1
|
Pouncey L, Mok GF. Unravelling early hematoendothelial development through the chick model: Insights and future perspectives. Dev Biol 2025; 523:20-31. [PMID: 40228783 DOI: 10.1016/j.ydbio.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
The chicken embryo has been an important model in advancing our understanding of early hematoendothelial development, particularly in the formation of hematopoietic stem cells (HSCs) and the endothelial-to-hematopoietic transition (EHT). The accessibility and ease of manipulation of chicken embryos have made them an invaluable tool for researching development of blood and endothelial cells. Early research using this model provided pivotal insights, demonstrating that intra-embryonic regions, such as the dorsal aorta (DA), are primary sources of HSCs, rather than the yolk sac (YS), as previously believed. The identification of intra-aortic hematopoietic clusters (IAHCs) and the process of EHT in the chicken embryo laid the foundation for similar discoveries in other vertebrate species, including mice and zebrafish. Recent advances in genetic tools, such as transgenic chickens expressing fluorescent proteins, have further enhanced the precision of cell lineage tracing and real-time imaging of dynamic cellular processes. This review highlights both historical contributions and contemporary advancements facilitated by the chicken model, underscoring its continued relevance in developmental biology. By examining key findings and methodological innovations, we aim to demonstrate the importance of the chicken embryo as a model system for understanding hematoendothelial development and its potential for informing therapeutic applications in regenerative medicine and blood disorders. Finally, we will underscore potential applications of the chicken model for comparative and omics-level studies in conjunction with other model systems and what future directions lie ahead.
Collapse
Affiliation(s)
- Lydia Pouncey
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, United Kingdom
| | - Gi Fay Mok
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, United Kingdom.
| |
Collapse
|
2
|
Randolph LN, Castiglioni C, Tavian M, Sturgeon CM, Ditadi A. Bloodhounds chasing the origin of blood cells. Trends Cell Biol 2025:S0962-8924(25)00067-4. [PMID: 40221343 DOI: 10.1016/j.tcb.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
The generation of blood cells during embryonic development involves a process resembling lineage reprogramming, where specialized cells within the vasculature become blood forming, or hemogenic. These hemogenic cells undergo rapid transcriptional and morphological changes as they appear to switch from an endothelial to blood identity. What controls this process and the exact nature of the hemogenic cells remains debated, with evidence supporting several hypotheses. In this opinion, we synthesize current knowledge and propose a model reconciling conflicting observations, integrating evolutionary and mechanistic insights into blood cell emergence.
Collapse
Affiliation(s)
- Lauren N Randolph
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Castiglioni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Manuela Tavian
- University of Strasbourg, INSERM UMR-S1109, FMTS, Strasbourg, France
| | - Christopher M Sturgeon
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Kruangkum T, Söderhäll K, Söderhäll I. The hematopoietic tissue of the freshwater crayfish, Pacifastacus leniusculus: organization and expression analysis. Cell Tissue Res 2025; 399:303-322. [PMID: 39753778 PMCID: PMC11870977 DOI: 10.1007/s00441-024-03943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/02/2024] [Indexed: 03/01/2025]
Abstract
The hematopoietic tissue (HPT) and anterior proliferation center (APC) are the main hemocyte-producing organs of the freshwater crayfish, Pacifastacus leniusculus. To deepen our understanding of immune responses to various pathogens, it is essential to identify distinct hemocyte subpopulations with specific functions and to further explore how these cells are generated. Here we provide an in-depth histological study of the HPT and APC in order to localize cell types in different developmental stages, and to provide some information regarding the hemocyte differentiation in the crayfish. We localized mRNA expression of previously identified genes in the HPT/APC and hemocytes by RNA-FISH. The expression of hemolectin and transglutaminase 1 was shown to be co-localized in a high number of the HPT cells, while transglutaminase 2 was expressed in different cell types mainly associated with epithelium or endothelium. Furthermore, by double RNA-FISH for hemolectin and a previously unidentified PDGF-like factor, combined with immunostaining for prophenoloxidase, we could identify several different subtypes of hemocytes, indicating that the immune function of hemocytes in crayfish is more diversified and complex than previously appreciated.
Collapse
Affiliation(s)
- Thanapong Kruangkum
- Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 75236, Uppsala, Sweden
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kenneth Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 75236, Uppsala, Sweden
| | - Irene Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 75236, Uppsala, Sweden.
| |
Collapse
|
4
|
Ward AC. Secondary Neutropenias. Biomedicines 2025; 13:497. [PMID: 40002910 PMCID: PMC11853056 DOI: 10.3390/biomedicines13020497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Neutrophils are a critical component of immunity, particularly against bacteria and other pathogens, but also in inflammation and tissue repair. As a consequence, individuals with neutropenia, defined by a reduction in absolute neutrophil counts, exhibit a strong propensity to severe infections that typically present with muted symptoms. Neutropenias encompass a heterogeneous set of disorders, comprising primary neutropenias, in which specific genes are mutated, and the more common secondary neutropenias, which have diverse non-genetic causes. These include hematological and other cancers, involving both direct effects of the cancer itself and indirect impacts via the chemotherapeutic, biological agents and cell-based approaches used for treatment. Other significant causes of secondary neutropenias are non-chemotherapeutic drugs, autoimmune and other immune diseases, infections and nutrient deficiencies. These collectively act by impacting neutrophil production in the bone marrow and/or destruction throughout the body. This review describes the biological and clinical manifestations of secondary neutropenias, detailing their underlying causes and management, with a discussion of alternative and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
5
|
Mesquita Peixoto M, Soares-da-Silva F, Bonnet V, Zhou Y, Ronteix G, Santos RF, Mailhe MP, Nogueira G, Feng X, Pereira JP, Azzoni E, Anselmi G, de Bruijn MF, Perkins A, Baroud CN, Pinto-do-Ó P, Cumano A. Spatiotemporal dynamics of fetal liver hematopoietic niches. J Exp Med 2025; 222:e20240592. [PMID: 39775824 PMCID: PMC11706214 DOI: 10.1084/jem.20240592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Embryonic hematopoietic cells develop in the fetal liver (FL), surrounded by diverse non-hematopoietic stromal cells. However, the spatial organization and cytokine production patterns of the stroma during FL development remain poorly understood. Here, we characterized and mapped the hematopoietic and stromal cell populations at early (E12.5-14.5) FL stages, revealing that while hepatoblasts were the primary source of hematopoietic growth factors, other stromal cells-including mesenchymal, mesothelial, and endothelial cells-also contributed to this signaling network. Using a dedicated image analysis pipeline, we quantified cell distances to tissue structures and defined neighbor relationships, uncovering that different hematopoietic progenitors exhibit distinct preferences for neighboring stromal cells and show developmental changes in spatial distribution. Notably, our data suggest that the sub-mesothelium region plays a prominent role in early fetal hematopoiesis. This approach offers a valuable tool for studying complex cellular interactions in biological systems, providing new insights into hematopoietic niche organization during development.
