1
|
Liu W, Zhou W, Zhao P, Wu T, Gu H, Li Y, Zhong C, Bai H, Zhao N, Huang X. PD-Like Pathogenesis in Caenorhabditis elegans Intestinally Infected with Nocardia farcinica and the Underlying Molecular Mechanisms. Mol Neurobiol 2025; 62:2641-2654. [PMID: 38546929 DOI: 10.1007/s12035-024-04076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/27/2024] [Indexed: 02/04/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the abnormal aggregation of α-synuclein (α-syn) and the loss of dopaminergic neurons. Although microbial infection has been implicated in the pathogenesis of PD, the associated virulence factors and the underlying molecular mechanisms require further elucidation. Here, we found that intestinal infection with Nocardia farcinica induced a series of PD-like symptoms in Caenorhabditis elegans, such as the accelerated degeneration of dopaminergic neurons, impaired locomotion capacity, and enhanced α-syn aggregation, through the disturbance of mitochondrial functions. To identify the potential virulence factors involved in these effects, we knocked out the nbtB/C and nbtS genes in N. farcinica, which are localized in the gene clusters responsible for nocobactin biosynthesis. The deletion of either gene partially rescued the degenerative effects of wild-type N. farcinica on dopaminergic neurons by attenuating mitochondrial dysfunction. LC-MS analysis further identified a decrease in the abundance of several siderophores in the two mutants, including nocobactin NA-a, nocobactin NA-b, and nocardimicin B. Collectively, our results demonstrated that intestinal N. farcinica infection in C. elegans facilitates PD-like pathogenesis and provides novel evidence for the involvement of pathogenic bacteria in neurodegenerative diseases via non-neuroinvasive mechanisms.
Collapse
Affiliation(s)
- Wenwen Liu
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Wenhui Zhou
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Peiji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Tingting Wu
- Neurosurgery of the Second Hospital Affiliated With Kunming Medical University, Kunming, 650101, China
| | - Huan Gu
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Yixin Li
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Chidi Zhong
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Hua Bai
- School of Medicine, Yunnan University, Kunming, 650091, China
- College of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Ninghui Zhao
- Neurosurgery of the Second Hospital Affiliated With Kunming Medical University, Kunming, 650101, China.
| | - Xiaowei Huang
- School of Medicine, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
2
|
Coleman PD, Delvaux E, Kordower JH, Boehringer A, Huseby CJ. Massive changes in gene expression and their cause(s) can be a unifying principle in the pathobiology of Alzheimer's disease. Alzheimers Dement 2025; 21:e14555. [PMID: 39912452 PMCID: PMC11851168 DOI: 10.1002/alz.14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/10/2024] [Accepted: 12/25/2024] [Indexed: 02/07/2025]
Abstract
Understanding of the biology of Alzheimer's disease (AD) has long been fragmented, with various investigators concentrating on amyloid beta (Aβ) or tau, inflammation, cell death pathways, misfolded proteins, glia, and more. Yet data from multiple authors has repeatedly shown altered expression of myriad genes related to these seemingly disparate phenomena. In 2022, Morgan et al. organized the massive data on changes in AD in a meticulous survey of the literature and related these changes to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Their data showed that 91% of the known KEGG pathways are involved in AD and that many of these pathways are represented by the known cellular/molecular phenomena of AD. Such data then raise the fundamental question: What mechanism(s) may be responsible for such widespread changes in gene expression? We review evidence for a unifying model based on sequestrations in stress granules and alteration of nucleocytoplasmic transport in AD. HIGHLIGHTS: In Alzheimer's disease (AD), critical changes take place in neurons before the appearance of plaques or tangles. Addressing these early changes provides a path to early detection and effective intervention in AD.
Collapse
Affiliation(s)
- Paul D. Coleman
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Elaine Delvaux
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Jeffrey H. Kordower
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Ashley Boehringer
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Carol J. Huseby
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| |
Collapse
|
3
|
Sian-Hulsmann J, Riederer P. Virus-induced brain pathology and the neuroinflammation-inflammation continuum: the neurochemists view. J Neural Transm (Vienna) 2024; 131:1429-1453. [PMID: 38261034 PMCID: PMC11608394 DOI: 10.1007/s00702-023-02723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/18/2023] [Indexed: 01/24/2024]
Abstract
Fascinatingly, an abundance of recent studies has subscribed to the importance of cytotoxic immune mechanisms that appear to increase the risk/trigger for many progressive neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis, and multiple sclerosis. Events associated with the neuroinflammatory cascades, such as ageing, immunologic dysfunction, and eventually disruption of the blood-brain barrier and the "cytokine storm", appear to be orchestrated mainly through the activation of microglial cells and communication with the neurons. The inflammatory processes prompt cellular protein dyshomeostasis. Parkinson's and Alzheimer's disease share a common feature marked by characteristic pathological hallmarks of abnormal neuronal protein accumulation. These Lewy bodies contain misfolded α-synuclein aggregates in PD or in the case of AD, they are Aβ deposits and tau-containing neurofibrillary tangles. Subsequently, these abnormal protein aggregates further elicit neurotoxic processes and events which contribute to the onset of neurodegeneration and to its progression including aggravation of neuroinflammation. However, there is a caveat for exclusively linking neuroinflammation with neurodegeneration, since it's highly unlikely that immune dysregulation is the only factor that contributes to the manifestation of many of these neurodegenerative disorders. It is unquestionably a complex interaction with other factors such as genetics, age, and environment. This endorses the "multiple hit hypothesis". Consequently, if the host has a genetic susceptibility coupled to an age-related weakened immune system, this makes them more susceptible to the virus/bacteria-related infection. This may trigger the onset of chronic cytotoxic neuroinflammatory processes leading to protein dyshomeostasis and accumulation, and finally, these events lead to neuronal destruction. Here, we differentiate "neuroinflammation" and "inflammation" with regard to the involvement of the blood-brain barrier, which seems to be intact in the case of neuroinflammation but defect in the case of inflammation. There is a neuroinflammation-inflammation continuum with regard to virus-induced brain affection. Therefore, we propose a staging of this process, which might be further developed by adding blood- and CSF parameters, their stage-dependent composition and stage-dependent severeness grade. If so, this might be suitable to optimise therapeutic strategies to fight brain neuroinflammation in its beginning and avoid inflammation at all.
