1
|
Tran VVT, Jin X, Zhou XY, Hong KY, Chang H. Superior Retention of Aged Fat Graft by Supplementing Young Adipose-Derived Stromal Cells in a Murine Model. Plast Reconstr Surg 2025; 155:959-968. [PMID: 39451136 DOI: 10.1097/prs.0000000000011810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND In 2021, a meta-analysis showed that fat graft retention varied from 26% to 83%. In a retrospective study including patients with Parry-Romberg syndrome, the younger age group had higher satisfaction scores (3.8 versus 3.0) after fat grafting. Cell-assisted lipotransfer could be an alternative to overcome the instability of volume loss; however, no study has investigated its effect on older recipients. METHODS In an in vitro study, adipose-derived stromal cells (ASCs) from aged and young (52 and 8 weeks old) DsRed B6 mice were characterized by proliferation rates as percentages of Ki-67-positive cells. In addition, 68-week-old wild-type B6 mice received 150 µL of green fluorescent protein fat (from 69-week-old B6 mice) mixed with saline or 3 × 10 5 aged or young DsRed ASCs (N, A, and Y groups, respectively) on the scalp ( n = 6/group). After 8 weeks, graft volumes were evaluated using microcomputed tomography. Vessel densities were tracked by percentages of CD31 using immunofluorescence staining. RESULTS Young ASCs showed higher proliferation than aged ASCs (47.1% and 26.2%, respectively; P < 0.05). The Y group showed the highest graft retention (median: N, 41.0%; A, 52.2%; Y, 65.2%; P < 0.05) and percentage of blood vessels (median: N, 27.7%; A, 43.5%; Y, 54.7%; P < 0.05) among the 3 groups. CONCLUSIONS Cell-assisted lipotransfer is effective with older recipients. Higher effect was observed by supplementation with younger ASCs because of higher angiogenesis stimulation. Further validation of safety, toxicity, and allogenic grafting is required.
Collapse
Affiliation(s)
- Vinh Vuong The Tran
- From the Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine
- Department of Surgery, Hai Phong University of Medicine and Pharmacy
| | - Xian Jin
- From the Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine
- Department of Plastic Surgery, the Second Affiliated Hospital, Medical School, Zhejiang University
| | - Xin Ye Zhou
- From the Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine
| | - Ki Yong Hong
- From the Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine
| | - Hak Chang
- From the Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine
| |
Collapse
|
2
|
Feng Y, Zhu Z, Zhao S, Jiang X, Zhang W, Xu Z. Bioorthogonally Activatable Photosensitizer for NIR Fluorescence Imaging-Guided Highly Selective Elimination of Senescent Tumor Cells and Chemotherapy Enhancement. Bioconjug Chem 2025; 36:1066-1078. [PMID: 40329576 DOI: 10.1021/acs.bioconjchem.5c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Chemotherapy is a primary modality in cancer treatment, but it may induce cellular senescence, which in turn triggers the release of senescence-associated secretory phenotypes (SASPs) that promote tumor growth and metastasis. To selectively identify senescent cells and mitigate their negative impact on cancer therapy, herein, we have developed a β-galactosidase (β-Gal)-activated and self-immobilizing photosensitizer CyGF-DBCO-T. This photosensitizer can be selectively activated and fluorescently label proteins in situ within senescent cells, enabling near-infrared (NIR) fluorescence imaging-guided photodynamic therapy (PDT) for the precise ablation of these cells. First, we developed an activatable NIR fluorescent probe CyGF-N3 that can specifically in situ label senescent cells. Subsequently, DBCO-T with free radicals underwent a bioorthogonal click reaction with activated CyGF-N3 in senescent cells to generate the photosensitizer CyO-DBCO-T. Under light irradiation, CyO-DBCO-T generated singlet oxygen (1O2) in situ, thereby enabling precise PDT with fluorescence guidance and photoactivation. Both CyGF-N3 and DBCO-T were encapsulated in biotinylated liposomes (CyGF-N3@LIP-B and DBCO-T@LIP-B), which enhanced their water solubility, tumor targeting, and in vivo circulation time. This promoted the accumulation of the probes in senescent tumor cells, thus enabling intense fluorescence imaging of tumor senescence regions in mice and enhancing the efficacy of PDT. This dual-module strategy, guided by fluorescence imaging for PDT, has achieved selective identification and precise ablation of senescent tumor cells in a chemotherapy-induced senescence model, effectively alleviating chemotherapy resistance and suppressing tumor growth.
Collapse
Affiliation(s)
- Yun Feng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zifan Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shirui Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xingyu Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Qiao S, Chen X, Chen Y, Song Y, Shi D, Mao Z, Li J, Huang Y, Liu W. Discovery of Non-antibacterial Enrofloxacin Derivatives with Emerging Antiaging Effects through Drug Repurposing and Secondary Development. J Med Chem 2025. [PMID: 40340340 DOI: 10.1021/acs.jmedchem.5c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Aging induces dysfunction and increases the risk of chronic diseases in the elderly, positioning the development of antiaging drugs to the forefront of research. Drug repurposing offers an efficient strategy for identifying antiaging lead compounds. In this study, we employed phenotypic screening and discovered that enrofloxacin could extend the lifespan in Caenorhabditis elegans. Based on these findings, we conducted rational drug design to eliminate its antibacterial activity while maintaining the lifespan-extending effect, with the goal of developing safe and novel antiaging compounds. Consequently, JX10 exhibited minimal antibacterial activity and competent antiaging effects in C. elegans, senescent cells, and aged mice. In terms of its mechanism, JX10 acted as a senomorphic agent by suppressing the expression of p38 MAPK and NF-κB. Furthermore, JX10 demonstrated favorable safety and pharmacokinetic properties, supporting the feasibility of JX10 as a promising candidate with the potential for therapeutic interventions in aging and aging-related diseases.
Collapse
Affiliation(s)
- Sicong Qiao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Material biology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Youyou Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yihe Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Material biology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Donglei Shi
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zhifan Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Material biology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Material biology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Yunyuan Huang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Wenwen Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Tan Y, Liu J, Yong D, Hu J, Seeberger PH, Fu J, Yin J. Tandem activated caged galactoside prodrugs: advancing beyond single galactosidase dependence. Chem Sci 2025; 16:7173-7190. [PMID: 40134665 PMCID: PMC11932646 DOI: 10.1039/d5sc00722d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
β-Galactoside prodrugs, activated by β-galactosidase (β-gal) highly expressed in some cancer cells, have been explored as anticancer agents for three decades. However, the distribution of β-gal lacks sufficient specificity to ensure precise drug release at cancer sites. By utilizing the highly stringent substrate specificity of β-gal, we chose the naturally occurring hydroxyl group of galactose as a prodrug modification site and developed a new class of tandem activated caged galactoside (TACG) prodrugs that require an additional trigger for more controlled on-demand drug release. We demonstrated that attaching various masking groups to the 6-hydroxyl group of galactose renders the galactosides resistant to β-gal hydrolysis. Focusing on the photosensitive mask 4,5-dimethoxy-2-nitrobenzyl (DMNB), we synthesized O6-DMNB modified galactosides of combretastatin A4 and 8-hydroxyquinoline, showcasing their UV/β-gal-dependent anticancer activities. We further established synthetic routes for O2-, O3-, and O4-DMNB modified TACGs. Comparative intracellular studies highlighted the O2-DMNB modified TACG as the most effective positional isomer, offering superior light-dependent selectivity. This insight led to the discovery of the O2-DMNB modified galactoside of combretastatin A4 as a potent UV-dependent microtubule assembly inhibitor. Our work provides a straightforward, effective, and universally applicable strategy for constructing dual-stimulus responsive galactoside prodrugs, extendable to various glycoside prodrugs, advancing carbohydrate-based drug discovery.
Collapse
Affiliation(s)
- Yunying Tan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
| | - Jie Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
| | - Dianya Yong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University Wuxi 214122 PR China
| | - Peter H Seeberger
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces Potsdam 14476 Germany
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
- Innovation Center for Vaccine Engineering, Jiangnan University Wuxi 214122 PR China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
- Innovation Center for Vaccine Engineering, Jiangnan University Wuxi 214122 PR China
| |
Collapse
|
5
|
Yang L, Wu W, Yang J, Xu M. Nanoparticle-mediated delivery of herbal-derived natural products to modulate immunosenescence-induced drug resistance in cancer therapy: a comprehensive review. Front Oncol 2025; 15:1567896. [PMID: 40356750 PMCID: PMC12066338 DOI: 10.3389/fonc.2025.1567896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Immunosenescence, the age-associated decline of the immune system, is pivotal in fostering drug resistance within the tumor microenvironment (TME). The accumulation of senescent immune cells and the release of pro-inflammatory senescence-associated secretory phenotype (SASP) factors create a milieu that supports tumor survival and undermines therapeutic efficacy. Traditional cancer treatments often fail to address this underlying issue, leading to suboptimal outcomes. This article proposes an innovative strategy to overcome immunosenescence-induced drug resistance through the nanoparticle-mediated delivery of herbal-derived natural products (HDNPs), which possess senolytic and immunomodulatory properties capable of clearing senescent cells and rejuvenating immune function. Nanoparticle delivery systems enhance these compounds' stability, bioavailability, and targeted delivery to the TME and senescent immune cells. By harnessing the synergistic effects of HDNPs and nanotechnology, this approach offers a novel and multifaceted solution to drug resistance in cancer therapy. It holds the potential to restore immune surveillance, reduce pro-survival signaling in cancer cells, and enhance the efficacy of conventional treatments. This paradigm shift emphasizes the importance of addressing immunosenescence as a therapeutic target and paves the way for more effective and personalized cancer interventions.
Collapse
Affiliation(s)
- Lichang Yang
- Xuzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Xuzhou, China
| | - Wei Wu
- Department of Geriatrics, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Yang
- Xuzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Xuzhou, China
| | - Manman Xu
- Department of Geriatrics, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Zhen W, Jiang X, Li E, Germanas T, Lee MJ, Luo T, Ma X, Wang C, Chen Y, Weichselbaum RR, Lin W. Transforming malignant tumors into vulnerable phenotypes via nanoscale coordination polymer mediated cell senescence and photodynamic therapy. Biomaterials 2025; 322:123355. [PMID: 40279766 DOI: 10.1016/j.biomaterials.2025.123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/01/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Induction of senescence in cancer cells can thwart the proliferation of malignant tumors. Herein we report the design of AZT-P/pyro nanoscale coordination polymer particles consisting of 3-azido-2,3-dideoxythymidine monophosphate (AZT-P) in the core and photosensitizing pyro-lipid (pyro) in the shell for potent antitumor treatment. Gradual release of AZT-P in response to an acidic tumor microenvironment transforms cancer cells with unlimited proliferation capacity into senescent cells that are vulnerable to reactive oxygen species (ROS). Pyro selectively induces ROS generation and immunogenic cell death of cancer cells upon light irradiation. Co-delivery of AZT-P and pyro in a single particle prolongs their blood circulation times and enhances their accumulation in tumors. Additionally, the induction of senescence and ROS generation both contribute to the recruitment of immune cells to the tumors, resulting in an effective immune response to inhibit the growth of large subcutaneous tumors and metastatic spread of orthotopic tumors.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States
| | - Xiaomin Jiang
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States
| | - En Li
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Tomas Germanas
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Morten J Lee
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Taokun Luo
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Xin Ma
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Chaoyu Wang
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States
| | - Yimei Chen
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States.