Collapse
Affiliation(s)
- Márcia Mesquita Peixoto
- Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- i3S – Instituto de Investigação e Inovação em Saúde & INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
- Université Paris Cité, Cellule Pasteur, Paris, France
| | - Francisca Soares-da-Silva
- Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université Paris Cité, Cellule Pasteur, Paris, France
| | - Valentin Bonnet
- Physical Microfluidics and Bioengineering, Institut Pasteur, Université Paris Cité, Paris, France
- Laboratoire d’Hydrodynamique, Centre National de la Recherche Scientifique, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Yanping Zhou
- Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université Paris Cité, Cellule Pasteur, Paris, France
| | - Gustave Ronteix
- Physical Microfluidics and Bioengineering, Institut Pasteur, Université Paris Cité, Paris, France
- Laboratoire d’Hydrodynamique, Centre National de la Recherche Scientifique, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Rita Faria Santos
- i3S – Instituto de Investigação e Inovação em Saúde & INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Marie-Pierre Mailhe
- Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université Paris Cité, Cellule Pasteur, Paris, France
| | - Gonçalo Nogueira
- Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université Paris Cité, Cellule Pasteur, Paris, France
| | - Xing Feng
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - João Pedro Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giorgio Anselmi
- Radcliffe Department of Medicine, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Marella F.T.R. de Bruijn
- Radcliffe Department of Medicine, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Archibald Perkins
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Charles N. Baroud
- Physical Microfluidics and Bioengineering, Institut Pasteur, Université Paris Cité, Paris, France
- Laboratoire d’Hydrodynamique, Centre National de la Recherche Scientifique, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Perpétua Pinto-do-Ó
- i3S – Instituto de Investigação e Inovação em Saúde & INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Ana Cumano
- Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université Paris Cité, Cellule Pasteur, Paris, France
| |
Collapse
|
6
|
Chen JY, Loh KM. The placenta as a cradle, but not source, of blood? PLoS Biol 2025; 23:e3003021. [PMID: 39913629 PMCID: PMC11801694 DOI: 10.1371/journal.pbio.3003021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
An important question is whether the placenta is a source of, or merely a niche for, blood-forming hematopoietic stem cells. A recent PLOS Biology study suggests that the placenta does not directly give rise to hematopoietic stem cells.
Collapse
Affiliation(s)
- Julie Y. Chen
- Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, United States of America
| | - Kyle M. Loh
- Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
7
|
Sharma S. Unraveling the role of long non-coding RNAs in therapeutic resistance in acute myeloid leukemia: New prospects & challenges. Noncoding RNA Res 2024; 9:1203-1221. [PMID: 39036603 PMCID: PMC11259994 DOI: 10.1016/j.ncrna.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/23/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is a fatal hematological disease characterized by the unchecked proliferation of immature myeloid blasts in different tissues developed by various mutations in hematopoiesis. Despite intense chemotherapeutic regimens, patients often experience poor outcomes, leading to substandard remission rates. In recent years, long non-coding RNAs (lncRNAs) have increasingly become important prognostic and therapeutic hotspots, due to their contributions to dysregulating many functional epigenetic, transcriptional, and post-translational mechanisms leading to alterations in cell expressions, resulting in increased chemoresistance and reduced apoptosis in leukemic cells. Through this review, I highlight and discuss the latest advances in understanding the major mechanisms through which lncRNAs confer therapy resistance in AML. In addition, I also provide perspective on the current strategies to target lncRNA expressions. A better knowledge of the critical role that lncRNAs play in controlling treatment outcomes in AML will help improve existing medications and devise new ones.
Collapse
Affiliation(s)
- Siddhant Sharma
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
8
|
Ni Y, You G, Gong Y, Su X, Du Y, Wang X, Ding X, Fu Q, Zhang M, Cheng T, Lan Y, Liu B, Liu C. Human yolk sac-derived innate lymphoid-biased multipotent progenitors emerge prior to hematopoietic stem cell formation. Dev Cell 2024; 59:2626-2642.e6. [PMID: 38996461 DOI: 10.1016/j.devcel.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
Hematopoietic stem cell (HSC)-independent lymphopoiesis has been elucidated in murine embryos. However, our understanding regarding human embryonic counterparts remains limited. Here, we demonstrated the presence of human yolk sac-derived lymphoid-biased progenitors (YSLPs) expressing CD34, IL7R, LTB, and IRF8 at Carnegie stage 10, much earlier than the first HSC emergence. The number and lymphopoietic potential of these progenitors were both significantly higher in the yolk sac than the embryo proper at this early stage. Importantly, single-cell/bulk culture and CITE-seq have elucidated the tendency of YSLP to differentiate into innate lymphoid cells and dendritic cells. Notably, lymphoid progenitors in fetal liver before and after HSC seeding displayed distinct transcriptional features, with the former closely resembling those of YSLPs. Overall, our data identified the origin, potential, and migratory dynamics of innate lymphoid-biased multipotent progenitors in human yolk sac before HSC emergence, providing insights for understanding the stepwise establishment of innate immune system in humans.
