1
|
Zhang J, Jiang WD, Wu P, Liu Y, Ma YB, Shi HQ, Kuang SY, Li SW, Tang L, Zhou XQ, Feng L. Dietary addition of fraxetin improved intestinal structure and growth performance in juvenile grass carp (Ctenopharyngodon idella): as a potential novel phytogenic feed additive. J Nutr Biochem 2025:109969. [PMID: 40412568 DOI: 10.1016/j.jnutbio.2025.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/05/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
The well-being and development of fish are affected to varying degrees under the intensive aquaculture model, and the use of Chinese herbs for aquaculture disease control and feed additives has received increasing attention. This study examined fraxetin supplementation in juvenile grass carp to investigate its effects on growth and intestinal structure. There were 1080 grass carp (11.58 ± 0.01 g) assigned to 6 treatments, fed with fraxetin (0, 3.9, 7.9, 15.8, 31.5, and 63.1 mg/kg) for 60 days in each treatment. In our study, appropriate fraxetin significantly increased final body weight (FBW), percent weight gain (PWG), and specific growth rate (SGR) compared to the unadded group (P < 0.05), but did not affect feed efficiency (FE) (P > 0.05). The administration of 7.9 mg/kg of fraxetin significantly improved fish intestinal development and body composition. Appropriate dietary fraxetin significantly enhanced intestinal digestive enzymes and brush border enzyme activity (P < 0.05), decreased serum diamine oxidase (DAO) levels (P < 0.05), and decreased intestinal cell apoptosis (P < 0.05). Appropriate levels of fraxetin inhibited the RhoA/ROCK signaling pathway while upregulating both mRNA and protein expression of tight junction (TJ) and adherens junction (AJ) (P < 0.05). These changes significantly improved apical junction complex (AJC) integrity. In conclusion, dietary supplementation with appropriate levels of fraxetin added to the diets had a facilitating effect on digestion and absorption, improved intestinal structure, and promoted fish growth performance in juvenile grass carp. In addition, the optimal dietary fraxetin levels were evaluated to be 6.06 and 7.79 mg/kg based on linear regression analysis of PWG and DAO, respectively.
Collapse
Affiliation(s)
- Jie Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yao-Bin Ma
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - He-Qun Shi
- Guangzhou Cohoo Biotech Research & Development Centre, Guangzhou, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
2
|
Salles FJ, Atilola G, Frydas I, Schultz DR, Papaioannou N, Rogero MM, Sarigiannis D, Vineis P, Olympio KPK. Effects of minimal arsenic, lead, and cadmium exposure on biological pathways in Brazilian informal workers welding fashion jewelry. J Trace Elem Med Biol 2025; 89:127660. [PMID: 40300411 DOI: 10.1016/j.jtemb.2025.127660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/23/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
INTRODUCTION This study complements previous research about informal workers occupational exposure by investigating the whole blood transcriptome of women engaged in informal home-based jewelry production in the city of Limeira, Sao Paulo, Brazil, focusing on associations between gene expression and arsenic (As), cadmium (Cd), and lead (Pb) concentrations in blood, as well as on identifying transcriptome profiles linked to self-reported health outcomes. METHODS Participants were divided into two groups: an exposed group comprising informal workers engaged in domestic jewelry welding activities (n = 22) and a control group composed of neighbors without occupational exposures (n = 19). Linear regression modeling assessed the association between the blood concentration of toxic elements, gene expression, and reported health outcomes. Pathway analysis was performed using ConsensusPathDB. RESULTS 269 differentially expressed genes (DEGs) associated with As exposure and 43 with Cd exposure were found in this study, revealing significant health impacts on these workers. DEGs were also significantly associated with respiratory illness (bronchitis and asthma), neurological manifestations (sleep problems, migraines, or frequent headaches), shortness of breath, blood glucose, cholesterol, and triglyceride levels. Pathway analysis indicates genes related to inflammatory processes, alterations in intestinal permeability, and neurological outcomes. CONCLUSION The results shed light on the transcriptomic changes in this occupational context and contribute to a better understanding of the challenges faced by informal workers. Even with low doses of toxic elements in the blood, it was possible to observe differences in gene expression linked to self-reported outcomes. Additional studies should clarify the biological processes associated with toxic elements exposure.