Collapse
Affiliation(s)
- Jeswinder Sian-Hulsmann
- Department of Human Anatomy and Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| | - Peter Riederer
- University Hospital Wuerzburg, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, University of Southern Denmark, Winslows Vey 18, 5000, Odense, J.B, Denmark.
| |
Collapse
|
4
|
Schreiner TG, Romanescu C, Schreiner OD, Nhambasora F. New insights on the link between Epstein‑Barr virus infection and cognitive decline in neurodegenerative diseases (Review). Exp Ther Med 2024; 28:413. [PMID: 39268367 PMCID: PMC11391170 DOI: 10.3892/etm.2024.12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Cognitive decline is a frequent complaint in healthy controls and neurological patients, regardless of the underlying pathology. Whilst cognitive impairment can be easily diagnosed in the more advanced stages of neurodegenerative diseases, early detection can be challenging. This is mainly the consequence of the incomplete understanding of the underlying pathophysiological mechanisms. In addition, currently available neurological treatments do not specifically target cognitive decline, since other motor and non-motor symptoms, such as bradykinesia, tremor, autonomic disturbances and depression, are of greater relevance from a therapeutic perspective. In this context, prospective studies must address a number of issues, including the risk factors associated with cognitive deficits in neurodegenerative diseases. The present review aims to offer a novel perspective on the association between Epstein-Barr virus infection and cognitive decline found in patients with neurodegenerative disorders. Specifically, relevant epidemiological studies and clinical trials explaining this connection were reviewed, focusing on the most frequent neurodegenerative disorders. They are namely Alzheimer's disease, Parkinson's disease and multiple sclerosis. Despite their limitations, possible underlying pathophysiological mechanisms that explain the impact of Epstein-Barr virus infection on cognitive decline are expected to offer novel study directions on this clinically relevant topic.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy 'Gr. T. Popa', 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Constantin Romanescu
- Clinical Section IV, 'St. Parascheva' Infectious Disease Hospital, 700116 Iasi, Romania
| | - Oliver Daniel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy 'Gr. T. Popa', 700115 Iasi, Romania
- Department of Medical Oncology, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Farai Nhambasora
- Department of Obstetrics and Gynecology, St. Luke's Hospital, R95 FY71 Kilkenny, Republic of Ireland
| |
Collapse
|
5
|
Bolton C. Review of evidence linking exposure to environmental stressors and associated alterations in the dynamics of immunosenescence (ISC) with the global increase in multiple sclerosis (MS). Immun Ageing 2024; 21:73. [PMID: 39438909 PMCID: PMC11494837 DOI: 10.1186/s12979-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Historical survey confirms that, over the latter part of the 20th century, autoimmune-based diseases, including multiple sclerosis (MS), have shown a worldwide increase in incidence and prevalence. Analytical population studies have established that the exponential rise in MS is not solely due to improvements in diagnosis and healthcare but relates to an increase in autoimmune risk factors. Harmful environmental exposures, including non-communicable social determinants of health, anthropogens and indigenous or transmissible microbes, constitute a group of causal determinants that have been closely linked with the global rise in MS cases. Exposure to environmental stressors has profound effects on the adaptive arm of the immune system and, in particular, the associated intrinsic process of immune ageing or immunosenescence (ISC). Stressor-related disturbances to the dynamics of ISC include immune cell-linked untimely or premature (p) alterations and an accelerated replicative (ar) change. A recognised immune-associated feature of MS is pISC and current evidence supports the presence of an arISC during the disease. Moreover, collated data illustrates the immune-associated alterations that characterise pISC and arISC are inducible by environmental stressors strongly implicated in causing duplicate changes in adaptive immune cells during MS. The close relationship between exposure to environmental risk factors and the induction of pISC and arISC during MS offers a valid mechanism through which pro-immunosenescent stressors may act and contribute to the recorded increase in the global rate and number of new cases of the disease. Confirmation of alterations to the dynamics of ISC during MS provides a rational and valuable therapeutic target for the use of senolytic drugs to either prevent accumulation and enhance ablation of less efficient untimely senescent adaptive immune cells or decelerate the dysregulated process of replicative proliferation. A range of senotherapeutics are available including kinase and transcriptase inhibitors, rapalogs, flavanols and genetically-engineered T cells and the use of selective treatments to control emerging and unspecified aspects of pISC and arISC are discussed.