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States.
| |
Collapse
|
7
|
Brito KDNLD, Trentin AG. Role of mesenchymal stromal cell secretome on recovery from cellular senescence: an overview. Cytotherapy 2025; 27:422-437. [PMID: 39674933 DOI: 10.1016/j.jcyt.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024]
Abstract
Cellular senescence is intricately linked with numerous changes observed in the aging process, including the depletion of the stem cell pool and the decline in tissue and organ functions. Over the past three decades, efforts to halt and reverse aging have intensified, bringing rejuvenation closer to reality. Current strategies involve treatments using stem cells or their derivatives, such as the secretome. This article aims to highlight key points and evaluate the utilization of secretome derived from mesenchymal stromal cells (MSCs) as an antisenescent approach. Employing a quasi-systematic research approach, the authors conducted a comprehensive analysis based on a search algorithm targeting the in vitro effects of MSC-derived secretome on rescuing cells from a senescent state. Reviewing 39 articles out of 687 hits retrieved from PubMed and Scopus without a time limit, the authors synthesized information and identified common types of MSC-tissue sources utilized (including bone marrow-MSCs, umbilical cord-MSCs, iPSC-derived MSCs, adipose tissue-MSCs, dental pulp-MSCs, amniotic membrane-MSCs, placenta-MSCs, gingival-MSCs, urine-MSCs, and commercially available MSC lineages) from both human and other species (such as mice and rats). The authors also examined the forms of secretome tested (including conditioned media and extracellular vesicles), the cell types treated (MSCs or other cell types), methods/biomarkers of monitoring senescence/rejuvenation, and the mechanisms involved. Ultimately, this review underscores the proof-of-principle of the beneficial effects of MSC-derived secretome in reversing cellular senescence across various cell types. Such insights might aid the scientific community in designing improved in vitro and in vivo assays for future research and clinical validation of this promising cell-free therapy.
Collapse
Affiliation(s)
- Karynne de Nazaré Lins de Brito
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil; Faculty of Medicine, Altamira Campus, Federal University of Pará, Altamira, Brazil.
| | - Andréa Gonçalves Trentin
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
González I, Maldonado-Agurto R. The role of cellular senescence in endothelial dysfunction and vascular remodelling in arteriovenous fistula maturation. J Physiol 2025. [PMID: 39977444 DOI: 10.1113/jp287387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Haemodialysis (HD) is often required for patients with end-stage renal disease. Arteriovenous fistulas (AVFs), a surgical procedure connecting an artery to a vein, are the preferred vascular access for HD due to their durability and lower complication rates. The aim of AVFs is to promote vein remodelling to accommodate increased blood flow needed for dialysis. However, many AVFs fail to mature properly, making them unsuitable for dialysis. Successful maturation requires remodelling, resulting in an increased luminal diameter and thickened walls to support the increased blood flow. After AVF creation, haemodynamic changes due to increased blood flow on the venous side of the AVF initiate a cascade of events that, when successful, lead to the proper maturation of the AVF, making it suitable for cannulation. In this process, endothelial cells play a crucial role since they are in direct contact with the frictional forces exerted by the blood, known as shear stress. Patients requiring HD often have other conditions that increase the burden of senescent cells, such as ageing, diabetes and hypertension. These senescent cells are characterized by irreversible growth arrest and the secretion of pro-inflammatory and pro-thrombotic factors, collectively known as the senescence-associated secretory phenotype (SASP). This accumulation can impair vascular function by promoting inflammation, reducing vasodilatation, and increasing thrombosis risk, thus hindering proper AVF maturation and function. This review explores the contribution of senescent endothelial cells to AVF maturation and explores potential therapeutic strategies to alleviate the effects of senescent cell accumulation, aiming to improve AVF maturation rates.
Collapse
Affiliation(s)
- Ignacia González
- Center for Biomedical Research (CIBMED), Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Rodrigo Maldonado-Agurto
- Center for Biomedical Research (CIBMED), Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
9
|
Wang YB, Li T, Wang FY, Yao X, Bai QX, Su HW, Liu J, Wang L, Tan RZ. The Dual Role of Cellular Senescence in Macrophages: Unveiling the Hidden Driver of Age-Related Inflammation in Kidney Disease. Int J Biol Sci 2025; 21:632-657. [PMID: 39781471 PMCID: PMC11705649 DOI: 10.7150/ijbs.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Aging is a complex biological process that involves the gradual decline of cellular, tissue, and organ functions. In kidney, aging manifests as tubular atrophy, glomerulosclerosis, and progressive renal function decline. The critical role of senescence-associated macrophage in diseases, particularly kidney diseases, is increasingly recognized. During this process, macrophages exhibit a range of pro-damage response to senescent tissues and cells, while the aging of macrophages themselves also significantly influences disease progression, creating a bidirectional regulatory role between aging and macrophages. To explore this bidirectional mechanism, this review will elucidate the origin, characteristic, phenotype, and function of macrophages in response to the senescence-associated secretory phenotype (SASP), extracellular vesicles from senescent cells, and the senescence cell-engulfment suppression (SCES), particularly in the context of kidney disease. Additionally, it will discuss the characteristics of senescent macrophage, such as common markers, and changes in autophagy, metabolism, gene regulation, phagocytosis, antigen presentation, and exosome secretion, along with their physiological and pathological impacts on renal tissue cells. Furthermore, exploring therapies and drugs that modulate the function of senescent macrophages or eliminate senescent cells may help slow the progression of kidney aging and damage.
Collapse
Affiliation(s)
- Yi-bing Wang
- Department of Radiology, the Affiliated Hospital, Southwest Medical University, 646000 Luzhou, China
- Department of Medical Imaging, Southwest Medical University, 646000 Luzhou, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Feng-yu Wang
- College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, 646000 Luzhou, China
| | - Xin Yao
- Department of Anesthesiology, Southwest Medical University, 646000 Luzhou, China
| | - Qiu-xiang Bai
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Hong-wei Su
- Department of Urology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Jian Liu
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Rui-zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| |
Collapse
|
10
|
Smirnov EY, Silonov SA, Shmidt EA, Nozdracheva AV, Pleskach NM, Kuranova ML, Gavrilova AA, Romanovich AE, Kuznetsova IM, Turoverov KK, Fonin AV. PML Nuclear Bodies and Cellular Senescence: A Comparative Study of Healthy and Premature Aging Syndrome Donors' Cells. Cells 2024; 13:2075. [PMID: 39768166 PMCID: PMC11674897 DOI: 10.3390/cells13242075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Natural aging and age-related diseases involve the acceleration of replicative aging, or senescence. Multiple proteins are known to participate in these processes, including the promyelocytic leukemia (PML) protein, which serves as a core component of nuclear-membrane-less organelles known as PML nuclear bodies (PML-NBs). In this work, morphological changes in PML-NBs and alterations in PML protein localization at the transition of primary fibroblasts to a replicative senescent state were studied by immunofluorescence. The fibroblasts were obtained from both healthy donors and donors with premature aging syndromes (ataxia-telangiectasia and Cockayne syndrome). Our data showed an increase in both the size and the number of PML-NBs, along with nuclear enlargement in senescent cells, suggesting these changes could serve as potential cellular aging markers. Bioinformatic analysis demonstrated that 30% of the proteins in the PML interactome and ~45% of the proteins in the PML-NB predicted proteome are directly associated with senescence and aging processes. These proteins are hypothesized to participate in post-translational modifications and protein sequestration within PML-NBs, thereby influencing transcription factor regulation, DNA damage response, and negative regulation of apoptosis. The findings confirm the significant role of PML-NBs in cellular aging processes and open new avenues for investigating senescence mechanisms and age-associated diseases.
Collapse
Affiliation(s)
- Eugene Y. Smirnov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky av.4, 194064 St. Petersburg, Russia; (E.Y.S.); (S.A.S.); (E.A.S.); (A.V.N.); (N.M.P.); (M.L.K.); (A.A.G.); (I.M.K.); (K.K.T.)
| | - Sergey A. Silonov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky av.4, 194064 St. Petersburg, Russia; (E.Y.S.); (S.A.S.); (E.A.S.); (A.V.N.); (N.M.P.); (M.L.K.); (A.A.G.); (I.M.K.); (K.K.T.)
| | - Eva A. Shmidt
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky av.4, 194064 St. Petersburg, Russia; (E.Y.S.); (S.A.S.); (E.A.S.); (A.V.N.); (N.M.P.); (M.L.K.); (A.A.G.); (I.M.K.); (K.K.T.)
| | - Aleksandra V. Nozdracheva
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky av.4, 194064 St. Petersburg, Russia; (E.Y.S.); (S.A.S.); (E.A.S.); (A.V.N.); (N.M.P.); (M.L.K.); (A.A.G.); (I.M.K.); (K.K.T.)
| | - Nadezhda M. Pleskach
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky av.4, 194064 St. Petersburg, Russia; (E.Y.S.); (S.A.S.); (E.A.S.); (A.V.N.); (N.M.P.); (M.L.K.); (A.A.G.); (I.M.K.); (K.K.T.)
| | - Mirya L. Kuranova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky av.4, 194064 St. Petersburg, Russia; (E.Y.S.); (S.A.S.); (E.A.S.); (A.V.N.); (N.M.P.); (M.L.K.); (A.A.G.); (I.M.K.); (K.K.T.)
| | - Anastasia A. Gavrilova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky av.4, 194064 St. Petersburg, Russia; (E.Y.S.); (S.A.S.); (E.A.S.); (A.V.N.); (N.M.P.); (M.L.K.); (A.A.G.); (I.M.K.); (K.K.T.)
| | - Anna E. Romanovich
- Resource Center of Molecular and Cell Technologies, St-Petersburg State University Research Park, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia;
| | - Irina M. Kuznetsova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky av.4, 194064 St. Petersburg, Russia; (E.Y.S.); (S.A.S.); (E.A.S.); (A.V.N.); (N.M.P.); (M.L.K.); (A.A.G.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky av.4, 194064 St. Petersburg, Russia; (E.Y.S.); (S.A.S.); (E.A.S.); (A.V.N.); (N.M.P.); (M.L.K.); (A.A.G.); (I.M.K.); (K.K.T.)
| | - Alexander V. Fonin
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky av.4, 194064 St. Petersburg, Russia; (E.Y.S.); (S.A.S.); (E.A.S.); (A.V.N.); (N.M.P.); (M.L.K.); (A.A.G.); (I.M.K.); (K.K.T.)
| |
Collapse
|
11
|
Torres G, Salladay-Perez IA, Dhingra A, Covarrubias AJ. Genetic origins, regulators, and biomarkers of cellular senescence. Trends Genet 2024; 40:1018-1031. [PMID: 39341687 PMCID: PMC11717094 DOI: 10.1016/j.tig.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
This review comprehensively examines the molecular biology and genetic origins of cellular senescence. We focus on various cellular stressors and pathways leading to senescence, including recent advances in the understanding of the genetic influences driving senescence, such as telomere attrition, chemotherapy-induced DNA damage, pathogens, oncogene activation, and cellular and metabolic stress. This review also highlights the complex interplay of various signaling and metabolic pathways involved in cellular senescence and provides insights into potential therapeutic targets for aging-related diseases. Furthermore, this review outlines future research directions to deepen our understanding of senescence biology and develop effective interventions targeting senescent cells (SnCs).
