RNA-level differences in RPE cells, indicated that m6A methylation might regulate EMT marker expression, and showed that m6A could regulate TGF-β2-induced EMT.
Collapse
Affiliation(s)
- Xue Li
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China
| | - Xueru Zhao
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China
| | - Ruijie Yin
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China
| | - Min Yuan
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China
| | - Yongya Zhang
- Henan Provincial People's Hospital, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohua Li
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China.
| |
Collapse
|
43
|
Liu D, Du J, Xie H, Tian H, Lu L, Zhang C, Xu GT, Zhang J. Wnt5a/β-catenin-mediated epithelial-mesenchymal transition: a key driver of subretinal fibrosis in neovascular age-related macular degeneration. J Neuroinflammation 2024; 21:75. [PMID: 38532410 DOI: 10.1186/s12974-024-03068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Neovascular age-related macular degeneration (nAMD), accounts for up to 90% of AMD-associated vision loss, ultimately resulting in the formation of fibrotic scar in the macular region. The pathogenesis of subretinal fibrosis in nAMD involves the process of epithelial-mesenchymal transition (EMT) occurring in retinal pigment epithelium (RPE). Here, we aim to investigate the underlying mechanisms involved in the Wnt signaling during the EMT of RPE cells and in the pathological process of subretinal fibrosis secondary to nAMD. METHODS In vivo, the induction of subretinal fibrosis was performed in male C57BL/6J mice through laser photocoagulation. Either FH535 (a β-catenin inhibitor) or Box5 (a Wnt5a inhibitor) was intravitreally administered on the same day or 14 days following laser induction. The RPE-Bruch's membrane-choriocapillaris complex (RBCC) tissues were collected and subjected to Western blot analysis and immunofluorescence to examine fibrovascular and Wnt-related markers. In vitro, transforming growth factor beta 1 (TGFβ1)-treated ARPE-19 cells were co-incubated with or without FH535, Foxy-5 (a Wnt5a-mimicking peptide), Box5, or Wnt5a shRNA, respectively. The changes in EMT- and Wnt-related signaling molecules, as well as cell functions were assessed using qRT-PCR, nuclear-cytoplasmic fractionation assay, Western blot, immunofluorescence, scratch assay or transwell migration assay. The cell viability of ARPE-19 cells was determined using Cell Counting Kit (CCK)-8. RESULTS The in vivo analysis demonstrated Wnt5a/ROR1, but not Wnt3a, was upregulated in the RBCCs of the laser-induced CNV mice compared to the normal control group. Intravitreal injection of FH535 effectively reduced Wnt5a protein expression. Both FH535 and Box5 effectively attenuated subretinal fibrosis and EMT, as well as the activation of β-catenin in laser-induced CNV mice, as evidenced by the significant reduction in areas positive for fibronectin, alpha-smooth muscle actin (α-SMA), collagen I, and active β-catenin labeling. In vitro, Wnt5a/ROR1, active β-catenin, and some other Wnt signaling molecules were upregulated in the TGFβ1-induced EMT cell model using ARPE-19 cells. Co-treatment with FH535, Box5, or Wnt5a shRNA markedly suppressed the activation of Wnt5a, nuclear translocation of active β-catenin, as well as the EMT in TGFβ1-treated ARPE-19 cells. Conversely, treatment with Foxy-5 independently resulted in the activation of abovementioned molecules and subsequent induction of EMT in ARPE-19 cells. CONCLUSIONS Our study reveals a reciprocal activation between Wnt5a and β-catenin to mediate EMT as a pivotal driver of subretinal fibrosis in nAMD. This positive feedback loop provides valuable insights into potential therapeutic strategies to treat subretinal fibrosis in nAMD patients.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jingxiao Du
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China
| | - Hai Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| |
Collapse
|
44
|
Ji Y, Zuo C, Liao N, Yao L, Yang R, Chen H, Wen F. Identification of key lncRNAs in age-related macular degeneration through integrated bioinformatics and experimental validation. Aging (Albany NY) 2024; 16:5435-5451. [PMID: 38484366 PMCID: PMC11006464 DOI: 10.18632/aging.205656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024]
Abstract
This study aimed to identify key long noncoding RNAs (lncRNAs) in age-related macular degeneration (AMD) patients and to identify relevant pathological mechanisms of AMD development. We identified 407 differentially expressed mRNAs and 429 differentially expressed lncRNAs in retinal pigment epithelium (RPE) and retina in the macular region of AMD patients versus controls (P < 0.05 and |log2FC| > 0.585) from GSE135092. A total of 14 key differentially expressed mRNAs were obtained through external data validation from GSE115828. A miRNA-mRNA and miRNA-lncRNA network containing 52 lncRNA nodes, 49 miRNA nodes, 14 mRNA nodes and 351 edges was constructed via integrated analysis of these components. Finally, the LINC00276-miR-619-5p-IFIT3 axis was identified via protein-protein network analysis. In the t-BH-induced ARPE-19 senescent cell model, LINC00276 and IFIT3 were downregulated. Overexpression of LINC00276 could accelerate cell migration in combination with IFIT3 upregulation. This compelling finding suggests that LINC00276 plays an influential role in the progression of AMD, potentially through modulating senescence processes, thereby setting a foundation for future investigative efforts to verify this relationship.