Collapse
Affiliation(s)
- Fernanda Junqueira Salles
- Department of Environmental Health, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira Cesar, São Paulo, SP CEP 01246-904, Brazil; The Human Exposome Research Group/ Expossoma e Saúde do Trabalhador - eXsat, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, Sao Paulo, SP 01246-000, Brazil.
| | - Glory Atilola
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, UK; MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; Department of Population, Policy and Practice, Institute of Child Health Great Ormond Street, University College London, UK
| | - Ilias Frydas
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dayna R Schultz
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nafsika Papaioannou
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo 01246-904, Brazil
| | - Dimosthenis Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Paolo Vineis
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Kelly Polido Kaneshiro Olympio
- Department of Environmental Health, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira Cesar, São Paulo, SP CEP 01246-904, Brazil; The Human Exposome Research Group/ Expossoma e Saúde do Trabalhador - eXsat, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, Sao Paulo, SP 01246-000, Brazil.
| |
Collapse
|
3
|
Nakamura A, Matsumoto M. Role of polyamines in intestinal mucosal barrier function. Semin Immunopathol 2025; 47:9. [PMID: 39836273 PMCID: PMC11750915 DOI: 10.1007/s00281-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
The intestinal epithelium is a rapidly self-renewing tissue; the rapid turnover prevents the invasion of pathogens and harmful components from the intestinal lumen, preventing inflammation and infectious diseases. Intestinal epithelial barrier function depends on the epithelial cell proliferation and junctions, as well as the state of the immune system in the lamina propria. Polyamines, particularly putrescine, spermidine, and spermine, are essential for many cell functions and play a crucial role in mammalian cellular homeostasis, such as that of cell growth, proliferation, differentiation, and maintenance, through multiple biological processes, including translation, transcription, and autophagy. Although the vital role of polyamines in normal intestinal epithelial cell growth and barrier function has been known since the 1980s, recent studies have provided new insights into this topic at the molecular level, such as eukaryotic initiation factor-5A hypusination and autophagy, with rapid advances in polyamine biology in normal cells using biological technologies. This review summarizes recent advances in our understanding of the role of polyamines in regulating normal, non-cancerous, intestinal epithelial barrier function, with a particular focus on intestinal epithelial renewal, cell junctions, and immune cell differentiation in the lamina propria.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan.
| |
Collapse
|
4
|
Zheng Y, Zhao J, Nie X, Chitrakar B, Gao J, Sang Y. Mutual adhesion of Lactobacillus spp. to intestinal cells: A review of perspectives on surface layer proteins and cell surface receptors. Int J Biol Macromol 2024; 282:137031. [PMID: 39476894 DOI: 10.1016/j.ijbiomac.2024.137031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/10/2024]
Abstract
The bacterial ability to adhere and colonize in the gut is a key prerequisite to become a probiotic. Lactobacillus spp. surface layer proteins (SLPs) play an important role for such functions in the human body. Interestingly, all SLPs in spite of their structural variation promote adhesion and colonization. A clear understanding about the binding sites of SLPs with the host and their binding modes would help to precisely reveal the process of Lactobacillus spp.-host interaction. Therefore, in this paper, we have sorted out the Lactobacillus spp. SLPs and their adhesion sites in human intestinal cells. Such SLPs included surface layer protein, motif proteins, binding proteins and moonlighting proteins, while enterocyte adhesion receptors included transmembrane glycoproteins and extracellular matrix proteins. We also summarized the tools to assess the adhesion by Lactobacillus spp. Finally, we recommended that three-dimensional cell models and intestinal microarrays could be major tools for assessing adhesion in the future.
