1
|
Cai Z, Qiang Z, Tang R, Chen L, Lei W. Single-Cell and Bulk RNA Sequencing Reveal Tumor Cell Characteristics and Communication Features of Primary and Lymphatic Metastatic Hypopharyngeal Squamous Cell Carcinoma. Head Neck 2025. [PMID: 40395022 DOI: 10.1002/hed.28195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/22/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Lymph node metastasis (LNM) is strongly associated with poor prognosis in hypopharyngeal squamous carcinoma (HPSCC). Identifying key drivers of LNM and potential therapeutic targets in HPSCC is therefore essential for the early detection of high-risk patients and for informing personalized treatment strategies. METHODS Single-cell RNA sequencing data were used to characterize malignant epithelial cells (maECs) in HPSCC primary tumors (PT) and LNM, as well as differences in cell-to-cell communication. Concurrently, combined with bulk RNA sequencing data, a ligand receptor pairs (LRs) model was developed to predict the prognosis of HPSCC patients. RESULTS PT and LNM maECs have different gene expression characteristics, with genes involved in interferon signaling and TGF-β response pathways enriched in LNM maECs, suggesting potential immunosuppressive reprogramming. Cell communication analysis revealed distinct interactions and signaling features in PT and LNM microenvironments. Subsequently, a 4-LRs model was constructed to stratify HPSCC patients into low-or high-risk groups, with the high-risk group demonstrating significantly worse overall survival (OS) outcomes compared with the low-risk group in the training (p < 0.0001), testing (p = 0.0021), and entire (p < 0.0001) cohorts. Receiver operating characteristic curves showed that this risk model can effectively predict the 1-, 3-, and 5-year OS of HPSCC patients. Notably, the risk score effectively discriminated LNM status (area under the curve [AUC] = 0.927) among HPSCC patients, highlighting its potential as a HPSCC metastasis prediction tool. CONCLUSIONS These results provide biomarkers of LNM maECs as well as potential mechanisms of HPSCC metastasis, which may help with the precision treatment, diagnosis, and prognosis of HPSCC.
Collapse
Affiliation(s)
- Zhimou Cai
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhiwei Qiang
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Rong Tang
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Lin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenbin Lei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Yu KKH, Basu S, Baquer G, Ahn R, Gantchev J, Jindal S, Regan MS, Abou-Mrad Z, Prabhu MC, Williams MJ, D'Souza AD, Malinowski SW, Hopland K, Elhanati Y, Stopka SA, Stortchevoi A, Couturier C, He Z, Sun J, Chen Y, Espejo AB, Chow KH, Yerrum S, Kao PL, Kerrigan BP, Norberg L, Nielsen D, Puduvalli VK, Huse J, Beroukhim R, Kim BYS, Goswami S, Boire A, Frisken S, Cima MJ, Holdhoff M, Lucas CHG, Bettegowda C, Levine SS, Bale TA, Brennan C, Reardon DA, Lang FF, Chiocca EA, Ligon KL, White FM, Sharma P, Tabar V, Agar NYR. Investigative needle core biopsies support multimodal deep-data generation in glioblastoma. Nat Commun 2025; 16:3957. [PMID: 40295505 PMCID: PMC12037860 DOI: 10.1038/s41467-025-58452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain cancer with few effective therapies. Stereotactic needle biopsies are routinely used for diagnosis; however, the feasibility and utility of investigative biopsies to monitor treatment response remains ill-defined. Here, we demonstrate the depth of data generation possible from routine stereotactic needle core biopsies and perform highly resolved multi-omics analyses, including single-cell RNA sequencing, spatial transcriptomics, metabolomics, proteomics, phosphoproteomics, T-cell clonotype analysis, and MHC Class I immunopeptidomics on standard biopsy tissue obtained intra-operatively. We also examine biopsies taken from different locations and provide a framework for measuring spatial and genomic heterogeneity. Finally, we investigate the utility of stereotactic biopsies as a method for generating patient-derived xenograft (PDX) models. Multimodal dataset integration highlights spatially mapped immune cell-associated metabolic pathways and validates inferred cell-cell ligand-receptor interactions. In conclusion, investigative biopsies provide data-rich insight into disease processes and may be useful in evaluating treatment responses.
Collapse
Affiliation(s)
- Kenny K H Yu
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sreyashi Basu
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryuhjin Ahn
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer Gantchev
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sonali Jindal
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zaki Abou-Mrad
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael C Prabhu
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc J Williams
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia D D'Souza
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seth W Malinowski
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelsey Hopland
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuval Elhanati
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexei Stortchevoi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles Couturier
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhong He
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingjing Sun
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yulong Chen
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexsandra B Espejo
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kin Hoe Chow
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Smitha Yerrum
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pei-Lun Kao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brittany Parker Kerrigan
- Department of Neurosurgery, The Brain Tumor Center, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa Norberg
- Department of Anatomic Pathology, The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Douglas Nielsen
- Department of Anatomic Pathology, The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The Brain Tumor Center, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Huse
- Department of Anatomic Pathology, Division of Pathology-Lab Medicine Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rameen Beroukhim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The Brain Tumor Center, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangeeta Goswami
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adrienne Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Frisken
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Cima
- Department of Materials Science and Engineering, Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stuart S Levine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David A Reardon
- Department of Medical Oncology, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Frederick F Lang
- Department of Neurosurgery, The Brain Tumor Center, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith L Ligon
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Forest M White
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Padmanee Sharma
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
LOH CHRISTINA, ZHENG YUQI, ALZOUBI ISLAM, ALEXANDER KIMBERLEYL, LEE MAGGIE, CAI WEIDONG, SONG YANG, MCDONALD KERRIE, NOWAK ANNAK, BANATI RICHARDB, GRAEBER MANUELB. Microglia and brain macrophages are differentially associated with tumor necrosis in glioblastoma: A link to tumor progression. Oncol Res 2025; 33:937-950. [PMID: 40191733 PMCID: PMC11964880 DOI: 10.32604/or.2024.056436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/12/2024] [Indexed: 04/09/2025] Open
Abstract
Background Microglia and brain macrophages contribute significantly to the tumor microenvironment in highly malignant glioblastoma where they are considered important drivers of tumor progression. A better understanding of the role of the brain macrophages present in glioblastoma appears crucial for improving therapeutic outcomes, especially in the context of novel immunotherapeutic approaches. Methods We investigated the regulation of two well-established markers for microglia and brain macrophages, IBA1 and CD163, in relation to glioblastoma tumor necrosis using immunohistochemistry and modality fusion heatmaps of whole slide images obtained from adjacent tissue sections. Results IBA1 and CD163 showed remarkable differences in relation to glioblastoma tumor necrosis. Generally, IBA1 immunoreactive cells were far less common in necrotic tissue areas than CD163-expressing cells. We also found extensive and frequently diffuse extracellular CD163 deposition, especially in hypocellular necrobiotic tumor regions where IBA1 was typically absent. Conclusions Resident microglia seem more likely to be important for the diffuse infiltration of glioma cells in hypercellular tissue areas, whereas myeloid macrophages may be the main macrophage population in the wake of tumor necrosis. Since the necrotic niche with its interactions between microglia, brain macrophages, and glioblastoma/glioma stem cells is increasingly recognised as an important factor in tumor progression, further detailed studies of the macrophage populations in glioblastoma are warranted.
Collapse
Affiliation(s)
- CHRISTINA LOH
- Ken Parker Brain Tumor Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - YUQI ZHENG
- Ken Parker Brain Tumor Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - ISLAM ALZOUBI
- School of Computer Science, The University of Sydney, Sydney, NSW 2008, Australia
| | - KIMBERLEY L. ALEXANDER
- Neurosurgery Department, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital and Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - MAGGIE LEE
- Department of Neuropathology, Royal Prince Alfred Hospital and Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - WEI-DONG CAI
- School of Computer Science, The University of Sydney, Sydney, NSW 2008, Australia
| | - YANG SONG
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | | | - ANNA K. NOWAK
- Medical School, University of Western Australia, Crawley Campus, Perth, WA 6009, Australia
| | - RICHARD B. BANATI
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Santuario Accademico S. Giovanni D’Andorno, Casa Alpina ‘Principessa Laetitia’, Frazione Bele, Campiglia Cervo, 13812, Italy
| | - MANUEL B. GRAEBER
- Ken Parker Brain Tumor Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital and Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Association of Professors (USAP), University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Luo L, Yang P, Mastoraki S, Rao X, Wang Y, Kettner NM, Raghavendra AS, Tripathy D, Damodaran S, Hunt KK, Wang J, Li Z, Keyomarsi K. Single-cell RNA sequencing identifies molecular biomarkers predicting late progression to CDK4/6 inhibition in patients with HR+/HER2- metastatic breast cancer. Mol Cancer 2025; 24:48. [PMID: 39955556 PMCID: PMC11829392 DOI: 10.1186/s12943-025-02226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) in combination with endocrine therapy are the standard treatment for patients with hormone receptor-positive, HER2-negative metastatic breast cancer (mBC). Despite the efficacy of CDK4/6is, intrinsic resistance occurs in approximately one-third of patients, highlighting the need for reliable predictive biomarkers. METHODS Single-cell RNA sequencing analyzed metastatic tumors from HR+/HER2- mBC patients pre-CDK4/6i treatment at baseline (BL) and/or at disease progression. BL samples were from CDK4/6i responders (median progression-free survival [mPFS] = 25.5 months), while progressors were categorized as early-progressors (EP, mPFS = 3 months) and late-progressors (LP, mPFS = 11 months). Metastatic sites included liver, pleural effusions, ascites, and bone. InferCNV distinguished tumor cells, and functional analysis utilized the Molecular Signatures Database. RESULTS LP tumors displayed enhanced Myc, EMT, TNF-α, and inflammatory pathways compared to those EP tumors. Samples from BL and LP responders showed increased tumor-infiltrating CD8+ T cells and natural killer (NK) cells compared to EP non-responders. Notably, despite a high frequency of CD8+ T cells in responding tumors, a functional analysis revealed significant upregulation of genes associated with stress and apoptosis in proliferative CD4+ and CD8+ T cells in BL tumors compared to in EP and LP tumors. These genes, including HSP90 and HSPA8, are linked to resistance to PD1/PD-L1 immune checkpoint inhibitors. A ligand-receptor analysis showed enhanced interactions associated with inhibitory T-cell proliferation (SPP1-CD44) and suppression of immune activity (MDK-NCL) in LP tumors. Longitudinal biopsies consistently revealed dynamic NK cell expansion and enhanced cytotoxic T cell activity, alongside upregulation of immune activity inhibition, in LP tumors compared to in BL tumors. Notably, the predictive biomarker panel from BL tumor cells was validated in 2 independent cohorts, where it consistently predicted a significant improvement in mPFS duration in signature-high versus -low groups. CONCLUSION This study underscores the significance of molecular biomarkers in predicting clinical outcomes to CDK4/6i. Tumor-infiltration CD8+ T and NK cells may also serve as baseline predictors. These insights pave the way for optimizing therapeutic strategies based on microenvironment-specific changes, providing a personalized and effective approach for managing HR+/HER2- mBC and improving patient outcomes.
Collapse
Affiliation(s)
- Linjie Luo
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Peng Yang
- Department of Statistics, Rice University, Houston, TX, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sofia Mastoraki
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole M Kettner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akshara Singareeka Raghavendra
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Debasish Tripathy
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Yu W, Gui S, Peng L, Luo H, Xie J, Xiao J, Yilamu Y, Sun Y, Cai S, Cheng Z, Tao Z. STAT3-controlled CHI3L1/SPP1 positive feedback loop demonstrates the spatial heterogeneity and immune characteristics of glioblastoma. Dev Cell 2025:S1534-5807(25)00034-6. [PMID: 39933531 DOI: 10.1016/j.devcel.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/30/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Proneural-mesenchymal transition (PMT) is a phenotypic alteration and contributes to the malignant progression of glioblastoma (GBM). Macrophages, as a main infiltrating component of the tumor immune microenvironment (TIM), control the biological processes of PMT; however, the mechanisms driving this process remain largely unknown. Here, the overall landscape of tumor and nontumor cells was described by scMulti-omics technology. Then, we demonstrated that chitinase-3-like protein 1 (CHI3L1) played a critical role in maintaining mesenchymal (MES) status and reprogramming macrophage phenotype using C57BL/6 and NSG mice models derived from PN20 cells. Mechanistically, osteopontin (OPN)/ITGB1 maintained the activation of nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways by establishing a positive feedback loop with the CHI3L1-STAT3 axis, resulting in PMT. CHI3L1 enhanced the phosphorylation, nuclear localization, and transcriptional activity of STAT3 via directly binding its coiled-coil domain (CCD). Importantly, we screened and validated that hygromycin B (HB), an inhibitor of the STAT3-CCD domain, disrupted the CHI3L1-STAT3 interaction, thereby reducing the tumor burden in vitro and in vivo.