Collapse
Affiliation(s)
- Yanli Ni
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Guoju You
- School of Medicine, Tsinghua University, Beijing 100080, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Xiaoyu Su
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Yuan Du
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650031, China
| | - Xiaoshuang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xiaochen Ding
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Qingfeng Fu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Man Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Tao Cheng
- Department of Biochemistry and Molecular Biology, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Yu Lan
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650031, China; Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Chen Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
9
|
Martino D, Kresoje N, Amenyogbe N, Ben-Othman R, Cai B, Lo M, Idoko O, Odumade OA, Falsafi R, Blimkie TM, An A, Shannon CP, Montante S, Dhillon BK, Diray-Arce J, Ozonoff A, Smolen KK, Brinkman RR, McEnaney K, Angelidou A, Richmond P, Tebbutt SJ, Kampmann B, Levy O, Hancock REW, Lee AHY, Kollmann TR. DNA Methylation signatures underpinning blood neutrophil to lymphocyte ratio during first week of human life. Nat Commun 2024; 15:8167. [PMID: 39289350 PMCID: PMC11408723 DOI: 10.1038/s41467-024-52283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Understanding of newborn immune ontogeny in the first week of life will enable age-appropriate strategies for safeguarding vulnerable newborns against infectious diseases. Here we conducted an observational study exploring the immunological profile of infants longitudinally throughout their first week of life. Our Expanded Program on Immunization - Human Immunology Project Consortium (EPIC-HIPC) studies the epigenetic regulation of systemic immunity using small volumes of peripheral blood samples collected from West African neonates on days of life (DOL) 0, 1, 3, and 7. Genome-wide DNA methylation and single nucleotide polymorphism markers are examined alongside matched transcriptomic and flow cytometric data. Integrative analysis reveals that a core network of transcription factors mediates dynamic shifts in neutrophil-to-lymphocyte ratios (NLR), which are underpinned by cell-type specific methylation patterns in the two cell types. Genetic variants are associated with lower NLRs at birth, and healthy newborns with lower NLRs at birth are more likely to subsequently develop sepsis. These findings provide valuable insights into the early-life determinants of immune system development.
Collapse
Affiliation(s)
- David Martino
- The Kids Research Institute Australia, Perth, WA, Australia.
- University of Western Australia, Crawley, WA, Australia.
| | - Nina Kresoje
- The Kids Research Institute Australia, Perth, WA, Australia
| | - Nelly Amenyogbe
- The Kids Research Institute Australia, Perth, WA, Australia
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Bing Cai
- BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Mandy Lo
- BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Olubukola Idoko
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, Gambia
| | - Oludare A Odumade
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Reza Falsafi
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Travis M Blimkie
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Andy An
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Casey P Shannon
- PROOF Centre of Excellence, Providence Research, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | | | - Bhavjinder K Dhillon
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kinga K Smolen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Kerry McEnaney
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Asimenia Angelidou
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neonatology, Beth Israel Deaconess Medical Centre, Boston, MA, USA
| | - Peter Richmond
- The Kids Research Institute Australia, Perth, WA, Australia
- University of Western Australia, Crawley, WA, Australia
| | - Scott J Tebbutt
- PROOF Centre of Excellence, Providence Research, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Beate Kampmann
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, Gambia
- Centre for Global Health and Institute for International Health, Charite Universitatsmedizin, Berlin, Germany
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert E W Hancock
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Amy H Y Lee
- Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Tobias R Kollmann
- The Kids Research Institute Australia, Perth, WA, Australia
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Elsaid R, Mikdache A, Diabangouaya P, Gros G, Hernández PP. A noninvasive photoactivatable split-Cre recombinase system for genome engineering in zebrafish. iScience 2024; 27:110476. [PMID: 39129833 PMCID: PMC11315165 DOI: 10.1016/j.isci.2024.110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
The cyclic recombinase (Cre)/loxP recombination system is a powerful technique for in vivo cell labeling and tracking. However, achieving high spatiotemporal precision in cell tracking using this system is challenging due to the requirement for reliable tissue-specific promoters. In contrast, light-inducible systems offer superior regional confinement, tunability, and non-invasiveness compared to conventional lineage-tracing methods. Here, we took advantage of the unique strengths of the zebrafish to develop an easy-to-use highly efficient, genetically encoded, magnets-based, light-inducible transgenic Cre/loxP system. We demonstrate that our system does not exhibit phototoxicity or leakiness in the dark, and it enables efficient and robust Cre/loxP recombination in various tissues and cell types at different developmental stages through noninvasive illumination with blue light. Our newly developed tool is expected to open novel opportunities for light-controlled tracking of cell fate and migration in vivo.
Collapse
Affiliation(s)
- Ramy Elsaid
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Aya Mikdache
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Patricia Diabangouaya
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Gwendoline Gros
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Pedro P. Hernández
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
11
|
Doll L, Welte K, Skokowa J, Bajoghli B. A JAGN1-associated severe congenital neutropenia zebrafish model revealed an altered G-CSFR signaling and UPR activation. Blood Adv 2024; 8:4050-4065. [PMID: 38739706 PMCID: PMC11342096 DOI: 10.1182/bloodadvances.2023011656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
ABSTRACT A variety of autosomal recessive mutations in the JAGN1 gene cause severe congenital neutropenia (CN). However, the underlying pathomechanism remains poorly understood, mainly because of the limited availability of primary hematopoietic stem cells from JAGN1-CN patients and the absence of animal models. In this study, we aimed to address these limitations by establishing a zebrafish model of JAGN1-CN. We found 2 paralogs of the human JAGN1 gene, namely jagn1a and jagn1b, which play distinct roles during zebrafish hematopoiesis. Using various approaches such as morpholino-based knockdown, CRISPR/Cas9-based gene editing, and misexpression of a jagn1b harboring a specific human mutation, we successfully developed neutropenia while leaving other hematopoietic lineages unaffected. Further analysis of our model revealed significant upregulation of apoptosis and genes involved in the unfolded protein response (UPR). However, neither UPR nor apoptosis is the primary mechanism that leads to neutropenia in zebrafish. Instead, Jagn1b has a critical role in granulocyte colony-stimulating factor receptor signaling and steady-state granulopoiesis, shedding light on the pathogenesis of neutropenia associated with JAGN1 mutations. The establishment of a zebrafish model for JAGN1-CN represents a significant advancement in understanding the specific pathologic pathways underlying the disease. This model provides a valuable in vivo tool for further investigation and exploration of potential therapeutic strategies.
