1
|
Syed AM, Karius AK, Ma J, Wang PY, Hwang PM. Mitochondrial Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Physiology (Bethesda) 2025; 40:0. [PMID: 39960432 DOI: 10.1152/physiol.00056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/27/2024] [Accepted: 02/11/2025] [Indexed: 04/26/2025] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating multisystem disorder of unclear etiology that affects many individuals worldwide. One of its hallmark symptoms is prolonged fatigue following exertion, a feature also observed in long COVID, suggesting an underlying dysfunction in energy production in both conditions. Here, mitochondrial dysfunction and its potential pathogenetic role in these disorders are reviewed.
Collapse
Affiliation(s)
- Abu Mohammad Syed
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| | - Alexander K Karius
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| | - Jin Ma
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| | - Ping-Yuan Wang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| | - Paul M Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| |
Collapse
|
2
|
Lee HN, Lee S, Hong J, Yoo H, Jeong J, Kim Y, Shin HM, Jang M, Lee C, Kim H, Seong J. Novel FRET-based Immunological Synapse Biosensor for the Prediction of Chimeric Antigen Receptor-T Cell Function. SMALL METHODS 2025; 9:e2401016. [PMID: 39258379 PMCID: PMC11926508 DOI: 10.1002/smtd.202401016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer treatment. CARs are activated at the immunological synapse (IS) when their single-chain variable fragment (scFv) domain engages with an antigen, allowing them to directly eliminate cancer cells. Here, an innovative IS biosensor based on fluorescence resonance energy transfer (FRET) for the real-time assessment of CAR-IS architecture and signaling competence is presented. Using this biosensor, scFv variants for mesothelin-targeting CARs and identified as a novel scFv with enhanced CAR-T cell functionality despite its lower affinity than the original screened. The original CAR promoted internalization and trogocytosis, disrupting stable IS formation and impairing functionality are further observed. These findings emphasize the importance of enhancing IS quality rather than maximizing scFv affinity for superior CAR-T cell responses. Therefore, the FRET-based IS biosensor is a powerful tool for predicting CAR-T cell function, enabling the efficient engineering of next-generation CARs with enhanced antitumor potency.
Collapse
Affiliation(s)
- Hae Nim Lee
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Soojin Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Jisu Hong
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Hyejin Yoo
- Medicinal Materials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jiyun Jeong
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
| | - Yong‐Woo Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
| | - Hyun Mu Shin
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Mihue Jang
- Medicinal Materials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Converging Science and TechnologyKyung Hee UniversitySeoul02447Republic of Korea
| | - Chang‐Han Lee
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
| | - Hang‐Rae Kim
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Jihye Seong
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
| |
Collapse
|
3
|
Gagoski D, Rube HT, Rastogi C, Melo LAN, Li X, Voleti R, Shah NH, Bussemaker HJ. Accurate sequence-to-affinity models for SH2 domains from multi-round peptide binding assays coupled with free-energy regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.23.630085. [PMID: 39764007 PMCID: PMC11703206 DOI: 10.1101/2024.12.23.630085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Short linear peptide motifs play important roles in cell signaling. They can act as modification sites for enzymes and as recognition sites for peptide binding domains. SH2 domains bind specifically to tyrosine-phosphorylated proteins, with the affinity of the interaction depending strongly on the flanking sequence. Quantifying this sequence specificity is critical for deciphering phosphotyrosine-dependent signaling networks. In recent years, protein display technologies and deep sequencing have allowed researchers to profile SH2 domain binding across thousands of candidate ligands. Here, we present a concerted experimental and computational strategy that improves the predictive power of SH2 specificity profiling. Through multi-round affinity selection and deep sequencing with large randomized phosphopeptide libraries, we produce suitable data to train an additive binding free energy model that covers the full theoretical ligand sequence space. Our models can be used to predict signaling network connectivity and the impact of missense variants in phosphoproteins on SH2 binding.
Collapse
Affiliation(s)
- Dejan Gagoski
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - H. Tomas Rube
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Applied Mathematics, University of California-Merced, Merced, CA, USA
| | - Chaitanya Rastogi
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lucas A. N. Melo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Xiaoting Li
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rashmi Voleti
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Harmen J. Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Lee CY, Lai ZY, Chuang YJ. In Silico analysis unveils rs2109069 of DPP9 as a potential catalyst for COVID-19 severity and risk of inflammatory symptoms. Exp Mol Pathol 2024; 140:104946. [PMID: 39615159 DOI: 10.1016/j.yexmp.2024.104946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/22/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND During the COVID-19 pandemic, the viral illness caused by SARS-CoV-2 spread through respiratory droplets, resulting in a global pandemic with a range of symptoms from mild to severe. Pathological inflammation posed a critical issue, yet the genetic mechanisms behind the excessive activation of inflammatory responses remained unclear. To uncover the genetic and regulatory basis of the pathogenesis, we first explored possible genetic mechanisms from phenome-wide association studies (PWAS) with different severity levels of COVID-19. PWAS is a genetic research approach that identifies pleiotropic risk variants that contribute to elucidating potential physiological mechanisms from different traits. METHODS We used the PWAS approach to link the multiple clinical symptoms to the variants. We discovered a common variant, rs2109069, in dipeptidyl peptidase 9 (DPP9), which relates to the elevated odds ratio of developing severe illness from COVID-19. Interestingly, the proxy of rs2109069 has been identified as the susceptible locus of interstitial lung disease (ILD) and idiopathic pulmonary fibrosis (IPF). We thus examined the DPP9 expression patterns in selected organs, including the lungs, blood vessels, and skin. RESULTS In silico analysis revealed conserved driver activation between COVID-19-induced inflammation and the association with ILD and IPF. Multi-omics analysis further verified the association of DPP9 with abnormal inflammatory responses in COVID-19. Lastly, gene homology analysis inferred a potential regulatory role of DPP9 in inhibiting inflammasome activation, which suggests that DPP9 deficiency may exacerbate inflammation observed in some COVID-19 patients. CONCLUSIONS Our in silico findings reveal that severe COVID-19 inflammatory responses and inflammatory lung diseases share the same genetic risk loci, helping to elucidate the underlying physiological mechanisms of severe COVID-19 inflammation. Additionally, the individual differences in immune sensitivity may contribute to the varying multi-organ inflammatory effects among patients. The rs2109069 of DPP9 could be a genetic marker to predict the risk of specific COVID-19 symptoms and severity.
Collapse
Affiliation(s)
- Chi-Ying Lee
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Zih-Yin Lai
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC.
| |
Collapse
|
5
|
Wilander BA, Harris TL, Mandarano AH, Guy CS, Prater MS, Pruett-Miller SM, Ogden SK, McGargill MA. DRAK2 regulates myosin light chain phosphorylation in T cells. J Cell Sci 2024; 137:jcs261813. [PMID: 39421891 DOI: 10.1242/jcs.261813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Death-associated protein kinase-related apoptosis-inducing kinase-2 (DRAK2; also known as STK17B) is a serine/threonine kinase expressed in T cells. Drak2-deficient (Drak2-/-) mice respond effectively to tumors and pathogens while displaying resistance to T cell-mediated autoimmune disease. However, the molecular mechanisms by which DRAK2 impacts T cell function remain unclear. Gaining further insight into the function of DRAK2 in T cells will shed light on differentially regulated pathways in autoreactive and pathogen-specific T cells, which is crucial for improving autoimmune therapies. Here, we demonstrate that DRAK2 contributes to activation of myosin light chain (MLC2, encoded by Myl2) in both murine and human T cells. In the absence of Drak2, the amount of polymerized actin was decreased, suggesting that DRAK2 modulates actomyosin dynamics. We further show that myosin-dependent T cell functions, such as migration, T cell receptor microcluster accumulation, and conjugation to antigen presenting cells are decreased in the absence of Drak2. These findings reveal that DRAK2 plays an important role in regulating MLC activation within T cells.