Collapse
Affiliation(s)
- Wanli Yu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang 330006, Jiangxi, China; JXHC key Laboratory of Neurological Medicine, Nanchang University, Nanchang 330006, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Shikai Gui
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang 330006, Jiangxi, China; JXHC key Laboratory of Neurological Medicine, Nanchang University, Nanchang 330006, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lunshan Peng
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang 330006, Jiangxi, China; JXHC key Laboratory of Neurological Medicine, Nanchang University, Nanchang 330006, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Haitao Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jiabao Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang 330006, Jiangxi, China; JXHC key Laboratory of Neurological Medicine, Nanchang University, Nanchang 330006, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Juexian Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yimuran Yilamu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Yi Sun
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Shihao Cai
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang 330006, Jiangxi, China; JXHC key Laboratory of Neurological Medicine, Nanchang University, Nanchang 330006, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zujue Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Zhennan Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China; Neurosurgical Institute, Nanjing University, Nanjing 210008, Jiangsu, China.
| |
Collapse
|
6
|
Hamed AA, Hua K, Trinh QM, Simons BD, Marioni JC, Stein LD, Dirks PB. Gliomagenesis mimics an injury response orchestrated by neural crest-like cells. Nature 2025; 638:499-509. [PMID: 39743595 PMCID: PMC11821533 DOI: 10.1038/s41586-024-08356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Glioblastoma is an incurable brain malignancy. By the time of clinical diagnosis, these tumours exhibit a degree of genetic and cellular heterogeneity that provides few clues to the mechanisms that initiate and drive gliomagenesis1,2. Here, to explore the early steps in gliomagenesis, we utilized conditional gene deletion and lineage tracing in tumour mouse models, coupled with serial magnetic resonance imaging, to initiate and then closely track tumour formation. We isolated labelled and unlabelled cells at multiple stages-before the first visible abnormality, at the time of the first visible lesion, and then through the stages of tumour growth-and subjected cells of each stage to single-cell profiling. We identify a malignant cell state with a neural crest-like gene expression signature that is highly abundant in the early stages, but relatively diminished in the late stage of tumour growth. Genomic analysis based on the presence of copy number alterations suggests that these neural crest-like states exist as part of a heterogeneous clonal hierarchy that evolves with tumour growth. By exploring the injury response in wounded normal mouse brains, we identify cells with a similar signature that emerge following injury and then disappear over time, suggesting that activation of an injury response program occurs during tumorigenesis. Indeed, our experiments reveal a non-malignant injury-like microenvironment that is initiated in the brain following oncogene activation in cerebral precursor cells. Collectively, our findings provide insight into the early stages of glioblastoma, identifying a unique cell state and an injury response program tied to early tumour formation. These findings have implications for glioblastoma therapies and raise new possibilities for early diagnosis and prevention of disease.
Collapse
Affiliation(s)
- Akram A Hamed
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Department, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kui Hua
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Quang M Trinh
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Benjamin D Simons
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge, UK.
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Lincoln D Stein
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| | - Peter B Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Department, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
van Hijfte L, Geurts M, de Heer I, Ghisai SA, Balcioglu HE, Hoogstrate Y, Vallentgoed WR, Head R, Luning R, van den Bosch T, Westerman B, Wesseling P, Joyce JA, French P, Debets R. Gemistocytic tumor cells programmed for glial scarring characterize T cell confinement in IDH-mutant astrocytoma. Nat Commun 2025; 16:1156. [PMID: 39880824 PMCID: PMC11779865 DOI: 10.1038/s41467-025-56441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Isocitrate dehydrogenase 1/2 mutant (IDHmt) astrocytoma is considered a T cell-deprived tumor, yet little is known regarding the phenotypes underlying T cell exclusion. Using bulk, single nucleus and spatial RNA and protein profiling, we demonstrate that a distinct spatial organization underlies T cell confinement to the perivascular space (T cell cuff) in IDHmt astrocytoma. T cell cuffs are uniquely characterized by a high abundance of gemistocytic tumor cells (GTC) in the surrounding stroma. Integrative analysis shows that GTC-high tumors are enriched for lymphocytes and tumor associated macrophages (TAM) and express immune cell migration and activation programs. Specifically, GTCs constitute a distinct sub-cluster of the astrocyte-like tumor cell state that co-localizes with immune reactive TAMs. Neighboring GTCs and TAMs express receptor-ligand pairs characteristic of reactive astrogliosis and glial scarring, such as SPP1/CD44 and IL-1β/IL1R1. Collectively, we reveal that T cell confinement in IDHmt astrocytomas associates with GTC-TAM networks that mimic glial scarring mechanisms.
Collapse
Affiliation(s)
- Levi van Hijfte
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Marjolein Geurts
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Iris de Heer
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Santoesha A Ghisai
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Youri Hoogstrate
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wies R Vallentgoed
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rania Head
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rosa Luning
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Bart Westerman
- Department of Neurosurgery, Amsterdam UMC/VUMC, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, Amsterdam UMC/VUMC and Brain Tumour Center, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Agora Cancer Center Lausanne and Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Pim French
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Reno Debets
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Licón-Muñoz Y, Avalos V, Subramanian S, Granger B, Martinez F, García-Montaño LA, Varela S, Moore D, Perkins E, Kogan M, Berto S, Chohan MO, Bowers CA, Piccirillo SGM. Single-nucleus and spatial landscape of the sub-ventricular zone in human glioblastoma. Cell Rep 2025; 44:115149. [PMID: 39752252 DOI: 10.1016/j.celrep.2024.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/22/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and the emergence of recurrence. Here, we build a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass and the SVZ of 15 patients and two histologically normal SVZ samples as controls. We identify a ZEB1-centered mesenchymal signature in the tumor cells of the SVZ. Moreover, the SVZ microenvironment is characterized by tumor-supportive microglia, which spatially coexist and establish crosstalks with tumor cells. Last, differential gene expression analyses, predictions of ligand-receptor and incoming/outgoing interactions, and functional assays reveal that the interleukin (IL)-1β/IL-1RAcP and Wnt-5a/Frizzled-3 pathways represent potential therapeutic targets in the SVZ. Our data provide insights into the biology of the SVZ in patients with GBM and identify potential targets of this microenvironment.
Collapse
Affiliation(s)
- Yamhilette Licón-Muñoz
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Vanessa Avalos
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Suganya Subramanian
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bryan Granger
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Frank Martinez
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Leopoldo A García-Montaño
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Samantha Varela
- University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Drew Moore
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eddie Perkins
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Michael Kogan
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, NM 87131, USA
| | - Stefano Berto
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Muhammad O Chohan
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Christian A Bowers
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, NM 87131, USA
| | - Sara G M Piccirillo
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
9
|
Xu X, Niu M, Lamberty BG, Emanuel K, Apostol MJF, Fox HS. Transformation of brain myeloid cell populations by SIV in rhesus macaques revealed by multiomics. Commun Biol 2025; 8:100. [PMID: 39838075 PMCID: PMC11751027 DOI: 10.1038/s42003-024-07443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025] Open
Abstract
The primary immune constituents in the brain, microglia and macrophages, are the target for HIV in people and simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological dysfunction, known as HIV-associated neurocognitive disorder (HAND). Given the gaps in our knowledge on how these cells respond in vivo to CNS infection, we perform single-cell multiomic sequencing, including gene expression and ATAC-seq, on myeloid cells from the brains of rhesus macaques with SIV-induced encephalitis (SIVE) as well as uninfected controls. We find that SIVE significantly changes the myeloid cell populations. In SIVE, microglia-like cells express high levels of chemoattractants capable of recruiting highly activated CAM-like cells to the site of infection/inflammation. A unique population of microglia-like cells is found in which the chromatin accessibility of genes diverges from their RNA expression. Additionally, we observe a dramatic shift of upstream gene regulators and their targets in brain myeloid cells during SIVE. This study further uncovers the transcriptome, gene regulatory events, and potential roles of different brain myeloid phenotypes in SIVE. This might deepen the understanding of SIVE/HIVE and enlighten the therapeutic development.
Collapse
Affiliation(s)
- Xiaoke Xu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Meng Niu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin G Lamberty
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katy Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
10
|
Fan X, Chen M. Exploring the role of Disulfidptosis in glioma progression: insights into tumor heterogeneity and therapeutic potential through single-cell RNA sequencing. Discov Oncol 2024; 15:829. [PMID: 39714742 DOI: 10.1007/s12672-024-01685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Gliomas, particularly glioblastoma (GBM), are the most common and aggressive primary brain tumors in adults, characterized by high malignancy and frequent recurrence. Despite standard treatments, including surgery, radiotherapy, and chemotherapy, the prognosis for GBM remains poor, with a median survival of less than 15 months and a five-year survival rate below 10%. Tumor heterogeneity and resistance to treatment create significant challenges in controlling glioma progression. Therefore, there is an urgent need for new therapeutic targets and strategies. OBJECTIVE This study investigates the role of Disulfidptosis, a recently discovered form of programmed cell death, in gliomas. Unlike apoptosis and necrosis, Disulfidptosis is driven by the abnormal accumulation of intracellular disulfide bonds, leading to protein misfolding and cytoskeletal collapse, particularly in cancer cells with metabolic dysregulation. We aim to explore how glioma cells respond to Disulfidptosis and identify potential therapeutic targets by analyzing the heterogeneity of gliomas at the single-cell level using single-cell RNA sequencing (scRNA-seq). METHODS scRNA-seq data from glioma patients were analyzed to uncover differences in ferroptosis-related pathways, including iron metabolism and lipid peroxidation. Cellular subpopulations within gliomas were profiled to assess their sensitivity to Disulfidptosis and the underlying mechanisms. Survival analysis was conducted to evaluate the clinical relevance of Disulfidptosis-related gene expression. RESULTS Multiple cell subpopulations within gliomas exhibit varying sensitivities to Disulfidptosis, influenced by their metabolic properties. Dysregulated iron metabolism and antioxidant mechanisms were identified as key factors impacting Disulfidptosis sensitivity. Glioma microenvironment signaling pathways also play a role in regulating Disulfidptosis. These findings suggest that activating Disulfidptosis pathways may provide novel therapeutic strategies to overcome treatment resistance in gliomas. CONCLUSION This study offers new insights into the role of Disulfidptosis in glioma progression and highlights its potential as a therapeutic target. By leveraging single-cell sequencing data, the research uncovers tumor heterogeneity and identifies specific cell populations resistant to Disulfidptosis. These findings may pave the way for personalized treatment strategies to improve survival outcomes in glioma patients.
Collapse
Affiliation(s)
- Xiaorong Fan
- Department of Neurosurgery, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, China
| | - Maojun Chen
- Department of Neurosurgery, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, China.
| |
Collapse
|
11
|
Jin H, Kim W, Yuan M, Li X, Yang H, Li M, Shi M, Turkez H, Uhlen M, Zhang C, Mardinoglu A. Identification of SPP1 + macrophages as an immune suppressor in hepatocellular carcinoma using single-cell and bulk transcriptomics. Front Immunol 2024; 15:1446453. [PMID: 39691723 PMCID: PMC11649653 DOI: 10.3389/fimmu.2024.1446453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Macrophages and T cells play crucial roles in liver physiology, but their functional diversity in hepatocellular carcinoma (HCC) remains largely unknown. Methods Two bulk RNA-sequencing (RNA-seq) cohorts for HCC were analyzed using gene co-expression network analysis. Key gene modules and networks were mapped to single-cell RNA-sequencing (scRNA-seq) data of HCC. Cell type fraction of bulk RNA-seq data was estimated by deconvolution approach using single-cell RNA-sequencing data as a reference. Survival analysis was carried out to estimate the prognosis of different immune cell types in bulk RNA-seq cohorts. Cell-cell interaction analysis was performed to identify potential links between immune cell types in HCC. Results In this study, we analyzed RNA-seq data from two large-scale HCC cohorts, revealing a major and consensus gene co-expression cluster with significant implications for immunosuppression. Notably, these genes exhibited higher enrichment in liver macrophages than T cells, as confirmed by scRNA-seq data from HCC patients. Integrative analysis of bulk and single-cell RNA-seq data pinpointed SPP1 + macrophages as an unfavorable cell type, while VCAN + macrophages, C1QA + macrophages, and CD8 + T cells were associated with a more favorable prognosis for HCC patients. Subsequent scRNA-seq investigations and in vitro experiments elucidated that SPP1, predominantly secreted by SPP1 + macrophages, inhibits CD8 + T cell proliferation. Finally, targeting SPP1 in tumor-associated macrophages through inhibition led to a shift towards a favorable phenotype. Discussion This study underpins the potential of SPP1 as a translational target in immunotherapy for HCC.