Collapse
Affiliation(s)
- Yixin Zheng
- Hebei Agricultural University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China
| | - Jinrong Zhao
- Hebei Agricultural University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China
| | - Xinyu Nie
- Hebei Agricultural University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China
| | - Bimal Chitrakar
- Hebei Agricultural University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China
| | - Jie Gao
- Hebei Agricultural University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China.
| | - Yaxin Sang
- Hebei Agricultural University, No.2596, Lekai South Street, Baoding, Hebei 86-071000, China
| |
Collapse
|
5
|
Zhou J, Murata H, Tomonobu N, Mizuta N, Yamakawa A, Yamamoto KI, Kinoshita R, Sakaguchi M. S100A11 is involved in the progression of colorectal cancer through the desmosome-catenin-TCF signaling pathway. In Vitro Cell Dev Biol Anim 2024; 60:1138-1149. [PMID: 38842658 PMCID: PMC11655616 DOI: 10.1007/s11626-024-00930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
Compiling evidence has indicated that S100A11 expression at high levels is closely associated with various cancer species. Consistent with the results reported elsewhere, we have also revealed that S100A11 is highly expressed in squamous cell carcinoma, mesothelioma, and pancreatic cancers and plays a crucial role in cancer progression when secreted into extracellular fluid. Those studies are all focused on the extracellular role of S100A11. However, most of S100A11 is still present within cancer cells, although the intracellular role of S100A11 in cancer cells has not been fully elucidated. Thus, we aimed to investigate S100A11 functions within cancer cells, primarily focusing on colorectal cancer cells, whose S100A11 is abundantly present in cells and still poorly studied cancer for the protein. Our efforts revealed that overexpression of S100A11 promotes proliferation and migration, and downregulation inversely dampens those cancer behaviors. To clarify how intracellular S100A11 aids cancer cell activation, we tried to identify S100A11 binding proteins, resulting in novel binding partners in the inner membrane, many of which are desmosome proteins. Our molecular approach defined that S100A11 regulates the expression level of DSG1, a component protein of desmosome, by which S100A11 activates the TCF pathway via promoting nuclear translocation of γ-catenin from the desmosome. The identified new pathway greatly helps to comprehend S100A11's nature in colorectal cancers and others.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
- Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology, Shenyang, Liaoning, China
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Naoko Mizuta
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Atsuko Yamakawa
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| |
Collapse
|
6
|
Zhang X, Wang H, Yuan Y, Zhang J, Yang J, Zhang L, He J. PPM1G and its diagnostic, prognostic and therapeutic potential in HCC (Review). Int J Oncol 2024; 65:109. [PMID: 39329206 PMCID: PMC11436262 DOI: 10.3892/ijo.2024.5697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Global statistics indicate that hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer‑related death. Protein phosphatase Mg2+/Mn2+ dependent 1G (PPM1G, also termed PP2Cγ) is one of the 17 members of the PPM family. The enzymatic activity of PPM1G is highly reliant on Mg2+ or Mn2+ and serves as a dephosphorylation regulator for numerous key proteins. PPM1G, functioning as a phosphatase, is involved in a number of significant biological processes such as the regulation of eukaryotic gene expression, DNA damage response, cell cycle and apoptosis, cell migration ability, cell survival and embryonic nervous system development. Additionally, PPM1G serves a role in regulating various signaling pathways. In recent years, further research has increasingly highlighted PPM1G as an oncogene in HCC. A high expression level of PPM1G is closely associated with the occurrence, progression and poor prognosis of HCC, offering notable diagnostic and therapeutic value for this patient population. In the present review, the regulatory role of PPM1G in diverse biological processes and signaling pathway activation in eukaryotes is evaluated. Furthermore, its potential application as a biomarker in the diagnosis and prognosis evaluation of HCC is assessed, and future prospects for HCC treatment strategies centered on PPM1G are discussed.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Heyue Wang
- Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Yiran Yuan
- Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Jieya Zhang
- Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Jize Yang
- Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiefeng He
- Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
7
|
Liu H, Li H, Bai X, Zhao Y, Cai Y, Pan H, Guo L, Liu K, Liu Q, Huang X, Zampetaki A, Margariti A, Zeng L, Cai T. Histone Deacetylase 7-Derived 7-Amino Acid Peptide Increases Skin Wound Healing via Regulating Epidermal Fibroblast Proliferation and Migration. J Cell Mol Med 2024; 28:e70209. [PMID: 39601342 PMCID: PMC11600263 DOI: 10.1111/jcmm.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Due to the complexity of wound healing, how to achieve successful healing is a significant clinical challenge. In this study, we found that the histone deacetylase-7-derived 7-amino acid peptide (7A, MHSPGAD), especially its phosphorylated version 7Ap (MH[pSer]PGAD), increased dermal fibroblast cell HDFα proliferation and migration via elevated delta-catenin (CTNND1) serine phosphorylation-mediated beta-catenin (CTNNB) nuclear translocation and subsequent upregulation of c-Myc and cyclin D1 expression. 7Ap physically interacted with platelet-derived growth factor receptor (PDGFR) and increased PDGFR interaction with cyclin-dependent kinase 6 (CDK6). The PDGFR siRNA or CDK6 siRNA knockdown ablated 7AP-induced CTNND1 phosphorylation and subsequent c-Myc/cyclin D1 expression, indicating a novel 7Ap-PDGFR-CDK6-CTNND1/CTNNB signal pathway in regulating fibroblast proliferation and migration. Furthermore, 7Ap increased human umbilic vein endothelial cell proliferation and tube formation, suggesting an angiogenic effect. In a full-thickness excision wound rat model, the local administration of 50 ng/mL of 7Ap in hydrogel exerted a similar effect as 1 μg/mL vascular endothelial growth factor on accelerating wound healing, featured by enhanced fibroblast proliferation and migration, collagen deposition, and increased new vessel formation during the early phase of wound healing. Taken together, this study not only elicited a novel signal pathway in fibroblast proliferation but also paved an avenue to develop 7Ap as a treatment option for skin wound healing.
Collapse
Affiliation(s)
- Huina Liu
- Ningbo No.2 HospitalNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Hua Li
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Xuefeng Bai
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Yue Zhao
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Yannan Cai
- Ningbo Women and Children's HospitalNingboChina
| | - Huiqing Pan
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Linyan Guo
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Kun Liu
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Qian Liu
- Department of GeriatricChengdu Fifth People's HospitalChengduChina
| | | | - Anna Zampetaki
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Andriana Margariti
- School of Medicine, Dentistry and Biomedical SciencesThe Wellcome‐Wolfson Institute of Experimental MedicineBelfastUK
| | - Lingfang Zeng
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Ting Cai
- Ningbo No.2 HospitalNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| |
Collapse
|
8
|
Raab JE, Hamilton DJ, Harju TB, Huynh TN, Russo BC. Pushing boundaries: mechanisms enabling bacterial pathogens to spread between cells. Infect Immun 2024; 92:e0052423. [PMID: 38661369 PMCID: PMC11385730 DOI: 10.1128/iai.00524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
For multiple intracellular bacterial pathogens, the ability to spread directly into adjacent epithelial cells is an essential step for disease in humans. For pathogens such as Shigella, Listeria, Rickettsia, and Burkholderia, this intercellular movement frequently requires the pathogens to manipulate the host actin cytoskeleton and deform the plasma membrane into structures known as protrusions, which extend into neighboring cells. The protrusion is then typically resolved into a double-membrane vacuole (DMV) from which the pathogen quickly escapes into the cytosol, where additional rounds of intercellular spread occur. Significant progress over the last few years has begun to define the mechanisms by which intracellular bacterial pathogens spread. This review highlights the interactions of bacterial and host factors that drive mechanisms required for intercellular spread with a focus on how protrusion structures form and resolve.