Collapse
Affiliation(s)
- Benjamin A Wilander
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tarsha L Harris
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alexandra H Mandarano
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cliff S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mollie S Prater
- The Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- The Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
6
|
Ruiz-Navarro J, Fernández-Hermira S, Sanz-Fernández I, Barbeito P, Navarro-Zapata A, Pérez-Martínez A, Garcia-Gonzalo FR, Calvo V, Izquierdo Pastor M. Formin-like 1β phosphorylation at S1086 is necessary for secretory polarized traffic of exosomes at the immune synapse in Jurkat T lymphocytes. eLife 2024; 13:RP96942. [PMID: 39479958 PMCID: PMC11527432 DOI: 10.7554/elife.96942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
We analyzed here how formin-like 1 β (FMNL1β), an actin cytoskeleton-regulatory protein, regulates microtubule-organizing center (MTOC) and multivesicular bodies (MVB) polarization and exosome secretion at an immune synapse (IS) model in a phosphorylation-dependent manner. IS formation was associated with transient recruitment of FMNL1β to the IS, which was independent of protein kinase C δ (PKCδ). Simultaneous RNA interference of all FMNL1 isoforms prevented MTOC/MVB polarization and exosome secretion, which were restored by FMNL1βWT expression. However, expression of the non-phosphorylatable mutant FMNL1βS1086A did not restore neither MTOC/MVB polarization nor exosome secretion to control levels, supporting the crucial role of S1086 phosphorylation in MTOC/MVB polarization and exosome secretion. In contrast, the phosphomimetic mutant, FMNL1βS1086D, restored MTOC/MVB polarization and exosome secretion. Conversely, FMNL1βS1086D mutant did not recover the deficient MTOC/MVB polarization occurring in PKCδ-interfered clones, indicating that S1086 FMNL1β phosphorylation alone is not sufficient for MTOC/MVB polarization and exosome secretion. FMNL1 interference inhibited the depletion of F-actin at the central region of the immune synapse (cIS), which is necessary for MTOC/MVB polarization. FMNL1βWT and FMNL1βS1086D, but not FMNL1βS1086A expression, restored F-actin depletion at the cIS. Thus, actin cytoskeleton reorganization at the IS underlies the effects of all these FMNL1β variants on polarized secretory traffic. FMNL1 was found in the IS made by primary T lymphocytes, both in T cell receptor (TCR) and chimeric antigen receptor (CAR)-evoked synapses. Taken together, these results point out a crucial role of S1086 phosphorylation in FMNL1β activation, leading to cortical actin reorganization and subsequent control of MTOC/MVB polarization and exosome secretion.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | | | - Irene Sanz-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | - Pablo Barbeito
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | - Alfonso Navarro-Zapata
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, La Paz University HospitalMadridSpain
- Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Center (CNIO)MadridSpain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, La Paz University HospitalMadridSpain
- Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Center (CNIO)MadridSpain
- Department of Pediatric Hemato-Oncology, La Paz University HospitalMadridSpain
- Pediatric Department, Autonomous University of MadridMadridSpain
| | - Francesc R Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ)MadridSpain
| | - Víctor Calvo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | | |
Collapse
|
7
|
Neve-Oz Y, Sherman E, Raveh B. Bayesian metamodeling of early T-cell antigen receptor signaling accounts for its nanoscale activation patterns. Front Immunol 2024; 15:1412221. [PMID: 39524449 PMCID: PMC11543436 DOI: 10.3389/fimmu.2024.1412221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
T cells respond swiftly, specifically, sensitively, and robustly to cognate antigens presented on the surface of antigen presenting cells. Existing microscopic models capture various aspects of early T-cell antigen receptor (TCR) signaling at the molecular level. However, none of these models account for the totality of the data, impeding our understanding of early T-cell activation. Here, we study early TCR signaling using Bayesian metamodeling, an approach for systematically integrating multiple partial models into a metamodel of a complex system. We inform the partial models using multiple published super-resolution microscopy datasets. Collectively, these datasets describe the spatiotemporal organization, activity, interactions, and dynamics of TCR, CD45 and Lck signaling molecules in the early-forming immune synapse, and the concurrent membrane alterations. The resulting metamodel accounts for a distinct nanoscale dynamic pattern that could not be accounted for by any of the partial models on their own: a ring of phosphorylated TCR molecules, enriched at the periphery of early T cell contacts and confined by a proximal ring of CD45 molecules. The metamodel suggests this pattern results from limited activity range for the Lck molecules, acting as signaling messengers between kinetically-segregated TCR and CD45 molecules. We assessed the potential effect of Lck activity range on TCR phosphorylation and robust T cell activation for various pMHC:TCR association strengths, in the specific setting of an initial contact. We also inspected the impact of localized Lck inhibition via Csk recruitment to pTCRs, and that of splicing isoforms of CD45 on kinetic segregation. Due to the inherent scalability and adaptability of integrating independent partial models via Bayesian metamodeling, this approach can elucidate additional aspects of cell signaling and decision making.
Collapse
Affiliation(s)
- Yair Neve-Oz
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Barak Raveh
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Naviglio S, Cicalese MP, Rivers E, Ferrua F, Bonfim C, Cenciarelli S, Cheong KN, Faraci M, Giardino S, Ghosh S, Lee PP, Lyra PT, Meisel R, Sofia V, Tessitore A, Tommasini A, Valencic E, Vallée TC, Volpi S, Worth AJ, Rabusin M, Albert MH, Thrasher AJ, Aiuti A. Interleukin-1 blockade in patients with Wiskott-Aldrich syndrome: a retrospective multinational case series. Blood 2024; 144:1699-1704. [PMID: 39046813 DOI: 10.1182/blood.2024024524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
ABSTRACT Up to 70% of patients with Wiskott-Aldrich syndrome (WAS) develop autoimmune and inflammatory manifestations. Dysregulation of interleukin 1 (IL-1) may be involved in their pathogenesis, yet there is little evidence on treatment with anti-IL-1 agents in these patients. We conducted a multicenter retrospective analysis of 9 patients with WAS treated with anti-IL-1 agents (anakinra or canakinumab). All patients had prominent inflammatory manifestations, including systemic, cutaneous, articular, and intestinal symptoms; 3 patients presented with a severe systemic inflammatory syndrome since the first months of life. Corticosteroid therapy was associated with partial or no response, whereas treatment with anakinra or canakinumab resulted in prompt, often dramatic, responses in all patients, allowing bridging to gene therapy (4 patients) or hematopoietic stem cell transplantation (HSCT; 5 patients). Treatment was overall well tolerated. Low donor myeloid chimerism developed in 4 patients after HSCT and was associated with the appearance or the recurrence of inflammatory manifestations. A second HSCT was performed in 2 patients, achieving full-donor chimerism and resolution of inflammatory manifestation, whereas the other 2 patients were treated with prolonged therapy with anti-IL-1 agents. Our experience demonstrates that some inflammatory manifestations of WAS are dependent on IL-1 and respond well to its pharmacologic blockade.
Collapse
Affiliation(s)
- Samuele Naviglio
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo," Trieste, Italy
| | - Maria Pia Cicalese
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elizabeth Rivers
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Francesca Ferrua
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmem Bonfim
- Bone Marrow Transplantation Unit, Complexo Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Sabina Cenciarelli
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Maura Faraci
- Hematopoietic Stem Cell Transplantation Unit, Department of Hematology-Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Giardino
- Hematopoietic Stem Cell Transplantation Unit, Department of Hematology-Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University-Düsseldorf University Hospital, Düsseldorf, Germany
| | - Pamela P Lee
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paula Teixeira Lyra
- Department of Clinical Immunology, Instituto de Medicina Integral Professor Fernando Figueira, Recife, Brazil
- Children's Department of Infectious Disease, Oswaldo Cruz University Hospital, Universidade de Pernambuco, Recife, Brazil
| | - Roland Meisel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University-Düsseldorf University Hospital, Düsseldorf, Germany
| | | | - Antimo Tessitore
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Alberto Tommasini
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo," Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Erica Valencic
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo," Trieste, Italy
| | - Tanja Christine Vallée
- Dr. von Hauner University Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefano Volpi
- Unità Operativa Complessa Clinica Pediatrica e Reumatologia, Centro per le Malattie Autoinfiammatorie e Immunodeficienze, Istituto Giannina Gaslini, Genoa, Italy
- Dipartimento di Neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili, Università degli Studi di Genova, Genoa, Italy
| | - Austen J Worth
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Marco Rabusin
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo," Trieste, Italy
| | - Michael H Albert
- Dr. von Hauner University Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Adrian J Thrasher
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Alessandro Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Kaminska P, Tempes A, Scholz E, Malik AR. Cytokines on the way to secretion. Cytokine Growth Factor Rev 2024; 79:52-65. [PMID: 39227243 DOI: 10.1016/j.cytogfr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
The activation of immune cells by pro-inflammatory or immunosuppressive stimuli is followed by the secretion of immunoregulatory cytokines which serve as messengers to activate the immune response in target cells. Although the mechanisms that control the secretion of cytokines by immune cells are not yet fully understood, several key aspects of this process have recently emerged. This review focuses on cytokine release via exocytosis and highlights the routes of cytokine trafficking leading to constitutive and regulated secretion as well as the impact of sorting receptors on this process. We discuss the involvement of cytoskeletal rearrangements in vesicular transport, secretion, and formation of immunological synapses. Finally, we describe the non-classical pathways of cytokine release that are independent of vesicular ER-Golgi transport. Instead, these pathways are based on processing by inflammasome or autophagic mechanisms. Ultimately, understanding the molecular mechanisms behind cytokine release may help to identify potential therapeutic targets in diseases associated with altered immune responses.