Collapse
Affiliation(s)
- Han Jin
- Central Laboratory, Tianjin Medical University General Hospital, Tianjin, China
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Woonghee Kim
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Meng Yuan
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Hong Yang
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Mengzhen Li
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Mengnan Shi
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Mathias Uhlen
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
12
|
Zhao F, Wang S, Bai Y, Cai J, Wang Y, Ma Y, Wang H, Zhao Y, Wang J, Zhang C, Gao J, Yang J. Cellular MSI-H score: a robust predictive biomarker for immunotherapy response and survival in gastrointestinal cancer. Am J Cancer Res 2024; 14:5551-5567. [PMID: 39659917 PMCID: PMC11626266 DOI: 10.62347/aiwp6518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Microsatellite instability-high (MSI-H) is a critical biomarker for immunotherapy, yet primary resistance remains a significant challenge. Current MSI-H detection methods evaluate the proportion of MSI-H loci, termed molecular MSI-H score, which can be affected by intratumoral heterogeneity (ITH). To address this limitation, we propose evaluating MSI-H at the cellular level to improve the prediction of immunotherapy outcomes. Using bulk tissue (TCGA-CRC) and cell line (CCLE-CRC) datasets, we identified genes highly expressed in MSI-H and MSS samples. These signatures were applied to a single-cell RNA sequencing (scCRC) dataset for enrichment analysis, enabling classification of tumor cells into MSI-H, MSS, and microsatellite dual (MSD) clusters using a Gaussian finite mixture model. Validation showed that MSI-H and MSS enrichment scores were higher in mismatch repair-deficient (MMRd) and mismatch repair-proficient (MMRp) patients, respectively. Functional enrichment analysis revealed that MSI-H cells were associated with pathways such as carboxylic acid catabolism, inflammatory responses, and IL-6/JAK2/STAT3 signaling. We developed a cellular MSI-H signature using genes specifically expressed in the MSI-H cell cluster and transformed the scCRC dataset into a cell-type-specific pseudobulk expression matrix. Using this matrix as a reference, we performed reference-based deconvolution on TCGA-CRC data. We defined the deconvolution score of MSI-H cell as cellular MSI-H score. This score strongly correlated with the molecular MSI-H score (R = 0.55, P < 0.001) and showed modest correlations with macrophage (MoMac, R = 0.14) and CD8+ T-cell (R = 0.11). To investigate its potential for clinical application, we applied the cellular MSI-H signature to the BJ-cohort, comprising 97 immunotherapy-treated gastrointestinal patients sequenced with a 395-gene panel. The cellular MSI-H score was significantly higher in responders (P = 0.002), positively correlated with tumor reduction percentage (R = 0.29, P = 0.006), and associated with improved progression-free survival (PFS) (HR: 0.00, 95% CI: 0.00-0.31, P = 0.021). In summary, the cellular MSI-H score reflects the MSI-H cell level within a tumor and demonstrates superior accuracy compared to molecular MSI-H status in predicting immunotherapy response and PFS. This underscores its potential as a more robust biomarker for guiding immunotherapy decisions.
Collapse
Affiliation(s)
- Feilong Zhao
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Shu Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Yuezong Bai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and InstituteBeijing 100142, China
| | - Jinping Cai
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Yuhao Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Yuxuan Ma
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Haoyuan Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Yan Zhao
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Juan Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Cheng Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and InstituteBeijing 100142, China
| | - Jing Gao
- Department of Oncology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
| | - Jianjun Yang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| |
Collapse
|
13
|
Zhao S, Ni K, Xie J, Cheng C, Zhao N, Liu J, Ji W, Wang Q, Zhang P, Liu Y. Exploring the prognostic value of BRMS1 + microglia based on single-cell anoikis regulator patterns in the immunologic microenvironment of GBM. J Neurooncol 2024; 170:101-117. [PMID: 39143438 PMCID: PMC11447114 DOI: 10.1007/s11060-024-04781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Anoikis is a specialized form of programmed cell death induced by the loss of cell adhesion to the extracellular matrix (ECM). Acquisition of anoikis resistance is a significant marker for cancer cell invasion, metastasis, therapy resistance, and recurrence. Although current research has identified multiple factors that regulate anoikis resistance, the pathological mechanisms of anoikis-mediated tumor microenvironment (TME) in glioblastoma (GBM) remain largely unexplored. METHODS Utilizing single-cell RNA sequencing (scRNA-seq) data and employing non-negative matrix factorization (NMF), we identified and characterized TME cell clusters with distinct anoikis-associated gene signatures. Prognostic and therapeutic response analyses were conducted using TCGA and CGGA datasets to assess the clinical significance of different TME cell clusters. The spatial relationship between BRMS1 + microglia and tumor cells was inferred from spatial transcriptome RNA sequencing (stRNA-seq) data. To simulate the tumor immune microenvironment, co-culture experiments were performed with microglia (HMC3) and GBM cells (U118/U251), and microglia were transfected with a BRMS1 overexpression lentivirus. Western blot or ELISA were used to detect BRMS1, M2 macrophage-specific markers, PI3K/AKT signaling proteins, and apoptosis-related proteins. The proliferation and apoptosis capabilities of tumor cells were evaluated using CCK-8, colony formation, and apoptosis assays, while the invasive and migratory abilities of tumor cells were assessed using Transwell assays. RESULTS NMF-based analysis successfully identified CD8 + T cell and microglia cell clusters with distinct gene signature characteristics. Trajectory analysis, cell communication, and gene regulatory network analyses collectively indicated that anoikis-mediated TME cell clusters can influence tumor cell development through various mechanisms. Notably, BRMS1 + AP-Mic exhibited an M2 macrophage phenotype and had significant cell communication with malignant cells. Moreover, high expression of BRMS1 + AP-Mic in TCGA and CGGA datasets was associated with poorer survival outcomes, indicating its detrimental impact on immunotherapy. Upregulation of BRMS1 in microglia may lead to M2 macrophage polarization, activate the PI3K/AKT signaling pathway through SPP1/CD44-mediated cell interactions, inhibit tumor cell apoptosis, and promote tumor proliferation and invasion. CONCLUSION This pioneering study used NMF-based analysis to reveal the important predictive value of anoikis-regulated TME in GBM for prognosis and immunotherapeutic response. BRMS1 + microglial cells provide a new perspective for a deeper understanding of the immunosuppressive microenvironment of GBM and could serve as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Kaixiang Ni
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Cheng
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Ning Zhao
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Ji
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Yuankun Liu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China.
| |
Collapse
|
14
|
Cha SM, Park JW, Lee YJ, Lee HJ, Lee H, Lee IW, Gong G, Park SH, Lee HJ, Jeong BK. SPP1+ macrophages in HR+ breast cancer are associated with tumor-infiltrating lymphocytes. NPJ Breast Cancer 2024; 10:83. [PMID: 39349495 PMCID: PMC11442831 DOI: 10.1038/s41523-024-00695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/22/2024] [Indexed: 10/02/2024] Open
Abstract
Breast cancer categorized into hormone receptor-positive (HR+), HER2-positive (HER2+), and triple-negative (TNBC) subtypes, exhibits varied outcomes based on the number of tumor-infiltrating lymphocytes (TILs). To explore the divergent roles of TIL levels across different subtypes, we employed single-cell RNA sequencing on 31 patients with breast cancer. HR+ breast cancer with high TIL levels (TIL-high) revealed increased SPP1+ macrophages, increased SPP1 expression in other monocytes/macrophages (mono/macro) subgroups, and enriched pathways associated with extracellular matrix (ECM) remodeling in mono/macro. Moreover, cell-cell interaction analyses revealed enhanced SPP1, MIF, and FN1 signaling in the interaction between SPP1+ macrophages and T-cells in TIL-high HR+ breast cancer. Spatial transcriptomics data highlighted the close proximity of SPP1+ macrophages, CD8+ T-cells, and CD4+ T-cells in TIL-high HR+ breast cancer. Our findings unveil the novel influence of SPP1+ macrophages on T-cells in TIL-high HR+ breast cancer, potentially explaining the poor prognosis and offering insights for targeted interventions.
Collapse
Grants
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
Collapse
Affiliation(s)
- Su Min Cha
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Yoon Jae Lee
- University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung Hee Park
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
- Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Seoul, South Korea.
- NeogenTC Corp., Seoul, South Korea.
| | - Byung-Kwan Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
15
|
Batara DC, Kim HJ, Phan LT, Kim M, Son YO, Lee S, Park SI, Choi YS, Beck S, Kim SH. Elevated α-1,2-mannosidase MAN1C1 in glioma stem cells and its implications for immunological changes and prognosis in glioma patients. Sci Rep 2024; 14:22159. [PMID: 39333557 PMCID: PMC11436702 DOI: 10.1038/s41598-024-72901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor, and the presence of glioma stem cells (GSCs) has been linked to its resistance to treatments and recurrence. Additionally, aberrant glycosylation has been implicated in the aggressiveness of cancers. However, the influence and underlying mechanism of N-glycosylation on the GSC phenotype and GBM malignancy remain elusive. Here, we performed an in-silico analysis approach on publicly available datasets to examine the function of N-glycosylation-related genes in GSCs and gliomas, accompanied by a qRT-PCR validation experiment. We found that high α-1,2-mannosidase MAN1C1 is associated with immunological functions and worse survival of glioma patients. Differential gene expression analysis and qRT-PCR validation revealed that MAN1C1 is highly expressed in GSCs. Furthermore, higher MAN1C1 expression predicts worse outcomes in glioma patients. Also, MAN1C1 expression is increased in the perinecrotic region of GBM and is associated with immunological and inflammatory functions, a hallmark of the GBM mesenchymal subtype. Further analysis confirmed that MAN1C1 expression is closely associated with infiltrating immune cells and disrupted immune response in the GBM microenvironment. These suggest that MAN1C1 is a potential biomarker for gliomas and may be important as an immunotherapeutic target for GBM.
Collapse
Affiliation(s)
- Don Carlo Batara
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun-Jin Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Le Thi Phan
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Minseo Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), 49, Dosicheomdansaneop-ro, Nam-gu, Gwangju, 61751, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Young Sun Choi
- Jeollanam-do Agriculture Research and Extension Services Livestock Research Institute, Naju-si, Jeollanam-do, 58213, Republic of Korea
| | - Samuel Beck
- Department of Dermatology, Center for Aging Research, Chobanian & Avedisian School of Medicine, Boston University, Boston, 02118, USA.
| | - Sung-Hak Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
16
|
Xu X, Niu M, Lamberty BG, Emanuel K, Apostol MJF, Fox HS. Transformation of brain myeloid cell populations by SIV in rhesus macaques revealed by multiomics. RESEARCH SQUARE 2024:rs.3.rs-4916594. [PMID: 39372920 PMCID: PMC11451639 DOI: 10.21203/rs.3.rs-4916594/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The primary immune constituents in the brain, microglia and macrophages, are the target for HIV in people and simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological dysfunction, known as HIV-associated neurocognitive disorder (HAND). Given the gaps in our knowledge on how these cells respond in vivo to CNS infection, we performed single-cell multiomic sequencing, including gene expression and ATAC-seq, on myeloid cells from the brains of rhesus macaques with SIV-induced encephalitis (SIVE) as well as uninfected controls. We found that the myeloid cell populations were significantly changed by SIVE. In SIVE microglia-like cells express high levels of chemoattractants capable of recruiting highly activated CAM-like cells to the site of infection/inflammation. A unique population of microglia-like cells was found in which the chromatin accessibility of genes diverged from their RNA expression. Additionally, we observed a dramatic shift of upstream gene regulators and their targets in brain myeloid cells during SIVE. In summary, this study further uncovers the transcriptome, gene regulatory events and potential roles of different brain myeloid phenotypes in SIVE.
Collapse
Affiliation(s)
- Xiaoke Xu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Meng Niu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benjamin G. Lamberty
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katy Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Moses Jedd Facun Apostol
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
17
|
Wu J, Guo J, Xia S, Chen J, Cao M, Xie L, Yang C, Qiu F, Wang J. A Single-Cell Transcriptome Profiling of Triptolide-Induced Nephrotoxicity in Mice. Adv Biol (Weinh) 2024; 8:e2400120. [PMID: 38864263 DOI: 10.1002/adbi.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Indexed: 06/13/2024]
Abstract
Triptolide (TP), an active component isolated from the traditional Chinese herb Tripterygium wilfordii Hook F (TWHF), shows great promise for treating inflammation-related diseases. However, its potential nephrotoxic effects remain concerning. The mechanism underlying TP-induced nephrotoxicity is inadequately elucidated, particularly at single-cell resolution. Hence, single-cell RNA sequencing (scRNA-seq) of kidney tissues from control and TP-treated mice is performed to generate a thorough description of the renal cell atlas upon TP treatment. Heterogeneous responses of nephron epithelial cells are observed after TP exposure, attributing differential susceptibility of cell subtypes to excessive reactive oxygen species and increased inflammatory responses. Moreover, TP disrupts vascular function by activating endothelial cell immunity and damaging fibroblasts. Severe immune cell damage and the activation of pro-inflammatory Macro_C1 cells are also observed with TP treatment. Additionally, ligand-receptor crosstalk analysis reveals that the SPP1 (osteopontin) signaling pathway targeting Macro_C1 cells is triggered by TP treatment, which may promote the infiltration of Macro_C1 cells to exacerbate renal toxicity. Overall, this study provides comprehensive information on the transcriptomic profiles and cellular composition of TP-associated nephrotoxicity at single-cell resolution, which can strengthen the understanding of the pathogenesis of TP-induced nephrotoxicity and provide valuable clues for the discovery of new therapeutic targets to ameliorate TP-associated nephrotoxicity.