Collapse
Affiliation(s)
- Grasiela Torres
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ivan A Salladay-Perez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anika Dhingra
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anthony J Covarrubias
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
13
|
Mansfield L, Ramponi V, Gupta K, Stevenson T, Mathew AB, Barinda AJ, Herbstein F, Morsli S. Emerging insights in senescence: pathways from preclinical models to therapeutic innovations. NPJ AGING 2024; 10:53. [PMID: 39578455 PMCID: PMC11584693 DOI: 10.1038/s41514-024-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Senescence is a crucial hallmark of ageing and a significant contributor to the pathology of age-related disorders. As committee members of the young International Cell Senescence Association (yICSA), we aim to synthesise recent advancements in the identification, characterisation, and therapeutic targeting of senescence for clinical translation. We explore novel molecular techniques that have enhanced our understanding of senescent cell heterogeneity and their roles in tissue regeneration and pathology. Additionally, we delve into in vivo models of senescence, both non-mammalian and mammalian, to highlight tools available for advancing the contextual understanding of in vivo senescence. Furthermore, we discuss innovative diagnostic tools and senotherapeutic approaches, emphasising their potential for clinical application. Future directions of senescence research are explored, underscoring the need for precise, context-specific senescence classification and the integration of advanced technologies such as machine learning, long-read sequencing, and multifunctional senoprobes and senolytics. The dual role of senescence in promoting tissue homoeostasis and contributing to chronic diseases highlights the complexity of targeting these cells for improved clinical outcomes.
Collapse
Affiliation(s)
- Luke Mansfield
- The Bateson Centre, School of Medicine and Population Health, The University of Sheffield, Western Bank, Sheffield, UK
| | - Valentina Ramponi
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kavya Gupta
- Department of Cellular and Molecular Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Abraham Binoy Mathew
- Department of Developmental Biology and Genetics, Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Samir Morsli
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum Q6A, Stockholm, Sweden.
| |
Collapse
|
14
|
Chang M, Dong Y, Cruickshank-Taylor AB, Gnawali G, Bi F, Wang W. Senolytic Prodrugs: A Promising Approach to Enhancing Senescence-Targeting Intervention. Chembiochem 2024; 25:e202400355. [PMID: 39058554 PMCID: PMC11576250 DOI: 10.1002/cbic.202400355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Cellular senescence has emerged as a potential therapeutic target for aging and a wide range of age-related disorders. Despite the encouraging therapeutic impact of senolytic agents on improving lifespan and the outcomes of pharmacological intervention, the senolytic induced side effects pose barriers to clinical application. There is a pressing need for selective ablation of senescent cells (SnCs). The design of senolytic prodrugs has been demonstrated as a promising approach to addressing these issues. These prodrugs are generally designed via modification of senolytics with a cleavable galactose moiety to respond to the senescent biomarker - senescence-associated β-galactosidase (SA-β-gal) to restore their therapeutic effects. In this Concept, we summarize the developments by categorizing these prodrugs into two classes: 1) galactose-modified senolytic prodrugs, in which sensing unit galactose is either directly conjugated to the drug or via a self-immolative linker and 2) bioorthogonal activation of senolytic prodrugs. In the bioorthogonal prodrug design, galactose is incorporated into dihydrotetrazine to sense SA-β-gal for click activation. Notably, in addition to repurposed chemotherapeutics and small molecule inhibitors, PROTACs and photodynamic therapy have been introduced as new senolytics in the prodrug design. It is expected that the senolytic prodrugs would facilitate translating small-molecule senolytics into clinical use.
Collapse
Affiliation(s)
- Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, USA
| | - Yue Dong
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85721, USA
| | | | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Fangchao Bi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Wei Wang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona Cancer Center, and BIO5 Institute, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
15
|
Kaushal SK, Parul, Tripathi A, Singh DP, Paul A, Alka K, Shukla S, Singh D. IL-33 prevents age-related bone loss and memory impairment by suppression of Th17 response: evidence in a d-galactose-induced aging mouse model. JBMR Plus 2024; 8:ziae101. [PMID: 39224568 PMCID: PMC11365962 DOI: 10.1093/jbmrpl/ziae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Cytokines are the primary mediators of age-related disorders. The IL-17/IL-10 axis plays a crucial role in bone destruction and neuro-inflammation. Additionally, a new Th2 cytokine-IL-33-has gained attention for its potential implications in aging-associated conditions. However, the involvement of IL-33 in aging-mediated bone loss and memory impairment remains unclear and needs further investigation. This study reveals the impact of IL-33 on various aspects of the immune system, bone health, and neural functions. To induce senescence, we used d-galactose for its convenience and fewer side effects. The experimental design involved treating 20-week-old C57BL/6J mice with d-galactose subcutaneously for 10 weeks to induce aging-like effects. Thereafter, IL-33 recombinant protein was administered intraperitoneally for 15 days to evaluate its impact on various immune, skeletal, and neural parameters. The results demonstrated that d-galactose-induced aging led to bone loss and compromised osteogenic parameters, accompanied by increased oxidative stress and neurodegeneration in specific brain regions. Behavioral activities were also affected. However, supplementation with IL-33 mitigated these effects, elevating osteogenic parameters and reducing senescence markers in osteoblast cells in an aging mouse model and exerted neuroprotective potential. Notably d-galactose-induced aging was characterized by high bone turnover, reflected by altered serum levels of CTX, PTH, beta-galactosidase, and P1NP. IL-33 treatment attenuated these effects, suggesting its role in regulating bone metabolism. Furthermore, d-galactose-induced aging was associated with increased differentiation of Th17 cells and upregulation of associated markers, such as STAT-3 and ROR-γt, while downregulating Foxp3, which antagonizes Th17 cell differentiation. IL-33 treatment countered these effects by suppressing Th17 cell differentiation and promoting IL-10-producing T-regulatory cells. Overall, these findings provide insights into the potential therapeutic implications of IL-33 in addressing aging-induced bone loss and memory impairment.
Collapse
Affiliation(s)
- Saurabh Kumar Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Parul
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Alok Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Devendra Pratap Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Ankita Paul
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Kumari Alka
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Shubha Shukla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
16
|
Tang QQ, Wang ZD, An XH, Zhou XY, Zhang RZ, Zhan X, Zhang W, Zhou J. Apigenin Ameliorates H 2O 2-Induced Oxidative Damage in Melanocytes through Nuclear Factor-E2-Related Factor 2 (Nrf2) and Phosphatidylinositol 3-Kinase (PI3K)/Protein Kinase B (Akt)/Mammalian Target of Rapamycin (mTOR) Pathways and Reducing the Generation of Reactive Oxygen Species (ROS) in Zebrafish. Pharmaceuticals (Basel) 2024; 17:1302. [PMID: 39458943 PMCID: PMC11510047 DOI: 10.3390/ph17101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Apigenin is one of the natural flavonoids found mainly in natural plants, as well as some fruits and vegetables, with celery in particular being the most abundant. Apigenin has antioxidant, anti-tumor, anti-inflammatory, and anticancer effects. In this research, we attempted to further investigate the effects of apigenin on the mechanism of repairing oxidative cell damage. The present study hopes to provide a potential candidate for abnormal skin pigmentation disorders. Methods: We used 0.4 mM H2O2 to treat B16F10 cells for 12 h to establish a model of oxidative stress in melanocytes, and then we gave apigenin (0.1~5 μM) to B16F10 cells for 48 h, and detected the expression levels of melanin synthesis-related proteins, dendritic regulation-related proteins, antioxidant signaling pathway- and Nrf2 signaling pathway-related proteins, autophagy, and autophagy-regulated pathways by immunoblotting using Western blotting. The expression levels of PI3K/Akt/mTOR proteins were measured by β-galactosidase staining and Western blotting for cellular decay, JC-1 staining for mitochondrial membrane potential, and Western blotting for mitochondrial fusion- and mitochondrial autophagy-related proteins. Results: Apigenin exerts antioxidant effects by activating the Nrf2 pathway, and apigenin up-regulates the expression of melanin synthesis-related proteins Tyr, TRP1, TRP2, and gp100, which are reduced in melanocytes under oxidative stress. By inhibiting the expression of senescence-related proteins p53 and p21, and delaying cellular senescence, we detected the mitochondrial membrane potential using JC-1, and found that apigenin improved the reduction in mitochondrial membrane potential in melanocytes under oxidative stress, and maintained the normal function of mitochondria. In addition, we further detected the key regulatory proteins of mitochondrial fusion and division, MFF, p-DRP1 (S637), and p-DRP1 (S616), and found that apigenin inhibited the down-regulation of fusion-associated protein, p-DRP1 (S637), and the up-regulation of division-associated proteins, MFF and p-DRP1 (S616), due to oxidative stress in melanocytes, and promoted the mitochondrial fusion and ameliorated the imbalance between mitochondrial division and fusion. We further detected the expression of fusion-related proteins OPA1 and Mitofusion-1, and found that apigenin restored the expression of the above fusion proteins under oxidative stress, which further indicated that apigenin promoted mitochondrial fusion, improved the imbalance between mitochondrial division and fusion, and delayed the loss of mitochondrial membrane potential. Apigenin promotes the expression of melanocyte autophagy-related proteins and the key mitochondrial autophagy proteins BNIP3L/Nix under oxidative stress, and activates the PINK1/Parkin signaling pathway by up-regulating the expression of autophagy-related proteins, as well as the expression of PINK1 and Parkin proteins, to promote melanocyte autophagy and mitochondrial autophagy. Conclusions: Apigenin exerts anti-melanocyte premature aging and detachment effects by promoting melanin synthesis, autophagy, and mitochondrial autophagy in melanocytes, and inhibiting oxidative cell damage and senescence.
Collapse
Affiliation(s)
- Qing-Qing Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Zu-Ding Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 750021, China; (Z.-D.W.); (X.-H.A.)
| | - Xiao-Hong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 750021, China; (Z.-D.W.); (X.-H.A.)
| | - Xin-Yuan Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Rong-Zhan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Xiao Zhan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Wei Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| |
Collapse
|
17
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
18
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Biomarkers of Cellular Senescence and Aging: Current State-of-the-Art, Challenges and Future Perspectives. Adv Biol (Weinh) 2024; 8:e2400079. [PMID: 38935557 DOI: 10.1002/adbi.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Population aging has increased the global prevalence of aging-related diseases, including cancer, sarcopenia, neurological disease, arthritis, and heart disease. Understanding aging, a fundamental biological process, has led to breakthroughs in several fields. Cellular senescence, evinced by flattened cell bodies, vacuole formation, and cytoplasmic granules, ubiquitously plays crucial roles in tissue remodeling, embryogenesis, and wound repair as well as in cancer therapy and aging. The lack of universal biomarkers for detecting and quantifying senescent cells, in vitro and in vivo, constitutes a major limitation. The applications and limitations of major senescence biomarkers, including senescence-associated β-galactosidase staining, telomere shortening, cell-cycle arrest, DNA methylation, and senescence-associated secreted phenotypes are discussed. Furthermore, explore senotherapeutic approaches for aging-associated diseases and cancer. In addition to the conventional biomarkers, this review highlighted the in vitro, in vivo, and disease models used for aging studies. Further, technologies from the current decade including multi-omics and computational methods used in the fields of senescence and aging are also discussed in this review. Understanding aging-associated biological processes by using cellular senescence biomarkers can enable therapeutic innovation and interventions to improve the quality of life of older adults.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
- Korean Convergence Medicine Major, University of Science & Technology (UST), KIOM Campus, Daejeon, 34054, Republic of Korea
| |
Collapse
|
19
|
Foti R, Storti G, Palmesano M, Scioli MG, Fiorelli E, Terriaca S, Cervelli G, Kim BS, Orlandi A, Cervelli V. Senescence in Adipose-Derived Stem Cells: Biological Mechanisms and Therapeutic Challenges. Int J Mol Sci 2024; 25:8390. [PMID: 39125960 PMCID: PMC11312747 DOI: 10.3390/ijms25158390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) represent a subset of the mesenchymal stem cells in every adipose compartment throughout the body. ADSCs can differentiate into various cell types, including chondrocytes, osteocytes, myocytes, and adipocytes. Moreover, they exhibit a notable potential to differentiate in vitro into cells from other germinal lineages, including endothelial cells and neurons. ADSCs have a wide range of clinical applications, from breast surgery to chronic wounds. Furthermore, they are a promising cell population for future tissue-engineering uses. Accumulating evidence indicates a decreased proliferation and differentiation potential of ADSCs with an increasing age, increasing body mass index, diabetes mellitus, metabolic syndrome, or exposure to radiotherapy. Therefore, the recent literature thoroughly investigates this cell population's senescence mechanisms and how they can hinder its possible therapeutic applications. This review will discuss the biological mechanisms and the physio-pathological causes behind ADSC senescence and how they can impact cellular functionality. Moreover, we will examine the possible strategies to invert these processes, re-establishing the full regenerative potential of this progenitor population.