Collapse
Affiliation(s)
- Paulina Kaminska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, Warsaw 02-093, Poland
| | - Aleksandra Tempes
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Ela Scholz
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Anna R Malik
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland.
| |
Collapse
|
10
|
Levescot A, Cerf-Bensussan N. Loss of tolerance to dietary proteins: From mouse models to human model diseases. Immunol Rev 2024; 326:173-190. [PMID: 39295093 DOI: 10.1111/imr.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The critical importance of the immunoregulatory mechanisms, which prevent adverse responses to dietary proteins is demonstrated by the consequences of their failure in two common but distinct human pathological conditions, food allergy and celiac disease. The mechanisms of tolerance to dietary proteins have been extensively studied in mouse models but the extent to which the results in mice can be extrapolated to humans remains unclear. Here, after summarizing the mechanisms known to control oral tolerance in mouse models, we discuss how the monogenic immune disorders associated with food allergy on the one hand, and celiac disease, on the other hand, represent model diseases to gain insight into the key immunoregulatory pathways that control immune responses to food antigens in humans. The spectrum of monogenic disorders, in which the dysfunction of a single gene, is strongly associated with TH2-mediated food allergy suggests an important overlap between the mechanisms that regulate TH2 and IgE responses to food antigens in humans and mice. In contrast, celiac disease provides a unique example of the link between autoimmunity and loss of tolerance to a food antigen.
Collapse
Affiliation(s)
- Anais Levescot
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| | - Nadine Cerf-Bensussan
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
11
|
Azizoglu ZB, Babayeva R, Haskologlu ZS, Acar MB, Ayaz-Guner S, Okus FZ, Alsavaf MB, Can S, Basaran KE, Canatan MF, Ozcan A, Erkmen H, Leblebici CB, Yilmaz E, Karakukcu M, Kose M, Canoz O, Özen A, Karakoc-Aydiner E, Ceylaner S, Gümüş G, Per H, Gumus H, Canatan H, Ozcan S, Dogu F, Ikinciogullari A, Unal E, Baris S, Eken A. DIAPH1-Deficiency is Associated with Major T, NK and ILC Defects in Humans. J Clin Immunol 2024; 44:175. [PMID: 39120629 PMCID: PMC11315734 DOI: 10.1007/s10875-024-01777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Loss of function mutations in Diaphanous related formin 1 (DIAPH1) are associated with seizures, cortical blindness, and microcephaly syndrome (SCBMS) and are recently linked to combined immunodeficiency. However, the extent of defects in T and innate lymphoid cells (ILCs) remain unexplored. Herein, we characterized the primary T, natural killer (NK) and helper ILCs of six patients carrying two novel loss of function mutation in DIAPH1 and Jurkat cells after DIAPH1 knockdown. Mutations were identified by whole exome sequencing. T-cell immunophenotyping, proliferation, migration, cytokine signaling, survival, and NK cell cytotoxicity were studied via flow cytometry-based assays, confocal microscopy, and real-time qPCR. CD4+ T cell proteome was analyzed by mass spectrometry. p.R351* and p.R322*variants led to a significant reduction in the DIAPH1 mRNA and protein levels. DIAPH1-deficient T cells showed proliferation, activation, as well as TCR-mediated signaling defects. DIAPH1-deficient PBMCs also displayed impaired transwell migration, defective STAT5 phosphorylation in response to IL-2, IL-7 and IL-15. In vitro generation/expansion of Treg cells from naïve T cells was significantly reduced. shRNA-mediated silencing of DIAPH1 in Jurkat cells reduced DIAPH1 protein level and inhibited T cell proliferation and IL-2/STAT5 axis. Additionally, NK cells from patients had diminished cytotoxic activity, function and IL-2/STAT5 axis. Lastly, DIAPH1-deficient patients' peripheral blood contained dramatically reduced numbers of all helper ILC subsets. DIAPH1 deficiency results in major functional defects in T, NK cells and helper ILCs underlining the critical role of formin DIAPH1 in the biology of those cell subsets.
Collapse
Affiliation(s)
- Zehra Busra Azizoglu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
| | - Royala Babayeva
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Zehra Sule Haskologlu
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | | | - Serife Ayaz-Guner
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Fatma Zehra Okus
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | | | - Salim Can
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Kemal Erdem Basaran
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | | | - Alper Ozcan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Hasret Erkmen
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Can Berk Leblebici
- Department of Medical Genetics, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ebru Yilmaz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Musa Karakukcu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Mehmet Kose
- Division of Pediatric Pulmonology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Ozlem Canoz
- Department of Pathology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Türkiye
| | - Ahmet Özen
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Elif Karakoc-Aydiner
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Serdar Ceylaner
- Intergen, Genetic, Rare and Undiagnosed Diseases, Diagnosis and Research Center, Ankara, Türkiye
| | - Gülsüm Gümüş
- Division of Pediatric Radiology, Department of Radiology, Erciyes University Faculty of Medicine, Kayseri, Türkiye
| | - Huseyin Per
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Hakan Gumus
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
| | - Servet Ozcan
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, 38039, Türkiye
| | - Figen Dogu
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Aydan Ikinciogullari
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Ekrem Unal
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey.
- School of Health Sciences, Hasan Kalyoncu University, Gaziantep, Türkiye.
- Medical Point Hospital, Pediatric Hematology Oncology and BMT Unit, Gaziantep, Türkiye.
| | - Safa Baris
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye.
| | - Ahmet Eken
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye.
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye.
| |
Collapse
|
12
|
Jo S, Fischer BR, Cronin NM, Nurmalasari NPD, Loyd YM, Kerkvliet JG, Bailey EM, Anderson RB, Scott BL, Hoppe AD. Antibody surface mobility amplifies FcγR signaling via Arp2/3 during phagocytosis. Biophys J 2024; 123:2312-2327. [PMID: 38321740 PMCID: PMC11331046 DOI: 10.1016/j.bpj.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
We report herein that the anti-CD20 therapeutic antibody, rituximab, is rearranged into microclusters within the phagocytic synapse by macrophage Fcγ receptors (FcγR) during antibody-dependent cellular phagocytosis. These microclusters were observed to potently recruit Syk and to undergo rearrangements that were limited by the cytoskeleton of the target cell, with depolymerization of target-cell actin filaments leading to modest increases in phagocytic efficiency. Total internal reflection fluorescence analysis revealed that FcγR total phosphorylation, Syk phosphorylation, and Syk recruitment were enhanced when IgG-FcγR microclustering was enabled on fluid bilayers relative to immobile bilayers in a process that required Arp2/3. We conclude that on fluid surfaces, IgG-FcγR microclustering promotes signaling through Syk that is amplified by Arp2/3-driven actin rearrangements. Thus, the surface mobility of antigens bound by IgG shapes the signaling of FcγR with an unrecognized complexity beyond the zipper and trigger models of phagocytosis.