Collapse
Affiliation(s)
- Jiangpeng Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Jinan Guo
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Siyu Xia
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Min Cao
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Lulin Xie
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Chuanbin Yang
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jigang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China
| |
Collapse
|
18
|
He Z, Liu Z, Wang Q, Sima X, Zhao W, He C, Yang W, Chen H, Gong B, Song S, Wang Y. Single-cell and spatial transcriptome assays reveal heterogeneity in gliomas through stress responses and pathway alterations. Front Immunol 2024; 15:1452172. [PMID: 39257581 PMCID: PMC11385306 DOI: 10.3389/fimmu.2024.1452172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024] Open
Abstract
Background Glioma is a highly heterogeneous malignancy of the central nervous system. This heterogeneity is driven by various molecular processes, including neoplastic transformation, cell cycle dysregulation, and angiogenesis. Among these biomolecular events, inflammation and stress pathways in the development and driving factors of glioma heterogeneity have been reported. However, the mechanisms of glioma heterogeneity under stress response remain unclear, especially from a spatial aspect. Methods This study employed single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore the impact of oxidative stress response genes in oligodendrocyte precursor cells (OPCs). Our analysis identified distinct pathways activated by oxidative stress in two different types of gliomas: high- and low- grade (HG and LG) gliomas. Results In HG gliomas, oxidative stress induced a metabolic shift from oxidative phosphorylation to glycolysis, promoting cell survival by preventing apoptosis. This metabolic reprogramming was accompanied by epithelial-to-mesenchymal transition (EMT) and an upregulation of stress response genes. Furthermore, SCENIC (Single-Cell rEgulatory Network Inference and Clustering) analysis revealed that oxidative stress activated the AP1 transcription factor in HG gliomas, thereby enhancing tumor cell survival and proliferation. Conclusion Our findings provide a novel perspective on the mechanisms of oxidative stress responses across various grades of gliomas. This insight enhances our comprehension of the evolutionary processes and heterogeneity within gliomas, potentially guiding future research and therapeutic strategies.
Collapse
Affiliation(s)
- Zongze He
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zheng Liu
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Qi Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingjian Sima
- Medical School, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhao
- Center of Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunmei He
- Department of Otolaryngology, Chongqing General Hospital of the Chinese People's Armed Police Force, Chongqing, China
| | - Wenjie Yang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Han Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yi Wang
- Center of Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
19
|
Vasilevska J, Cheng PF, Lehmann J, Ramelyte E, Gómez JM, Dimitriou F, Sella F, Ferretti D, Salas-Bastos A, Jordaan WS, Levesque MP, Dummer R, Sommer L. Monitoring melanoma patients on treatment reveals a distinct macrophage population driving targeted therapy resistance. Cell Rep Med 2024; 5:101611. [PMID: 38942020 PMCID: PMC11293307 DOI: 10.1016/j.xcrm.2024.101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/30/2024]
Abstract
Resistance to targeted therapy remains a major clinical challenge in melanoma. To uncover resistance mechanisms, we perform single-cell RNA sequencing on fine-needle aspirates from resistant and responding tumors of patients undergoing BRAFi/MEKi treatment. Among the genes most prominently expressed in resistant tumors is POSTN, predicted to signal to a macrophage population associated with targeted therapy resistance (TTR). Accordingly, tumors from patients with fast disease progression after therapy exhibit high POSTN expression levels and high numbers of TTR macrophages. POSTN polarizes human macrophages toward a TTR phenotype and promotes resistance to targeted therapy in a melanoma mouse model, which is associated with a phenotype change in intratumoral macrophages. Finally, polarized TTR macrophages directly protect human melanoma cells from MEKi-induced killing via CD44 receptor expression on melanoma cells. Thus, interfering with the protective activity of TTR macrophages may offer a strategy to overcome resistance to targeted therapy in melanoma.
Collapse
Affiliation(s)
- Jelena Vasilevska
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Phil Fang Cheng
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Julia Lehmann
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Egle Ramelyte
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Julia Martínez Gómez
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Florentia Dimitriou
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Federica Sella
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Daria Ferretti
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | | | | | - Mitchell Paul Levesque
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Lukas Sommer
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
20
|
Chien F, Michaud ME, Bakhtiari M, Schroff C, Snuderl M, Velazquez Vega JE, MacDonald TJ, Bhasin MK. Medulloblastoma Spatial Transcriptomics Reveals Tumor Microenvironment Heterogeneity with High-Density Progenitor Cell Regions Correlating with High-Risk Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600684. [PMID: 38979174 PMCID: PMC11230370 DOI: 10.1101/2024.06.25.600684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The tumor microenvironment (TME) of medulloblastoma (MB) influences progression and therapy response, presenting a promising target for therapeutic advances. Prior single-cell analyses have characterized the cellular components of the TME but lack spatial context. To address this, we performed spatial transcriptomic sequencing on sixteen pediatric MB samples obtained at diagnosis, including two matched diagnosis-relapse pairs. Our analyses revealed inter- and intra-tumoral heterogeneity within the TME, comprised of tumor-associated astrocytes (TAAs), macrophages (TAMs), stromal components, and distinct subpopulations of MB cells at different stages of neuronal differentiation and cell cycle progression. We identified dense regions of quiescent progenitor-like MB cells enriched in patients with high-risk (HR) features and an increase in TAAs, TAMs, and dysregulated vascular endothelium following relapse. Our study presents novel insights into the spatial architecture and cellular landscape of the medulloblastoma TME, highlighting spatial patterns linked to HR features and relapse, which may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Franklin Chien
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, GA 30322, USA
| | - Marina E. Michaud
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Chanel Schroff
- Department of Pathology, NYU Langone Health and Grossman School of Medicine, New York, NY 10016, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health and Grossman School of Medicine, New York, NY 10016, USA
| | - Jose E. Velazquez Vega
- Department of Pathology and Laboratory Medicine, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, GA 30322, USA
| | - Tobey J. MacDonald
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, GA 30322, USA
| | - Manoj K. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
21
|
Zhao Y, Chen C, Chen K, Sun Y, He N, Zhang X, Xu J, Shen A, Zhao S. Multi-omics analysis of macrophage-associated receptor and ligand reveals a strong prognostic signature and subtypes in hepatocellular carcinoma. Sci Rep 2024; 14:12163. [PMID: 38806553 PMCID: PMC11133315 DOI: 10.1038/s41598-024-62668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to morbidity and mortality worldwide. The interaction between receptors and ligands is the primary mode of intercellular signaling and plays a vital role in the progression of HCC. This study aimed to identify the macrophage-related receptor ligand marker genes associated with HCC and further explored the molecular immune mechanisms attributed to altered biomarkers. Single-cell RNA sequencing data containing primary and recurrent samples were downloaded from the China National GeneBank. Cell types were first identified to explore differences between immune cells from different sample sources. CellChat analysis was used to infer and analyze intercellular communication networks quantitatively. Three molecular subtypes were constructed based on the screened twenty macrophage-associated receptor ligand genes. Bulk RNA-Seq data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. After the screening, the minor absolute shrinkage and selection operator (LASSO) regression model was employed to identify key markers. After collecting peripheral blood and clinical information from patients, an enzyme-linked immunosorbent assay (ELISA) was used to detect the correlation between key markers and IL-10, one of the macrophage markers. After developing a new HCC risk adjustment model and conducting analysis, it was found that there were significant differences in immune status and gene mutations between the high-risk and low-risk groups of patients based on macrophage-associated receptor and ligand genes. This study identified SPP1, ANGPT2, and NCL as key biological targets for HCC. The drug-gene interaction network analysis identified wortmannin, ribavirin, and tarnafloxin as potential therapeutic drugs for the three key markers. In a clinical cohort study, patients with immune checkpoint inhibitor (ICI) resistance had significantly higher expression levels of OPN, ANGPT2, NCL, and IL-10 than patients with ICI-responsiveness. These three key markers were positively correlated with the expression level of IL-10. The signature based on macrophage-associated receptor and ligand genes can accurately predict the prognosis of patients with HCC and the sensitivity to immunotherapy. These results may help guide the development of targeted prevention and personalized treatment of HCC.
Collapse
Affiliation(s)
- Yulou Zhao
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School, Nantong University, Nantong, China
| | - Cong Chen
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Kang Chen
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanjun Sun
- The Sixth People's Hospital of Yancheng City, Yancheng, China
| | - Ning He
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiubing Zhang
- Department of Medical Oncology, Nantong Second People's Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Xu
- Department of Medical Oncology, Nantong Second People's Affiliated Hospital of Nantong University, Nantong, China
| | - Aiguo Shen
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China.
| | - Suming Zhao
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
22
|
Licón-Muñoz Y, Avalos V, Subramanian S, Granger B, Martinez F, Varela S, Moore D, Perkins E, Kogan M, Berto S, Chohan M, Bowers C, Piccirillo S. Single-nucleus and spatial landscape of the sub-ventricular zone in human glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590852. [PMID: 38712234 PMCID: PMC11071523 DOI: 10.1101/2024.04.24.590852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and emergence of recurrence. Here, we built a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass (T_Mass) and the SVZ (T_SVZ) of 15 GBM patients and 2 histologically normal SVZ (N_SVZ) samples as controls. We identified a mesenchymal signature in the T_SVZ of GBM patients: tumor cells from the T_SVZ relied on the ZEB1 regulatory network, whereas tumor cells in the T_Mass relied on the TEAD1 regulatory network. Moreover, the T_SVZ microenvironment was predominantly characterized by tumor-supportive microglia, which spatially co-exist and establish heterotypic interactions with tumor cells. Lastly, differential gene expression analyses, predictions of ligand-receptor and incoming/outgoing interactions, and functional assays revealed that the IL-1β/IL-1RAcP and Wnt-5a/Frizzled-3 pathways are therapeutic targets in the T_SVZ microenvironment. Our data provide insights into the biology of the SVZ in GBM patients and identify specific targets of this microenvironment.
Collapse
Affiliation(s)
- Y. Licón-Muñoz
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - V. Avalos
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - S. Subramanian
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - B. Granger
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - F. Martinez
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - S. Varela
- University of New Mexico School of Medicine, Albuquerque, NM
| | - D. Moore
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - E. Perkins
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS
| | - M. Kogan
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, NM
| | - S. Berto
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - M.O. Chohan
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS
| | - C.A. Bowers
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, NM
| | - S.G.M. Piccirillo
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| |
Collapse
|
23
|
Wang K, Xiao Y, Zheng R, Cheng Y. Immune cell infiltration and drug response in glioblastoma multiforme: insights from oxidative stress-related genes. Cancer Cell Int 2024; 24:123. [PMID: 38566075 PMCID: PMC10986133 DOI: 10.1186/s12935-024-03316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND GBM, also known as glioblastoma multiforme, is the most prevalent and lethal type of brain cancer. The cell proliferation, invasion, angiogenesis, and treatment of gliomas are significantly influenced by oxidative stress. Nevertheless, the connection between ORGs and GBM remains poorly comprehended. The objective of this research is to investigate the predictive significance of ORGs in GBM and their potential as targets for therapy. METHODS We identified differentially expressed genes in glioma and ORGs from public databases. A risk model was established using LASSO regression and Cox analysis, and its performance was evaluated with ROC curves. We then performed consistent cluster analysis on the model, examining its correlation with immunity and drug response. Additionally, PCR, WB and IHC were employed to validate key genes within the prognostic model. RESULTS 9 ORGs (H6PD, BMP2, SPP1, HADHA, SLC25A20, TXNIP, ACTA1, CCND1, EEF1A1) were selected via differential expression analysis, LASSO and Cox analysis, and incorporated into the risk model with high predictive accuracy. Enrichment analyses using GSVA and GSEA focused predominantly on malignancy-associated pathways. Subtype C of GBM had the best prognosis with the lowest risk score. Furthermore, the model exhibited a strong correlation with the infiltration of immune cells and had the capability to pinpoint potential targeted therapeutic medications for GBM. Ultimately, we selected HADHA for in vitro validation. The findings indicated that GBM exhibits a significant upregulation of HADHA. Knockdown of HADHA inhibited glioma cell proliferation and diminished their migration and invasion capacities and influenced the tumor growth in vivo. CONCLUSION The risk model, built upon 9 ORGs and the identification of GBM subtypes, suggests that ORGs have a broad application prospect in the clinical immunotherapy and targeted drug treatment of GBM. HADHA significantly influences the development of gliomas, both in vivo and in vitro.