Collapse
|
6
|
Mackey-Alfonso SE, Butler MJ, Taylor AM, Williams-Medina AR, Muscat SM, Fu H, Barrientos RM. Short-term high fat diet impairs memory, exacerbates the neuroimmune response, and evokes synaptic degradation via a complement-dependent mechanism in a mouse model of Alzheimer's disease. Brain Behav Immun 2024; 121:56-69. [PMID: 39043341 DOI: 10.1016/j.bbi.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disease characterized by profound memory impairments, synaptic loss, neuroinflammation, and hallmark pathological markers. High-fat diet (HFD) consumption increases the risk of developing AD even after controlling for metabolic syndrome, pointing to a role of the diet itself in increasing risk. In AD, the complement system, an arm of the immune system which normally tags redundant or damaged synapses for pruning, becomes pathologically overactivated leading to tagging of healthy synapses. While the unhealthy diet to AD link is strong, the underlying mechanisms are not well understood in part due to confounding variables associated with long-term HFD which can independently influence the brain. Therefore, we experimented with a short-term diet regimen to isolate the diet's impact on brain function without causing obesity. This project investigated the effect of short-term HFD on 1) memory, 2) neuroinflammation including complement, 3) AD pathology markers, 4) synaptic markers, and 5) in vitro microglial synaptic phagocytosis in the 3xTg-AD mouse model. Following the consumption of either standard chow or HFD, 3xTg-AD and non-Tg mice were tested for memory impairments. In a separate cohort of mice, levels of hippocampal inflammatory markers, complement proteins, AD pathology markers, and synaptic markers were measured. For the last set of experiments, BV2 microglial phagocytosis of synapses was evaluated. Synaptoneurosomes isolated from the hippocampus of 3xTg-AD mice fed chow or HFD were incubated with equal numbers of BV2 microglia. The number of BV2 microglia that phagocytosed synaptoneurosomes was tracked over time with a live-cell imaging assay. Finally, we incubated BV2 microglia with a complement receptor inhibitor (NIF) and repeated the assay. Behavioral analysis showed 3xTg-AD mice had significantly impaired long-term contextual and cued fear memory compared to non-Tg mice that was further impaired by HFD. HFD significantly increased inflammatory markers and complement expression while decreasing synaptic marker expression only in 3xTg-AD mice, without altering AD pathology markers. Synaptoneurosomes from HFD-fed 3xTg-AD mice were phagocytosed at a significantly higher rate than those from chow-fed mice, suggesting the synapses were altered by HFD. The complement receptor inhibitor blocked this effect in a dose-dependent manner, demonstrating the HFD-mediated increase in phagocytosis was complement dependent. This study indicates HFD consumption increases neuroinflammation and over-activates the complement cascade in 3xTg-AD mice, resulting in poorer memory. The in vitro data point to complement as a potential mechanistic culprit and therapeutic target underlying HFD's influence in increasing cognitive vulnerability to AD.
Collapse
Affiliation(s)
- Sabrina E Mackey-Alfonso
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Michael J Butler
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
| | - Ashton M Taylor
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | | | - Stephanie M Muscat
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Dandamudi BJ, Dimaano KAM, Shah N, AlQassab O, Al-Sulaitti Z, Nelakuditi B, Mohammed L. Neurodegenerative Disorders and the Gut-Microbiome-Brain Axis: A Literature Review. Cureus 2024; 16:e72427. [PMID: 39588438 PMCID: PMC11588320 DOI: 10.7759/cureus.72427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/26/2024] [Indexed: 11/27/2024] Open
Abstract
Neurodegenerative diseases are severe, age-related conditions with complex etiologies that result in significant morbidity and mortality. The gut microbiome, a dynamic symbiotic environment comprising commensal organisms, represents the largest reservoir of these organisms within the human body. It produces short-chain fatty acids, endogenous signals, and neuroactive compounds, which can modulate neuronal function, plasticity, and behavior. Emerging evidence suggests that the gut microbiome plays a pivotal role in neurodevelopment, aging, and brain diseases, including Alzheimer's disease, Parkinson's disease, and stroke. Communication between the gut and brain occurs through a bidirectional channel known as the gut-microbiome-brain axis, which is being explored for therapeutic potential in neurodegenerative disorders. This literature review was conducted through a comprehensive search of five electronic databases - PubMed, Scopus, Ovid Medline, Cochrane Review, and Google Scholar - from inception to June 2024, focusing on English-language studies. Keywords included "gut-brain axis", "microbiome dysbiosis", "neurodegeneration", and disorder-specific terms such as "Alzheimer's disease" and "Parkinson's disease", paired with "gut microbiome". The review examines current knowledge on the relationship between gut microbiota and neurodegenerative disorders, emphasizing potential mechanisms and therapeutic options. Results indicate that gut dysbiosis, characterized by microbial imbalance, is intricately associated with neurodegenerative disease pathogenesis by influencing immune responses, increasing blood-brain barrier permeability, and generating neurotoxic metabolites. Therapeutic approaches targeting the gut microbiome, including probiotics, prebiotics, and fecal microbiota transplantation, show promise in restoring microbial balance and slowing disease progression. However, further research is essential to validate these findings and develop effective clinical interventions.