Collapse
Affiliation(s)
- Riccardo Foti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Gabriele Storti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Marco Palmesano
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Maria Giovanna Scioli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Elena Fiorelli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Sonia Terriaca
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Giulio Cervelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Bong Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Augusto Orlandi
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Valerio Cervelli
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| |
Collapse
|
20
|
Diwan B, Yadav R, Goyal R, Sharma R. Sustained exposure to high glucose induces differential expression of cellular senescence markers in murine macrophages but impairs immunosurveillance response to senescent cells secretome. Biogerontology 2024; 25:627-647. [PMID: 38240923 DOI: 10.1007/s10522-024-10092-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/02/2024] [Indexed: 07/02/2024]
Abstract
The influence of chronic diseases on various facets of macrophage cellular senescence is poorly understood. This study evaluated the impact of chronic hyperglycemia on the induction of cellular senescence and subsequent immunosurveillance functions in RAW264.7 macrophages. Macrophages were cultured under normal glucose (NG; 5 mM), high glucose (HG; 20 mM), and very high glucose (VHG; 40 mM) conditions and assessed for markers of cellular senescence. Hyperglycemia induced strong upregulation of SA-β-gal activity, and loss of PCNA and Lamin B1 gene expression while markers of cell cycle arrest generally decreased. Non-significant changes in SASP-related proteins were observed while ROS levels slightly decreased and mitochondrial membrane potential increased. Protein concentration on the exosome membrane surface and their stability appeared to increase under hyperglycemic conditions. However, when macrophages were exposed to the secretory media (SM) of senescent preadipocytes, a dramatic increase in the levels of all inflammatory proteins was recorded especially in the VHG group that was also accompanied by upregulation of NF-κB and NLRP3 gene expression. SM treatment to hyperglycemic macrophages activated the TLR-2/Myd88 pathway but decreased the expression of scavenger receptors RAGE, CD36, and Olr-1 while CD44 and CXCL16 expression increased. On exposure to LPS, a strong upregulation in NO, ROS, and inflammatory cytokines was observed. Together, these results suggest that primary markers of cellular senescence are aberrantly expressed under chronic hyperglycemic conditions in macrophages with no significant SASP activation. Nonetheless, hyperglycemia strongly deregulates macrophage functions leading to impaired immunosurveillance of senescent cells and aggravation of inflamm-aging. This work provides novel insights into how hyperglycemia-induced dysfunctions can impact the potency of macrophages to manage senescent cell burden in aging tissues.
Collapse
Affiliation(s)
- Bhawna Diwan
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Rahul Yadav
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India.
| |
Collapse
|
21
|
Carr LM, Mustafa S, Care A, Collins-Praino LE. More than a number: Incorporating the aged phenotype to improve in vitro and in vivo modeling of neurodegenerative disease. Brain Behav Immun 2024; 119:554-571. [PMID: 38663775 DOI: 10.1016/j.bbi.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Age is the number one risk factor for developing a neurodegenerative disease (ND), such as Alzheimer's disease (AD) or Parkinson's disease (PD). With our rapidly ageing world population, there will be an increased burden of ND and need for disease-modifying treatments. Currently, however, translation of research from bench to bedside in NDs is poor. This may be due, at least in part, to the failure to account for the potential effect of ageing in preclinical modelling of NDs. While ageing can impact upon physiological response in multiple ways, only a limited number of preclinical studies of ND have incorporated ageing as a factor of interest. Here, we evaluate the aged phenotype and highlight the critical, but unmet, need to incorporate aspects of this phenotype into both the in vitro and in vivo models used in ND research. Given technological advances in the field over the past several years, we discuss how these could be harnessed to create novel models of ND that more readily incorporate aspects of the aged phenotype. This includes a recently described in vitro panel of ageing markers, which could help lead to more standardised models and improve reproducibility across studies. Importantly, we cannot assume that young cells or animals yield the same responses as seen in the context of ageing; thus, an improved understanding of the biology of ageing, and how to appropriately incorporate this into the modelling of ND, will ensure the best chance for successful translation of new therapies to the aged patient.
Collapse
Affiliation(s)
- Laura M Carr
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Sanam Mustafa
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Lyndsey E Collins-Praino
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
22
|
Xiao R, Hu S, Du X, Wang Y, Fang K, Zhu Y, Lou N, Yuan C, Yang J. Revolutionizing Senescence Detection: Advancements from Traditional Methods to Cutting-Edge Techniques. Aging Dis 2024; 16:1285-1301. [PMID: 39012669 PMCID: PMC12096929 DOI: 10.14336/ad.202.0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
The accumulation of senescent cells is an important factor in the complex progression of aging, with significant implications for the development of numerous diseases. Thus, understanding the fundamental mechanisms of senescence is paramount for advancing preventive and therapeutic approaches to age-related conditions. Important to this pursuit is the precise identification and examination of senescent cells, contingent upon the recognition of specific biomarkers. Historically, detection methods relied on assessing molecular protein and mRNA levels and various staining techniques. While these conventional approaches have contributed substantially to the field, they possess limitations in capturing the dynamic evolution of cellular aging in real time. The emergence of novel technologies has led to a paradigm shift in senescence research. Gene-edited mouse models and the application of advanced probes have revolutionized our ability to detect senescent cells. These cutting-edge methodologies provide a more detailed and accurate means of dynamically monitoring, characterizing and potentially eliminating senescent cells, thus enhancing our understanding of the complex mechanisms of aging. This review comprehensively explores both traditional and innovative senescent cell detection methods, elucidating their advantages, limitations and implications for future investigations and could serve as a comprehensive guide and catalyst for further advancements in the understanding of aging and associated pathologies.
Collapse
Affiliation(s)
| | | | - Xiaohui Du
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yiwen Wang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Ke Fang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yibin Zhu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Nanbin Lou
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Chunhui Yuan
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Youn KI, Lee JW, Song Y, Lee SY, Song KH. Development of Cell Culture Platforms for Study of Trabecular Meshwork Cells and Glaucoma Development. Tissue Eng Regen Med 2024; 21:695-710. [PMID: 38642251 PMCID: PMC11187050 DOI: 10.1007/s13770-024-00640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Various cell culture platforms that could display native environmental cue-mimicking stimuli were developed, and effects of environmental cues on cell behaviors were studied with the cell culture platforms. Likewise, various cell culture platforms mimicking native trabecular meshwork (TM) composed of juxtacanalicular, corneoscleral and uveal meshwork located in internal scleral sulcus were used to study effects of environmental cues and/or drug treatments on TM cells and glaucoma development. Glaucoma is a disease that could cause blindness, and cause of glaucoma is not clearly identified yet. It appears that aqueous humor (AH) outflow resistance increased by damages on pathway of AH outflow can elevate intraocular pressure (IOP). These overall possibly contribute to development of glaucoma. METHODS For the study of glaucoma, static and dynamic cell culture platforms were developed. Particularly, the dynamic platforms exploiting AH outflow-mimicking perfusion or increased IOP-mimicking increased pressure were used to study how perfusion or increased pressure could affect TM cells. Overall, potential mechanisms of glaucoma development, TM structures and compositions, TM cell culture platform types and researches on TM cells and glaucoma development with the platforms were described in this review. RESULTS AND CONCLUSION This will be useful to improve researches on TM cells and develop enhanced therapies targeting glaucoma.
Collapse
Affiliation(s)
- Kook In Youn
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Ji Woo Lee
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Youngjun Song
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Sang Yeop Lee
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea.
| | - Kwang Hoon Song
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
- Research Center of Brain-Machine Interface, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| |
Collapse
|
24
|
Jain SS, Burton Sojo G, Sun H, Friedland BN, McNamara ME, Schmidt MO, Wellstein A. The Role of Aging and Senescence in Immune Checkpoint Inhibitor Response and Toxicity. Int J Mol Sci 2024; 25:7013. [PMID: 39000121 PMCID: PMC11241020 DOI: 10.3390/ijms25137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular senescence accumulates with age and has been shown to impact numerous physiological and pathological processes, including immune function. The role of cellular senescence in cancer is multifaceted, but the impact on immune checkpoint inhibitor response and toxicity has not been fully evaluated. In this review, we evaluate the impact of cellular senescence in various biological compartments, including the tumor, the tumor microenvironment, and the immune system, on immune checkpoint inhibitor efficacy and toxicity. We provide an overview of the impact of cellular senescence in normal and pathological contexts and examine recent studies that have connected aging and cellular senescence to immune checkpoint inhibitor treatment in both the pre-clinical and clinical contexts. Overall, senescence plays a multi-faceted, context-specific role and has been shown to modulate immune-related adverse event incidence as well as immune checkpoint inhibitor response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anton Wellstein
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (S.S.J.)