Collapse
Affiliation(s)
- Yuying Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Nanying Liao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Liwei Yao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Ruijun Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Hui Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Feng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| |
Collapse
|
45
|
Zou G, Que L, Liu Y, Lu Q. Interplay of endothelial-mesenchymal transition, inflammation, and autophagy in proliferative diabetic retinopathy pathogenesis. Heliyon 2024; 10:e25166. [PMID: 38327444 PMCID: PMC10847601 DOI: 10.1016/j.heliyon.2024.e25166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Background Assessment and validation of endothelial-mesenchymal transition (EndoMT) in the retinal endothelium of patients with proliferative diabetic retinopathy (PDR) at the level of retinal and vitreous specimens, and preliminary discussion of its regulatory mechanisms. Methods Transcriptome sequencing profiles of CD31+ cells from 9 retinal fibrovascular mem-branes (FVMs) and 4 postmortem retinas were downloaded from GEO databases to analyze EndoMT-related differentially expressed genes (DEGs). Then, 42 PDR patients and 34 idiopathic macular holes (IMH) patients were enrolled as the PDR and control groups, respectively. Vitreous humor (VH) samples were collected, and the expression of EndoMT-related proteins was quantified by enzyme-linked immunosorbent assay. Results A total of 5845 DEGs were identified, and we subsequently focused on the analysis of 24 EndoMT-related marker genes, including the trigger of EndoMT, endothelial genes, mesenchymal genes, transcription factors, inflammatory factors, and autophagy markers. Six of these genes were selected for protein assay validation in VH, showing increased mesenchymal marker (type I collagen α 2 chain, COL1A2) and decreased endothelial marker (VE-cadherin, CDH5) accompanied by increased TGFβ, IL-1β, LC3B and P62 in PDR patients. In addition, anti-VEGF therapy could enhance EndoMT-related phenotypes. Conclusions EndoMT may underlie the pathogenesis of PDR, and the induction and regulation correlate with autophagy defects and the inflammatory response.
Collapse
Affiliation(s)
- Gaocheng Zou
- Department of Ophthalmology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Lijuan Que
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaping Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qianyi Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
46
|
Wang W, Yang T, Chen S, Liang L, Wang Y, Ding Y, Xiong W, Ye X, Guo Y, Shen S, Chen H, Chen J. Tissue engineering RPE sheet derived from hiPSC-RPE cell spheroids supplemented with Y-27632 and RepSox. J Biol Eng 2024; 18:7. [PMID: 38229139 DOI: 10.1186/s13036-024-00405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Retinal pigment epithelium (RPE) cell therapy is a promising way to treat many retinal diseases. However, obtaining transplantable RPE cells is time-consuming and less effective. This study aimed to develop novel strategies for generating engineered RPE patches with physiological characteristics. RESULTS Our findings revealed that RPE cells derived from human induced pluripotent stem cells (hiPSCs) successfully self-assembled into spheroids. The RPE spheroids treated with Y27632 and Repsox had increased expression of epithelial markers and RPE-specific genes, along with improved cell viability and barrier function. Transcriptome analysis indicated enhanced cell adhesion and extracellular matrix (ECM) organization in RPE spheroids. These RPE spheroids could be seeded and bioprinted on collagen vitrigel (CV) membranes to construct engineered RPE sheets. Circular RPE patches, obtained by trephining a specific section of the RPE sheet, exhibited abundant microvilli and pigment particles, as well as reduced proliferative capacity and enhanced maturation. CONCLUSIONS Our study suggests that the supplementation of small molecules and 3D spheroid culture, as well as the bioprinting technique, can be effective methods to promote RPE cultivation and construct engineered RPE sheets, which may support future clinical RPE cell therapy and the development of RPE models for research applications.