Collapse
Affiliation(s)
- Bindu Jyothi Dandamudi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kathrina Antheia M Dimaano
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nensi Shah
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Osamah AlQassab
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Zainab Al-Sulaitti
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bhavana Nelakuditi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
8
|
Zheng J, Shi W, Yang Q, Huang J, Shen J, Yin L, Zhang P, Zhang S, Yang M, Qian A, Zheng Z, Tang S. Hospital-treated infectious diseases, infection burden and risk of Parkinson disease: An observational and Mendelian randomization study. Brain Behav Immun 2024; 120:352-359. [PMID: 38897329 DOI: 10.1016/j.bbi.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/22/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Experimental and cross-sectional evidence has suggested a potential role of infection in the ethology of Parkinson's disease (PD). We aim to examine the longitudinal association of infections with the incidence of PD and to explore whether the increased risk is limited to specific infection type rather than infection burden. METHODS Based on the UK Biobank, hospital-treated infectious diseases and incident PD were ascertained through record linkage to national hospital inpatient registers. Infection burden was defined as the sum of the number of infection episodes over time and the number of co-occurring infections. The polygenic risk score (PRS) for PD was calculated. The genome-wide association studies (GWAS) used in two-sample Mendelian Randomization (MR) were obtained from observational cohort participants of mostly European ancestry. RESULTS Hospital-treated infectious diseases were associated with an increased risk of PD (adjusted HR [aHR] 1.35 [95 % CI 1.20-1.52]). This relationship persisted when analyzing new PD cases occurring more than 10 years post-infection (aHR 1.22 [95 % CI 1.04-1.43]). The greatest PD risk was observed in neurological/eye infection (aHR 1.72 [95 % CI 1.32-2.34]), with lower respiratory tract infection (aHR 1.43 [95 % CI 1.02-1.99]) ranked the second. A dose-response association was observed between infection burden and PD risk within each PD-PRS tertile (p-trend < 0.001). Multivariable MR showed that bacterial and viral infections increase the PD risk. CONCLUSIONS Both observational and genetic analysis suggested a causal association between infections and the risk of developing PD. A dose-response relationship between infection burden and incident PD was revealed.
Collapse
Affiliation(s)
- Jiazhen Zheng
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Wenming Shi
- School of Public Health, Fudan University, Shanghai, China
| | - Quan Yang
- Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jinghan Huang
- Biomedical Genetics Section, School of Medicine, Boston University, United States; Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Junchun Shen
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Lingzi Yin
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Pengfei Zhang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Shichen Zhang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Minghao Yang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Annan Qian
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Zhihang Zheng
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Shaojun Tang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China; Division of Emerging Interdisciplinary Areas, Center for Aging Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
9
|
Lind-Holm Mogensen F, Sousa C, Ameli C, Badanjak K, Pereira SL, Muller A, Kaoma T, Coowar D, Scafidi A, Poovathingal SK, Tziortziou M, Antony PMA, Nicot N, Ginolhac A, Vogt Weisenhorn DM, Wurst W, Poli A, Nazarov PV, Skupin A, Grünewald A, Michelucci A. PARK7/DJ-1 deficiency impairs microglial activation in response to LPS-induced inflammation. J Neuroinflammation 2024; 21:174. [PMID: 39014482 PMCID: PMC11253405 DOI: 10.1186/s12974-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Specific microglia responses are thought to contribute to the development and progression of neurodegenerative diseases, including Parkinson's disease (PD). However, the phenotypic acquisition of microglial cells and their role during the underlying neuroinflammatory processes remain largely elusive. Here, according to the multiple-hit hypothesis, which stipulates that PD etiology is determined by a combination of genetics and various environmental risk factors, we investigate microglial transcriptional programs and morphological adaptations under PARK7/DJ-1 deficiency, a genetic cause of PD, during lipopolysaccharide (LPS)-induced inflammation. METHODS Using a combination of single-cell RNA-sequencing, bulk RNA-sequencing, multicolor flow cytometry and immunofluorescence analyses, we comprehensively compared microglial cell phenotypic characteristics in PARK7/DJ-1 knock-out (KO) with wildtype littermate mice following 6- or 24-h intraperitoneal injection with LPS. For translational perspectives, we conducted corresponding analyses in human PARK7/DJ-1 mutant induced pluripotent stem cell (iPSC)-derived microglia and murine bone marrow-derived macrophages (BMDMs). RESULTS By excluding the contribution of other immune brain resident and peripheral cells, we show that microglia acutely isolated from PARK7/DJ-1 KO mice display a distinct phenotype, specially related to type II interferon and DNA damage response signaling, when compared with wildtype microglia, in response to LPS. We also detected discrete signatures in human PARK7/DJ-1 mutant iPSC-derived microglia and BMDMs from PARK7/DJ-1 KO mice. These specific transcriptional signatures were reflected at the morphological level, with microglia in LPS-treated PARK7/DJ-1 KO mice showing a less amoeboid cell shape compared to wildtype mice, both at 6 and 24 h after acute inflammation, as also observed in BMDMs. CONCLUSIONS Taken together, our results show that, under inflammatory conditions, PARK7/DJ-1 deficiency skews microglia towards a distinct phenotype characterized by downregulation of genes involved in type II interferon signaling and a less prominent amoeboid morphology compared to wildtype microglia. These findings suggest that the underlying oxidative stress associated with the lack of PARK7/DJ-1 affects microglia neuroinflammatory responses, which may play a causative role in PD onset and progression.