Collapse
Affiliation(s)
- Seongwan Jo
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Brady R Fischer
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Nicholas M Cronin
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Ni Putu Dewi Nurmalasari
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Yoseph M Loyd
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Jason G Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Elizabeth M Bailey
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Robert B Anderson
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Brandon L Scott
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota.
| |
Collapse
|
13
|
Christodoulou A, Tsai JY, Suwankitwat N, Anderson A, Iritani BM. Hem1 inborn errors of immunity: waving goodbye to coordinated immunity in mice and humans. Front Immunol 2024; 15:1402139. [PMID: 39026677 PMCID: PMC11254771 DOI: 10.3389/fimmu.2024.1402139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Inborn errors of immunity (IEI) are a group of diseases in humans that typically present as increased susceptibility to infections, autoimmunity, hyperinflammation, allergy, and in some cases malignancy. Among newly identified genes linked to IEIs include 3 independent reports of 9 individuals from 7 independent kindreds with severe primary immunodeficiency disease (PID) and autoimmunity due to loss-of-function mutations in the NCKAP1L gene encoding Hematopoietic protein 1 (HEM1). HEM1 is a hematopoietic cell specific component of the WASp family verprolin homologous (WAVE) regulatory complex (WRC), which acts downstream of multiple immune receptors to stimulate actin nucleation and polymerization of filamentous actin (F-actin). The polymerization and branching of F-actin is critical for creating force-generating cytoskeletal structures which drive most active cellular processes including migration, adhesion, immune synapse formation, and phagocytosis. Branched actin networks at the cell cortex have also been implicated in acting as a barrier to regulate inappropriate vesicle (e.g. cytokine) secretion and spontaneous antigen receptor crosslinking. Given the importance of the actin cytoskeleton in most or all hematopoietic cells, it is not surprising that HEM1 deficient children present with a complex clinical picture that involves overlapping features of immunodeficiency and autoimmunity. In this review, we will provide an overview of what is known about the molecular and cellular functions of HEM1 and the WRC in immune and other cells. We will describe the common clinicopathological features and immunophenotypes of HEM1 deficiency in humans and provide detailed comparative descriptions of what has been learned about Hem1 disruption using constitutive and immune cell-specific mouse knockout models. Finally, we discuss future perspectives and important areas for investigation regarding HEM1 and the WRC.
Collapse
Affiliation(s)
- Alexandra Christodoulou
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Julia Y Tsai
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Nutthakarn Suwankitwat
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
- Virology Laboratory, National Institute of Animal Health, Bangkok, Thailand
| | - Andreas Anderson
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Brian M Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
14
|
Kamnev A, Mehta T, Wielscher M, Chaves B, Lacouture C, Mautner AK, Shaw LE, Caldera M, Menche J, Weninger WP, Farlik M, Boztug K, Dupré L. Coordinated ARP2/3 and glycolytic activities regulate the morphological and functional fitness of human CD8 + T cells. Cell Rep 2024; 43:113853. [PMID: 38421875 DOI: 10.1016/j.celrep.2024.113853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/27/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Actin cytoskeleton remodeling sustains the ability of cytotoxic T cells to search for target cells and eliminate them. We here investigated the relationship between energetic status, actin remodeling, and functional fitness in human CD8+ effector T cells. Cell spreading during migration or immunological synapse assembly mirrored cytotoxic activity. Morphological and functional fitness were boosted by interleukin-2 (IL-2), which also stimulated the transcription of glycolytic enzymes, actin isoforms, and actin-related protein (ARP)2/3 complex subunits. This molecular program scaled with F-actin content and cell spreading. Inhibiting glycolysis impaired F-actin remodeling at the lamellipodium, chemokine-driven motility, and adhesion, while mitochondrial oxidative phosphorylation blockade impacted cell elongation during confined migration. The severe morphological and functional defects of ARPC1B-deficient T cells were only partially corrected by IL-2, emphasizing ARP2/3-mediated actin polymerization as a crucial energy state integrator. The study therefore underscores the tight coordination between metabolic and actin remodeling programs to sustain the cytotoxic activity of CD8+ T cells.
Collapse
Affiliation(s)
- Anton Kamnev
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Tanvi Mehta
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Matthias Wielscher
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Beatriz Chaves
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil; Computational Modeling Group, Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | | | - Lisa E Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Caldera
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Loïc Dupré
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.
| |
Collapse
|
15
|
Reed AE, Peraza J, van den Haak F, Hernandez ER, Gibbs RA, Chinn IK, Lupski JR, Marchi E, Reshef R, Alobeid B, Mace EM, Orange JS. β-Actin G342D as a Cause of NK Cell Deficiency Impairing Lytic Synapse Termination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:962-973. [PMID: 38315012 PMCID: PMC11337350 DOI: 10.4049/jimmunol.2300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
NK cell deficiency (NKD) occurs when an individual's major clinical immunodeficiency derives from abnormal NK cells and is associated with several genetic etiologies. Three categories of β-actin-related diseases with over 60 ACTB (β-actin) variants have previously been identified, none with a distinct NK cell phenotype. An individual with mild developmental delay, macrothrombocytopenia, and susceptibility to infections, molluscum contagiosum virus, and EBV-associated lymphoma had functional NKD for over a decade. A de novo ACTB variant encoding G342D β-actin was identified and was consistent with the individual's developmental and platelet phenotype. This novel variant also was found to have direct impact in NK cells because its expression in the human NK cell line YTS (YTS-NKD) caused increased cell spreading in lytic immune synapses created on activating surfaces. YTS-NKD cells were able to degranulate and perform cytotoxicity, but they demonstrated defective serial killing because of prolonged conjugation to the killed target cell and thus were effectively unable to terminate lytic synapses. G342D β-actin results in a novel, to our knowledge, mechanism of functional NKD via increased synaptic spreading and defective lytic synapse termination with resulting impaired serial killing, leading to overall reductions in NK cell cytotoxicity.
Collapse
Affiliation(s)
- Abigail E Reed
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY
| | - Jackeline Peraza
- Department of Biology, Barnard College of Columbia University, New York, NY
| | - Frederique van den Haak
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY
| | - Evelyn R Hernandez
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Ivan K Chinn
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX
| | - James R Lupski
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Texas Children's Hospital and Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX
| | - Enrica Marchi
- Division of Hematology-Oncology, Department of Medicine, NCI Designated Cancer Center, University of Virginia, Charlottesville, VA
| | - Ran Reshef
- Blood and Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY
| | - Bachir Alobeid
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
16
|
Krentzel D, Gariboldi MI, Juzans M, Mastrogiovanni M, Mueller F, Cuche C, Di Bartolo V, Alcover A. Image processing approaches for microtubule remodeling quantification at the immunological synapse. Methods Cell Biol 2024; 193:39-67. [PMID: 39919847 DOI: 10.1016/bs.mcb.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Immunological synapses result from a T cell polarization process, requiring cytoskeleton remodeling. Actin and microtubules drive synapse architecture and the localization of intracellular organelles, including Golgi and endolysosomal compartments, ensuring the directional localization of synapse components. Microtubule remodeling includes the centrosome polarization and the formation of a radial microtubules network, extending from the centrosome to the synapse periphery. Concomitantly, a ring of filamentous actin forms at the synapse periphery. Microtubule and actin remodeling facilitate vesicle fusion at the synapse, enabling T cell effector functions. Analyzing structural subtleties of cytoskeleton remodeling at the immunological synapse is crucial to understand its role in T cell functions. It may also pinpoint pathological states related with cytoskeletal dysfunctions. Quantifying filamentous protein network properties is challenging due to their complex and heterogeneous architectures and the inherent difficulty of segmenting individual filaments. Here, we describe the development of an image processing approach aimed at quantifying microtubule organization at the immunological synapse without the need for filament segmentation. The method is based on the analysis of the spatial and directional organization of microtubules growing from the centrosome to the synapse periphery. It is applied to investigate the importance of Adenomatous polyposis coli (Apc), a polarity regulator and tumor suppressor, in immunological synapse structure and functions and its potential implication in anti-tumor immune responses. We provide an open-source napari plugin of the outlined methods for analyzing filamentous networks.