Collapse
Grants
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Wenxuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Tingting Yang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Sihui Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Liying Liang
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yingxin Wang
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yin Ding
- The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Wei Xiong
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Xiuhong Ye
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yonglong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuhao Shen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Hang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Jiansu Chen
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.
- Aier Eye Institute, Changsha, Hunan, China.
| |
Collapse
|
47
|
Cao J, Jiao M, Kou Z, Han F, Dong L. SB431542 partially inhibits high glucose-induced EMT by restoring mitochondrial homeostasis in RPE cells. Cell Commun Signal 2024; 22:17. [PMID: 38183022 PMCID: PMC10768373 DOI: 10.1186/s12964-023-01372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/29/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells participated in the development of retinal fibrosis. SB431542 is a small molecule inhibitor with inhibitory effects on the ALK4, ALK5 and ALK7. Our study aimed to explore the effect of SB431542 on the EMT of RPE cells and to provide new ideas for the treatment of retinal fibrosis. METHODS We performed fundus fluorescein angiography, optical coherence tomography and hematoxylin-eosin staining in vivo to observe the effect of SB431542 on choroidal neovascularization (CNV)-induced retinopathy. The proliferation, migration, cytoskeleton, adhesion, reactive oxygen species (ROS), mitochondrial morphology and membrane potential of RPE cells were observed in vitro through fluorescein diacetate staining, Cell Counting Kit-8 experiment, wound healing assay, phalloidin staining, immunofluorescence, MitoSOX, DCFH-DA, MitoTracker and JC-10 staining. Western blot, reverse transcription quantitative and immunofluorescence were used to detect the expression of EMT-related markers, pERK1/2, pGSK3β and β-catenin. RESULTS SB431542 significantly alleviated retinopathy in the CNV model. The proliferation, migration and adhesion in RPE cells decreased to a certain extent in SB431542 treatment. SB431542 partially normalized the structure of RPE cells. The expression levels of E-cadherin increased, while the expression levels of laminin and N-cadherin decreased with SB431542 treatment. SB431542 reduced the production of total ROS, mitochondrial SOX and recovered the mitochondrial membrane potential to a certain degree. In addition, our study showed that SB431542 downregulated the phosphorylation of ERK1/2, GSK3β and the expression of β-catenin. CONCLUSION SB431542 improved EMT in RPE cells by maintaining mitochondrial homeostasis via the ERK1/2 and GSK3β/β-catenin pathways. Video Abstract SB431542 inhibits EMT in RPE cells under high glucose conditions.
Collapse
Affiliation(s)
- Jingjing Cao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, 251 Fukang Road, Nankai, Tianjin, 300384, P.R. China
| | - Mingfei Jiao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, 251 Fukang Road, Nankai, Tianjin, 300384, P.R. China
| | - Zhenyu Kou
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, 251 Fukang Road, Nankai, Tianjin, 300384, P.R. China
| | - Feifei Han
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, 251 Fukang Road, Nankai, Tianjin, 300384, P.R. China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, 251 Fukang Road, Nankai, Tianjin, 300384, P.R. China.