| |
Collapse
|
25
|
Baker AG, Hartono M, Ou H, Popov AB, Brown EL, Joseph J, Golinska M, González‐Gualda E, Macias D, Ge J, Denholm M, Morsli S, Sanghera C, Else TR, Greer HF, Vernet A, Bohndiek SE, Muñoz‐Espín D, Fruk L. An Indocyanine Green-Based Nanoprobe for In Vivo Detection of Cellular Senescence. Angew Chem Int Ed Engl 2024; 63:e202404885. [PMID: 38622059 PMCID: PMC11497227 DOI: 10.1002/anie.202404885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
There is an urgent need to improve conventional cancer-treatments by preventing detrimental side effects, cancer recurrence and metastases. Recent studies have shown that presence of senescent cells in tissues treated with chemo- or radiotherapy can be used to predict the effectiveness of cancer treatment. However, although the accumulation of senescent cells is one of the hallmarks of cancer, surprisingly little progress has been made in development of strategies for their detection in vivo. To address a lack of detection tools, we developed a biocompatible, injectable organic nanoprobe (NanoJagg), which is selectively taken up by senescent cells and accumulates in the lysosomes. The NanoJagg probe is obtained by self-assembly of indocyanine green (ICG) dimers using a scalable manufacturing process and characterized by a unique spectral signature suitable for both photoacoustic tomography (PAT) and fluorescence imaging. In vitro, ex vivo and in vivo studies all indicate that NanoJaggs are a clinically translatable probe for detection of senescence and their PAT signal makes them suitable for longitudinal monitoring of the senescence burden in solid tumors after chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Andrew G. Baker
- Early Cancer instituteDepartment of OncologyUniversity of CambridgeHills RoadCambridgeCB2 0XZUK
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Muhamad Hartono
- Early Cancer instituteDepartment of OncologyUniversity of CambridgeHills RoadCambridgeCB2 0XZUK
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Hui‐Ling Ou
- Early Cancer instituteDepartment of OncologyUniversity of CambridgeHills RoadCambridgeCB2 0XZUK
| | - Andrea Bistrović Popov
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Emma L. Brown
- Department of PhysicsUniversity ofCambridgeJJ Thomson AvenueCB3 0HEUnited Kingdom
- Cancer Research UK Cambridge InstituteRobinson WayCambridgeCB2 0REUK
| | - James Joseph
- Department of PhysicsUniversity ofCambridgeJJ Thomson AvenueCB3 0HEUnited Kingdom
- Cancer Research UK Cambridge InstituteRobinson WayCambridgeCB2 0REUK
- School of Science and EngineeringUniversity of DundeeDundeeDD1 4HNScotlandUK
| | - Monika Golinska
- Department of PhysicsUniversity ofCambridgeJJ Thomson AvenueCB3 0HEUnited Kingdom
- Cancer Research UK Cambridge InstituteRobinson WayCambridgeCB2 0REUK
| | - Estela González‐Gualda
- Early Cancer instituteDepartment of OncologyUniversity of CambridgeHills RoadCambridgeCB2 0XZUK
| | - David Macias
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del RocioUniversidad de SevillaAvda.Dr. Fedriani/>Sevilla41009Spain
| | - Jianfeng Ge
- Early Cancer instituteDepartment of OncologyUniversity of CambridgeHills RoadCambridgeCB2 0XZUK
| | - Mary Denholm
- Early Cancer instituteDepartment of OncologyUniversity of CambridgeHills RoadCambridgeCB2 0XZUK
| | - Samir Morsli
- Early Cancer instituteDepartment of OncologyUniversity of CambridgeHills RoadCambridgeCB2 0XZUK
| | - Chandan Sanghera
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Thomas R. Else
- Department of PhysicsUniversity ofCambridgeJJ Thomson AvenueCB3 0HEUnited Kingdom
- Cancer Research UK Cambridge InstituteRobinson WayCambridgeCB2 0REUK
| | - Heather F. Greer
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Aude Vernet
- Cancer Research UK Cambridge InstituteRobinson WayCambridgeCB2 0REUK
| | - Sarah E. Bohndiek
- Department of PhysicsUniversity ofCambridgeJJ Thomson AvenueCB3 0HEUnited Kingdom
- Cancer Research UK Cambridge InstituteRobinson WayCambridgeCB2 0REUK
| | - Daniel Muñoz‐Espín
- Early Cancer instituteDepartment of OncologyUniversity of CambridgeHills RoadCambridgeCB2 0XZUK
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Ljiljana Fruk
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
26
|
Cunha A, Perazzio S. Effects of immune exhaustion and senescence of innate immunity in autoimmune disorders. Braz J Med Biol Res 2024; 57:e13225. [PMID: 38896644 PMCID: PMC11186593 DOI: 10.1590/1414-431x2024e13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Innate immune system activation is crucial in the inflammatory response, but uncontrolled activation can lead to autoimmune diseases. Cellular exhaustion and senescence are two processes that contribute to innate immune tolerance breakdown. Exhausted immune cells are unable to respond adequately to specific antigens or stimuli, while senescent cells have impaired DNA replication and metabolic changes. These processes can impair immune system function and disrupt homeostasis, leading to the emergence of autoimmunity. However, the influence of innate immune exhaustion and senescence on autoimmune disorders is not well understood. This review aims to describe the current findings on the role of innate immune exhaustion and senescence in autoimmunity, focusing on the cellular and molecular changes involved in each process. Specifically, the article explores the markers and pathways associated with immune exhaustion, such as PD-1 and TIM-3, and senescence, including Β-galactosidase (β-GAL), lamin B1, and p16ink4a, and their impact on autoimmune diseases, namely type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and immune-mediated myopathies. Understanding the mechanisms underlying innate immune exhaustion and senescence in autoimmunity may provide insights for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- A.L.S. Cunha
- Divisão de Reumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - S.F. Perazzio
- Divisão de Reumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
- Divisão de Imunologia, Laboratório Fleury, São Paulo, SP, Brasil
- Laboratório Central, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
27
|
He K, Zhou D, Pu Z, Chen S, Shen Y, Zhao S, Qian X, Hu Q, Wu X, Xie Z, Xu X. Cellular Senescence in Acute Liver Injury: What Happens to the Young Liver? Aging Dis 2024; 16:1347-1362. [PMID: 38913043 PMCID: PMC12096906 DOI: 10.14336/ad.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Cellular senescence, characterized by irreversible cell cycle arrest, not only exists in age-related physiological states, but has been found to exist in various diseases. It plays a crucial role in both physiological and pathological processes and has become a trending topic in global research in recent years. Acute liver injury (ALI) has a high incidence worldwide, and recent studies have shown that hepatic senescence can be induced following ALI. Therefore, we reviewed the significance of cellular senescence in ALI. To minimize the potential confounding effects of aging on cellular senescence and ALI outcomes, we selected studies involving young individuals to identify the characteristics of senescent cells, the value of cellular senescence in liver repair, its regulation mechanisms in ALI, its potential as a biomarker for ALI, the prospect of treatment, and future research directions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaowei Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Kumar P, Hassan M, Tacke F, Engelmann C. Delineating the heterogeneity of senescence-induced-functional alterations in hepatocytes. Cell Mol Life Sci 2024; 81:200. [PMID: 38684535 PMCID: PMC11058795 DOI: 10.1007/s00018-024-05230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/11/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND AIM Cellular senescence of hepatocytes involves permanent cell cycle arrest, disrupted cellular bioenergetics, resistance to cell death, and the release of pro-inflammatory cytokines. This 'zombie-like' state perpetuates harmful effects on tissues and holds potential implications for liver disease progression. Remarkably, senescence exhibits heterogeneity, stemming from two crucial factors: the inducing stressor and the cell type. As such, our present study endeavors to characterize stressor-specific changes in senescence phenotype, its related molecular patterns, and cellular bioenergetics in primary mouse hepatocytes (PMH) and hepatocyte-derived liver organoids (HepOrgs). METHODS PMH, isolated by collagenase-perfused mouse liver (C57B6/J; 18-23 weeks), were cultured overnight in William's E-medium supplemented with 2% FBS, L-glutamine, and hepatocyte growth supplements. HepOrgs were developed by culturing cells in a 3D matrix for two weeks. The senescence was induced by DNA damage (doxorubicin, cisplatin, and etoposide), oxidative stress (H2O2, and ethanol), and telomere inhibition (BIBR-1532), p53 activation (nutlin-3a), DNA methyl transferase inhibition (5-azacitidine), and metabolism inhibitors (galactosamine and hydroxyurea). SA-β galactosidase activity, immunofluorescence, immunoblotting, and senescence-associated secretory phenotype (SASP), and cellular bioenergetics were used to assess the senescence phenotype. RESULTS Each senescence inducer triggers a unique combination of senescence markers in hepatocytes. All senescence inducers, except hydroxyurea and ethanol, increased SA-β galactosidase activity, the most commonly used marker for cellular senescence. Among the SASP factors, CCL2 and IL-10 were consistently upregulated, while Plasminogen activator inhibitor-1 exhibited global downregulation across all modes of senescence. Notably, DNA damage response was activated by DNA damage inducers. Cell cycle markers were most significantly reduced by doxorubicin, cisplatin, and galactosamine. Additionally, DNA damage-induced senescence shifted cellular bioenergetics capacity from glycolysis to oxidative phosphorylation. In HepOrgs exposed to senescence inducers, there was a notable increase in γH2A.X, p53, and p21 levels. Interestingly, while showing a similar trend, SASP gene expression in HepOrgs was significantly higher compared to PMH, demonstrating a several-fold increase. CONCLUSION In our study, we demonstrated that each senescence inducer activates a unique combination of senescence markers in PMH. Doxorubicin demonstrated the highest efficacy in inducing senescence, followed by cisplatin and H2O2, with no impact on apoptosis. Each inducer prompted DNA damage response and mitochondrial dysfunction, independent of MAPK/AKT.
Collapse
Affiliation(s)
- Pavitra Kumar
- Department of Hepatology and Gastroenterology, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, Forum 4, Raum 2.0704a, 13353, Berlin, Germany
| | - Mohsin Hassan
- Department of Hepatology and Gastroenterology, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, Forum 4, Raum 2.0704a, 13353, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, Forum 4, Raum 2.0704a, 13353, Berlin, Germany
| | - Cornelius Engelmann
- Department of Hepatology and Gastroenterology, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, Forum 4, Raum 2.0704a, 13353, Berlin, Germany.
- Berlin Institute of Health (BIH), 10178, Berlin, Germany.
| |
Collapse
|
29
|
Giron LB, Liu Q, Adeniji OS, Yin X, Kannan T, Ding J, Lu DY, Langan S, Zhang J, Azevedo JLLC, Li SH, Shalygin S, Azadi P, Hanna DB, Ofotokun I, Lazar J, Fischl MA, Haberlen S, Macatangay B, Adimora AA, Jamieson BD, Rinaldo C, Merenstein D, Roan NR, Kutsch O, Gange S, Wolinsky SM, Witt MD, Post WS, Kossenkov A, Landay AL, Frank I, Tien PC, Gross R, Brown TT, Abdel-Mohsen M. Immunoglobulin G N-glycan markers of accelerated biological aging during chronic HIV infection. Nat Commun 2024; 15:3035. [PMID: 38600088 PMCID: PMC11006954 DOI: 10.1038/s41467-024-47279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
People living with HIV (PLWH) experience increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors associated with this vulnerability remain uncertain. In the general population, alterations in the N-glycans on IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG N-glycans in cross-sectional and longitudinal samples from 1214 women and men, living with and without HIV. PLWH exhibit an accelerated accumulation of pro-aging-associated glycan alterations and heightened expression of senescence-associated glycan-degrading enzymes compared to controls. These alterations correlate with elevated markers of inflammation and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit a reduced ability to elicit anti-HIV Fc-mediated immune activities. These findings hold potential for the development of biomarkers and tools to identify and prevent premature aging and comorbidities in PLWH.
Collapse
Affiliation(s)
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | | | - David Y Lu
- The Wistar Institute, Philadelphia, PA, USA
- Cornell University, New York, NY, USA
| | | | | | | | - Shuk Hang Li
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason Lazar
- SUNY Downstate Health Sciences University, New York, NY, USA
| | - Margaret A Fischl
- Division of Infectious Disease, Department of Medicine, University of Miami, Miami, FL, USA
| | | | | | | | | | | | | | - Nadia R Roan
- Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | - Olaf Kutsch
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Mallory D Witt
- Lundquist Institute of Biomedical Research at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | | | - Ian Frank
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Phyllis C Tien
- University of California San Francisco, San Francisco, CA, USA
| | - Robert Gross
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
30
|
Albuquerque-Souza E, Shelling B, Jiang M, Xia XJ, Rattanaprukskul K, Sahingur SE. Fusobacterium nucleatum triggers senescence phenotype in gingival epithelial cells. Mol Oral Microbiol 2024; 39:29-39. [PMID: 37718958 PMCID: PMC10939983 DOI: 10.1111/omi.12432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/04/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023]
Abstract
The prevalence of periodontitis increases with physiological aging. However, whether bacteria associated with periodontal diseases foster aging and the mechanisms by which they may do so are unknown. Herein, we hypothesize that Fusobacterium nucleatum, a microorganism associated with periodontitis and several other age-related disorders, triggers senescence, a chief hallmark of aging responsible to reduce tissue repair capacity. Our study analyzed the senescence response of gingival epithelial cells and their reparative capacity upon long-term exposure to F. nucleatum. Specifically, we assessed (a) cell cycle arrest by analyzing the cyclin-dependent kinase inhibitors p16INK4a and p14ARF and their downstream cascade (pRb, p53, and p21) at both gene and protein levels, (b) lysosomal mediated dysfunction by using assays targeting the expression and activity of the senescence-associated β-galactosidase (SA-β-Gal) enzyme, and (c) nuclear envelope breakdown by assessing the expression of Lamin-B1. The consequences of the senescence phenotype mediated by F. nucleatum were further assessed using wound healing assays. Our results revealed that prolonged exposure to F. nucleatum promotes an aging-like phenotype as evidenced by the increased expression of pro-senescence markers (p16INK4a , p21, and pRb) and SA-β-Gal activity and reduced expression of the counter-balancing cascade (p14ARF and p53) and Lamin-B1. Furthermore, we also noted impaired wound healing capacity of gingival epithelial cells upon prolong bacterial exposure, which was consistent with the senescence-induced phenotype. Together, our findings provide a proof-of-concept evidence that F. nucleatum triggers a pro-senescence response in gingival epithelial cells. This might affect periodontal tissue homeostasis by reducing its repair capacity and, consequently, increasing susceptibility to periodontitis during aging.