Collapse
Affiliation(s)
- Daniel Krentzel
- Institut Pasteur, Université Paris Cité, CNRS-UMR3691, Unité Imagerie et Modélisation, Paris, France
| | - Maria Isabella Gariboldi
- Institut Pasteur, Université Paris Cité, CNRS-UMR3691, Unité Imagerie et Modélisation, Paris, France
| | - Marie Juzans
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue-2018, Paris, France; Sorbonne Université Collège Doctoral, Paris, France
| | - Marta Mastrogiovanni
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue-2018, Paris, France; Sorbonne Université Collège Doctoral, Paris, France
| | - Florian Mueller
- Institut Pasteur, Université Paris Cité, CNRS-UMR3691, Unité Imagerie et Modélisation, Paris, France
| | - Céline Cuche
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue-2018, Paris, France
| | - Vincenzo Di Bartolo
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue-2018, Paris, France.
| | - Andrés Alcover
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue-2018, Paris, France.
| |
Collapse
|
17
|
Ruiz-Navarro J, Calvo V, Izquierdo M. Extracellular vesicles and microvilli in the immune synapse. Front Immunol 2024; 14:1324557. [PMID: 38268920 PMCID: PMC10806406 DOI: 10.3389/fimmu.2023.1324557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
T cell receptor (TCR) binding to cognate antigen on the plasma membrane of an antigen-presenting cell (APC) triggers the immune synapse (IS) formation. The IS constitutes a dedicated contact region between different cells that comprises a signaling platform where several cues evoked by TCR and accessory molecules are integrated, ultimately leading to an effective TCR signal transmission that guarantees intercellular message communication. This eventually leads to T lymphocyte activation and the efficient execution of different T lymphocyte effector tasks, including cytotoxicity and subsequent target cell death. Recent evidence demonstrates that the transmission of information between immune cells forming synapses is produced, to a significant extent, by the generation and secretion of distinct extracellular vesicles (EV) from both the effector T lymphocyte and the APC. These EV carry biologically active molecules that transfer cues among immune cells leading to a broad range of biological responses in the recipient cells. Included among these bioactive molecules are regulatory miRNAs, pro-apoptotic molecules implicated in target cell apoptosis, or molecules triggering cell activation. In this study we deal with the different EV classes detected at the IS, placing emphasis on the most recent findings on microvilli/lamellipodium-produced EV. The signals leading to polarized secretion of EV at the synaptic cleft will be discussed, showing that the IS architecture fulfills a fundamental task during this route.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Víctor Calvo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Manuel Izquierdo
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
18
|
Paillon N, Mouro V, Dogniaux S, Maurin M, Saez Pons JJ, Ferran H, Bataille L, Zucchetti AE, Hivroz C. PD-1 inhibits T cell actin remodeling at the immunological synapse independently of its signaling motifs. Sci Signal 2023; 16:eadh2456. [PMID: 38015913 DOI: 10.1126/scisignal.adh2456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
Engagement of the receptor programmed cell death molecule 1 (PD-1) by its ligands PD-L1 and PD-L2 inhibits T cell-mediated immune responses. Blocking such signaling provides the clinical effects of PD-1-targeted immunotherapy. Here, we investigated the mechanisms underlying PD-1-mediated inhibition. Because dynamic actin remodeling is crucial for T cell functions, we characterized the effects of PD-1 engagement on actin remodeling at the immunological synapse, the interface between a T cell and an antigen-presenting cell (APC) or target cell. We used microscopy to analyze the formation of immunological synapses between PD-1+ Jurkat cells or primary human CD8+ cytotoxic T cells and APCs that presented T cell-activating antibodies and were either positive or negative for PD-L1. PD-1 binding to PD-L1 inhibited T cell spreading induced by antibody-mediated activation, which was characterized by the absence of the F-actin-dense distal lamellipodial network at the immunological synapse and the Arp2/3 complex, which mediates branched actin formation. PD-1-induced inhibition of actin remodeling also prevented the characteristic deformation of T cells that contact APCs and the release of cytotoxic granules. We showed that the effects of PD-1 on actin remodeling did not require its tyrosine-based signaling motifs, which are thought to mediate the co-inhibitory effects of PD-1. Our study highlights a previously unappreciated mechanism of PD-1-mediated suppression of T cell activity, which depends on the regulation of actin cytoskeleton dynamics in a signaling motif-independent manner.
Collapse
Affiliation(s)
- Noémie Paillon
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
- Université Paris Cité, 75005 Paris, France
| | - Violette Mouro
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
- Université Paris Cité, 75005 Paris, France
| | - Stéphanie Dogniaux
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Juan-José Saez Pons
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Hermine Ferran
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
- Université Paris Cité, 75005 Paris, France
| | - Laurence Bataille
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Andrés Ernesto Zucchetti
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| |
Collapse
|
19
|
Drake KA, Talantov D, Tong GJ, Lin JT, Verheijden S, Katz S, Leung JM, Yuen B, Krishna V, Wu MJ, Sutherland AM, Short SA, Kheradpour P, Mumbach MR, Franz KM, Trifonov V, Lucas MV, Merson J, Kim CC. Multi-omic profiling reveals early immunological indicators for identifying COVID-19 Progressors. Clin Immunol 2023; 256:109808. [PMID: 37852344 DOI: 10.1016/j.clim.2023.109808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
We sought to better understand the immune response during the immediate post-diagnosis phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by identifying molecular associations with longitudinal disease outcomes. Multi-omic analyses identified differences in immune cell composition, cytokine levels, and cell subset-specific transcriptomic and epigenomic signatures between individuals on a more serious disease trajectory (Progressors) as compared to those on a milder course (Non-progressors). Higher levels of multiple cytokines were observed in Progressors, with IL-6 showing the largest difference. Blood monocyte cell subsets were also skewed, showing a comparative decrease in non-classical CD14-CD16+ and intermediate CD14+CD16+ monocytes. In lymphocytes, the CD8+ T effector memory cells displayed a gene expression signature consistent with stronger T cell activation in Progressors. These early stage observations could serve as the basis for the development of prognostic biomarkers of disease risk and interventional strategies to improve the management of severe COVID-19. BACKGROUND: Much of the literature on immune response post-SARS-CoV-2 infection has been in the acute and post-acute phases of infection. TRANSLATIONAL SIGNIFICANCE: We found differences at early time points of infection in approximately 160 participants. We compared multi-omic signatures in immune cells between individuals progressing to needing more significant medical intervention and non-progressors. We observed widespread evidence of a state of increased inflammation associated with progression, supported by a range of epigenomic, transcriptomic, and proteomic signatures. The signatures we identified support other findings at later time points and serve as the basis for prognostic biomarker development or to inform interventional strategies.
Collapse
Affiliation(s)
- Katherine A Drake
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Dimitri Talantov
- Janssen Research & Development, LLC, San Diego, CA, United States of America
| | - Gary J Tong
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Jack T Lin
- Verily Life Sciences, South San Francisco, CA, United States of America
| | | | - Samuel Katz
- Verily Life Sciences, South San Francisco, CA, United States of America
| | | | - Benjamin Yuen
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Vinod Krishna
- Janssen Research & Development, LLC, San Diego, CA, United States of America
| | - Michelle J Wu
- Verily Life Sciences, South San Francisco, CA, United States of America
| | | | - Sarah A Short
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Pouya Kheradpour
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Maxwell R Mumbach
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Kate M Franz
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Vladimir Trifonov
- Janssen Research & Development, LLC, San Diego, CA, United States of America
| | - Molly V Lucas
- Janssen Research & Development, LLC, NJ, United States of America
| | - James Merson
- Janssen Research & Development, LLC, San Francisco, CA, United States of America
| | - Charles C Kim
- Verily Life Sciences, South San Francisco, CA, United States of America.
| |
Collapse
|
20
|
Almosailleakh M, Bentivegna S, Narcisi S, Benquet SJ, Gillberg L, Montaño-Almendras CP, Savickas S, Schoof EM, Wegener A, Luche H, Jensen HE, Côme C, Grønbæk K. Loss of the KN Motif and AnKyrin Repeat Domain 1 (KANK1) Leads to Lymphoid Compartment Dysregulation in Murine Model. Genes (Basel) 2023; 14:1947. [PMID: 37895296 PMCID: PMC10605996 DOI: 10.3390/genes14101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
The KN Motif and AnKyrin Repeat Domain 1 (KANK1) is proposed as a tumour suppressor gene, as its expression is reduced or absent in several types of tumour tissue, and over-expressing the protein inhibited the proliferation of tumour cells in solid cancer models. We report a novel germline loss of heterozygosity mutation encompassing the KANK1 gene in a young patient diagnosed with myelodysplastic neoplasm (MDS) with no additional disease-related genomic aberrations. To study the potential role of KANK1 in haematopoiesis, we generated a new transgenic mouse model with a confirmed loss of KANK1 expression. KANK1 knockout mice did not develop any haematological abnormalities; however, the loss of its expression led to alteration in the colony forming and proliferative potential of bone marrow (BM) cells and a decrease in hematopoietic stem and progenitor cells (HSPCs) population frequency. A comprehensive marker expression analysis of lineage cell populations indicated a role for Kank1 in lymphoid cell development, and total protein analysis suggests the involvement of Kank1 in BM cells' cytoskeleton formation and mobility.
Collapse
Affiliation(s)
- Marwa Almosailleakh
- Department of Hematology, Rigshospitalet, 2100 Copenhagen, Denmark; (M.A.)