Collapse
Affiliation(s)
- Kan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China
| | - Yifei Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China
| | - Ruipeng Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China
| | - Yu Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China.
| |
Collapse
|
24
|
Zhang Q, Wang X, Liu Y, Xu H, Ye C. Pan-cancer and single-cell analyses identify CD44 as an immunotherapy response predictor and regulating macrophage polarization and tumor progression in colorectal cancer. Front Oncol 2024; 14:1380821. [PMID: 38590654 PMCID: PMC10999581 DOI: 10.3389/fonc.2024.1380821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Cluster of differentiation (CD) 44 is a non-kinase cell surface transmembrane glycoprotein critical for tumor maintenance and progression. Methods We conducted a systematic analysis of the expression profile and genomic alteration profile of CD44 in 33 types of cancer. The immune characteristics of CD44 were comprehensively explored by TIMER2.0 and CIBERSORT. In addition, the CD44 transcriptional landscape was examined at the single-cell level. Then, Pseudotime trajectory analysis of CD44 gene expression was performed using Monocle 2, and CellChat was utilized to compare the crosstalk differences between CD44+monocytes and CD44- monocytes. Tumor immune dysfunction and exclusion (TIDE) was used to evaluate the predictive ability of CD44 for immune checkpoint blockade (ICB) responses. The effects of CD44 on colorectal cancer (CRC) and macrophage polarization were investigated by knocking down the expression of CD44 in HCT-116 cell and macrophages in vitro. Results The expression of CD44 elevated in most cancers, predicting unfavorable prognosis. In addditon, CD44 was correlation with immune cell infiltration and key immune regulators. CD44+ monocytes had a higher information flow intensity than CD44- monocytes. CD44 had good predictive ability for immune checkpoint blockade responses. Knockdown of CD44 inhibited the proliferation, migration, and invasion of HCT-116 cell in vitro. Knockdown of CD44 inhibited M2 macrophage polarization. Discussion These findings suggest that CD44 is involved in regulating tumor development, macrophage polarization, and has certain predictive value for patient clinical prognosis and response to immunotherapy.
Collapse
Affiliation(s)
- Qian Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinyu Wang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Liu
- Department of Pharmacy, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Hao Xu
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Chun Ye
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
25
|
Fan G, Xie T, Li L, Tang L, Han X, Shi Y. Single-cell and spatial analyses revealed the co-location of cancer stem cells and SPP1+ macrophage in hypoxic region that determines the poor prognosis in hepatocellular carcinoma. NPJ Precis Oncol 2024; 8:75. [PMID: 38521868 PMCID: PMC10960828 DOI: 10.1038/s41698-024-00564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
In hepatocellular carcinoma (HCC), classical cancer stem cells (CSC) markers were shared by normal stem cells, targeting which may hinder hepatic regeneration and cause liver failure. Additionally, the spatial structure of CSC still remained elusive. To address these limitations, we undertook a comprehensive study combining single-cell data (56,022 cells from 20 samples) and spatial data (38,191 spots from eight samples) to obtain CSC signature and uncover its spatial structure. Utilizing the CytoTRACE algorithm, we discretely identified CSC, which displayed upregulated proliferation pathways regulated by HIF1A. A CSC signature of 107 genes was then developed using Weighted Gene Co-expression Network Analysis (WGCNA). Notably, HCC patients with high CSC levels exhibited an accumulation of SPP1+ macrophages (Macro_SPP1) expressing metalloproteinases (MMP9, MMP12, and MMP7) regulated by HIF1A, suggesting a hypoxic tumor region connecting Macro_SPP1 and CSC. Both CSC and Macro_SPP1 correlated with worse prognosis and undesirable immunotherapy response. Spatial analysis revealed the co-location of CSC and Macro_SPP1, with CD8 T cells excluded from the tumor region. The co-location area and non-tumor area of boundary exhibited a high level of hypoxia, with the HAVRC2 checkpoint highly expressed. Within the co-location area, the SPP1 signaling pathway was most active in cell-cell communication, with SPP1-CD44 and SPP1-ITGA/ITGB identified as the main ligand-receptor pairs. This study successfully constructed a CSC signature and demonstrated the co-location of CSC and Macro_SPP1 in a hypoxic region that exacerbates the tumor microenvironment in HCC.
Collapse
Affiliation(s)
- Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs; No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs; No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs; No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College; No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs; No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
26
|
Tang W, Lo CWS, Ma W, Chu ATW, Tong AHY, Chung BHY. Revealing the role of SPP1 + macrophages in glioma prognosis and therapeutic targeting by investigating tumor-associated macrophage landscape in grade 2 and 3 gliomas. Cell Biosci 2024; 14:37. [PMID: 38515213 PMCID: PMC10956315 DOI: 10.1186/s13578-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Glioma is a highly heterogeneous brain tumor categorized into World Health Organization (WHO) grades 1-4 based on its malignancy. The suppressive immune microenvironment of glioma contributes significantly to unfavourable patient outcomes. However, the cellular composition and their complex interplays within the glioma environment remain poorly understood, and reliable prognostic markers remain elusive. Therefore, in-depth exploration of the tumor microenvironment (TME) and identification of predictive markers are crucial for improving the clinical management of glioma patients. RESULTS Our analysis of single-cell RNA-sequencing data from glioma samples unveiled the immunosuppressive role of tumor-associated macrophages (TAMs), mediated through intricate interactions with tumor cells and lymphocytes. We also discovered the heterogeneity within TAMs, among which a group of suppressive TAMs named TAM-SPP1 demonstrated a significant association with Epidermal Growth Factor Receptor (EGFR) amplification, impaired T cell response and unfavourable patient survival outcomes. Furthermore, by leveraging genomic and transcriptomic data from The Cancer Genome Atlas (TCGA) dataset, two distinct molecular subtypes with a different constitution of TAMs, EGFR status and clinical outcomes were identified. Exploiting the molecular differences between these two subtypes, we developed a four-gene-based prognostic model. This model displayed strong associations with an elevated level of suppressive TAMs and could be used to predict anti-tumor immune response and prognosis in glioma patients. CONCLUSION Our findings illuminated the molecular and cellular mechanisms that shape the immunosuppressive microenvironment in gliomas, providing novel insights into potential therapeutic targets. Furthermore, the developed prognostic model holds promise for predicting immunotherapy response and assisting in more precise risk stratification for glioma patients.
Collapse
Affiliation(s)
- Wenshu Tang
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Cario W S Lo
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Wei Ma
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Annie T W Chu
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Amy H Y Tong
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Brian H Y Chung
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China.
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Sheng B, Pan S, Ye M, Liu H, Zhang J, Zhao B, Ji H, Zhu X. Single-cell RNA sequencing of cervical exfoliated cells reveals potential biomarkers and cellular pathogenesis in cervical carcinogenesis. Cell Death Dis 2024; 15:130. [PMID: 38346944 PMCID: PMC10861450 DOI: 10.1038/s41419-024-06522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Cervical cancer (CC) is a common gynecological malignancy. Despite the current screening methods have been proved effectively and significantly decreased CC morbidity and mortality, deficiencies still exist. Single-cell RNA sequencing (scRNA-seq) approach can identify the complex and rare cell populations at single-cell resolution. By scRNA-seq, the heterogeneity of tumor microenvironment across cervical carcinogenesis has been mapped and described. Whether these alterations could be detected and applied to CC screening is unclear. Herein, we performed scRNA-seq of 56,173 cervical exfoliated cells from 15 samples, including normal cervix, low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), and malignancy. The present study delineated the alteration of immune and epithelial cells derived during the cervical lesion progression. A subset of lipid-associated macrophage was identified as a tumor-promoting element and could serve as a biomarker for predicting the progression of LSIL into HSIL, which was then verified by immunofluorescence. Furthermore, cell-cell communication analysis indicated the SPP1-CD44 axis might exhibit a protumor interaction between epithelial cell and macrophage. In this study, we investigated the cervical multicellular ecosystem in cervical carcinogenesis and identified potential biomarkers for early detection.
Collapse
Affiliation(s)
- Bo Sheng
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Miaomiao Ye
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Hejing Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiamin Zhang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Zhao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Huihui Ji
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
28
|
Wang J, Zhu N, Su X, Gao Y, Yang R. Novel tumor-associated macrophage populations and subpopulations by single cell RNA sequencing. Front Immunol 2024; 14:1264774. [PMID: 38347955 PMCID: PMC10859433 DOI: 10.3389/fimmu.2023.1264774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are present in almost all solid tumor tissues. 16They play critical roles in immune regulation, tumor angiogenesis, tumor stem cell activation, tumor invasion and metastasis, and resistance to therapy. However, it is unclear how TAMs perform these functions. With the application of single-cell RNA sequencing (scRNA-seq), it has become possible to identify TAM subpopulations associated with distinct functions. In this review, we discuss four novel TAM subpopulations in distinct solid tumors based on core gene signatures by scRNA-seq, including FCN1 +, SPP1 +, C1Q + and CCL18 + TAMs. Functional enrichment and gene expression in scRNA-seq data from different solid tumor tissues found that FCN1 + TAMs may induce inflammation; SPP1 + TAMs are potentially involved in metastasis, angiogenesis, and cancer cell stem cell activation, whereas C1Q + TAMs participate in immune regulation and suppression; And CCL18 + cells are terminal immunosuppressive macrophages that not only have a stronger immunosuppressive function but also enhance tumor metastasis. SPP1 + and C1Q + TAM subpopulations can be further divided into distinct populations with different functions. Meanwhile, we will also present emerging evidence highlighting the separating macrophage subpopulations associated with distinct functions. However, there exist the potential disconnects between cell types and subpopulations identified by scRNA-seq and their actual function.
Collapse
Affiliation(s)
- Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
29
|
Xing J, Cai H, Lin Z, Zhao L, Xu H, Song Y, Wang Z, Liu C, Hu G, Zheng J, Ren L, Wei Z. Examining the function of macrophage oxidative stress response and immune system in glioblastoma multiforme through analysis of single-cell transcriptomics. Front Immunol 2024; 14:1288137. [PMID: 38274828 PMCID: PMC10808540 DOI: 10.3389/fimmu.2023.1288137] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Background Glioblastoma (GBM), a prevalent malignant neoplasm within the neuro-oncological domain, has been a subject of considerable scrutiny. Macrophages, serving as the principal immunological constituents, profoundly infiltrate the microenvironment of GBM. However, investigations elucidating the intricate immunological mechanisms governing macrophage involvement in GBM at the single-cell level remain notably limited. Methods We conducted a comprehensive investigation employing single-cell analysis, aiming to redefine the intricate cellular landscape within both the core and peripheral regions of GBM tumors. Our analytical focus extended to the profound study of macrophages, elucidating their roles within the context of oxidative stress, intercellular information exchange, and cellular trajectories concerning GBM and its assorted subpopulations. We pursued the identification of GBM prognostic genes intricately associated with macrophages. Utilizing experimental research to investigate the relevance of MANBA in the context of GBM. Results Our investigations have illuminated the central role of macrophages in the intricate interplay among various subpopulations within the GBM microenvironment. Notably, we observed a pronounced intensity of oxidative stress responses within macrophages when compared to their GBM counterparts in other subpopulations. Moreover, macrophages orchestrated intricate cellular communication networks, facilitated by the SPP1-CD44 axis, both internally and with neighboring subpopulations. These findings collectively suggest the potential for macrophage polarization from an M1 to an M2 phenotype, contributing to immune suppression within the tumor microenvironment. Furthermore, our exploration unearthed GBM prognostic genes closely associated with macrophages, most notably MANBA and TCF12. Remarkably, MANBA appears to participate in the modulation of neuroimmune functionality by exerting inhibitory effects on M1-polarized macrophages, thereby fostering tumor progression. To bolster these assertions, experimental validations unequivocally affirmed the promotional impact of MANBA on GBM, elucidated through its capacity to curb cell proliferation, invasiveness, and metastatic potential. Conclusion These revelations represent a pivotal step towards unraveling the intricate immunological mechanisms governing the interactions between macrophages and diverse subpopulations within the GBM milieu. Furthermore, they lay the foundation for the development of an innovative GBM prognostic model, with MANBA at its epicenter, and underscore the potential for novel immunotherapeutic targets in the ongoing pursuit of enhanced treatment modalities for this formidable malignancy.