Collapse
Affiliation(s)
- Julie E. Raab
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Desmond J. Hamilton
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Tucker B. Harju
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Thao N. Huynh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Brian C. Russo
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| |
Collapse
|
9
|
Bu C, Hu M, Su Y, Yuan F, Zhang Y, Xia J, Jia Z, Zhang L. Cell-permeable JNK-inhibitory peptide regulates intestinal barrier function and inflammation to ameliorate necrotizing enterocolitis. J Cell Mol Med 2024; 28:e18534. [PMID: 39031467 PMCID: PMC11258882 DOI: 10.1111/jcmm.18534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/06/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024] Open
Abstract
Intestinal dysbiosis is believed to play a role in the development of necrotizing enterocolitis (NEC). The efficacy of JNK-inhibitory peptide (CPJIP) in treating NEC was assessed. Treatment with CPJIP led to a notable reduction in p-JNK expression in IEC-6 cells and NEC mice. Following LPS stimulation, the expression of RNA and protein of claudin-1, claudin-3, claudin-4 and occludin was significantly decreased, with this decrease being reversed by CPJIP administration, except for claudin-3, which remained consistent in NEC mice. Moreover, the expression levels of the inflammatory factors TNF-α, IL-1β and IL-6 were markedly elevated, a phenomenon that was effectively mitigated by the addition of CPJIP in both IEC-6 cells and NEC mice. CPJIP administration resulted in improved survival rates, ameliorated microscopic intestinal mucosal injury, and increased the total length of the intestines and colon in NEC mice. Additionally, CPJIP treatment led to a reduction in serum concentrations of FD-4, D-lactate and DAO. Furthermore, our results revealed that CPJIP effectively inhibited intestinal cell apoptosis and promoted cell proliferation in the intestine. This study represents the first documentation of CPJIP's ability to enhance the expression of tight junction components, suppress inflammatory responses, and rescue intestinal cell fate by inhibiting JNK activation, ultimately mitigating intestinal severity. These findings suggest that CPJIP has the potential to serve as a promising candidate for the treatment of NEC.
Collapse
Affiliation(s)
- Chaozhi Bu
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
- State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care HospitalWomen's Hospital of Jiangnan University, Jiangnan UniversityWuxiChina
| | - Mengyuan Hu
- Department of NeonatologyThe Affiliated Wuxi Children's Hospital of Nanjing Medical UniversityWuxiJiangsuChina
| | - Yinglin Su
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
| | - Fuqiang Yuan
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
| | - Yiting Zhang
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
| | - Jing Xia
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
| | - Zhenyu Jia
- Department of Gastroenterology and Digestive DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Le Zhang
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
- Department of NeonatologyThe Affiliated Wuxi Children's Hospital of Nanjing Medical UniversityWuxiJiangsuChina
| |
Collapse
|
10
|
Joutsen J, Pessa JC, Jokelainen O, Sironen R, Hartikainen JM, Sistonen L. Comprehensive analysis of human tissues reveals unique expression and localization patterns of HSF1 and HSF2. Cell Stress Chaperones 2024; 29:235-271. [PMID: 38458311 PMCID: PMC10963207 DOI: 10.1016/j.cstres.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Heat shock factors (HSFs) are the main transcriptional regulators of the evolutionarily conserved heat shock response. Beyond cell stress, several studies have demonstrated that HSFs also contribute to a vast variety of human pathologies, ranging from metabolic diseases to cancer and neurodegeneration. Despite their evident role in mitigating cellular perturbations, the functions of HSF1 and HSF2 in physiological proteostasis have remained inconclusive. Here, we analyzed a comprehensive selection of paraffin-embedded human tissue samples with immunohistochemistry. We demonstrate that both HSF1 and HSF2 display distinct expression and subcellular localization patterns in benign tissues. HSF1 localizes to the nucleus in all epithelial cell types, whereas nuclear expression of HSF2 was limited to only a few cell types, especially the spermatogonia and the urothelial umbrella cells. We observed a consistent and robust cytoplasmic expression of HSF2 across all studied smooth muscle and endothelial cells, including the smooth muscle cells surrounding the vasculature and the high endothelial venules in lymph nodes. Outstandingly, HSF2 localized specifically at cell-cell adhesion sites in a broad selection of tissue types, such as the cardiac muscle, liver, and epididymis. To the best of our knowledge, this is the first study to systematically describe the expression and localization patterns of HSF1 and HSF2 in benign human tissues. Thus, our work expands the biological landscape of these factors and creates the foundation for the identification of specific roles of HSF1 and HSF2 in normal physiological processes.