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 4072 Copenhagen, Denmark
| | - Sofia Bentivegna
- Department of Hematology, Rigshospitalet, 2100 Copenhagen, Denmark; (M.A.)
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 4072 Copenhagen, Denmark
| | - Samuele Narcisi
- Department of Hematology, Rigshospitalet, 2100 Copenhagen, Denmark; (M.A.)
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 4072 Copenhagen, Denmark
| | - Sébasitien J. Benquet
- Department of Hematology, Rigshospitalet, 2100 Copenhagen, Denmark; (M.A.)
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 4072 Copenhagen, Denmark
| | - Linn Gillberg
- Department of Hematology, Rigshospitalet, 2100 Copenhagen, Denmark; (M.A.)
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 4072 Copenhagen, Denmark
| | - Carmen P. Montaño-Almendras
- Department of Hematology, Rigshospitalet, 2100 Copenhagen, Denmark; (M.A.)
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 4072 Copenhagen, Denmark
| | - Simonas Savickas
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Erwin M. Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | | | - Hérve Luche
- Centre d’Immunophénomique—CIPHE (PHENOMIN), Aix Marseille Université (UMS3367), Inserm (US012), CNRS (UAR3367), 13397 Marseille, France
| | - Henrik E. Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Christophe Côme
- Department of Hematology, Rigshospitalet, 2100 Copenhagen, Denmark; (M.A.)
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 4072 Copenhagen, Denmark
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, 2100 Copenhagen, Denmark; (M.A.)
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 4072 Copenhagen, Denmark
| |
Collapse
|
21
|
Ockfen E, Filali L, Pereira Fernandes D, Hoffmann C, Thomas C. Actin cytoskeleton remodeling at the cancer cell side of the immunological synapse: good, bad, or both? Front Immunol 2023; 14:1276602. [PMID: 37869010 PMCID: PMC10585106 DOI: 10.3389/fimmu.2023.1276602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Cytotoxic lymphocytes (CLs), specifically cytotoxic T lymphocytes and natural killer cells, are indispensable guardians of the immune system and orchestrate the recognition and elimination of cancer cells. Upon encountering a cancer cell, CLs establish a specialized cellular junction, known as the immunological synapse that stands as a pivotal determinant for effective cell killing. Extensive research has focused on the presynaptic side of the immunological synapse and elucidated the multiple functions of the CL actin cytoskeleton in synapse formation, organization, regulatory signaling, and lytic activity. In contrast, the postsynaptic (cancer cell) counterpart has remained relatively unexplored. Nevertheless, both indirect and direct evidence has begun to illuminate the significant and profound consequences of cytoskeletal changes within cancer cells on the outcome of the lytic immunological synapse. Here, we explore the understudied role of the cancer cell actin cytoskeleton in modulating the immune response within the immunological synapse. We shed light on the intricate interplay between actin dynamics and the evasion mechanisms employed by cancer cells, thus providing potential routes for future research and envisioning therapeutic interventions targeting the postsynaptic side of the immunological synapse in the realm of cancer immunotherapy. This review article highlights the importance of actin dynamics within the immunological synapse between cytotoxic lymphocytes and cancer cells focusing on the less-explored postsynaptic side of the synapse. It presents emerging evidence that actin dynamics in cancer cells can critically influence the outcome of cytotoxic lymphocyte interactions with cancer cells.
Collapse
Affiliation(s)
- Elena Ockfen
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Diogo Pereira Fernandes
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
22
|
Adir D, Freund T, Dotan A, Mashiah J, Hagin D. Dupilumab for Post-Hematopoietic Cell Transplantation Dermatitis in Wiskott-Aldrich Syndrome. J Clin Immunol 2023; 43:1526-1528. [PMID: 37247109 DOI: 10.1007/s10875-023-01525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Affiliation(s)
- Dikla Adir
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, 6 Weizmann St, 64239, Tel Aviv, Israel.
| | - Tal Freund
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, 6 Weizmann St, 64239, Tel Aviv, Israel
| | - Amit Dotan
- Department of Pediatric Hemato-Oncology, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Mashiah
- Division of Dermatology, Pediatric Dermatology Clinic, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, 6 Weizmann St, 64239, Tel Aviv, Israel.
| |
Collapse
|
23
|
Crater JM, Dunn DC, Nixon DF, Furler O’Brien RL. A History and Atlas of the Human CD4 + T Helper Cell. Biomedicines 2023; 11:2608. [PMID: 37892982 PMCID: PMC10604283 DOI: 10.3390/biomedicines11102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
CD4+ T cells have orchestrated and regulated immunity since the introduction of jawed vertebrates, yet our understanding of CD4+ T cell evolution, development, and cellular physiology has only begun to be unearthed in the past few decades. Discoveries of genetic diseases that ablate this cellular population have provided insight into their critical functions while transcriptomics, proteomics, and high-resolution microscopy have recently revealed new insights into CD4+ T cell anatomy and physiology. This article compiles historical, microscopic, and multi-omics data that can be used as a reference atlas and index to dissect cellular physiology within these influential cells and further understand pathologies like HIV infection that inflict human CD4+ T cells.
Collapse
Affiliation(s)
| | | | | | - Robert L. Furler O’Brien
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 413 E 69th St., Belfer Research Building, New York, NY 10021, USA
| |
Collapse
|
24
|
Drake KA, Talantov D, Tong GJ, Lin JT, Verheijden S, Katz S, Leung JM, Yuen B, Krishna V, Wu MJ, Sutherland A, Short SA, Kheradpour P, Mumbach M, Franz K, Trifonov V, Lucas MV, Merson J, Kim CC. Multi-omic Profiling Reveals Early Immunological Indicators for Identifying COVID-19 Progressors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542297. [PMID: 37292797 PMCID: PMC10246026 DOI: 10.1101/2023.05.25.542297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a rapid response by the scientific community to further understand and combat its associated pathologic etiology. A focal point has been on the immune responses mounted during the acute and post-acute phases of infection, but the immediate post-diagnosis phase remains relatively understudied. We sought to better understand the immediate post-diagnosis phase by collecting blood from study participants soon after a positive test and identifying molecular associations with longitudinal disease outcomes. Multi-omic analyses identified differences in immune cell composition, cytokine levels, and cell subset-specific transcriptomic and epigenomic signatures between individuals on a more serious disease trajectory (Progressors) as compared to those on a milder course (Non-progressors). Higher levels of multiple cytokines were observed in Progressors, with IL-6 showing the largest difference. Blood monocyte cell subsets were also skewed, showing a comparative decrease in non-classical CD14-CD16+ and intermediate CD14+CD16+ monocytes. Additionally, in the lymphocyte compartment, CD8+ T effector memory cells displayed a gene expression signature consistent with stronger T cell activation in Progressors. Importantly, the identification of these cellular and molecular immune changes occurred at the early stages of COVID-19 disease. These observations could serve as the basis for the development of prognostic biomarkers of disease risk and interventional strategies to improve the management of severe COVID-19.