Collapse
Affiliation(s)
- Emmanuel Albuquerque-Souza
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lipid Mediator Unit, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Benjamin Shelling
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Min Jiang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xia-Juan Xia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kantapon Rattanaprukskul
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sinem Esra Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Ali I, Zhang H, Zaidi SAA, Zhou G. Understanding the intricacies of cellular senescence in atherosclerosis: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 96:102273. [PMID: 38492810 DOI: 10.1016/j.arr.2024.102273] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Cardiovascular disease is currently the largest cause of mortality and disability globally, surpassing communicable diseases, and atherosclerosis is the main contributor to this epidemic. Aging is intimately linked to atherosclerosis development and progression, however, the mechanism of aging in atherosclerosis is not well known. To emphasize the significant research on the involvement of senescent cells in atherosclerosis, we begin by outlining compelling evidence that indicates various types of senescent cells and SASP factors linked to atherosclerotic phenotypes. We subsequently provide a comprehensive summary of the existing knowledge, shedding light on the intricate mechanisms through which cellular senescence contributes to the pathogenesis of atherosclerosis. Further, we cover that senescence can be identified by both structural changes and several senescence-associated biomarkers. Finally, we discuss that preventing accelerated cellular senescence represents an important therapeutic potential, as permanent changes may occur in advanced atherosclerosis. Together, the review summarizes the relationship between cellular senescence and atherosclerosis, and inspects the molecular knowledge, and potential clinical significance of senescent cells in developing senescent-based therapy, thus providing crucial insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Ilyas Ali
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China
| | - Hongliang Zhang
- Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, PR China
| | - Syed Aqib Ali Zaidi
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China.
| |
Collapse
|
32
|
Matveeva K, Vasilieva M, Minskaia E, Rybtsov S, Shevyrev D. T-cell immunity against senescence: potential role and perspectives. Front Immunol 2024; 15:1360109. [PMID: 38504990 PMCID: PMC10948549 DOI: 10.3389/fimmu.2024.1360109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
The development of age-associated diseases is related to the accumulation of senescent cells in the body. These are old non-functional cells with impaired metabolism, which are unable to divide. Such cells are also resistant to programmed cell death and prone to spontaneous production of some inflammatory factors. The accumulation of senescent cells is related to the age-associated dysfunction of organs and tissues as well as chronic inflammation that enhances with age. In the young organism, senescent cells are removed with the innate immunity system. However, the efficiency of this process decreases with age. Nowadays, more and more evidences are accumulating to support the involvement of specific immunity and T-lymphocytes in the fight against senescent cells. It has great physiological importance since the efficient elimination of senescent cells requires a high diversity of antigen-recognizing receptors to cover the entire spectrum of senescent-associated antigens with high precision and specificity. Developing the approaches of T-cell immunity stimulation to generate or amplify a physiological immune response against senescent cells can provide new perspectives to extend active longevity. In this mini-review, the authors summarize the current understanding of the role of T-cell immunity in the fight against senescent cells and discuss the prospects of stimulating adaptive immunity for combating the accumulation of senescent cells that occurs with age.
Collapse
|
33
|
Escriche-Navarro B, Garrido E, Sancenón F, García-Fernández A, Martínez-Máñez R. A navitoclax-loaded nanodevice targeting matrix metalloproteinase-3 for the selective elimination of senescent cells. Acta Biomater 2024; 176:405-416. [PMID: 38185231 DOI: 10.1016/j.actbio.2024.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Cellular senescence is implicated in the occurrence and progression of multiple age-related disorders. In this context, the selective elimination of senescent cells, senolysis, has emerged as an effective therapeutic strategy. However, the heterogeneous senescent phenotype hinders the discovery of a universal and robust senescence biomarker that limits the effective of senolytic with off-target toxic effects. Therefore, the development of more selective strategies represents a promising approach to increase the specificity of senolytic therapy. In this study, we have developed an innovative nanodevice for the selective elimination of senescent cells (SCs) based on the specific enzymatic activity of the senescent secretome. The results revealed that when senescence is induced in proliferating WI-38 by ionizing radiation (IR), the cells secrete high levels of matrix metalloproteinase-3 (MMP-3). Based on this result, mesoporous silica nanoparticles (MSNs) were loaded with the senolytic navitoclax (Nav) and coated with a specific peptide which is substrate of MMP-3 (NPs(Nav)@MMP-3). Studies in cells confirmed the preferential release of cargo in IR-induced senescent cells compared to proliferating cells, depending on MMP-3 levels. Moreover, treatment with NPs(Nav)@MMP-3 induced a selective decrease in the viability of SCs as well as a protective effect on non-proliferating cells. These results demonstrate the potential use of NPs to develop enhanced senolytic therapies based on specific enzymatic activity in the senescent microenvironment, with potential clinical relevance. STATEMENT OF SIGNIFICANCE: The common β-galactosidase activity has been exploited to develop nanoparticles for the selective elimination of senescent cells. However, the identification of new senescent biomarkers is a key factor for the development of improved strategies. In this scenario, we report for the first time the development of NPs targeting senescent cells based on specific enzymatic activity of the senescent secretome. We report a navitoclax-loaded nanodevice responsive to the matrix metalloproteinase-3 (MMP-3) associated with the senescent phenotype. Our nanosystem achieves the selective release of navitoclax in an MMP-3-dependent manner while limiting off-target effects on non-senescent cells. This opens the possibility of using nanoparticles able to detect an altered senescent environment and selectively release its content, thus enhancing the efficacy of senolytic therapies.
Collapse
Affiliation(s)
- Blanca Escriche-Navarro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n. 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, 46026, Valencia, Spain
| | - Eva Garrido
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n. 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, 46026, Valencia, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, 46026, Valencia, Spain.
| |
Collapse
|
34
|
Fraile-Martinez O, De Leon-Oliva D, Boaru DL, De Castro-Martinez P, Garcia-Montero C, Barrena-Blázquez S, García-García J, García-Honduvilla N, Alvarez-Mon M, Lopez-Gonzalez L, Diaz-Pedrero R, Guijarro LG, Ortega MA. Connecting epigenetics and inflammation in vascular senescence: state of the art, biomarkers and senotherapeutics. Front Genet 2024; 15:1345459. [PMID: 38469117 PMCID: PMC10925776 DOI: 10.3389/fgene.2024.1345459] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Vascular diseases pose major health challenges, and understanding their underlying molecular mechanisms is essential to advance therapeutic interventions. Cellular senescence, a hallmark of aging, is a cellular state characterized by cell-cycle arrest, a senescence-associated secretory phenotype macromolecular damage, and metabolic dysregulation. Vascular senescence has been demonstrated to play a key role in different vascular diseases, such as atherosclerosis, peripheral arterial disease, hypertension, stroke, diabetes, chronic venous disease, and venous ulcers. Even though cellular senescence was first described in 1961, significant gaps persist in comprehending the epigenetic mechanisms driving vascular senescence and its subsequent inflammatory response. Through a comprehensive analysis, we aim to elucidate these knowledge gaps by exploring the network of epigenetic alterations that contribute to vascular senescence. In addition, we describe the consequent inflammatory cascades triggered by these epigenetic modifications. Finally, we explore translational applications involving biomarkers of vascular senescence and the emerging field of senotherapy targeting this biological process.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Joaquin García-García
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, Alcala deHenares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, Alcala deHenares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala deHenares, Spain
| |
Collapse
|
35
|
Zhu Y, Anastasiadis ZP, Espindola Netto JM, Evans T, Tchkonia T, Kirkland JL. Past and Future Directions for Research on Cellular Senescence. Cold Spring Harb Perspect Med 2024; 14:a041205. [PMID: 37734865 PMCID: PMC10835613 DOI: 10.1101/cshperspect.a041205] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Cellular senescence was initially described in the early 1960s by Hayflick and Moorehead. They noted sustained cell-cycle arrest after repeated subculturing of human primary cells. Over half a century later, cellular senescence has become recognized as one of the fundamental pillars of aging. Developing senotherapeutics, interventions that selectively eliminate or target senescent cells, has emerged as a key focus in health research. In this article, we note major milestones in cellular senescence research, discuss current challenges, and point to future directions for this rapidly growing field.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Physiology and Biomedical Engineering, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Robert and Arlene Kogod Center on Aging, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Zacharias P Anastasiadis
- Department of Biochemistry and Molecular Biology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | - Tamara Evans
- Robert and Arlene Kogod Center on Aging, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Robert and Arlene Kogod Center on Aging, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
36
|
de Godoy MCX, Macedo JA, Gambero A. Researching New Drug Combinations with Senolytic Activity Using Senescent Human Lung Fibroblasts MRC-5 Cell Line. Pharmaceuticals (Basel) 2024; 17:70. [PMID: 38256903 PMCID: PMC10818379 DOI: 10.3390/ph17010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Therapeutically targeting senescent cells seems to be an interesting perspective in treating chronic lung diseases, which are often associated with human aging. The combination of the drug dasatinib and the polyphenol quercetin is used in clinical trials as a senolytic, and the first results point to the relief of physical dysfunction in patients with idiopathic pulmonary fibrosis. In this work, we tested new combinations of drugs and polyphenols, looking for senolytic activity using human lung fibroblasts (MRC-5 cell line) with induced senescence. We researched drugs, such as azithromycin, rapamycin, metformin, FK-506, aspirin, and dasatinib combined with nine natural polyphenols, namely caffeic acid, chlorogenic acid, ellagic acid, ferulic acid, gallic acid, epicatechin, hesperidin, quercetin, and resveratrol. We found new effective senolytic combinations with dasatinib and ellagic acid and dasatinib and resveratrol. Both drug combinations increased apoptosis, reduced BCL-2 expression, and increased caspase activity in senescent MRC-5 cells. Ellagic acid senolytic activity was more potent than quercetin, and resveratrol counteracted inflammatory cytokine release during senolysis in vitro. In conclusion, dasatinib and ellagic acid and dasatinib and resveratrol present in vitro senolytic potential like that observed for the combination in clinical trials of dasatinib and quercetin, and maybe they could be future alternatives in the senotherapeutic field.