Collapse
Affiliation(s)
- Jenny Joutsen
- Department of Pathology, Lapland Central Hospital, Lapland Wellbeing Services County, Rovaniemi, Finland.
| | - Jenny C Pessa
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Otto Jokelainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland; Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Reijo Sironen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland; Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Jaana M Hartikainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
11
|
Schreiber F, Balas I, Robinson MJ, Bakdash G. Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells 2024; 13:477. [PMID: 38534321 PMCID: PMC10969408 DOI: 10.3390/cells13060477] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The gut mucosal epithelium is one of the largest organs in the body and plays a critical role in regulating the crosstalk between the resident microbiome and the host. To this effect, the tight control of what is permitted through this barrier is of high importance. There should be restricted passage of harmful microorganisms and antigens while at the same time allowing the absorption of nutrients and water. An increased gut permeability, or "leaky gut", has been associated with a variety of diseases ranging from infections, metabolic diseases, and inflammatory and autoimmune diseases to neurological conditions. Several factors can affect gut permeability, including cytokines, dietary components, and the gut microbiome. Here, we discuss how the gut microbiome impacts the permeability of the gut epithelial barrier and how this can be harnessed for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Ghaith Bakdash
- Microbiotica Ltd., Cambridge CB10 1XL, UK; (F.S.); (I.B.); (M.J.R.)
| |
Collapse
|
12
|
Li S. Modulation of immunity by tryptophan microbial metabolites. Front Nutr 2023; 10:1209613. [PMID: 37521424 PMCID: PMC10382180 DOI: 10.3389/fnut.2023.1209613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023] Open
Abstract
Tryptophan (Trp) is an essential amino acid that can be metabolized via endogenous and exogenous pathways, including the Kynurenine Pathway, the 5-Hydroxyindole Pathway (also the Serotonin pathway), and the Microbial pathway. Of these, the Microbial Trp metabolic pathways in the gut have recently been extensively studied for their production of bioactive molecules. The gut microbiota plays an important role in host metabolism and immunity, and microbial Trp metabolites can influence the development and progression of various diseases, including inflammatory, cardiovascular diseases, neurological diseases, metabolic diseases, and cancer, by mediating the body's immunity. This review briefly outlines the crosstalk between gut microorganisms and Trp metabolism in the body, starting from the three metabolic pathways of Trp. The mechanisms by which microbial Trp metabolites act on organism immunity are summarized, and the potential implications for disease prevention and treatment are highlighted.