Collapse
Affiliation(s)
- Jin Xing
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Huabao Cai
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liang Zhao
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hao Xu
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yanbing Song
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chaobo Liu
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Guangdong Hu
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jiajie Zheng
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Li Ren
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zilong Wei
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
30
|
Guo B, Zhao F, Zhang S. CILP is a potential pan-cancer marker: combined silico study and in vitro analyses. Cancer Gene Ther 2024; 31:119-130. [PMID: 37968343 DOI: 10.1038/s41417-023-00688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
CILP (Cartilage intermediate layer protein), an ECM (extracellular matrix) glycoprotein, is found to be associated with intervertebral disc degeneration, chronic heart failure, obese and cardiac fibrosis. However, there are few reports on the role of CILP in tumors. Thus, in this study, we mainly explored the function of CILP in the occurrence and development of tumors and whether it could be a potential pan-cancer marker. Pan-cancer data in this study were obtained from UCSC Xena. Single-cell data were obtained from GSE152938. ROC (Receiver operating characteristic) curves were used to evaluate the accuracy of CILP in predicting the occurrence of different tumor types. The Kaplan-Meier plots were used to assess the relationship between CILP expression and survival prognosis in different tumor types by COX regression analysis. Pseudotime analysis and cell communication analysis were used to further explore the function of CILP at Single cell level. The human RCC (renal cell carcinoma) cell lines ACHN and 786-O were used for further experimental verification. Bulk RNA-seq showed differences in CILP expression in several tumors. ROC curves showed that 14 tumors have AUC > 0.7. Kaplan-Meier plots indicated that CILP is a risk factor for patients in 3 kinds of tumors. ScRNA-seq (Single cell RNA sequencing) suggested that CILP might influence tumors through fibroblasts and cell-cell communication. Finally, we verified the function of CILP at the cellular level by using RCC cell lines ACHN and 786-O and found that knockdown of CILP could significantly inhibit migration and invasion. This finding supports that CILP could be a risk factor as well as a pan-cancer predictor for patients.
Collapse
Affiliation(s)
- Bingjie Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feiran Zhao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sailong Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China.
| |
Collapse
|
31
|
Ju J, Ma M, Zhang Y, Ding Z, Chen J. State transition and intercellular communication of synovial fibroblasts in response to chronic and acute shoulder injuries unveiled by single-cell transcriptomic analyses. Connect Tissue Res 2024; 65:73-87. [PMID: 38090785 DOI: 10.1080/03008207.2023.2295322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/10/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE We aimed to investigate the heterogeneity of synovial fibroblasts and their potential to undergo cell state transitions at the resolution of single cells. MATERIALS AND METHODS We employed the single-cell RNA sequencing (scRNA-seq) approach to comprehensively map the cellular landscape of the shoulder synovium in individuals with chronic rotator cuff tears (RCTs) and acute proximal humerus fractures (PHFs). Utilizing unbiased clustering analysis, we successfully identified distinct subpopulations of fibroblasts within the synovial environment. We utilized Monocle 3 to delineate the trajectory of synovial fibroblast state transition. And we used CellPhone DB v2.1.0 to predict cell-cell communication patterns within the synovial microenvironment. RESULTS We identified eight main cell clusters in the shoulder synovium. Unbiased clustering analysis identified four synovial fibroblast subpopulations, with diverse biological functions associated with protein secretion, ECM remodeling, inflammation regulation and cell division. Lining, mesenchymal, pro-inflammatory and proliferative fibroblasts subsets were identified. Combining the results from StemID and characteristic gene features, mesenchymal fibroblasts exhibited characteristics of fibroblast progenitor cells. The trajectory of synovial fibroblast state transition showed a transition from mesenchymal to pro-inflammatory and lining phenotypes. In addition, the cross talk between fibroblast subclusters increased in degenerative shoulder diseases compared to acute trauma. CONCLUSION We successfully generated the scRNA-seq transcriptomic atlas of the shoulder synovium, which provides a comprehensive understanding of the heterogeneity of synovial fibroblasts, their potential to undergo state transitions, and their intercellular communication in the context of chronic degenerative and acute traumatic shoulder diseases.
Collapse
Affiliation(s)
- Jiabao Ju
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Mingtai Ma
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Yichong Zhang
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Zhentao Ding
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Jianhai Chen
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
32
|
Berlin C, Mauerer B, Cauchy P, Luenstedt J, Sankowski R, Marx L, Feuerstein R, Schaefer L, Greten FR, Pesic M, Groß O, Prinz M, Ruehl N, Miketiuk L, Jauch D, Laessle C, Jud A, Biesel EA, Neeff H, Fichtner-Feigl S, Holzner PA, Kesselring R. Single-cell deconvolution reveals high lineage- and location-dependent heterogeneity in mesenchymal multivisceral stage 4 colorectal cancer. J Clin Invest 2023; 134:e169576. [PMID: 38153787 PMCID: PMC10904044 DOI: 10.1172/jci169576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
Metastasized colorectal cancer (CRC) is associated with a poor prognosis and rapid disease progression. Besides hepatic metastasis, peritoneal carcinomatosis is the major cause of death in Union for International Cancer Control (UICC) stage IV CRC patients. Insights into differential site-specific reconstitution of tumor cells and the corresponding tumor microenvironment are still missing. Here, we analyzed the transcriptome of single cells derived from murine multivisceral CRC and delineated the intermetastatic cellular heterogeneity regarding tumor epithelium, stroma, and immune cells. Interestingly, we found an intercellular site-specific network of cancer-associated fibroblasts and tumor epithelium during peritoneal metastasis as well as an autologous feed-forward loop in cancer stem cells. We furthermore deciphered a metastatic dysfunctional adaptive immunity by a loss of B cell-dependent antigen presentation and consecutive effector T cell exhaustion. Furthermore, we demonstrated major similarities of this murine metastatic CRC model with human disease and - based on the results of our analysis - provided an auspicious site-specific immunomodulatory treatment approach for stage IV CRC by intraperitoneal checkpoint inhibition.
Collapse
Affiliation(s)
- Christopher Berlin
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- IMM-PACT Clinician Scientist Program
| | - Bernhard Mauerer
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierre Cauchy
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jost Luenstedt
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- IMM-PACT Clinician Scientist Program
| | - Roman Sankowski
- Institute of Neuropathology
- Single-Cell Omics Platform Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Marx
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhild Feuerstein
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Luisa Schaefer
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian R. Greten
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Marina Pesic
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Olaf Groß
- Institute of Neuropathology
- Signalling Research Centres BIOSS and CIBSS
| | - Marco Prinz
- Institute of Neuropathology
- Signalling Research Centres BIOSS and CIBSS
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, and
| | - Naomi Ruehl
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Miketiuk
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik Jauch
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Laessle
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- EXCEL Excellent Clinician Scientist Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Jud
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Esther A. Biesel
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hannes Neeff
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Fichtner-Feigl
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp A. Holzner
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rebecca Kesselring
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
33
|
Nasir I, McGuinness C, Poh AR, Ernst M, Darcy PK, Britt KL. Tumor macrophage functional heterogeneity can inform the development of novel cancer therapies. Trends Immunol 2023; 44:971-985. [PMID: 37995659 DOI: 10.1016/j.it.2023.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Macrophages represent a key component of the tumor microenvironment (TME) and are largely associated with poor prognosis. Therapeutic targeting of macrophages has historically focused on inhibiting their recruitment or reprogramming their phenotype from a protumor (M2-like) to an antitumor (M1-like) one. Unfortunately, this approach has not provided clinical breakthroughs that have changed practice. Emerging studies utilizing single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics have improved our understanding of the ontogeny, phenotype, and functional plasticity of macrophages. Overlaying the wealth of current information regarding macrophage molecular subtypes and functions has also identified novel therapeutic vulnerabilities that might drive better control of tumor-associated macrophages (TAMs). Here, we discuss the functional profiling of macrophages and provide an update of novel macrophage-targeted therapies in development.
Collapse
Affiliation(s)
- Ibraheem Nasir
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Conor McGuinness
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia; La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia; La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Phillip K Darcy
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia; Cancer Immunology Research Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Kara L Britt
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia.
| |
Collapse
|
34
|
Saviuk M, Sleptsova E, Redkin T, Turubanova V. Unexplained Causes of Glioma-Associated Epilepsies: A Review of Theories and an Area for Research. Cancers (Basel) 2023; 15:5539. [PMID: 38067243 PMCID: PMC10705208 DOI: 10.3390/cancers15235539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023] Open
Abstract
Approximately 30% of glioma patients are able to survive beyond one year postdiagnosis. And this short time is often overshadowed by glioma-associated epilepsy. This condition severely impairs the patient's quality of life and causes great suffering. The genetic, molecular and cellular mechanisms underlying tumour development and epileptogenesis remain incompletely understood, leading to numerous unanswered questions. The various types of gliomas, namely glioblastoma, astrocytoma and oligodendroglioma, demonstrate distinct seizure susceptibility and disease progression patterns. Patterns have been identified in the presence of IDH mutations and epilepsy, with tumour location in cortical regions, particularly the frontal lobe, showing a more frequent association with seizures. Altered expression of TP53, MGMT and VIM is frequently detected in tumour cells from individuals with epilepsy associated with glioma. However, understanding the pathogenesis of these modifications poses a challenge. Moreover, hypoxic effects induced by glioma and associated with the HIF-1a factor may have a significant impact on epileptogenesis, potentially resulting in epileptiform activity within neuronal networks. We additionally hypothesise about how the tumour may affect the functioning of neuronal ion channels and contribute to disruptions in the blood-brain barrier resulting in spontaneous depolarisations.
Collapse
Affiliation(s)
- Mariia Saviuk
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ekaterina Sleptsova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| | - Tikhon Redkin
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| | - Victoria Turubanova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| |
Collapse
|
35
|
Avşar G, Pir P. An integrated study to decipher immunosuppressive cellular communication in the PDAC environment. NPJ Syst Biol Appl 2023; 9:56. [PMID: 37945567 PMCID: PMC10636193 DOI: 10.1038/s41540-023-00320-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one the most aggressive cancers and characterized by a highly rigid and immunosuppressive tumor microenvironment (TME). The extensive cellular interactions are known to play key roles in the immune evasion, chemoresistance, and poor prognosis. Here, we used the spatial transcriptomics, scRNA-seq, and bulk RNA-seq datasets to enhance the insights obtained from each to decipher the cellular communication in the TME. The complex crosstalk in PDAC samples was revealed by the single-cell and spatial transcriptomics profiles of the samples. We show that tumor-associated macrophages (TAMs) are the central cell types in the regulation of microenvironment in PDAC. They colocalize with the cancer cells and tumor-suppressor immune cells and take roles to provide an immunosuppressive environment. LGALS9 gene which is upregulated in PDAC tumor samples in comparison to healthy samples was also found to be upregulated in TAMs compared to tumor-suppressor immune cells in cancer samples. Additionally, LGALS9 was found to be the primary component in the crosstalk between TAMs and the other cells. The widespread expression of P4HB gene and its interaction with LGALS9 was also notable. Our findings point to a profound role of TAMs via LGALS9 and its interaction with P4HB that should be considered for further elucidation as target in the combinatory immunotherapies for PDAC.
Collapse
Affiliation(s)
- Gülben Avşar
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
- Turkish Academy of Sciences, Ankara, Turkey.
| | - Pınar Pir
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
36
|
You G, Zheng Z, Huang Y, Liu G, Luo W, Huang J, Zhuo L, Tang B, Liu S, Lin C. scRNA-seq and proteomics reveal the distinction of M2-like macrophages between primary and recurrent malignant glioma and its critical role in the recurrence. CNS Neurosci Ther 2023; 29:3391-3405. [PMID: 37194413 PMCID: PMC10580349 DOI: 10.1111/cns.14269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
AIMS Tumor-associated macrophages (TAMs) in the immune microenvironment play an important role in the increased drug resistance and recurrence of malignant glioma, but the mechanism remains incompletely inventoried. The focus of this study was to investigate the distinctions of M2-like TAMs in the immune microenvironment between primary and recurrent malignant glioma and its influence in the recurrence. METHODS We employed single-cell RNA sequencing to construct a single-cell atlas for a total of 23,010 individual cells from 6 patients with primary or recurrent malignant glioma and identified 5 cell types, including TAMs and malignant cells. Immunohistochemical techniques and proteomics analysis were performed to investigate the role of intercellular interaction between malignant cells and TAMs in the recurrence of malignant glioma. RESULTS Six subgroups of TAMs were annotated and M2-like TAMs were found to increase in recurrent malignant glioma significantly. A pseudotime trajectory and a dynamic gene expression profiling during the recurrence of malignant glioma were reconstructed. Up-regulation of several cancer pathways and intercellular interaction-related genes are associated with the recurrence of malignant glioma. Moreover, the M2-like TAMs can activate the PI3K/Akt/HIF-1α/CA9 pathway in the malignant glioma cells via SPP1-CD44-mediated intercellular interaction. Interestingly, high expression of CA9 can trigger the immunosuppressive response in the malignant glioma, thus promoting the degree of malignancy and drug resistance. CONCLUSION Our study uncovers the distinction of M2-like TAMs between primary and recurrent glioma, which offers unparalleled insights into the immune microenvironment of primary and recurrent malignant glioma.