Collapse
Affiliation(s)
- Larissa Doll
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Karl Welte
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Children’s Hospital, University Hospital Tuebingen, Tuebingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Gene and RNA Therapy Center, Tuebingen University, Tuebingen, Germany
| | - Baubak Bajoghli
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Austrian BioImaging/CMI, Vienna, Austria
| |
Collapse
|
12
|
Monticelli S, Sommer A, AlHajj Hassan Z, Garcia Rodriguez C, Adé K, Cattenoz P, Delaporte C, Gomez Perdiguero E, Giangrande A. Early-wave macrophages control late hematopoiesis. Dev Cell 2024; 59:1284-1301.e8. [PMID: 38569551 DOI: 10.1016/j.devcel.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/08/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Macrophages constitute the first defense line against the non-self, but their ability to remodel their environment in organ development/homeostasis is starting to be appreciated. Early-wave macrophages (EMs), produced from hematopoietic stem cell (HSC)-independent progenitors, seed the mammalian fetal liver niche wherein HSCs expand and differentiate. The involvement of niche defects in myeloid malignancies led us to identify the cues controlling HSCs. In Drosophila, HSC-independent EMs also colonize the larva when late hematopoiesis occurs. The evolutionarily conserved immune system allowed us to investigate whether/how EMs modulate late hematopoiesis in two models. We show that loss of EMs in Drosophila and mice accelerates late hematopoiesis, which does not correlate with inflammation and does not rely on macrophage phagocytic ability. Rather, EM-derived extracellular matrix components underlie late hematopoiesis acceleration. This demonstrates a developmental role for EMs.
Collapse
Affiliation(s)
- Sara Monticelli
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Alina Sommer
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Zeinab AlHajj Hassan
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Clarisabel Garcia Rodriguez
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Kémy Adé
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France
| | - Pierre Cattenoz
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Claude Delaporte
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Elisa Gomez Perdiguero
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France.
| | - Angela Giangrande
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France.
| |
Collapse
|
13
|
Sharma S, Houfani AA, Foster LJ. Pivotal functions and impact of long con-coding RNAs on cellular processes and genome integrity. J Biomed Sci 2024; 31:52. [PMID: 38745221 PMCID: PMC11092263 DOI: 10.1186/s12929-024-01038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Recent advances in uncovering the mysteries of the human genome suggest that long non-coding RNAs (lncRNAs) are important regulatory components. Although lncRNAs are known to affect gene transcription, their mechanisms and biological implications are still unclear. Experimental research has shown that lncRNA synthesis, subcellular localization, and interactions with macromolecules like DNA, other RNAs, or proteins can all have an impact on gene expression in various biological processes. In this review, we highlight and discuss the major mechanisms through which lncRNAs function as master regulators of the human genome. Specifically, the objective of our review is to examine how lncRNAs regulate different processes like cell division, cell cycle, and immune responses, and unravel their roles in maintaining genomic architecture and integrity.
Collapse
Affiliation(s)
- Siddhant Sharma
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Aicha Asma Houfani
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
14
|
Sartorius AM, Rokicki J, Birkeland S, Bettella F, Barth C, de Lange AMG, Haram M, Shadrin A, Winterton A, Steen NE, Schwarz E, Stein DJ, Andreassen OA, van der Meer D, Westlye LT, Theofanopoulou C, Quintana DS. An evolutionary timeline of the oxytocin signaling pathway. Commun Biol 2024; 7:471. [PMID: 38632466 PMCID: PMC11024182 DOI: 10.1038/s42003-024-06094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Oxytocin is a neuropeptide associated with both psychological and somatic processes like parturition and social bonding. Although oxytocin homologs have been identified in many species, the evolutionary timeline of the entire oxytocin signaling gene pathway has yet to be described. Using protein sequence similarity searches, microsynteny, and phylostratigraphy, we assigned the genes supporting the oxytocin pathway to different phylostrata based on when we found they likely arose in evolution. We show that the majority (64%) of genes in the pathway are 'modern'. Most of the modern genes evolved around the emergence of vertebrates or jawed vertebrates (540 - 530 million years ago, 'mya'), including OXTR, OXT and CD38. Of those, 45% were under positive selection at some point during vertebrate evolution. We also found that 18% of the genes in the oxytocin pathway are 'ancient', meaning their emergence dates back to cellular organisms and opisthokonta (3500-1100 mya). The remaining genes (18%) that evolved after ancient and before modern genes were classified as 'medium-aged'. Functional analyses revealed that, in humans, medium-aged oxytocin pathway genes are highly expressed in contractile organs, while modern genes in the oxytocin pathway are primarily expressed in the brain and muscle tissue.
Collapse
Affiliation(s)
- Alina M Sartorius
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Siri Birkeland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Francesco Bettella
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Claudia Barth
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ann-Marie G de Lange
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Marit Haram
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Mental Health and Suicide, Norwegian Institute of Public Health, Oslo, Norway
| | - Alexey Shadrin
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Adriano Winterton
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Emanuel Schwarz
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Daniel S Quintana
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.
- Department of Psychology, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway.
- NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
15
|
Allara M, Girard JR. Towards an integrated understanding of inflammatory pathway influence on hematopoietic stem and progenitor cell differentiation. Bioessays 2024; 46:e2300142. [PMID: 38488673 DOI: 10.1002/bies.202300142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Recent research highlights that inflammatory signaling pathways such as pattern recognition receptor (PRR) signaling and inflammatory cytokine signaling play an important role in both on-demand hematopoiesis as well as steady-state hematopoiesis. Knockout studies have demonstrated the necessity of several distinct pathways in these processes, but often lack information about the contribution of specific cell types to the phenotypes in question. Transplantation studies have increased the resolution to the level of specific cell types by testing the necessity of inflammatory pathways specifically in donor hematopoietic stem and progenitor cells (HSPCs) or in recipient niche cells. Here, we argue that for an integrated understanding of how these processes occur in vivo and to inform the development of therapies that modulate hematopoietic responses, we need studies that knockout inflammatory signaling receptors in a cell-specific manner and compare the phenotypes caused by knockout in individual niche cells versus HSPCs.