Collapse
|
13
|
Effect and mechanism of apelin on lipopolysaccharide induced acute pulmonary vascular endothelial barrier dysfunction. Sci Rep 2023; 13:1560. [PMID: 36707689 PMCID: PMC9883263 DOI: 10.1038/s41598-023-27889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Vascular endothelial barrier dysfunction is the most prominent manifestation and important cause of mortality in infectious acute lung injury (ALI). Exogenous apelin is effective in ameliorating lipopolysaccharide (LPS)-induced inflammatory response in ALI lungs, reducing exudation of lung tissue and decreasing mortality. This study set out to investigate the association between apelin and Friend leukemia integration-1 (Fli-1) in the prevention and treatment of ALI, and to elucidate the molecular mechanism by which apelin protects the permeability of the vascular endothelial barrier. At the vivo functional level, lung wet/dry weight ratio was used to detect whole lung permeability, evans blue assay and dual fluorescent protein tracking assay were used to detect lung vascular endothelial permeability, HE staining to observe the inflammatory status of lung tissue, and immunofluorescence staining for VE-cadherin expression levels in blood vessels. The changes in inflammatory factors in bronchoalveolar lavage fluid (BALF) were detected by ELASA. Western blot was used to detect the expression level of proteins. qRT-PCR was performed to detect changes in mRNA expression of Fli-1 and adherent junction-related proteins. The correlation analysis of Fli-1 with vascular endothelial permeability and SRC showed that Fli-1 participated in the process of ALI. After preventive and therapeutic treatment of ALI mice with exogenous apelin, Fli-1, APJ, VE-cadherin, phosphorylated-VE-cadherin (p-VE-cadherin) and β-catenin were up-regulated, while SRC, phosphorylated-SRC (p-SRC), VEGF and VEGF-R were down-regulated, which indicated that the stability of vascular endothelial barrier was enhanced. With the use of Fli-1 inhibitor irinotecan, the protective effect of apelin was weakened in various functional indexes, genes and proteins. The lung was maintained at the level of the injury. Our research shows that Fli-1 is involved in the LPS-induced ALI process. The molecular mechanism for apelin in preventing endothelial barrier dysfunction in ALI is through up-regulating Fli-1, thus regulating adherens junction-related proteins, and finally recovering the endothelial barrier function.
Collapse
|
14
|
Miyako S, Matsuda T, Koma YI, Koide T, Sawada R, Hasegawa H, Yamashita K, Harada H, Urakawa N, Goto H, Kanaji S, Oshikiri T, Kakeji Y. Significance of Wnt/β-Catenin Signal Activation for Resistance to Neoadjuvant Chemoradiotherapy in Rectal Cancer. Biomedicines 2023; 11:biomedicines11010174. [PMID: 36672681 PMCID: PMC9855965 DOI: 10.3390/biomedicines11010174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Although a therapeutic response to neoadjuvant chemoradiotherapy (NACRT) is important to improve oncological outcomes after surgery in patients with locally advanced rectal cancer, there is no reliable predictor for this. The Wnt/β-catenin signal is known to be crucial for the tumorigenesis of colorectal cancer. This study aimed to investigate the association of Wnt/β-catenin signal activation with a pathological response to NACRT. The immunohistochemical expression of nuclear and membranous β-catenin was analyzed in biopsy samples obtained from 60 patients with locally advanced rectal cancer who received curative surgery following NACRT. The association of Wnt/β-catenin signal activation with their clinical outcomes was investigated. Notably, the body mass index of these patients was significantly higher in the low nuclear β-catenin expression group. Moreover, patients in the high nuclear β-catenin expression group tended to have more advanced disease and a higher rate of positive vascular invasion than those in the low expression group. Furthermore, the rate of good histological responses was significantly higher in the low nuclear β-catenin expression group (72% vs. 37.1%, p < 0.01). Overall, relapse-free survival tended to be better in patients with low nuclear/high membranous β-catenin expression (n = 9) than in other individuals (n = 51) (p = 0.093 and p = 0.214, respectively). Activation of the Wnt/β-catenin signal pathway represented by nuclear β-catenin accumulation was significantly associated with a poor response to NACRT in patients with rectal cancer. Analysis of nuclear β-catenin accumulation before starting treatment might help predict the therapeutic response to NACRT.
Collapse
Affiliation(s)
- Shoji Miyako
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takeru Matsuda
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Division of Minimally Invasive Surgery, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-chou, Chuo-ku, Kobe 650-0017, Japan
- Correspondence: ; Tel.: +81-78-382-5925; Fax: +81-78-382-5939
| | - Yu-ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takahiro Koide
- Department of Surgery, Sanda City Hospital, Sanda 669-1321, Japan
| | - Ryuichiro Sawada
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroshi Hasegawa
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kimihiro Yamashita
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hitoshi Harada
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Naoki Urakawa
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hironobu Goto
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Shingo Kanaji
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Taro Oshikiri
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|