Collapse
Affiliation(s)
- Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A, rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365, Esch-sur-Alzette, Luxembourg
| | - Carole Sousa
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A, rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- International Iberian Nanotechnology Laboratory, 4715-330, Braga, Portugal
| | - Corrado Ameli
- Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Katja Badanjak
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Sandro L Pereira
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Arnaud Muller
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- LuxGen Genome Center, Luxembourg Institute of Health and Laboratoire National de Santé, L-3555, Dudelange, Luxembourg
| | - Tony Kaoma
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Djalil Coowar
- Rodent Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A, rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365, Esch-sur-Alzette, Luxembourg
| | - Suresh K Poovathingal
- Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Single Cell Analytics and Microfluidics Core, Vlaams Instituut Voor Biotechnologie-KU Leuven, 3000, Louvain, Belgium
| | - Maria Tziortziou
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Paul M A Antony
- Bioimaging Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Luxembourg Institute of Health and Laboratoire National de Santé, L-3555, Dudelange, Luxembourg
| | - Aurélien Ginolhac
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365, Esch-sur-Alzette, Luxembourg
| | - Daniela M Vogt Weisenhorn
- Institute of Developmental Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Technische Universität München-Weihenstephan, 85354, Freising, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Technische Universität München-Weihenstephan, 85354, Freising, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
- Deutsche Zentrum für Psychische Gesundheit (DZPG), 80336, Munich, Germany
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A, rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Petr V Nazarov
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Multiomics Data Science Group, Department of Cancer Research, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Alexander Skupin
- Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Department of Neuroscience, University of California San Diego, La Jolla, CA, 92093, USA
- Integrative Biophysics, Department of Physics and Material Science, University of Luxembourg, L-1511, Luxembourg, Luxembourg
| | - Anne Grünewald
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, 23538, Lübeck, Germany
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A, rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg.
| |
Collapse
|
10
|
Pandya VA, Patani R. The role of glial cells in amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:381-450. [PMID: 38802179 DOI: 10.1016/bs.irn.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) has traditionally been considered a neuron-centric disease. This view is now outdated, with increasing recognition of cell autonomous and non-cell autonomous contributions of central and peripheral nervous system glia to ALS pathomechanisms. With glial research rapidly accelerating, we comprehensively interrogate the roles of astrocytes, microglia, oligodendrocytes, ependymal cells, Schwann cells and satellite glia in nervous system physiology and ALS-associated pathology. Moreover, we highlight the inter-glial, glial-neuronal and inter-system polylogue which constitutes the healthy nervous system and destabilises in disease. We also propose classification based on function for complex glial reactive phenotypes and discuss the pre-requisite for integrative modelling to advance translation. Given the paucity of life-enhancing therapies currently available for ALS patients, we discuss the promising potential of harnessing glia in driving ALS therapeutic discovery.
Collapse
Affiliation(s)
- Virenkumar A Pandya
- University College London Medical School, London, United Kingdom; The Francis Crick Institute, London, United Kingdom.
| | - Rickie Patani
- The Francis Crick Institute, London, United Kingdom; Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom.
| |
Collapse
|
11
|
Ermini F, Low VF, Song JJ, Tan AYS, Faull RLM, Dragunow M, Curtis MA, Dominy SS. Ultrastructural localization of Porphyromonas gingivalis gingipains in the substantia nigra of Parkinson's disease brains. NPJ Parkinsons Dis 2024; 10:90. [PMID: 38664405 PMCID: PMC11045759 DOI: 10.1038/s41531-024-00705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Gingipains are protease virulence factors produced by Porphyromonas gingivalis, a Gram-negative bacterium best known for its role in chronic periodontitis. Gingipains were recently identified in the middle temporal gyrus of postmortem Alzheimer's disease (AD) brains, where gingipain load correlated with AD diagnosis and tau and ubiquitin pathology. Since AD and Parkinson's disease (PD) share some overlapping pathologic features, including nigral pathology and Lewy bodies, the current study explored whether gingipains are present in the substantia nigra pars compacta of PD brains. In immunohistochemical techniques and multi-channel fluorescence studies, gingipain antigens were abundant in dopaminergic neurons in the substantia nigra of both PD and neurologically normal control brains. 3-dimensional reconstructions of Lewy body containing neurons revealed that gingipains associated with the periphery of alpha-synuclein aggregates but were occasionally observed inside aggregates. In vitro proteomic analysis demonstrated that recombinant alpha-synuclein is cleaved by lysine-gingipain, generating multiple alpha-synuclein fragments including the non-amyloid component fragments. Immunogold electron microscopy with co-labeling of gingipains and alpha-synuclein confirmed the occasional colocalization of gingipains with phosphorylated (pSER129) alpha-synuclein. In dopaminergic neurons, gingipains localized to the perinuclear cytoplasm, neuromelanin, mitochondria, and nucleus. These data suggest that gingipains localize in dopaminergic neurons in the substantia nigra and interact with alpha-synuclein.