Collapse
Affiliation(s)
- Michael Allara
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Juliet R Girard
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Elsaid R, Mikdache A, Castillo KQ, Salloum Y, Diabangouaya P, Gros G, Feijoo CG, Hernández PP. Definitive hematopoiesis is dispensable to sustain erythrocytes and macrophages during zebrafish ontogeny. iScience 2024; 27:108922. [PMID: 38327794 PMCID: PMC10847700 DOI: 10.1016/j.isci.2024.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/23/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
In all organisms studied, from flies to humans, blood cells emerge in several sequential waves and from distinct hematopoietic origins. However, the relative contribution of these ontogenetically distinct hematopoietic waves to embryonic blood lineages and to tissue regeneration during development is yet elusive. Here, using a lineage-specific "switch and trace" strategy in the zebrafish embryo, we report that the definitive hematopoietic progeny barely contributes to erythrocytes and macrophages during early development. Lineage tracing further shows that ontogenetically distinct macrophages exhibit differential recruitment to the site of injury based on the developmental stage of the organism. We further demonstrate that primitive macrophages can solely maintain tissue regeneration during early larval developmental stages after selective ablation of definitive macrophages. Our findings highlight that the sequential emergence of hematopoietic waves in embryos ensures the abundance of blood cells required for tissue homeostasis and integrity during development.
Collapse
Affiliation(s)
- Ramy Elsaid
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Aya Mikdache
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Keinis Quintero Castillo
- Fish Immunology Laboratory, Faculty of Life Science, Andres Bello University, Santiago 8370146, Chile
| | - Yazan Salloum
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Patricia Diabangouaya
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Gwendoline Gros
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Carmen G. Feijoo
- Fish Immunology Laboratory, Faculty of Life Science, Andres Bello University, Santiago 8370146, Chile
| | - Pedro P. Hernández
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
17
|
Imaz-Rosshandler I, Rode C, Guibentif C, Harland LTG, Ton MLN, Dhapola P, Keitley D, Argelaguet R, Calero-Nieto FJ, Nichols J, Marioni JC, de Bruijn MFTR, Göttgens B. Tracking early mammalian organogenesis - prediction and validation of differentiation trajectories at whole organism scale. Development 2024; 151:dev201867. [PMID: 37982461 PMCID: PMC10906099 DOI: 10.1242/dev.201867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Early organogenesis represents a key step in animal development, during which pluripotent cells diversify to initiate organ formation. Here, we sampled 300,000 single-cell transcriptomes from mouse embryos between E8.5 and E9.5 in 6-h intervals and combined this new dataset with our previous atlas (E6.5-E8.5) to produce a densely sampled timecourse of >400,000 cells from early gastrulation to organogenesis. Computational lineage reconstruction identified complex waves of blood and endothelial development, including a new programme for somite-derived endothelium. We also dissected the E7.5 primitive streak into four adjacent regions, performed scRNA-seq and predicted cell fates computationally. Finally, we defined developmental state/fate relationships by combining orthotopic grafting, microscopic analysis and scRNA-seq to transcriptionally determine cell fates of grafted primitive streak regions after 24 h of in vitro embryo culture. Experimentally determined fate outcomes were in good agreement with computationally predicted fates, demonstrating how classical grafting experiments can be revisited to establish high-resolution cell state/fate relationships. Such interdisciplinary approaches will benefit future studies in developmental biology and guide the in vitro production of cells for organ regeneration and repair.
Collapse
Affiliation(s)
- Ivan Imaz-Rosshandler
- Department of Haematology, University of Cambridge, Cambridge CB2 0RE, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Christina Rode
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Carolina Guibentif
- Department of Microbiology and Immunology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Luke T. G. Harland
- Department of Haematology, University of Cambridge, Cambridge CB2 0RE, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Mai-Linh N. Ton
- Department of Haematology, University of Cambridge, Cambridge CB2 0RE, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Parashar Dhapola
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, 221 00 Lund, Sweden
| | - Daniel Keitley
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Ricard Argelaguet
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
- Altos Labs Cambridge Institute, Granta Park, Cambridge CB21 6GP, UK
| | - Fernando J. Calero-Nieto
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jennifer Nichols
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - John C. Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Saffron Walden CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Saffron Walden CB10 1SA, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Marella F. T. R. de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge CB2 0RE, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| |
Collapse
|
18
|
Sharma NS, Choudhary B. Good Cop, Bad Cop: Profiling the Immune Landscape in Multiple Myeloma. Biomolecules 2023; 13:1629. [PMID: 38002311 PMCID: PMC10669790 DOI: 10.3390/biom13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple myeloma (MM) is a dyscrasia of plasma cells (PCs) characterized by abnormal immunoglobulin (Ig) production. The disease remains incurable due to a multitude of mutations and structural abnormalities in MM cells, coupled with a favorable microenvironment and immune suppression that eventually contribute to the development of drug resistance. The bone marrow microenvironment (BMME) is composed of a cellular component comprising stromal cells, endothelial cells, osteoclasts, osteoblasts, and immune cells, and a non-cellular component made of the extracellular matrix (ECM) and the liquid milieu, which contains cytokines, growth factors, and chemokines. The bone marrow stromal cells (BMSCs) are involved in the adhesion of MM cells, promote the growth, proliferation, invasion, and drug resistance of MM cells, and are also crucial in angiogenesis and the formation of lytic bone lesions. Classical immunophenotyping in combination with advanced immune profiling using single-cell sequencing technologies has enabled immune cell-specific gene expression analysis in MM to further elucidate the roles of specific immune cell fractions from peripheral blood and bone marrow (BM) in myelomagenesis and progression, immune evasion and exhaustion mechanisms, and development of drug resistance and relapse. The review describes the role of BMME components in MM development and ongoing clinical trials using immunotherapeutic approaches.