Collapse
Affiliation(s)
- Maria Carolina Ximenes de Godoy
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, s/n, Campinas 13034-685, SP, Brazil;
| | - Juliana Alves Macedo
- Department of Food and Nutrition, School of Food Engineering, State University of Campinas, Campinas 13083-862, SP, Brazil;
| | - Alessandra Gambero
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, s/n, Campinas 13034-685, SP, Brazil;
- Department of Food and Nutrition, School of Food Engineering, State University of Campinas, Campinas 13083-862, SP, Brazil;
| |
Collapse
|
37
|
Gonzalez-Meljem JM, Martinez-Barbera JP. Implications of cellular senescence in paediatric pituitary tumours. EBioMedicine 2024; 99:104905. [PMID: 38043401 PMCID: PMC10730348 DOI: 10.1016/j.ebiom.2023.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023] Open
Abstract
The long-standing view of senescent cells as passive and dysfunctional biological remnants has recently shifted into a new paradigm where they are main players in the development of many diseases, including cancer. The senescence programme represents a first line of defence that prevents tumour cell growth but also leads to the secretion of multiple pro-inflammatory and pro-tumourigenic factors that fuel tumour initiation, growth, and progression. Here, we review the main molecular features and biological functions of senescent cells in cancer, including the outcomes of inducing or targeting senescence. We discuss evidence on the role of cellular senescence in pituitary tumours, with an emphasis on adamantinomatous craniopharyngioma (ACP) and pituitary adenomas. Although senescence has been proposed to be a tumour-preventing mechanism in pituitary adenomas, research in ACP has shown that senescent cells are tumour-promoting in both murine models and human tumours. Future studies characterizing the impact of targeting senescent cells may result in novel therapies against pituitary tumours.
Collapse
Affiliation(s)
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, UK.
| |
Collapse
|
38
|
Giron LB, Liu Q, Adeniji OS, Yin X, Kannan T, Ding J, Lu DY, Langan S, Zhang J, Azevedo JLLC, Li SH, Shalygin S, Azadi P, Hanna DB, Ofotokun I, Lazar J, Fischl MA, Haberlen S, Macatangay B, Adimora AA, Jamieson BD, Rinaldo C, Merenstein D, Roan NR, Kutsch O, Gange S, Wolinsky S, Witt M, Post WS, Kossenkov A, Landay A, Frank I, Tien PC, Gross R, Brown TT, Abdel-Mohsen M. Plasma Glycomic Markers of Accelerated Biological Aging During Chronic HIV Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.551369. [PMID: 37609144 PMCID: PMC10441429 DOI: 10.1101/2023.08.09.551369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
People with HIV (PWH) experience an increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors that contribute to or are associated with this vulnerability remain uncertain. In the general population, alterations in the glycomes of circulating IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG glycomes of cross-sectional and longitudinal samples from 1,216 women and men, both living with virally suppressed HIV and those without HIV. Our glycan-based machine learning models indicate that living with chronic HIV significantly accelerates the accumulation of pro-aging-associated glycomic alterations. Consistently, PWH exhibit heightened expression of senescence-associated glycan-degrading enzymes compared to their controls. These glycomic alterations correlate with elevated markers of inflammatory aging and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit reduced anti-HIV IgG-mediated innate immune functions. These findings hold significant potential for the development of glycomic-based biomarkers and tools to identify and prevent premature aging and comorbidities in people living with chronic viral infections.
Collapse
Affiliation(s)
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | | | - David Y. Lu
- The Wistar Institute, Philadelphia, PA, USA
- Cornell University, New York, NY, USA
| | | | | | | | - Shuk Hang Li
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason Lazar
- SUNY Downstate Health Sciences University, New York, NY, USA
| | | | | | | | | | | | | | | | - Nadia R. Roan
- Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | - Olaf Kutsch
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Mallory Witt
- Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | | | | | | | - Ian Frank
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Phyllis C. Tien
- University of California San Francisco, San Francisco, CA, USA
| | - Robert Gross
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
39
|
Duarte-Olivenza C, Moran G, Hurle JM, Lorda-Diez CI, Montero JA. Lysosomes, caspase-mediated apoptosis, and cytoplasmic activation of P21, but not cell senescence, participate in a redundant fashion in embryonic morphogenetic cell death. Cell Death Dis 2023; 14:813. [PMID: 38071330 PMCID: PMC10710412 DOI: 10.1038/s41419-023-06326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Micromass cultures of embryonic limb skeletal progenitors replicate the tissue remodelling processes observed during digit morphogenesis. Here, we have employed micromass cultures in an in vitro assay to study the nature of cell degeneration events associated with skeletogenesis. In the assay, "naive" progenitors obtained from the autopod aggregate to form chondrogenic nodules and those occupying the internodular spaces exhibit intense apoptosis and progressive accumulation of larger cells, showing intense SA-β-Gal histochemical labelling that strictly overlaps with the distribution of neutral red vital staining. qPCR analysis detected intense upregulation of the p21 gene, but P21 immunolabelling showed cytoplasmic rather than the nuclear distribution expected in senescent cells. Semithin sections and transmission electron microscopy confirmed the presence of canonical apoptotic cells, degenerated cell fragments in the process of phagocytic internalization by the neighbouring cells, and large vacuolated cells containing phagosomes. The immunohistochemical distribution of active caspase 3, cathepsin D, and β-galactosidase together with the reduction in cell death by chemical inhibition of caspases (Q-VAD) and lysosomal cathepsin D (Pepstatin A) supported a redundant implication of both pathways in the dying process. Chemical inhibition of P21 (UC2288) revealed a complementary role of this factor in the dying process. In contrast, treatment with the senolytic drug Navitoclax increased cell death without changing the number of cells positive for SA-β-Gal. We propose that this model of tissue remodelling involves the cooperative activation of multiple degradation routes and, most importantly, that positivity for SA-β-Gal reflects the occurrence of phagocytosis, supporting the rejection of cell senescence as a defining component of developmental tissue remodelling.
Collapse
Affiliation(s)
- Cristina Duarte-Olivenza
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain
| | - Goretti Moran
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain
| | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain
| | - Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain
| | - Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain.
| |
Collapse
|
40
|
Raber J, Stagaman K, Kasschau KD, Davenport C, Lopes L, Nguyen D, Torres ER, Sharpton TJ, Kisby G. Behavioral and Cognitive Performance Following Exposure to Second-Hand Smoke (SHS) from Tobacco Products Associated with Oxidative-Stress-Induced DNA Damage and Repair and Disruption of the Gut Microbiome. Genes (Basel) 2023; 14:1702. [PMID: 37761842 PMCID: PMC10531154 DOI: 10.3390/genes14091702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Exposure to second-hand Smoke (SHS) remains prevalent. The underlying mechanisms of how SHS affects the brain require elucidation. We tested the hypothesis that SHS inhalation drives changes in the gut microbiome, impacting behavioral and cognitive performance as well as neuropathology in two-month-old wild-type (WT) mice and mice expressing wild-type human tau, a genetic model pertinent to Alzheimer's disease mice, following chronic SHS exposure (10 months to ~30 mg/m3). SHS exposure impacted the composition of the gut microbiome as well as the biodiversity and evenness of the gut microbiome in a sex-dependent fashion. This variation in the composition and biodiversity of the gut microbiome is also associated with several measures of cognitive performance. These results support the hypothesis that the gut microbiome contributes to the effect of SHS exposure on cognition. The percentage of 8-OHdG-labeled cells in the CA1 region of the hippocampus was also associated with performance in the novel object recognition test, consistent with urine and serum levels of 8-OHdG serving as a biomarker of cognitive performance in humans. We also assessed the effects of SHS on the percentage of p21-labeled cells, an early cellular marker of senescence that is upregulated in bronchial cells after exposure to cigarette smoke. Nuclear staining of p21-labeled cells was more prominent in larger cells of the prefrontal cortex and CA1 hippocampal neurons of SHS-exposed mice than in sham-exposed mice, and there was a significantly greater percentage of labelled cells in the prefrontal cortex and CA1 region of the hippocampus of SHS than air-exposed mice, suggesting that exposure to SHS may result in accelerated brain aging through oxidative-stress-induced injury.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA;
- Departments of Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.D.K.); (T.J.S.)
| | - Kristin D. Kasschau
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.D.K.); (T.J.S.)
| | - Conor Davenport
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, OR 97355, USA; (C.D.); (L.L.); (D.N.)
| | - Leilani Lopes
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, OR 97355, USA; (C.D.); (L.L.); (D.N.)
| | - Dennis Nguyen
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, OR 97355, USA; (C.D.); (L.L.); (D.N.)
| | - Eileen Ruth Torres
- Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA;
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.D.K.); (T.J.S.)
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Glen Kisby
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, OR 97355, USA; (C.D.); (L.L.); (D.N.)
| |
Collapse
|
41
|
Dungan CM, Wells JM, Murach KA. The life and times of cellular senescence in skeletal muscle: friend or foe for homeostasis and adaptation? Am J Physiol Cell Physiol 2023; 325:C324-C331. [PMID: 37335024 PMCID: PMC10393344 DOI: 10.1152/ajpcell.00553.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
A gradual decline in skeletal muscle mass and function is closely tied to increased mortality and disease risk during organismal aging. Exercise training is the most effective way to enhance muscle health, but the adaptive response to exercise as well as muscle repair potential is blunted in older individuals. Numerous mechanisms contribute to the loss of muscle mass and plasticity as aging progresses. An emerging body of recent evidence implicates an accumulation of senescent ("zombie") cells in muscle as a contributing factor to the aging phenotype. Senescent cells cannot divide but can release inflammatory factors and create an unfavorable environment for homeostasis and adaptation. On balance, some evidence indicates that cells with senescent characteristics can be beneficial for the muscle adaptive process, specifically at younger ages. Emerging evidence also suggests that multinuclear muscle fibers could become senescent. In this review, we summarize current literature on the prevalence of senescent cells in skeletal muscle and highlight the consequences of senescent cell removal on muscle mass, function, and adaptability. We examine key limitations in the field of senescence specifically in skeletal muscle and identify areas of research that require future investigation.NEW & NOTEWORTHY There is evidence to suggest that senescent "zombie" cells may or may not accrue in aging skeletal muscle. When muscle is perturbed regardless of age, senescent-like cells do appear, and the benefits of removing them could be age-dependent. More work is needed to determine the magnitude of accumulation and source of senescent cells in muscle. Regardless, pharmacological senolytic treatment of aged muscle is beneficial for adaptation.
Collapse
Affiliation(s)
- Cory M Dungan
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| | - Jaden M Wells
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
42
|
Petrocelli G, Abruzzo PM, Pampanella L, Tassinari R, Marini S, Zamagni E, Ventura C, Facchin F, Canaider S. Oxytocin Modulates Osteogenic Commitment in Human Adipose-Derived Stem Cells. Int J Mol Sci 2023; 24:10813. [PMID: 37445991 PMCID: PMC10341672 DOI: 10.3390/ijms241310813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Human adipose-derived stem cells (hASCs) are commonly harvested in minimally invasive contexts with few ethical concerns, and exhibit self-renewal, multi-lineage differentiation, and trophic signaling that make them attractive candidates for cell therapy approaches. The identification of natural molecules that can modulate their biological properties is a challenge for many researchers. Oxytocin (OXT) is a neurohypophyseal hormone that plays a pivotal role in the regulation of mammalian behavior, and is involved in health and well-being processes. Here, we investigated the role of OXT on hASC proliferation, migratory ability, senescence, and autophagy after a treatment of 72 h; OXT did not affect hASC proliferation and migratory ability. Moreover, we observed an increase in SA-β-galactosidase activity, probably related to the promotion of the autophagic process. In addition, the effects of OXT were evaluated on the hASC differentiation ability; OXT promoted osteogenic differentiation in a dose-dependent manner, as demonstrated by Alizarin red staining and gene/protein expression analysis, while it did not affect or reduce adipogenic differentiation. We also observed an increase in the expression of autophagy marker genes at the beginning of the osteogenic process in OXT-treated hASCs, leading us to hypothesize that OXT could promote osteogenesis in hASCs by modulating the autophagic process.