Collapse
Affiliation(s)
- Florian Ermini
- Previously Cortexyme, Inc., South San Francisco, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Victoria F Low
- NeuroValida, The University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Jennifer J Song
- NeuroValida, The University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Adelie Y S Tan
- NeuroValida, The University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- NeuroValida, The University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Michael Dragunow
- NeuroValida, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- NeuroValida, The University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Stephen S Dominy
- Previously Cortexyme, Inc., South San Francisco, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Lighthouse Pharmaceuticals, Inc., San Francisco, CA, USA.
| |
Collapse
|
12
|
Pagh-Berendtsen N, Pavlovskyi A, Flores Téllez D, Egebjerg C, Kolmos MG, Justinussen J, Kornum BR. Downregulation of hypocretin/orexin after H1N1 Pandemrix vaccination of adolescent mice. Sleep 2024; 47:zsae014. [PMID: 38227834 DOI: 10.1093/sleep/zsae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Indexed: 01/18/2024] Open
Abstract
Narcolepsy type 1 (NT1), characterized by the loss of hypocretin/orexin (HCRT) production in the lateral hypothalamus, has been linked to Pandemrix vaccination during the 2009 H1N1 pandemic, especially in children and adolescents. It is still unknown why this vaccination increased the risk of developing NT1. This study investigated the effects of Pandemrix vaccination during adolescence on Hcrt mRNA expression in mice. Mice received a primary vaccination (50 µL i.m.) during prepubescence and a booster vaccination during peri-adolescence. Hcrt expression was measured at three-time points after the vaccinations. Control groups included both a saline group and an undisturbed group of mice. Hcrt expression was decreased after both Pandemrix and saline injections, but 21 days after the second injection, the saline group no longer showed decreased Hcrt expression, while the Pandemrix group still exhibited a significant reduction of about 60% compared to the undisturbed control group. This finding suggests that Pandemrix vaccination during adolescence influences Hcrt expression in mice into early adulthood. The Hcrt mRNA level did not reach the low levels known to induce NT1 symptoms, instead, our finding supports the multiple-hit hypothesis of NT1 that states that several insults to the HCRT system may be needed to induce NT1 and that Pandemrix could be one such insult.
Collapse
Affiliation(s)
- Nicolai Pagh-Berendtsen
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Artem Pavlovskyi
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Daniel Flores Téllez
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Christine Egebjerg
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Mie Gunni Kolmos
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Jessica Justinussen
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Birgitte Rahbek Kornum
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| |
Collapse
|
13
|
Valderhaug VD, Ramstad OH, van de Wijdeven R, Heiney K, Nichele S, Sandvig A, Sandvig I. Micro-and mesoscale aspects of neurodegeneration in engineered human neural networks carrying the LRRK2 G2019S mutation. Front Cell Neurosci 2024; 18:1366098. [PMID: 38644975 PMCID: PMC11026646 DOI: 10.3389/fncel.2024.1366098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been widely linked to Parkinson's disease, where the G2019S variant has been shown to contribute uniquely to both familial and sporadic forms of the disease. LRRK2-related mutations have been extensively studied, yet the wide variety of cellular and network events related to these mutations remain poorly understood. The advancement and availability of tools for neural engineering now enable modeling of selected pathological aspects of neurodegenerative disease in human neural networks in vitro. Our study revealed distinct pathology associated dynamics in engineered human cortical neural networks carrying the LRRK2 G2019S mutation compared to healthy isogenic control neural networks. The neurons carrying the LRRK2 G2019S mutation self-organized into networks with aberrant morphology and mitochondrial dynamics, affecting emerging structure-function relationships both at the micro-and mesoscale. Taken together, the findings of our study points toward an overall heightened metabolic demand in networks carrying the LRRK2 G2019S mutation, as well as a resilience to change in response to perturbation, compared to healthy isogenic controls.