Collapse
Affiliation(s)
| | | | - Gary J Tong
- Verily Life Sciences, South San Francisco, CA
| | - Jack T Lin
- Verily Life Sciences, South San Francisco, CA
| | | | - Samuel Katz
- Verily Life Sciences, South San Francisco, CA
| | | | | | | | | | | | | | | | | | - Kate Franz
- Verily Life Sciences, South San Francisco, CA
| | | | | | - James Merson
- Janssen Research & Development, LLC, San Diego, CA
| | | |
Collapse
|
25
|
Vásquez-Echeverri E, Yamazaki-Nakashimada MA, Venegas Montoya E, Scheffler Mendoza SC, Castano-Jaramillo LM, Medina-Torres EA, González-Serrano ME, Espinosa-Navarro M, Bustamante Ogando JC, González-Villarreal MG, Ortega Cisneros M, Valencia Mayoral PF, Consuelo Sanchez A, Varela-Fascinetto G, Ramírez-Uribe RMN, Salazar Gálvez Y, Bonifaz Alonzo LC, Fuentes-Pananá EM, Gómez Hernández N, Rojas Maruri CM, Casanova JL, Espinosa-Padilla SE, Staines Boone AT, López-Velázquez G, Boisson B, Lugo Reyes SO. Is Your Kid Actin Out? A Series of Six Patients With Inherited Actin-Related Protein 2/3 Complex Subunit 1B Deficiency and Review of the Literature. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1261-1280.e8. [PMID: 36708766 PMCID: PMC10085853 DOI: 10.1016/j.jaip.2022.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hereditary actin-related protein 2/3 complex subunit 1B deficiency is characterized clinically by ear, skin, and lung infections, bleeding, eczema, food allergy, asthma, skin vasculitis, colitis, arthritis, short stature, and lymphadenopathy. OBJECTIVE We aimed to describe the clinical, laboratory, and genetic features of six patients from four Mexican families. METHODS We performed exome sequencing in patients of four families with suspected actinopathy, collected their data from medical records, and reviewed the literature for reports of other patients with actin-related protein 2/3 complex subunit 1B deficiency. RESULTS Six patients from four families were included. All had recurrent infections, mainly bacterial pneumonia, and cellulitis. A total of 67% had eczema whereas 50% had food allergies, failure to thrive, hepatomegaly, and bleeding. Eosinophilia was found in all; 84% had thrombocytopenia, 67% had abnormal-size platelets and anemia. Serum levels of IgG, IgA, and IgE were highly increased in most; IgM was normal or low. T cells were decreased in 67% of patients, whereas B and NK cells were increased in half of patients. Two of the four probands had compound heterozygous variants. One patient was successfully transplanted. We identified 28 other patients whose most prevalent features were eczema, recurrent infections, failure to thrive, bleeding, diarrhea, allergies, vasculitis, eosinophilia, platelet abnormalities, high IgE/IgA, low T cells, and high B cells. CONCLUSION Actin-related protein 2/3 complex subunit 1B deficiency has a variable and heterogeneous clinical spectrum, expanded by these cases to include keloid scars and Epstein-Barr virus chronic hepatitis. A novel deletion in exon 8 was shared by three unrelated families and might be the result of a founder effect.
Collapse
Affiliation(s)
| | | | - Edna Venegas Montoya
- Immunology Service, Unidad Médica de Alta Especialidad, Monterrey, Nuevo Leon, Mexico
| | | | - Lina Maria Castano-Jaramillo
- Clinical Immunology Service, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico; Fundación Hospital de la Misericordia, Bogotá, Colombia
| | | | | | - Melissa Espinosa-Navarro
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico
| | | | | | - Margarita Ortega Cisneros
- Allergy and Clinical Immunology Service, Unidad Médica de Alta Especialidad, Centro Médico Nacional de Occidente IMSS, Guadalajara, Jalisco, Mexico
| | | | - Alejandra Consuelo Sanchez
- Pediatric Gastroenterology and Nutrition Department, Hospital Infantil de Mexico "Dr Federico Gomez," Mexico City, Mexico
| | | | | | | | - Laura Cecilia Bonifaz Alonzo
- Immunochemistry Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | | | - Noemí Gómez Hernández
- Allergy and Clinical Immunology Service, Unidad Médica de Alta Especialidad, Centro Médico Nacional de Occidente IMSS, Guadalajara, Jalisco, Mexico
| | | | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York City, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Imagine Institute, University of Paris, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, Paris, France
| | - Sara Elva Espinosa-Padilla
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico.
| | | | - Gabriel López-Velázquez
- Laboratory of Biomolecules and Infant Health, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York City, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Imagine Institute, University of Paris, Paris, France
| | - Saul Oswaldo Lugo Reyes
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico.
| |
Collapse
|
26
|
Deciphering actin remodelling in immune cells through the prism of actin-related inborn errors of immunity. Eur J Cell Biol 2023; 102:151283. [PMID: 36525824 DOI: 10.1016/j.ejcb.2022.151283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Actin cytoskeleton remodelling drives cell motility, cell to cell contacts, as well as membrane and organelle dynamics. Those cellular activities operate at a particularly high pace in immune cells since these cells migrate through various tissues, interact with multiple cellular partners, ingest microorganisms and secrete effector molecules. The central and multifaceted role of actin cytoskeleton remodelling in sustaining immune cell tasks in humans is highlighted by rare inborn errors of immunity due to mutations in genes encoding proximal and distal actin regulators. In line with the specificity of some of the actin-based processes at work in immune cells, the expression of some of the affected genes, such as WAS, ARPC1B and HEM1 is restricted to the hematopoietic compartment. Exploration of these natural deficiencies highlights the fact that the molecular control of actin remodelling is tuned distinctly in the various subsets of myeloid and lymphoid immune cells and sustains different networks associated with a vast array of specialized tasks. Furthermore, defects in individual actin remodelling proteins are usually associated with partial cellular impairments highlighting the plasticity of actin cytoskeleton remodelling. This review covers the roles of disease-associated actin regulators in promoting the actin-based processes of immune cells. It focuses on the specific molecular function of those regulators across various immune cell subsets and in response to different stimuli. Given the fact that numerous immune-related actin defects have only been characterized recently, we further discuss the challenges lying ahead to decipher the underlying patho-mechanisms.
Collapse
|
27
|
Autoimmune and autoinflammatory manifestations in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2022; 22:343-351. [PMID: 36165421 DOI: 10.1097/aci.0000000000000860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Autoimmune and inflammatory complications have been shown to arise in all age groups and across the spectrum of inborn errors of immunity (IEI). This review aims to highlight recent ground-breaking research and its impact on our understanding of IEI. RECENT FINDINGS Three registry-based studies of unprecedented size revealed the high prevalence of autoimmune, inflammatory and malignant complications in IEI. Two novel IEI were discovered: an autoinflammatory relopathy, cleavage-resistant RIPK1-induced autoinflammatory syndrome, as well as an inheritable phenocopy of PD-1 blockade-associated complication (as seen in cancer therapy) manifesting with multiorgan autoimmunity and Mycobacterium tuberculosis infection. A study examining patients with partial RAG deficiency pinpointed the specific defects leading to the failure of central and peripheral tolerance resulting in wide-ranging autoimmunity. A novel variant of Immunodeficiency Polyendocrinopathy Enteropathy X-linked syndrome was described, associated with preferential expression of a FOXP3 isoform lacking exon 2, linking exon-specific functions and the phenotypes corresponding to their absence. Lastly, we touch on recent findings pertaining actinopathies, the prototypical IEI with autoimmune, inflammatory and atopic complications. SUMMARY Dysregulated immunity has been associated with IEI since their discovery. Recently, large concerted efforts have shown how common these complications actually are while providing insight into normal and dysregulated molecular mechanisms, as well as describing novel diseases.
Collapse
|
28
|
Solomon T, Rajendran M, Rostovtseva T, Hool L. How cytoskeletal proteins regulate mitochondrial energetics in cell physiology and diseases. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210324. [PMID: 36189806 PMCID: PMC9527905 DOI: 10.1098/rstb.2021.0324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mitochondria are ubiquitous organelles that play a pivotal role in the supply of energy through the production of adenosine triphosphate in all eukaryotic cells. The importance of mitochondria in cells is demonstrated in the poor survival outcomes observed in patients with defects in mitochondrial gene or RNA expression. Studies have identified that mitochondria are influenced by the cell's cytoskeletal environment. This is evident in pathological conditions such as cardiomyopathy where the cytoskeleton is in disarray and leads to alterations in mitochondrial oxygen consumption and electron transport. In cancer, reorganization of the actin cytoskeleton is critical for trans-differentiation of epithelial-like cells into motile mesenchymal-like cells that promotes cancer progression. The cytoskeleton is critical to the shape and elongation of neurons, facilitating communication during development and nerve signalling. Although it is recognized that cytoskeletal proteins physically tether mitochondria, it is not well understood how cytoskeletal proteins alter mitochondrial function. Since end-stage disease frequently involves poor energy production, understanding the role of the cytoskeleton in the progression of chronic pathology may enable the development of therapeutics to improve energy production and consumption and slow disease progression. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Tanya Solomon
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Megha Rajendran
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tatiana Rostovtseva
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Livia Hool
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Ahangar P, Cowin AJ. Reforming the Barrier: The Role of Formins in Wound Repair. Cells 2022; 11:cells11182779. [PMID: 36139355 PMCID: PMC9496773 DOI: 10.3390/cells11182779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
The restoration of an intact epidermal barrier after wound injury is the culmination of a highly complex and exquisitely regulated physiological process involving multiple cells and tissues, overlapping dynamic events and protein synthesis and regulation. Central to this process is the cytoskeleton, a system of intracellular proteins that are instrumental in regulating important processes involved in wound repair including chemotaxis, cytokinesis, proliferation, migration, and phagocytosis. One highly conserved family of cytoskeletal proteins that are emerging as major regulators of actin and microtubule nucleation, polymerization, and stabilization are the formins. The formin family includes 15 different proteins categorized into seven subfamilies based on three formin homology domains (FH1, FH2, and FH3). The formins themselves are regulated in different ways including autoinhibition, activation, and localization by a range of proteins, including Rho GTPases. Herein, we describe the roles and effects of the formin family of cytoskeletal proteins on the fundamental process of wound healing and highlight recent advances relating to their important functions, mechanisms, and regulation at the molecular and cellular levels.