Collapse
Affiliation(s)
- Niyati Seshagiri Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
| |
Collapse
|
19
|
Sommarin MNE, Olofzon R, Palo S, Dhapola P, Soneji S, Karlsson G, Böiers C. Single-cell multiomics of human fetal hematopoiesis define a developmental-specific population and a fetal signature. Blood Adv 2023; 7:5325-5340. [PMID: 37379274 PMCID: PMC10506049 DOI: 10.1182/bloodadvances.2023009808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023] Open
Abstract
Knowledge of human fetal blood development and how it differs from adult blood is highly relevant to our understanding of congenital blood and immune disorders and childhood leukemia, of which the latter can originate in utero. Blood formation occurs in waves that overlap in time and space, adding to heterogeneity, which necessitates single-cell approaches. Here, a combined single-cell immunophenotypic and transcriptional map of first trimester primitive blood development is presented. Using CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing), the molecular profile of established immunophenotype-gated progenitors was analyzed in the fetal liver (FL). Classical markers for hematopoietic stem cells (HSCs), such as CD90 and CD49F, were largely preserved, whereas CD135 (FLT3) and CD123 (IL3R) had a ubiquitous expression pattern capturing heterogenous populations. Direct molecular comparison with an adult bone marrow data set revealed that the HSC state was less frequent in FL, whereas cells with a lymphomyeloid signature were more abundant. An erythromyeloid-primed multipotent progenitor cluster was identified, potentially representing a transient, fetal-specific population. Furthermore, differentially expressed genes between fetal and adult counterparts were specifically analyzed, and a fetal core signature was identified. The core gene set could separate subgroups of acute lymphoblastic leukemia by age, suggesting that a fetal program may be partially retained in specific subgroups of pediatric leukemia. Our detailed single-cell map presented herein emphasizes molecular and immunophenotypic differences between fetal and adult blood cells, which are of significance for future studies of pediatric leukemia and blood development in general.
Collapse
Affiliation(s)
- Mikael N. E. Sommarin
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Rasmus Olofzon
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sara Palo
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Parashar Dhapola
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Shamit Soneji
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Göran Karlsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Charlotta Böiers
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Peixoto MM, Soares-da-Silva F, Bonnet V, Ronteix G, Santos RF, Mailhe MP, Feng X, Pereira JP, Azzoni E, Anselmi G, de Bruijn M, Baroud CN, Pinto-do-Ó P, Cumano A. Spatiotemporal dynamics of cytokines expression dictate fetal liver hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554612. [PMID: 37662317 PMCID: PMC10473721 DOI: 10.1101/2023.08.24.554612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
During embryogenesis, yolk-sac and intra-embryonic-derived hematopoietic progenitors, comprising the precursors of adult hematopoietic stem cells, converge into the fetal liver. With a new staining strategy, we defined all non-hematopoietic components of the fetal liver and found that hepatoblasts are the major producers of hematopoietic growth factors. We identified mesothelial cells, a novel component of the stromal compartment, producing Kit ligand, a major hematopoietic cytokine. A high-definition imaging dataset analyzed using a deep-learning based pipeline allowed the unambiguous identification of hematopoietic and stromal populations, and enabled determining a neighboring network composition, at the single cell resolution. Throughout active hematopoiesis, progenitors preferentially associate with hepatoblasts, but not with stellate or endothelial cells. We found that, unlike yolk sac-derived progenitors, intra-embryonic progenitors respond to a chemokine gradient created by CXCL12-producing stellate cells. These results revealed that FL hematopoiesis is a spatiotemporal dynamic process, defined by an environment characterized by low cytokine concentrations.
Collapse
|
21
|
Exploiting somatic mutations to decipher human blood production: a natural lineage-tracing strategy. Exp Hematol 2023; 121:2-5. [PMID: 36736573 DOI: 10.1016/j.exphem.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Lineage tracing using fluorescent proteins, genetic barcodes, and various other strategies has provided critical insights into the dynamics of both fetal and adult hematopoiesis in model organisms. However, these technologies cannot be readily used to study hematopoiesis in human beings. Therefore, there is a critical need to develop strategies to assess cellular dynamics within human hematopoietic tissues in vivo. Recently, researchers have used naturally acquired somatic mutations, coupled with other single-cell technologies, to retrospectively analyze clonal cellular dynamics. In summer 2022, the International Society for Experimental Hematology's New Investigator Committee hosted a webinar focused on novel approaches to dissect fetal and adult hematopoiesis, with presentations from Drs. Ana Cvejic and Vijay Sankaran. Here, we provide an overview of these exciting technological advances and some of the novel insights they have already provided in studying human hematopoiesis.