Collapse
Affiliation(s)
- Guiting You
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhenyu Zheng
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University, Fuzhou, China
| | - Yulong Huang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University, Fuzhou, China
| | - Guifen Liu
- Department of Gynaecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wei Luo
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University, Fuzhou, China
| | - Jianhuang Huang
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, China
| | - Longjin Zhuo
- Pingtan Comprehensive Experimental Area Hospital, Fuzhou, China
| | - Binghua Tang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University, Fuzhou, China
| | - Shunyi Liu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University, Fuzhou, China
| | - Caihou Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
37
|
Zhou H, Chen B, Zhang L, Li C. Machine learning-based identification of lower grade glioma stemness subtypes discriminates patient prognosis and drug response. Comput Struct Biotechnol J 2023; 21:3827-3840. [PMID: 37560125 PMCID: PMC10407594 DOI: 10.1016/j.csbj.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Glioma stem cells (GSCs) remodel their tumor microenvironment to sustain a supportive niche. Identification and stratification of stemness related characteristics in patients with glioma might aid in the diagnosis and treatment of the disease. In this study, we calculated the mRNA stemness index in bulk and single-cell RNA-sequencing datasets using machine learning methods and investigated the correlation between stemness and clinicopathological characteristics. A glioma stemness-associated score (GSScore) was constructed using multivariate Cox regression analysis. We also generated a GSC cell line derived from a patient diagnosed with glioma and used glioma cell lines to validate the performance of the GSScore in predicting chemotherapeutic responses. Differentially expressed genes (DEGs) between GSCs with high and low GSScores were used to cluster lower-grade glioma (LGG) samples into three stemness subtypes. Differences in clinicopathological characteristics, including survival, copy number variations, mutations, tumor microenvironment, and immune and chemotherapeutic responses, among the three LGG stemness-associated subtypes were identified. Using machine learning methods, we further identified genes as subtype predictors and validated their performance using the CGGA datasets. In the current study, we identified a GSScore that correlated with LGG chemotherapeutic response. Through the score, we also identified a novel classification of the LGG subtype and associated subtype predictors, which might facilitate the development of precision therapy.
Collapse
Affiliation(s)
- Hongshu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Clinical Diagnosis and Therapy Center for Glioma, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Chuntao Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Clinical Diagnosis and Therapy Center for Glioma, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
38
|
Lim J, Kang I, La J, Ku KB, Kang BH, Kim Y, Park WH, Lee HK. Harnessing type I interferon-mediated immunity to target malignant brain tumors. Front Immunol 2023; 14:1203929. [PMID: 37304294 PMCID: PMC10247981 DOI: 10.3389/fimmu.2023.1203929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Type I interferons have long been appreciated as a cytokine family that regulates antiviral immunity. Recently, their role in eliciting antitumor immune responses has gained increasing attention. Within the immunosuppressive tumor microenvironment (TME), interferons stimulate tumor-infiltrating lymphocytes to promote immune clearance and essentially reshape a "cold" TME into an immune-activating "hot" TME. In this review, we focus on gliomas, with an emphasis on malignant glioblastoma, as these brain tumors possess a highly invasive and heterogenous brain TME. We address how type I interferons regulate antitumor immune responses against malignant gliomas and reshape the overall immune landscape of the brain TME. Furthermore, we discuss how these findings can translate into future immunotherapies targeting brain tumors in general.
Collapse
Affiliation(s)
- Juhee Lim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jeongwoo La
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Keun Bon Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Byeong Hoon Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Won Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
39
|
Wang Z, Shao Y, Zhang H, Lu Y, Chen Y, Shen H, Huang C, Wu J, Fu Z. Machine learning-based glycolysis-associated molecular classification reveals differences in prognosis, TME, and immunotherapy for colorectal cancer patients. Front Immunol 2023; 14:1181985. [PMID: 37228620 PMCID: PMC10203873 DOI: 10.3389/fimmu.2023.1181985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Background Aerobic glycolysis is a process that metabolizes glucose under aerobic conditions, finally producing pyruvate, lactic acid, and ATP for tumor cells. Nevertheless, the overall significance of glycolysis-related genes in colorectal cancer and how they affect the immune microenvironment have not been investigated. Methods By combining the transcriptome and single-cell analysis, we summarize the various expression patterns of glycolysis-related genes in colorectal cancer. Three glycolysis-associated clusters (GAC) were identified with distinct clinical, genomic, and tumor microenvironment (TME). By mapping GAC to single-cell RNA sequencing analysis (scRNA-seq), we next discovered that the immune infiltration profile of GACs was similar to that of bulk RNA sequencing analysis (bulk RNA-seq). In order to determine the kind of GAC for each sample, we developed the GAC predictor using markers of single cells and GACs that were most pertinent to clinical prognostic indications. Additionally, potential drugs for each GAC were discovered using different algorithms. Results GAC1 was comparable to the immune-desert type, with a low mutation probability and a relatively general prognosis; GAC2 was more likely to be immune-inflamed/excluded, with more immunosuppressive cells and stromal components, which also carried the risk of the poorest prognosis; Similar to the immune-activated type, GAC3 had a high mutation rate, more active immune cells, and excellent therapeutic potential. Conclusion In conclusion, we combined transcriptome and single-cell data to identify new molecular subtypes using glycolysis-related genes in colorectal cancer based on machine-learning methods, which provided therapeutic direction for colorectal patients.
Collapse
Affiliation(s)
- Zhenling Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Shao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunfei Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hengyang Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changzhi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyu Wu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
Shu T, Wang X. Cuproptosis combines immune landscape providing prognostic biomarker in head and neck squamous carcinoma. Heliyon 2023; 9:e15494. [PMID: 37215927 PMCID: PMC10196797 DOI: 10.1016/j.heliyon.2023.e15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Head and neck squamous carcinomas (HNSC) are the seventh most common cancer around the world. Treatment options available today have considerable limitations in terms of efficacy. Identifying novel therapeutic targets for HNSC is, therefore, urgently needed. As a novel determined regulated cell death (RCD), Cuproptosis is correlated with the development, treatment response, and prognosis of various cancer. However, the potential role of Cuproptosis-related genes (CRGs) in the tumor microenvironment (TME) of HNSC remains unclear. To figure out whether TME cells and Cuproptosis could better predict prognosis, in this study, we analyzed the expression, mutation status, and other clinical information of 502 HNSC patients by dividing them into four clusters based on their CRGs and TME cell expression. Utilizing the LASSO-Cox method and bootstrap, we established Prognostic Cuproptosis and TME classifier, which were significantly associated with prognosis, pathways, clinical features, and immune cell infiltration in TME of HNSC. To go further, the subgroup Cup low/TMEhigh displayed a better prognosis than any others. Two GEO datasets demonstrated the proposed risk model's clinical applicability. Our GO enrichment analyses proved the conjoint effect of Cuproptosis and TME on tumor angiogenesis, proliferation, and so on. Single-cell analysis and Immunotherapy profile then provided a foundation for determining the molecular mechanisms. It revealed the prognostic risk score positively correlated with T cell activation and natural killer (NK) recruiting. As far as we know, this study is the first time to explore the involvement of CRGs regulation in the TME of HNSC. In a word, it is vital to use these findings to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Shu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| |
Collapse
|
41
|
Matsubara E, Yano H, Pan C, Komohara Y, Fujiwara Y, Zhao S, Shinchi Y, Kurotaki D, Suzuki M. The Significance of SPP1 in Lung Cancers and Its Impact as a Marker for Protumor Tumor-Associated Macrophages. Cancers (Basel) 2023; 15:cancers15082250. [PMID: 37190178 DOI: 10.3390/cancers15082250] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Macrophages are a representative cell type in the tumor microenvironment. Macrophages that infiltrate the cancer microenvironment are referred to as tumor-associated macrophages (TAMs). TAMs exhibit protumor functions related to invasion, metastasis, and immunosuppression, and an increased density of TAMs is associated with a poor clinical course in many cancers. Phosphoprotein 1 (SPP1), also known as osteopontin, is a multifunctional secreted phosphorylated glycoprotein. Although SPP1 is produced in a variety of organs, at the cellular level, it is expressed on only a few cell types, such as osteoblasts, fibroblasts, macrophages, dendritic cells, lymphoid cells, and mononuclear cells. SPP1 is also expressed by cancer cells, and previous studies have demonstrated correlations between levels of circulating SPP1 and/or increased SPP1 expression on tumor cells and poor prognosis in many types of cancer. We recently revealed that SPP1 expression on TAMs is correlated with poor prognosis and chemoresistance in lung adenocarcinoma. In this review, we summarize the significance of TAMs in lung cancers and discuss the importance of SPP1 as a new marker for the protumor subpopulation of monocyte-derived TAMs in lung adenocarcinoma. Several studies have shown that the SPP1/CD44 axis contribute to cancer chemoresistance in solid cancers, so the SPP1/CD44 axis may represent one of the most critical mechanisms for cell-to-cell communication between cancer cells and TAMs.
Collapse
Affiliation(s)
- Eri Matsubara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shukang Zhao
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yusuke Shinchi
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
42
|
Liang X, Wang Z, Dai Z, Zhang H, Zhang J, Luo P, Liu Z, Liu Z, Yang K, Cheng Q, Zhang M. Glioblastoma glycolytic signature predicts unfavorable prognosis, immunological heterogeneity, and ENO1 promotes microglia M2 polarization and cancer cell malignancy. Cancer Gene Ther 2023; 30:481-496. [PMID: 36494582 PMCID: PMC10014583 DOI: 10.1038/s41417-022-00569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
Glioblastomas are the most malignant brain tumors, whose progress was promoted by aberrate aerobic glycolysis. The immune environment was highly engaged in glioblastoma formation, while its interaction with aerobic glycolysis remained unclear. Herein, we build a 7-gene Glycolytic Score (GS) by Elastic Net in the training set and two independent validating sets. The GS predicted malignant features and poor survival with good performances. Immune functional analyses and Cibersort calculation identified depressed T cells, B cells, natural killer cells immunity, and high immunosuppressive cell infiltration in the high-GS group. Also, high expressions of the immune-escape genes were discovered. Subsequently, the single-cell analyses validated the glycolysis-related immunosuppression. The functional results manifested the high-GS neoplastic cells' association with T cells, NK cells, and macrophage function regulation. The intercellular cross-talk showed strong associations between high-GS neoplastic cells and M2 macrophages/microglia in several immunological pathways. We finally confirmed that ENO1, the key gene of the GS, promoted M2 microglia polarization and glioblastoma cell malignant behaviors via immunofluorescence, clone formation, CCK8, and transwell rescue experiments. These results indicated the interactions between cancerous glycolysis and immunosuppression and glycolysis' role in promoting glioblastoma progression. Conclusively, we built a robust model and discovered strong interaction between GS and immune, shedding light on prognosis management improvement and therapeutic strategies development for glioblastoma patients.
Collapse
Affiliation(s)
- Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China
| | - Kui Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China.
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China.