| |
Collapse
|
48
|
Zhao X, Zhang Y, Wu F, Li X, Guo S, Li X. MeCP2-Induced Alternations of Transcript Levels and m6A Methylation in Human Retinal Pigment Epithelium Cells. ACS OMEGA 2023; 8:47964-47973. [PMID: 38144074 PMCID: PMC10734004 DOI: 10.1021/acsomega.3c06610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
MeCP2 is a transcriptional regulator that is involved in epithelial-mesenchymal transition (EMT) and is highly expressed in proliferative vitreoretinopathy. m6A methylation is a critical post-transcriptional regulation in eukaryotic cells. However, the connection between MeCP2 and m6A methylation has not been revealed in retinal pigment epithelium (RPE), and the regulatory role of MeCP2 at the post-transcriptional level in an m6A-dependent manner is rarely investigated. In this study, we used sequencing to reveal differences in transcript levels and m6A abundance of individual genes in RPE cells after treatment with human recombinant protein MeCP2. The biological functions and processes of differential genes were further analyzed by bioinformatics. The results exhibited that after MeCP2 treatment, 65 genes were up-regulated and 43 genes were down-regulated at the transcription level, and 4 peaks were hypermethylated and 9,041 peaks were hypomethylated at the m6A modification level. Enrichment analysis found that differentially expressed genes were associated with organic acid metabolism, melanogenesis, and vascular smooth muscle contraction. In addition, differentially methylated genes were related to cell junction, RNA processing and metabolism, cell activity, actin cytoskeleton, and several signaling pathways associated with EMT. Further conjoint analysis indicated that the transcription and m6A levels of the EGR1, ELOVL2, and SFR1 genes were altered, and EGR1 is an essential transcription factor in the EMT process. The RNA levels and m6A levels of the three genes were verified by qPCR and m6A-IP-qPCR, respectively. Overall, this study preliminarily revealed the differential mapping of MeCP2-induced m6A modifications, which contributes to the study of the epigenetic and EMT mechanism in RPE cells.
Collapse
Affiliation(s)
- Xueru Zhao
- Henan
Eye Hospital, Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Zhengzhou
University People’s Hospital, 450000 Zhengzhou, China
- People’s
Hospital of Henan University, 450003 Zhengzhou, China
- Eye
Institute, Henan Academy of Innovations
in Medical Science, 450000 Zhengzhou, China
| | - Yongya Zhang
- Henan
Eye Hospital, Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Zhengzhou
University People’s Hospital, 450000 Zhengzhou, China
| | - Fei Wu
- Henan
Eye Hospital, Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Zhengzhou
University People’s Hospital, 450000 Zhengzhou, China
| | - Xue Li
- Henan
Eye Hospital, Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Zhengzhou
University People’s Hospital, 450000 Zhengzhou, China
- People’s
Hospital of Henan University, 450003 Zhengzhou, China
- Eye
Institute, Henan Academy of Innovations
in Medical Science, 450000 Zhengzhou, China
| | - Sibei Guo
- Henan
Eye Hospital, Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Xinxiang
Medical University Henan Provincial People’s Hospital, 453003 Xinxiang, China
| | - Xiaohua Li
- Henan
Eye Hospital, Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Zhengzhou
University People’s Hospital, 450000 Zhengzhou, China
- People’s
Hospital of Henan University, 450003 Zhengzhou, China
- Eye
Institute, Henan Academy of Innovations
in Medical Science, 450000 Zhengzhou, China
| |
Collapse
|
49
|
Jentzsch MC, Tsang SH, Koch SF. A New Preclinical Model of Retinitis Pigmentosa Due to Pde6g Deficiency. OPHTHALMOLOGY SCIENCE 2023; 3:100332. [PMID: 37363133 PMCID: PMC10285708 DOI: 10.1016/j.xops.2023.100332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023]
Abstract
Purpose Retinitis pigmentosa (RP) is the most common cause of inherited blindness, with onset occurring as early as 4 years of age in certain rare but severe forms caused by mutations in the gamma subunit of phosphodiesterase 6 (PDE6). Studies in humans and mice have shown that RP pathology begins with progressive photoreceptor death, which then drives changes in downstream neurons, neighboring retinal pigment epithelium (RPE), and vasculature. Here, we present the first detailed analysis of RP disease progression in Pde6g-deficient mice. Design Experimental study of an RP mouse model. Subjects We studied Pde6g-/- and Pde6g+/- mice at the age of 7, 16, 30, 44, and 56 days with n = 2 to 5 per group and time point. Methods Photoreceptor degeneration and retinal remodeling were analyzed in retinal sections by immunofluorescence. Retinal blood vessel degradation was analyzed in flat-mounted retinas immunolabeled for isolectin GS-IB4. Protein expression was measured by immunoblot. Acellular