Collapse
Affiliation(s)
- Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
| | - Luca Pampanella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
| | | | - Serena Marini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
| | - Elena Zamagni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| | - Carlo Ventura
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
| | - Silvia Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
| |
Collapse
|
43
|
Ansari A, Walton SL, Denton KM. Sex- and age-related differences in renal and cardiac injury and senescence in stroke-prone spontaneously hypertensive rats. Biol Sex Differ 2023; 14:33. [PMID: 37217968 DOI: 10.1186/s13293-023-00519-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Sex differences play a critical role in the incidence and severity of cardiovascular diseases, whereby men are at a higher risk of developing cardiovascular disease compared to age-matched premenopausal women. Marked sex differences at the cellular and tissue level may contribute to susceptibility to cardiovascular disease and end-organ damage. In this study, we have performed an in-depth histological analysis of sex differences in hypertensive cardiac and renal injury in middle-aged stroke-prone spontaneously hypertensive rats (SHRSPs) to determine the interaction between age, sex and cell senescence. METHODS Kidneys, hearts and urine samples were collected from 6.5- and 8-month-old (Mo) male and female SHRSPs. Urine samples were assayed for albumin and creatinine content. Kidneys and hearts were screened for a suite of cellular senescence markers (senescence-associated β-galactosidase, p16INK4a, p21, γH2AX). Renal and cardiac fibrosis was quantified using Masson's trichrome staining, and glomerular hypertrophy and sclerosis were quantified using Periodic acid-Schiff staining. RESULTS Marked renal and cardiac fibrosis, concomitant with albuminuria, were evident in all SHRSPs. These sequelae were differentially affected by age, sex and organ. That is, the level of fibrosis was greater in the kidney than the heart, males had greater levels of fibrosis than females in both the heart and kidney, and even a 6-week increase in age resulted in greater levels of kidney fibrosis in males. The differences in kidney fibrosis were reflected by elevated levels of cellular senescence in the kidney in males but not females. Senescent cell burden was significantly less in cardiac tissue compared to renal tissue and was not affected by age or sex. CONCLUSIONS Our study demonstrates a clear sex pattern in age-related progression of renal and cardiac fibrosis and cellular senescence in SHRSP rats. A 6-week time frame was associated with increased indices of cardiac and renal fibrosis and cellular senescence in male SHRSPs. Female SHRSP rats were protected from renal and cardiac damage compared to age-matched males. Thus, the SHRSP is an ideal model to investigate the effects of sex and aging on organ injury over a short timeframe.
Collapse
Affiliation(s)
- Aneesa Ansari
- Department of Physiology, Monash University, Melbourne, VIC, Australia
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Sarah L Walton
- Department of Physiology, Monash University, Melbourne, VIC, Australia
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Kate M Denton
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
44
|
de Mera-Rodríguez JA, Álvarez-Hernán G, Gañán Y, Solana-Fajardo J, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Markers of senescence are often associated with neuronal differentiation in the developing sensory systems. Histol Histopathol 2023; 38:493-502. [PMID: 36412998 DOI: 10.14670/hh-18-549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
It has been shown that senescent cells accumulate in transient structures of the embryo that normally degenerate during tissue development. A collection of biomarkers is generally accepted to define senescence in embryonic tissues. The histochemical detection of β-galactosidase activity at pH 6.0 (β-gal-pH6) is the most widely used assay for cellular senescence. Immunohistochemical detection of common mediators of senescence which block cell cycle progression, including p16, p21, p63, p15 or p27, has also been used to characterize senescent cells in the embryo. However, the reliability of this techniques has been discussed in recent publications because non-senescent cells are also labelled during development. Indeed, increased levels of senescent markers promote differentiation over apoptosis in developing neurons, suggesting that machinery used for the establishment of cellular senescence is also involved in neuronal maturation. Notably, it has recently been argued that a comparable state of cellular senescence might be adopted by terminally differentiated neurons. The developing sensory systems provide excellent models for studying if canonical markers of senescence are associated with terminal neuronal differentiation.
Collapse
Affiliation(s)
- José Antonio de Mera-Rodríguez
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Yolanda Gañán
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Jorge Solana-Fajardo
- Servicio de Oftalmología, Complejo Hospitalario Universitario de Badajoz, Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.
| |
Collapse
|
45
|
Moffett A, Shreeve N. Local immune recognition of trophoblast in early human pregnancy: controversies and questions. Nat Rev Immunol 2023; 23:222-235. [PMID: 36192648 PMCID: PMC9527719 DOI: 10.1038/s41577-022-00777-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 02/02/2023]
Abstract
The role of the maternal immune system in reproductive success in humans remains controversial. Here we focus on the events that occur in the maternal decidua during the first few weeks of human pregnancy, because this is the site at which maternal leukocytes initially interact with and can recognize fetal trophoblast cells, potentially involving allorecognition by both T cells and natural killer (NK) cells. NK cells are the dominant leukocyte population in first-trimester decidua, and genetic studies point to a role of allorecognition by uterine NK cells in establishing a boundary between the mother and the fetus. By contrast, definitive evidence that allorecognition by decidual T cells occurs during the first trimester is lacking. Thus, our view is that during the crucial period when the placenta is established, damaging T cell-mediated adaptive immune responses towards placental trophoblast are minimized, whereas NK cell allorecognition contributes to successful implantation and healthy pregnancy.
Collapse
Affiliation(s)
- Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Norman Shreeve
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| |
Collapse
|
46
|
Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y, Zhang W. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol Oncol 2023; 16:28. [PMID: 36945046 PMCID: PMC10032017 DOI: 10.1186/s13045-023-01426-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear, especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowledge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment (TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contributing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contributing to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summarize the key biological functions mediated by cytokines and intercellular interactions and significant components of the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
Collapse
Affiliation(s)
- Binghao Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
47
|
Badaro-Garcia S, Hohmann MS, Coelho AL, Verri WA, Hogaboam CM. Standard of care drugs do not modulate activity of senescent primary human lung fibroblasts. Sci Rep 2023; 13:3654. [PMID: 36871123 PMCID: PMC9985617 DOI: 10.1038/s41598-023-30844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Cellular senescence is crucial in the progression of idiopathic pulmonary fibrosis (IPF), but it is not evident whether the standard-of-care (SOC) drugs, nintedanib and pirfenidone, have senolytic properties. To address this question, we performed colorimetric and fluorimetric assays, qRT-PCR, and western blotting to evaluate the effect of SOC drugs and D + Q on senescent normal and IPF lung fibroblasts. In this study, we found that SOC drugs did not provoke apoptosis in the absence of death ligand in normal or IPF senescent lung fibroblasts. Nintedanib increased caspase-3 activity in the presence of Fas Ligand in normal but not in IPF senescent fibroblasts. Conversely, nintedanib enhanced B cell lymphoma 2 expression in senescent IPF lung fibroblasts. Moreover, in senescent IPF cells, pirfenidone induced mixed lineage kinase domain-like pseudokinase phosphorylation, provoking necroptosis. Furthermore, pirfenidone increased transcript levels of FN1 and COL1A1 in senescent IPF fibroblasts. Lastly, D + Q augmented growth differentiation factor 15 (GDF15) transcript and protein levels in both normal and IPF senescent fibroblasts. Taken together, these results establish that SOC drugs failed to trigger apoptosis in senescent primary human lung fibroblasts, possibly due to enhanced Bcl-2 levels by nintedanib and the activation of the necroptosis pathway by pirfenidone. Together, these data revealed the inefficacy of SOC drugs to target senescent cells in IPF.
Collapse
Affiliation(s)
- Stephanie Badaro-Garcia
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, USA.,Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Miriam S Hohmann
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Ana Lucia Coelho
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Cory M Hogaboam
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, USA.
| |
Collapse
|
48
|
Pampanella L, Abruzzo PM, Tassinari R, Alessandrini A, Petrocelli G, Ragazzini G, Cavallini C, Pizzuti V, Collura N, Canaider S, Facchin F, Ventura C. Cytochalasin B Influences Cytoskeletal Organization and Osteogenic Potential of Human Wharton's Jelly Mesenchymal Stem Cells. Pharmaceuticals (Basel) 2023; 16:289. [PMID: 37259432 PMCID: PMC9966134 DOI: 10.3390/ph16020289] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 09/01/2023] Open
Abstract
Among perinatal stem cells of the umbilical cord, human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1-3 μM) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers.
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | | | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | - Giovannamaria Petrocelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Gregorio Ragazzini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | | | - Valeria Pizzuti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Nicoletta Collura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy
| |
Collapse
|
49
|
Hallmarks and Biomarkers of Skin Senescence: An Updated Review of Skin Senotherapeutics. Antioxidants (Basel) 2023; 12:antiox12020444. [PMID: 36830002 PMCID: PMC9952625 DOI: 10.3390/antiox12020444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Aging is a complex process characterized by an ongoing decline in physiological functions, leading to degenerative diseases and an increased probability of death. Cellular senescence has been typically considered as an anti-proliferative process; however, the chronic accumulation of senescent cells contributes to tissue dysfunction and aging. In this review, we discuss some of the most important hallmarks and biomarkers of cellular senescence with a special focus on skin biomarkers, reactive oxygen species (ROS), and senotherapeutic strategies to eliminate or prevent senescence. Although most of them are not exclusive to senescence, the expression of the senescence-associated beta-galactosidase (SA-β-gal) enzyme seems to be the most reliable biomarker for distinguishing senescent cells from those arrested in the cell cycle. The presence of a stable DNA damage response (DDR) and the accumulation of senescence-associated secretory phenotype (SASP) mediators and ROS are the most representative hallmarks for senescence. Senotherapeutics based on natural compounds such as quercetin, naringenin, and apigenin have shown promising results regarding SASP reduction. These compounds seem to prevent the accumulation of senescent cells, most likely through the inhibition of pro-survival signaling pathways. Although studies are still required to verify their short- and long-term effects, these therapies may be an effective strategy for skin aging.
Collapse
|
50
|
Duarte-Olivenza C, Hurle JM, Montero JA, Lorda-Diez CI. Modeling the Differentiation of Embryonic Limb Chondroprogenitors by Cell Death and Cell Senescence in High Density Micromass Cultures and Their Regulation by FGF Signaling. Cells 2022; 12:cells12010175. [PMID: 36611968 PMCID: PMC9818968 DOI: 10.3390/cells12010175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Considering the importance of programmed cell death in the formation of the skeleton during embryonic development, the aim of the present study was to analyze whether regulated cell degeneration also accompanies the differentiation of embryonic limb skeletal progenitors in high-density tridimensional cultures (micromass cultures). Our results show that the formation of primary cartilage nodules in the micromass culture assay involves a patterned process of cell death and cell senescence, complementary to the pattern of chondrogenesis. As occurs in vivo, the degenerative events were preceded by DNA damage detectable by γH2AX immunolabeling and proceeded via apoptosis and cell senescence. Combined treatments of the cultures with growth factors active during limb skeletogenesis, including FGF, BMP, and WNT revealed that FGF signaling modulates the response of progenitors to signaling pathways implicated in cell death. Transcriptional changes induced by FGF treatments suggested that this function is mediated by the positive regulation of the genetic machinery responsible for apoptosis and cell senescence together with hypomethylation of the Sox9 gene promoter. We propose that FGF signaling exerts a primordial function in the embryonic limb conferring chondroprogenitors with their biological properties.
Collapse
Affiliation(s)
| | | | - Juan A. Montero
- Correspondence: (J.A.M.); (C.I.L.-D.); Fax: +34-942201923 (J.A.M. and C.I.L.-D.)
| | - Carlos I. Lorda-Diez
- Correspondence: (J.A.M.); (C.I.L.-D.); Fax: +34-942201923 (J.A.M. and C.I.L.-D.)
| |
Collapse
|