Collapse
Affiliation(s)
- Vibeke Devold Valderhaug
- Department of Research and Innovation, Møre and Romsdal Hospital Trust, Ålesund, Norway
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rosanne van de Wijdeven
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Kristine Heiney
- Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University (OsloMet), Oslo, Norway
- Department of Computer Science, Faculty of Information Technology and Electrical Engineering, NTNU, Trondheim, Norway
| | - Stefano Nichele
- Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University (OsloMet), Oslo, Norway
- Department of Computer Science and Communication, Østfold University College, Halden, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Neuroscience, Division of Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
- Department of Neurology and Clinical Neurophysiology, St Olav’s Hospital, Trondheim, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
14
|
De Francesco MA. Herpesviridae, Neurodegenerative Disorders and Autoimmune Diseases: What Is the Relationship between Them? Viruses 2024; 16:133. [PMID: 38257833 PMCID: PMC10818483 DOI: 10.3390/v16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease and Parkinson's disease represent the most common forms of cognitive impairment. Multiple sclerosis is a chronic inflammatory disease of the central nervous system responsible for severe disability. An aberrant immune response is the cause of myelin destruction that covers axons in the brain, spinal cord, and optic nerves. Systemic lupus erythematosus is an autoimmune disease characterized by alteration of B cell activation, while Sjögren's syndrome is a heterogeneous autoimmune disease characterized by altered immune responses. The etiology of all these diseases is very complex, including an interrelationship between genetic factors, principally immune associated genes, and environmental factors such as infectious agents. However, neurodegenerative and autoimmune diseases share proinflammatory signatures and a perturbation of adaptive immunity that might be influenced by herpesviruses. Therefore, they might play a critical role in the disease pathogenesis. The aim of this review was to summarize the principal findings that link herpesviruses to both neurodegenerative and autoimmune diseases; moreover, briefly underlining the potential therapeutic approach of virus vaccination and antivirals.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
15
|
Chandwani MN, Kamte YS, Singh VR, Hemerson ME, Michaels AC, Leak RK, O'Donnell LA. The anti-viral immune response of the adult host robustly modulates neural stem cell activity in spatial, temporal, and sex-specific manners. Brain Behav Immun 2023; 114:61-77. [PMID: 37516388 DOI: 10.1016/j.bbi.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Viruses induce a wide range of neurological sequelae through the dysfunction and death of infected cells and persistent inflammation in the brain. Neural stem cells (NSCs) are often disturbed during viral infections. Although some viruses directly infect and kill NSCs, the antiviral immune response may also indirectly affect NSCs. To better understand how NSCs are influenced by a productive immune response, where the virus is successfully resolved and the host survives, we used the CD46+ mouse model of neuron-restricted measles virus (MeV) infection. As NSCs are spared from direct infection in this model, they serve as bystanders to the antiviral immune response initiated by selective infection of mature neurons. MeV-infected mice showed distinct regional and temporal changes in NSCs in the primary neurogenic niches of the brain, the hippocampus and subventricular zone (SVZ). Hippocampal NSCs increased throughout the infection (7 and 60 days post-infection; dpi), while mature neurons transiently declined at 7 dpi and then rebounded to basal levels by 60 dpi. In the SVZ, NSC numbers were unchanged, but mature neurons declined even after the infection was controlled at 60 dpi. Further analyses demonstrated sex, temporal, and region-specific changes in NSC proliferation and neurogenesis throughout the infection. A relatively long-term increase in NSC proliferation and neurogenesis was observed in the hippocampus; however, neurogenesis was reduced in the SVZ. This decline in SVZ neurogenesis was associated with increased immature neurons in the olfactory bulb in female, but not male mice, suggesting potential migration of newly-made neurons out of the female SVZ. These sex differences in SVZ neurogenesis were accompanied by higher infiltration of B cells and greater expression of interferon-gamma and interleukin-6 in female mice. Learning, memory, and olfaction tests revealed no overt behavioral changes after the acute infection subsided. These results indicate that antiviral immunity modulates NSC activity in adult mice without inducing gross behavioral deficits among those tested, suggestive of mechanisms to restore neurons and maintain adaptive behavior, but also revealing the potential for robust NSC disruption in subclinical infections.
Collapse
Affiliation(s)
- Manisha N Chandwani
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Yashika S Kamte
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Vivek R Singh
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Marlo E Hemerson
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Alexa C Michaels
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Rehana K Leak
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Lauren A O'Donnell
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Zuo Z, Li J, Zhang B, Hang A, Wang Q, Xiong G, Tang L, Zhou Z, Chang X. Early-Life Exposure to Paraquat Aggravates Sex-Specific and Progressive Abnormal Non-Motor Neurobehavior in Aged Mice. TOXICS 2023; 11:842. [PMID: 37888693 PMCID: PMC10611227 DOI: 10.3390/toxics11100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Early-life exposure to environmental neurotoxicants is known to have lasting effects on organisms. In this study, we aim to investigate the impacts of PQ exposure during early developmental stages and adult re-challenge in aged mice on non-motor neurobehavior. Two mouse models, which were exposed once during early life stage and re-exposure at adulthood, were created to explore the long-term effects of PQ on non-motor neurobehavior. As the results showed, early-life exposure to PQ caused impairment in working memory and cognitive ability in aged male mice, but not in female mice, exhibiting a sex-specific impairment. Moreover, male mice that were re-challenged with PQ at adulthood following early-life exposure also exhibited non-motor neurobehavioral disorders. Notably, re-exposure to PQ exacerbated neurobehavioral disorders and anxiety levels compared to single exposure during different life stages. Collectively, early-life exposure to PQ can result in irreversible impairments in non-motor neurobehavior and increase susceptibility to subsequent insults in male mice, but not in female mice, suggesting greater sensitivity in male rodents to PQ-induced non-motor neurobehavioral deficits.