Collapse
|
30
|
Sasahara Y, Wada T, Morio T. Impairment of cytokine production following immunological synapse formation in patients with Wiskott-Aldrich syndrome and leukocyte adhesion deficiency type 1. Clin Immunol 2022; 242:109098. [PMID: 35973636 DOI: 10.1016/j.clim.2022.109098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022]
Abstract
T cells following immunological synapse (IS) formation with antigen-presenting cells produce multiple cytokines through T cell receptor, integrin, and costimulatory signaling. Here, we investigated the cytokine profiles following IS formation in response to staphylococcal superantigen exposure in three adolescent patients with classical Wiskott-Aldrich syndrome (WAS) and in one patient with leukocyte adhesion deficiency (LAD) type 1. All WAS patients showed lower Th1 and Th2-skewed cytokine production; similar results were observed in the flow cytometric analysis of IFNγ- and IL-4-producing T cells. The patient with LAD type 1 with somatic mosaicism in 2% of CD8+ T cells showed lower Th1 and Th2 cytokine production than healthy controls. The patients with WAS were susceptible to infections and atopic manifestations, and the patients with LAD type 1 showed cold abscess on their skin, our findings using patient samples provide clinical insights into the mechanisms underlying immunodeficiency related to the symptoms of each disease.
Collapse
Affiliation(s)
- Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
31
|
Jahanbani F, Maynard RD, Sing JC, Jahanbani S, Perrino JJ, Spacek DV, Davis RW, Snyder MP. Phenotypic characteristics of peripheral immune cells of Myalgic encephalomyelitis/chronic fatigue syndrome via transmission electron microscopy: A pilot study. PLoS One 2022; 17:e0272703. [PMID: 35943990 PMCID: PMC9362953 DOI: 10.1371/journal.pone.0272703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic multi-systemic disease characterized by extreme fatigue that is not improved by rest, and worsens after exertion, whether physical or mental. Previous studies have shown ME/CFS-associated alterations in the immune system and mitochondria. We used transmission electron microscopy (TEM) to investigate the morphology and ultrastructure of unstimulated and stimulated ME/CFS immune cells and their intracellular organelles, including mitochondria. PBMCs from four participants were studied: a pair of identical twins discordant for moderate ME/CFS, as well as two age- and gender- matched unrelated subjects-one with an extremely severe form of ME/CFS and the other healthy. TEM analysis of CD3/CD28-stimulated T cells suggested a significant increase in the levels of apoptotic and necrotic cell death in T cells from ME/CFS patients (over 2-fold). Stimulated Tcells of ME/CFS patients also had higher numbers of swollen mitochondria. We also found a large increase in intracellular giant lipid droplet-like organelles in the stimulated PBMCs from the extremely severe ME/CFS patient potentially indicative of a lipid storage disorder. Lastly, we observed a slight increase in platelet aggregation in stimulated cells, suggestive of a possible role of platelet activity in ME/CFS pathophysiology and disease severity. These results indicate extensive morphological alterations in the cellular and mitochondrial phenotypes of ME/CFS patients' immune cells and suggest new insights into ME/CFS biology.
Collapse
Affiliation(s)
- Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rajan D. Maynard
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Justin Cyril Sing
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University School of Medicine, and VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - John J. Perrino
- Stanford Cell Sciences Imaging Facility (CSIF), Stanford University School of Medicine Stanford, Stanford, California, United States of America
| | - Damek V. Spacek
- Karius Incorporated, Redwood City, California, United States of America
| | - Ronald W. Davis
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
32
|
Molon B, Liboni C, Viola A. CD28 and chemokine receptors: Signalling amplifiers at the immunological synapse. Front Immunol 2022; 13:938004. [PMID: 35983040 PMCID: PMC9379342 DOI: 10.3389/fimmu.2022.938004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023] Open
Abstract
T cells are master regulators of the immune response tuning, among others, B cells, macrophages and NK cells. To exert their functions requiring high sensibility and specificity, T cells need to integrate different stimuli from the surrounding microenvironment. A finely tuned signalling compartmentalization orchestrated in dynamic platforms is an essential requirement for the proper and efficient response of these cells to distinct triggers. During years, several studies have depicted the pivotal role of the cytoskeleton and lipid microdomains in controlling signalling compartmentalization during T cell activation and functions. Here, we discuss mechanisms responsible for signalling amplification and compartmentalization in T cell activation, focusing on the role of CD28, chemokine receptors and the actin cytoskeleton. We also take into account the detrimental effect of mutations carried by distinct signalling proteins giving rise to syndromes characterized by defects in T cell functionality.
Collapse
Affiliation(s)
- Barbara Molon
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- *Correspondence: Barbara Molon,
| | - Cristina Liboni
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonella Viola
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
33
|
Cook S, Lenardo MJ, Freeman AF. HEM1 Actin Immunodysregulatory Disorder: Genotypes, Phenotypes, and Future Directions. J Clin Immunol 2022; 42:1583-1592. [DOI: 10.1007/s10875-022-01327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
Abstract
AbstractCells of the innate and adaptive immune systems depend on proper actin dynamics to control cell behavior for effective immune responses. Dysregulated actin networks are known to play a pathogenic role in an increasing number of inborn errors of immunity. The WAVE regulatory complex (WRC) mediates branched actin polymerization, a process required for key cellular functions including migration, phagocytosis, vesicular transport, and immune synapse formation. Recent reports of pathogenic variants in NCKAP1L, a hematopoietically restricted gene encoding the HEM1 protein component of the WRC, defined a novel disease involving recurrent bacterial and viral infections, autoimmunity, and excessive inflammation (OMIM 141180). This review summarizes the diverse clinical presentations and immunological phenotypes observed in HEM1-deficient patients. In addition, we integrate the pathophysiological mechanisms described in current literature and highlight the outstanding questions for diagnosis and management of the HEM1 actin immunodysregulatory disorder.
Collapse
|
34
|
Signa S, Dell’Orso G, Gattorno M, Faraci M. Hematopoietic stem cell transplantation in systemic autoinflammatory diseases - the first one hundred transplanted patients. Expert Rev Clin Immunol 2022; 18:667-689. [DOI: 10.1080/1744666x.2022.2078704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Sara Signa
- Center for Autoinflammatory diseases and Immunodeficiencies, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Gianluca Dell’Orso
- Hematopoietic stem cell Transplantation Unit, Department of Hematology-Oncology, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Marco Gattorno
- Center for Autoinflammatory diseases and Immunodeficiencies, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Maura Faraci
- Hematopoietic stem cell Transplantation Unit, Department of Hematology-Oncology, IRCSS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
35
|
Kamnev A, Lacouture C, Fusaro M, Dupré L. Molecular Tuning of Actin Dynamics in Leukocyte Migration as Revealed by Immune-Related Actinopathies. Front Immunol 2021; 12:750537. [PMID: 34867982 PMCID: PMC8634686 DOI: 10.3389/fimmu.2021.750537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Motility is a crucial activity of immune cells allowing them to patrol tissues as they differentiate, sample or exchange information, and execute their effector functions. Although all immune cells are highly migratory, each subset is endowed with very distinct motility patterns in accordance with functional specification. Furthermore individual immune cell subsets adapt their motility behaviour to the surrounding tissue environment. This review focuses on how the generation and adaptation of diversified motility patterns in immune cells is sustained by actin cytoskeleton dynamics. In particular, we review the knowledge gained through the study of inborn errors of immunity (IEI) related to actin defects. Such pathologies are unique models that help us to uncover the contribution of individual actin regulators to the migration of immune cells in the context of their development and function.
Collapse
Affiliation(s)
- Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,Laboratoire De Physique Théorique, IRSAMC, Université De Toulouse (UPS), CNRS, Toulouse, France
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| |
Collapse
|