Collapse
|
22
|
Paiola M, Dimitrakopoulou D, Pavelka MS, Robert J. Amphibians as a model to study the role of immune cell heterogeneity in host and mycobacterial interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104594. [PMID: 36403788 DOI: 10.1016/j.dci.2022.104594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mycobacterial infections represent major concerns for aquatic and terrestrial vertebrates including humans. Although our current knowledge is mostly restricted to Mycobacterium tuberculosis and mammalian host interactions, increasing evidence suggests common features in endo- and ectothermic animals infected with non-tuberculous mycobacteria (NTMs) like those described for M. tuberculosis. Importantly, most of the pathogenic and non-pathogenic NTMs detected in amphibians from wild, farmed, and research facilities represent, in addition to the potential economic loss, a rising concern for human health. Upon mycobacterial infection in mammals, the protective immune responses involving the innate and adaptive immune systems are highly complex and therefore not fully understood. This complexity results from the versatility and resilience of mycobacteria to hostile conditions as well as from the immune cell heterogeneity arising from the distinct developmental origins according with the concept of layered immunity. Similar to the differing responses of neonates versus adults during tuberculosis development, the pathogenesis and inflammatory responses are stage-specific in Xenopus laevis during infection by the NTM M. marinum. That is, both in human fetal and neonatal development and in tadpole development, responses are characterized by hypo-responsiveness and a lower capacity to contain mycobacterial infections. Similar to a mammalian fetus and neonates, T cells and myeloid cells in Xenopus tadpoles and axolotls are different from the adult immune cells. Fetal and amphibian larval T cells, which are characterized by a lower T cell receptor (TCR) repertoire diversity, are biased toward regulatory function, and they have distinct progenitor origins from those of the adult immune cells. Some early developing T cells and likely macrophage subpopulations are conserved in adult anurans and mammals, and therefore, they likely play an important role in the host-pathogen interactions from early stages of development to adulthood. Thus, we propose the use of developing amphibians, which have the advantage of being free-living early in their development, as an alternative and complementary model to study the role of immune cell heterogeneity in host-mycobacteria interactions.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
23
|
van de Pavert SA. Layered origins of lymphoid tissue inducer cells. Immunol Rev 2023; 315:71-78. [PMID: 36705244 DOI: 10.1111/imr.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Innate Lymphoid Cell (ILC) family is a relatively recently described immune cell family involved in innate immune responses and tissue homeostasis. Lymphoid Tissue Inducer (LTi) cells are part of the type 3 (ILC3) family. The ILC3 family is the main ILC population within the embryo, in which the LTi cells are critically associated with embryonic lymph node formation. Recent studies have shown more insights in ILC origin and residency from local embryonic and tissue resident precursors. Embryonic LTi cells originating from a different hemogenic endothelial source were shown to be replaced by HSC derived progenitors in adult. This review will discuss the layered origin of the ILC3 family with an emphasis on the LTi cell lineage.
Collapse
Affiliation(s)
- Serge A van de Pavert
- Aix-Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
24
|
Zhang X, Yang Y, Wei Y, Zhao Q, Lou X. blf and the drl cluster synergistically regulate cell fate commitment during zebrafish primitive hematopoiesis. Development 2022; 149:285945. [PMID: 36420817 DOI: 10.1242/dev.200919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Hematopoiesis is a highly coordinated process that generates all the body's blood cells, and perturbations in embryonic hematopoiesis may result in illnesses ranging from fetal anemia to various leukemias. Correct establishment of hematopoietic progenitor cell fate is essential for the development of adequate blood cell subpopulations, although regulators of cell fate commitment have not been fully defined. Here, we show that primary erythropoiesis and myelopoiesis in zebrafish embryos are synergistically regulated by blf and the drl cluster, as simultaneous depletion led to severe erythrocyte aplasia and excessive macrophage formation at the expense of neutrophil development. Integrative analysis of transcriptome- and genome-wide binding data revealed that blf and drl cluster genes are responsible for constraining the expression of vasculogenesis-promoting genes in the intermediate cell mass and monocytopoiesis-promoting genes in the rostral blood island. This indicates that blf and drl cluster genes act as determinants of the fate commitment of erythroid and myeloid progenitor cells. Furthermore, a rescue screen demonstrated that Zfp932 is a potential mammalian functional equivalent to zebrafish blf and drl cluster genes. Our data provide insight into conserved cell fate commitment mechanisms of primitive hematopoiesis.
Collapse
Affiliation(s)
- Xue Zhang
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuxi Yang
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuxuan Wei
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Qingshun Zhao
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Xin Lou
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311100, China
| |
Collapse
|
25
|
Ganuza M, Clements W, McKinney-Freeman S. Specification of hematopoietic stem cells in mammalian embryos: a rare or frequent event? Blood 2022; 140:309-320. [PMID: 35737920 PMCID: PMC9335503 DOI: 10.1182/blood.2020009839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are the blood-forming stem cells thought to be responsible for supporting the blood system throughout life. Transplantability has long been the flagship assay used to define and characterize HSCs throughout ontogeny. However, it has recently become clear that many cells emerge during ontogeny that lack transplantability yet nevertheless are fated to ultimately contribute to the adult HSC pool. Here, we explore recent advances in understanding the numbers and kinetics of cells that emerge during development to support lifelong hematopoiesis; these advances are made possible by new technologies allowing interrogation of lifelong blood potential without embryo perturbation or transplantation. Illuminating the dynamics of these cells during normal development informs efforts to better understand the origins of hematologic disease and engineer HSCs from differentiating pluripotent stem cells.
Collapse
Affiliation(s)
- Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; and
| | - Wilson Clements
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
26
|
Kappen C, Kruger C, Jones S, Salbaum JM. Nutrient Transporter Gene Expression in the Early Conceptus-Implications From Two Mouse Models of Diabetic Pregnancy. Front Cell Dev Biol 2022; 10:777844. [PMID: 35478964 PMCID: PMC9035823 DOI: 10.3389/fcell.2022.777844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Maternal diabetes in early pregnancy increases the risk for birth defects in the offspring, particularly heart, and neural tube defects. While elevated glucose levels are characteristic for diabetic pregnancies, these are also accompanied by hyperlipidemia, indicating altered nutrient availability. We therefore investigated whether changes in the expression of nutrient transporters at the conception site or in the early post-implantation embryo could account for increased birth defect incidence at later developmental stages. Focusing on glucose and fatty acid transporters, we measured their expression by RT-PCR in the spontaneously diabetic non-obese mouse strain NOD, and in pregnant FVB/N mouse strain dams with Streptozotocin-induced diabetes. Sites of expression in the deciduum, extra-embryonic, and embryonic tissues were determined by RNAscope in situ hybridization. While maternal diabetes had no apparent effects on levels or cellular profiles of expression, we detected striking cell-type specificity of particular nutrient transporters. For examples, Slc2a2/Glut2 expression was restricted to the endodermal cells of the visceral yolk sac, while Slc2a1/Glut1 expression was limited to the mesodermal compartment; Slc27a4/Fatp4 and Slc27a3/Fatp3 also exhibited reciprocally exclusive expression in the endodermal and mesodermal compartments of the yolk sac, respectively. These findings not only highlight the significance of nutrient transporters in the intrauterine environment, but also raise important implications for the etiology of birth defects in diabetic pregnancies, and for strategies aimed at reducing birth defects risk by nutrient supplementation.