capillaries were assessed in trypsin-digested and hematoxylin-eosin-stained retinas at postnatal day (P) 44. Retinal pigment epithelium cells were delineated in flat-mounted RPE-choroid-sclera by immunolabeling for the cell-adhesion protein β-catenin. Main Outcome Measures Immunofluorescence and morphometry (quantitative analysis of outer nuclear layer, dendrite area, vessel area, acellular vessels, RPE cell size, number of nuclei per RPE cell, RPE cell eccentricity, and RPE cell solidity). Results This novel RP model exhibits early onset and rapid rod degeneration, with the vast majority gone by P16. This pathology leads to retinal remodeling, including changes of inner retinal neurons, early activation of glia cells, degradation of retinal vasculature, and structural abnormalities of the RPE. Conclusions The pathology in our Pde6g-/- mouse model precisely mirrors human RP progression. The results demonstrate the significant role of the gamma subunit in maintaining phosphodiesterase activity and provide new insights into the disease progression due to Pde6g deficiency. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Michelle Carmen Jentzsch
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephen H. Tsang
- Jonas Children’s Vision Care, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York
| | - Susanne Friederike Koch
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
50
|
Bocquet B, Borday C, Erkilic N, Mamaeva D, Donval A, Masson C, Parain K, Kaminska K, Quinodoz M, Perea-Romero I, Garcia-Garcia G, Jimenez-Medina C, Boukhaddaoui H, Coget A, Leboucq N, Calzetti G, Gandolfi S, Percesepe A, Barili V, Uliana V, Delsante M, Bozzetti F, Scholl HP, Corton M, Ayuso C, Millan JM, Rivolta C, Meunier I, Perron M, Kalatzis V. TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa. JCI Insight 2023; 8:e169426. [PMID: 37768732 PMCID: PMC10721274 DOI: 10.1172/jci.insight.169426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal disease (IRD) and is characterized by photoreceptor degeneration and progressive vision loss. We report 4 patients presenting with RP from 3 unrelated families with variants in TBC1D32, which to date has never been associated with an IRD. To validate TBC1D32 as a putative RP causative gene, we combined Xenopus in vivo approaches and human induced pluripotent stem cell-derived (iPSC-derived) retinal models. Our data showed that TBC1D32 was expressed during retinal development and that it played an important role in retinal pigment epithelium (RPE) differentiation. Furthermore, we identified a role for TBC1D32 in ciliogenesis of the RPE. We demonstrated elongated ciliary defects that resulted in disrupted apical tight junctions, loss of functionality (delayed retinoid cycling and altered secretion balance), and the onset of an epithelial-mesenchymal transition-like phenotype. Last, our results suggested photoreceptor differentiation defects, including connecting cilium anomalies, that resulted in impaired trafficking to the outer segment in cones and rods in TBC1D32 iPSC-derived retinal organoids. Overall, our data highlight a critical role for TBC1D32 in the retina and demonstrate that TBC1D32 mutations lead to RP. We thus identify TBC1D32 as an IRD-causative gene.
Collapse
Affiliation(s)
- Béatrice Bocquet
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Caroline Borday
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Nejla Erkilic
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Daria Mamaeva
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Alicia Donval
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Christel Masson
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Karine Parain
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Irene Perea-Romero
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Garcia-Garcia
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Joint Unit of Rare Diseases, IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carla Jimenez-Medina
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Hassan Boukhaddaoui
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Arthur Coget
- Department of Neuroradiology and
- Institute for Human Functional Imaging (I2FH), University of Montpellier, CHU, Montpellier, France
| | | | - Giacomo Calzetti
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Medicine and Surgery
| | | | | | | | | | | | - Francesca Bozzetti
- Neuroradiology Unit, Diagnostic Department, University Hospital of Parma, Parma, Italy
| | - Hendrik P.N. Scholl
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Marta Corton
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M. Millan
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Joint Unit of Rare Diseases, IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Muriel Perron
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| |
Collapse
|