| |
Collapse
|
43
|
Zhang H, Cao H, Luo H, Zhang N, Wang Z, Dai Z, Wu W, Liu G, Xie Z, Cheng Q, Cheng Y. RUNX1/CD44 axis regulates the proliferation, migration, and immunotherapy of gliomas: A single-cell sequencing analysis. Front Immunol 2023; 14:1086280. [PMID: 36776876 PMCID: PMC9909339 DOI: 10.3389/fimmu.2023.1086280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Glioma is one of the most common, primary, and lethal adult brain tumors because of its extreme aggressiveness and poor prognosis. Several recent studies relevant to the immune function of CD44, a transmembrane glycoprotein as a significant hyaluronic acid receptor, have achieved great success, revealing the critical role of CD44 in immune infiltration in gliomas. The overexpression of CD44 has been verified to correlate with cancer aggressiveness and migration, while the clinical and immune features of CD44 expression have not yet been thoroughly characterized in gliomas. METHODS Molecular and clinical data of glioma collected from publicly available genomic databases were analyzed. RESULTS CD44 was up-expressed in malignant gliomas, notably in the 1p/19q non-codeletion cases, isocitrate dehydrogenase (IDH) wild-type, and mesenchymal subtypes in GBM samples. CD44 expression level strongly correlates with stromal and immune cells, mainly infiltrating the glioma microenvironment by single-cell sequencing analysis. Meanwhile, CD44 can be a promising biomarker in predicting immunotherapy responses and mediating the expression of PD-L1. Finally, RUNX1/CD44 axis could promote the proliferation and migration of gliomas. CONCLUSIONS Therefore, CD44 was responsible for glioma growth and progression. It could potentially lead to a novel target for glioma immunotherapy or a prognostic biomarker.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People’s Hospital of Hunan Province, Changsha, China
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hong Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
44
|
Peng H, Wu X, Liu S, He M, Xie C, Zhong R, Liu J, Tang C, Li C, Xiong S, Zheng H, He J, Lu X, Liang W. Multiplex immunofluorescence and single-cell transcriptomic profiling reveal the spatial cell interaction networks in the non-small cell lung cancer microenvironment. Clin Transl Med 2023; 13:e1155. [PMID: 36588094 PMCID: PMC9806015 DOI: 10.1002/ctm2.1155] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Conventional immunohistochemistry technologies were limited by the inability to simultaneously detect multiple markers and the lack of identifying spatial relationships among cells, hindering understanding of the biological processes in cancer immunology. METHODS Tissue slices of primary tumours from 553 IA∼IIIB non-small cell lung cancer (NSCLC) cases were stained by multiplex immunofluorescence (mIF) assay for 10 markers, including CD4, CD38, CD20, FOXP3, CD66b, CD8, CD68, PD-L1, CD133 and CD163, evaluating the amounts of 26 phenotypes of cells in tumour nest and tumour stroma. StarDist depth learning model was utilised to determine the spatial location of cells based on mIF graphs. Single-cell RNA sequencing (scRNA-seq) on four primary NSCLC cases was conducted to investigate the putative cell interaction networks. RESULTS Spatial proximity among CD20+ B cells, CD4+ T cells and CD38+ T cells (r2 = 0.41) was observed, whereas the distribution of regulatory T cells was associated with decreased infiltration levels of CD20+ B cells and CD38+ T cells (r2 = -0.45). Univariate Cox analyses identified closer proximity between CD8+ T cells predicted longer disease-free survival (DFS). In contrast, closer proximity between CD133+ cancer stem cells (CSCs), longer distances between CD4+ T cells and CD20+ B cells, CD4+ T cells and neutrophils, and CD20+ B cells and neutrophils were correlated with dismal DFS. Data from scRNA-seq further showed that spatially adjacent N1-like neutrophils could boost the proliferation and activation of T and B lymphocytes, whereas spatially neighbouring M2-like macrophages showed negative effects. An immune-related risk score (IRRS) system aggregating robust quantitative and spatial prognosticators showed that high-IRRS patients had significantly worse DFS than low-IRRS ones (HR 2.72, 95% CI 1.87-3.94, p < .001). CONCLUSIONS We developed a framework to analyse the cell interaction networks in tumour microenvironment, revealing the spatial architecture and intricate interplays between immune and tumour cells.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Clinical MedicineNanshan SchoolGuangzhou Medical UniversityGuangzhouChina
| | - Xiangrong Wu
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Clinical MedicineNanshan SchoolGuangzhou Medical UniversityGuangzhouChina
| | - Shaopeng Liu
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
- Department of Artificial Intelligence ResearchPazhou LabGuangzhouChina
| | - Miao He
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Chao Xie
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
| | - Ran Zhong
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jun Liu
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Chenshuo Tang
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
| | - Caichen Li
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Shan Xiong
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hongbo Zheng
- Medical DepartmentGenecast Biotechnology Co., LtdBeijingChina
| | - Jianxing He
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xu Lu
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
- Department of Artificial Intelligence ResearchPazhou LabGuangzhouChina
| | - Wenhua Liang
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Medical OncologyThe First People's Hospital of ZhaoqingZhaoqingChina
| |
Collapse
|
45
|
Molecular Crosstalk between Chromatin Remodeling and Tumor Microenvironment in Multiple Myeloma. Curr Oncol 2022; 29:9535-9549. [PMID: 36547163 PMCID: PMC9777166 DOI: 10.3390/curroncol29120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a complex disease driven by numerous genetic and epigenetic alterations that are acquired over time. Despite recent progress in the understanding of MM pathobiology and the availability of innovative drugs, which have pronounced clinical outcome, this malignancy eventually progresses to a drug-resistant lethal stage and, thus, novel therapeutic drugs/models always play an important role in effective management of MM. Modulation of tumor microenvironment is one of the hallmarks of cancer biology, including MM, which affects the myeloma genomic architecture and disease progression subtly through chromatin modifications. The bone marrow niche has a prime role in progression, survival, and drug resistance of multiple myeloma cells. Therefore, it is important to develop means for targeting the ecosystem between multiple myeloma bone marrow microenvironment and chromatin remodeling. Extensive gene expression profile analysis has indeed provided the framework for new risk stratification of MM patients and identifying novel molecular targets and therapeutics. However, key tumor microenvironment factors/immune cells and their interactions with chromatin remodeling complex proteins that drive MM cell growth and progression remain grossly undefined.
Collapse
|
46
|
A Cuproptosis Activation Scoring model predicts neoplasm-immunity interactions and personalized treatments in glioma. Comput Biol Med 2022; 148:105924. [PMID: 35964468 DOI: 10.1016/j.compbiomed.2022.105924] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023]
Abstract
Gliomas are malignant tumors in the central nervous system. Cuproptosis is a newly discovered cell death mechanism targeting lipoylated tricarboxylic acid cycle proteins. Previous studies have found that cuproptosis participates in tumor progression, but its role in gliomas is still elusive. Here, we systematically explored the bulk-tumor and single-cell transcriptome data to reveal its role in gliomas. The cuproptosis activity score (CuAS) was constructed based on cuproptosis-related genes, and machine learning techniques validated the score stability. High CuAS gliomas were more likely to have a poor prognosis and an aggressive mesenchymal (MES) subtype. Subsequently, the SCENIC algorithm predicted 20 CuAS-related transcription factors (TFs) in gliomas. Function enrichment and microenvironment analyses found that CuAS was associated with tumor immune infiltration. Accordingly, intercellular communications between neoplasm and immunity were explored by the R package "Cellchat". Five signaling pathways and 8 ligand-receptor pairs including ICAM1, ITGAX, ITGB2, ANXA1-FRR1, and the like, were identified to suggest how cuproptosis activity connected neoplastic and immune cells. Critically, 13 potential drugs targeting high CuAs gliomas were predicted according to the CTRP and PRISM databases, including oligomycin A, dihydroartemisinin, and others. Taken together, cuproptosis is involved in glioma aggressiveness, neoplasm-immune interactions, and may be used to assist in drug selection.
Collapse
|
47
|
Balyasnikova IV, Zannikou M, Wang G, Li Y, Duffy JT, Levine RN, Seblani M, Gaikwad H, Simberg D. Indocarbocyanine nanoparticles extravasate and distribute better than liposomes in brain tumors. J Control Release 2022; 349:413-424. [PMID: 35817279 PMCID: PMC10200250 DOI: 10.1016/j.jconrel.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Glioblastoma (GBM) is the most devastating and aggressive brain tumor in adults. Hidden behind the blood-brain and blood-tumor barriers (BBTB), this invasive type of brain tumor is not readily accessible to nano-sized particles. Here we demonstrate that fluorescent indocarbocyanine lipids (ICLs: DiD, DiI) formulated in PEGylated lipid nanoparticle (PLN) exhibit highly efficient penetration and accumulation in GBM. PLN-formulated ICLs demonstrated more efficient penetration in GBM spheroids and organoids in vitro than liposomal ICLs. Over 82% of the tumor's extravascular area was positive for ICL fluorescence in the PLN group versus 13% in the liposomal group just one hour post-systemic injection in the intracranial GBM model. Forty-eight hours post-injection, PLN-formulated ICLs accumulated in 95% of tumor myeloid-derived suppressor cells and macrophages, 70% of tumor regulatory T cells, 50% of tumor-associated microglia, and 65% of non-immune cells. PLN-formulated ICLs extravasated better than PEGylated liposomal doxorubicin and fluorescent dextran and efficiently accumulated in invasive tumor margins and brain-invading cells. While liposomes were stable in serum in vitro and in vivo, PLNs disassembled before entering tumors, which could explain the differences in their extravasation efficiency. These findings offer an opportunity to improve therapeutic cargo delivery to invasive GBM.
Collapse
Affiliation(s)
- Irina V Balyasnikova
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA; Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Markella Zannikou
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA; Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guankui Wang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yue Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joseph T Duffy
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA; Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rebecca N Levine
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA; Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maggie Seblani
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA; Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Hanmant Gaikwad
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dmitri Simberg
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
48
|
Liu B, Wang C, Fang Z, Bai J, Qian Y, Ma Y, Ruan X, Yan S, Li S, Wang Y, Dong B, Yang X, Li M, Xia X, Qu H, Fang X, Wu N. Single-cell RNA sequencing reveals the cellular and molecular changes that contribute to the progression of lung adenocarcinoma. Front Cell Dev Biol 2022; 10:927300. [PMID: 36046337 PMCID: PMC9420948 DOI: 10.3389/fcell.2022.927300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Pure ground glass nodules (GGNs) and solid nodules (SNs) represent early and relatively late stages of lung adenocarcinoma (LUAD) in radiology, respectively. The cellular and molecular characteristics of pure GGNs and SNs have not been comprehensively elucidated. Additionally, the mechanism driving the progression of lung adenocarcinoma from pure GGN to SN in radiology is also elusive. In this study, by analyzing the single-cell transcriptomic profiles of 76,762 cells from four pure GGNs, four SNs, and four normal tissues, we found that anti-tumor immunity mediated by NK and CD8+T cells gradually weakened with the progression of LUAD and humoral immunity mediated by plasma B cells was more active in SNs. Additionally, the proliferation ability of some special epithelial cell increased during the progression process from pure GGN to SN. Furthermore, stromal cells and M2 macrophages could assist the progression of LUAD. Through comprehensive analyses, we revealed dynamic changes in cellular components and intercellular interactions during the progression of LUAD. These findings could facilitate our understanding of LUAD and discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chen Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhanjie Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Bai
- Geneplus-Beijing Institution, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, China
| | - Ying Qian
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuyan Ruan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Shi Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shaolei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yaqi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xin Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Meng Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Xuefeng Xia
- Geneplus-Beijing Institution, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, China
| | - Hongzhu Qu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hongzhu Qu, ; Xiangdong Fang, ; Nan Wu,
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hongzhu Qu, ; Xiangdong Fang, ; Nan Wu,
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
- *Correspondence: Hongzhu Qu, ; Xiangdong Fang, ; Nan Wu,
| |
Collapse
|
49
|
Wang Z, Zhong Z, Jiang Z, Chen Z, Chen Y, Xu Y. A novel prognostic 7-methylguanosine signature reflects immune microenvironment and alternative splicing in glioma based on multi-omics analysis. Front Cell Dev Biol 2022; 10:902394. [PMID: 36036011 PMCID: PMC9399734 DOI: 10.3389/fcell.2022.902394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Glioma is the most common type of central nervous system tumor with increasing incidence. 7-methylguanosine (m7G) is one of the diverse RNA modifications that is known to regulate RNA metabolism and its dysregulation was associated with various cancers. However, the expression pattern of m7G regulators and their roles in regulating tumor immune microenvironments (TIMEs) as well as alternative splicing events (ASEs) in glioma has not been reported. In this study, we showed that m7G regulators displayed a close correlation with each other and most of them were differentially expressed between normal and glioma tissues. Two m7G signatures were then constructed to predict the overall survival of both GBM and LGG patients with moderate predictive performance. The risk score calculated from the regression coefficient and expression level of signature genes was proved to be an independent prognostic factor for patients with LGG, thus, a nomogram was established on the risk score and other independent clinical parameters to predict the survival probability of LGG patients. We also investigated the correlation of m7G signatures with TIMEs in terms of immune scores, expression levels of HLA and immune checkpoint genes, immune cell composition, and immune-related functions. While exploring the correlation between signature genes and the ASEs in glioma, we found that EIF4E1B was a key regulator and might play dual roles depending on glioma grade. By incorporating spatial transcriptomic data, we found a cluster of cells featured by high expression of PTN exhibited the highest m7G score and may communicate with adjacent cancer cells via SPP1 and PTN signaling pathways. In conclusion, our work brought novel insights into the roles of m7G modification in TIMEs and ASEs in glioma, suggesting that evaluation of m7G in glioma could predict prognosis. Moreover, our data suggested that blocking SPP1 and PTN pathways might be a strategy for combating glioma.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Zhiwei Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Zehua Jiang
- Shantou University Medical College, Shantou, China
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Zepeng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Yuequn Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Yimin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
50
|
The Role of Metabolic Plasticity of Tumor-Associated Macrophages in Shaping the Tumor Microenvironment Immunity. Cancers (Basel) 2022; 14:cancers14143331. [PMID: 35884391 PMCID: PMC9316955 DOI: 10.3390/cancers14143331] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer cells possess a high metabolic demand for their rapid proliferation, survival, and progression and thus create an acidic and hypoxic tumor microenvironment (TME) deprived of nutrients. Moreover, acidity within the TME is the central regulator of tumor immunity that influences the metabolism of the immune cells and orchestrates the local and systemic immunity, thus, the TME has a major impact on tumor progression and resistance to anti-cancer therapy. Specifically, myeloid cells, which include myeloid-derived suppressor cells (MDSC), dendritic cells, and tumor-associated macrophages (TAMs), often reprogram their energy metabolism, resulting in stimulating the angiogenesis and immunosuppression of tumors. This review summarizes the recent findings of glucose, amino acids, and fatty acid metabolism changes of the tumor-associated macrophages (TAMs), and how the altered metabolism shapes the TME and anti-tumor immunity. Multiple proton pumps/transporters are involved in maintaining the alkaline intracellular pH which is necessary for the glycolytic metabolism of the myeloid cells and acidic TME. We highlighted the roles of these proteins in modulating the cellular metabolism of TAMs and their potential as therapeutic targets for improving immune checkpoint therapy.
Collapse
|