Collapse
Affiliation(s)
- Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Claudia Kruger
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Sydney Jones
- Regulation of Gene Expression, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - J. Michael Salbaum
- Regulation of Gene Expression, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| |
Collapse
|
27
|
Watt SM. The long and winding road: homeostatic and disordered haematopoietic microenvironmental niches: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:31-54. [PMID: 35837343 PMCID: PMC9255786 DOI: 10.12336/biomatertransl.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Haematopoietic microenvironmental niches have been described as the 'gatekeepers' for the blood and immune systems. These niches change during ontogeny, with the bone marrow becoming the predominant site of haematopoiesis in post-natal life under steady state conditions. To determine the structure and function of different haematopoietic microenvironmental niches, it is essential to clearly define specific haematopoietic stem and progenitor cell subsets during ontogeny and to understand their temporal appearance and anatomical positioning. A variety of haematopoietic and non-haematopoietic cells contribute to haematopoietic stem and progenitor cell niches. The latter is reported to include endothelial cells and mesenchymal stromal cells (MSCs), skeletal stem cells and/or C-X-C motif chemokine ligand 12-abundant-reticular cell populations, which form crucial components of these microenvironments under homeostatic conditions. Dysregulation or deterioration of such cells contributes to significant clinical disorders and diseases worldwide and is associated with the ageing process. A critical appraisal of these issues and of the roles of MSC/C-X-C motif chemokine ligand 12-abundant-reticular cells and the more recently identified skeletal stem cell subsets in bone marrow haematopoietic niche function under homeostatic conditions and during ageing will form the basis of this research review. In the context of haematopoiesis, clinical translation will deal with lessons learned from the vast experience garnered from the development and use of MSC therapies to treat graft versus host disease in the context of allogeneic haematopoietic transplants, the recent application of these MSC therapies to treating emerging and severe coronavirus disease 2019 (COVID-19) infections, and, given that skeletal stem cell ageing is one proposed driver for haematopoietic ageing, the potential contributions of these stem cells to haematopoiesis in healthy bone marrow and the benefits and challenges of using this knowledge for rejuvenating the age-compromised bone marrow haematopoietic niches and restoring haematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
28
|
Watt SM, Hua P, Roberts I. Increasing Complexity of Molecular Landscapes in Human Hematopoietic Stem and Progenitor Cells during Development and Aging. Int J Mol Sci 2022; 23:3675. [PMID: 35409034 PMCID: PMC8999121 DOI: 10.3390/ijms23073675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
The past five decades have seen significant progress in our understanding of human hematopoiesis. This has in part been due to the unprecedented development of advanced technologies, which have allowed the identification and characterization of rare subsets of human hematopoietic stem and progenitor cells and their lineage trajectories from embryonic through to adult life. Additionally, surrogate in vitro and in vivo models, although not fully recapitulating human hematopoiesis, have spurred on these scientific advances. These approaches have heightened our knowledge of hematological disorders and diseases and have led to their improved diagnosis and therapies. Here, we review human hematopoiesis at each end of the age spectrum, during embryonic and fetal development and on aging, providing exemplars of recent progress in deciphering the increasingly complex cellular and molecular hematopoietic landscapes in health and disease. This review concludes by highlighting links between chronic inflammation and metabolic and epigenetic changes associated with aging and in the development of clonal hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Peng Hua
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, and NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
29
|
Shin SB, McNagny KM. ILC-You in the Thymus: A Fresh Look at Innate Lymphoid Cell Development. Front Immunol 2021; 12:681110. [PMID: 34025680 PMCID: PMC8136430 DOI: 10.3389/fimmu.2021.681110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/20/2021] [Indexed: 01/20/2023] Open
Abstract
The discovery of innate lymphoid cells (ILCs) has revolutionized our understanding of innate immunity and immune cell interactions at epithelial barrier sites. Their presence and maintenance are critical for modulating immune homeostasis, responding to injury or infection, and repairing damaged tissues. To date, ILCs have been defined by a set of transcription factors, surface antigens and cytokines, and their functions resemble those of three major classes of helper T cell subsets, Th1, Th2 and Th17. Despite this, the lack of antigen-specific surface receptors and the notion that ILCs can develop in the absence of the thymic niche have clearly set them apart from the T-cell lineage and promulgated a dogma that ILCs develop directly from progenitors in the bone marrow. Interestingly however, emerging studies have challenged the BM-centric view of adult ILC development and suggest that ILCs could arise neonatally from developing T cell progenitors. In this review, we discuss ILC development in parallel to T-cell development and summarize key findings that support a T-cell-centric view of ILC ontogeny.
Collapse
Affiliation(s)
- Samuel B Shin
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Edginton-White B, Bonifer C. The transcriptional regulation of normal and malignant blood cell development. FEBS J 2021; 289:1240-1255. [PMID: 33511785 DOI: 10.1111/febs.15735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 11/27/2022]
Abstract
Development of multicellular organisms requires the differential usage of our genetic information to change one cell fate into another. This process drives the appearance of different cell types that come together to form specialized tissues sustaining a healthy organism. In the last decade, by moving away from studying single genes toward a global view of gene expression control, a revolution has taken place in our understanding of how genes work together and how cells communicate to translate the information encoded in the genome into a body plan. The development of hematopoietic cells has long served as a paradigm of development in general. In this review, we highlight how transcription factors and chromatin components work together to shape the gene regulatory networks controlling gene expression in the hematopoietic system and to drive blood cell differentiation. In addition, we outline how this process goes astray in blood cancers. We also touch upon emerging concepts that place these processes firmly into their associated subnuclear structures adding another layer of the control of differential gene expression.
Collapse
Affiliation(s)
- Benjamin Edginton-White
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, UK
| |
Collapse
|