Collapse
Affiliation(s)
- Zhenzi Zuo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Jiayi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Ai Hang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Qiaoxu Wang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; (Q.W.); (L.T.)
| | - Guiya Xiong
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Liming Tang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; (Q.W.); (L.T.)
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| |
Collapse
|
17
|
Farina S, Voorsluijs V, Fixemer S, Bouvier DS, Claus S, Ellisman MH, Bordas SPA, Skupin A. Mechanistic multiscale modelling of energy metabolism in human astrocytes reveals the impact of morphology changes in Alzheimer's Disease. PLoS Comput Biol 2023; 19:e1011464. [PMID: 37729344 PMCID: PMC10545114 DOI: 10.1371/journal.pcbi.1011464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/02/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
Astrocytes with their specialised morphology are essential for brain homeostasis as metabolic mediators between blood vessels and neurons. In neurodegenerative diseases such as Alzheimer's disease (AD), astrocytes adopt reactive profiles with molecular and morphological changes that could lead to the impairment of their metabolic support and impact disease progression. However, the underlying mechanisms of how the metabolic function of human astrocytes is impaired by their morphological changes in AD are still elusive. To address this challenge, we developed and applied a metabolic multiscale modelling approach integrating the dynamics of metabolic energy pathways and physiological astrocyte morphologies acquired in human AD and age-matched control brain samples. The results demonstrate that the complex cell shape and intracellular organisation of energetic pathways determine the metabolic profile and support capacity of astrocytes in health and AD conditions. Thus, our mechanistic approach indicates the importance of spatial orchestration in metabolism and allows for the identification of protective mechanisms against disease-associated metabolic impairments.
Collapse
Affiliation(s)
- Sofia Farina
- Department of Engineering, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Valérie Voorsluijs
- LCSB-Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Physics and Material Science, University of Luxembourg, Luxembourg, Luxembourg
| | - Sonja Fixemer
- LCSB-Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - David S. Bouvier
- LCSB-Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire national de santé (LNS), National Center of Pathology (NCP), Dudelange, Luxembourg
| | | | - Mark H. Ellisman
- Department of Neurosciences, University of California San Diego, California, United States of America
| | | | - Alexander Skupin
- LCSB-Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Physics and Material Science, University of Luxembourg, Luxembourg, Luxembourg
- Department of Neurosciences, University of California San Diego, California, United States of America
| |
Collapse
|
18
|
Piotrowski SL, Tucker A, Jacobson S. The elusive role of herpesviruses in Alzheimer's disease: current evidence and future directions. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:253-266. [PMID: 38013835 PMCID: PMC10474380 DOI: 10.1515/nipt-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/26/2023] [Indexed: 11/29/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. While pathologic hallmarks, such as extracellular beta-amyloid plaques, are well-characterized in affected individuals, the pathogenesis that causes plaque formation and eventual cognitive decline is not well understood. A recent resurgence of the decades-old "infectious hypothesis" has garnered increased attention on the potential role that microbes may play in AD. In this theory, it is thought that pathogens such as viruses may act as seeds for beta-amyloid aggregation, ultimately leading to plaques. Interest in the infectious hypothesis has also spurred further investigation into additional characteristics of viral infection that may play a role in AD progression, such as neuroinflammation, latency, and viral DNA integration. While a flurry of research in this area has been recently published, with herpesviruses being of particular interest, the role of pathogens in AD remains controversial. In this review, the insights gained thus far into the possible role of herpesviruses in AD are summarized. The challenges and potential future directions of herpesvirus research in AD and dementia are also discussed.
Collapse
Affiliation(s)
- Stacey L. Piotrowski
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Comparative Biomedical Scientist Training Program, National Institutes of Health, Bethesda, MD, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Allison Tucker
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Oummadi A, Menuet A, Méresse S, Laugeray A, Guillemin G, Mortaud S. The herbicides glyphosate and glufosinate and the cyanotoxin β-N-methylamino-l-alanine induce long-term motor disorders following postnatal exposure: the importance of prior asymptomatic maternal inflammatory sensitization. Front Neurosci 2023; 17:1172693. [PMID: 37360165 PMCID: PMC10288190 DOI: 10.3389/fnins.2023.1172693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Background Prenatal maternal immune activation (MIA) and/or perinatal exposure to various xenobiotics have been identified as risk factors for neurological disorders, including neurodegenerative diseases. Epidemiological data suggest an association between early multi-exposures to various insults and neuropathologies. The "multiple-hit hypothesis" assumes that prenatal inflammation makes the brain more susceptible to subsequent exposure to several kinds of neurotoxins. To explore this hypothesis and its pathological consequences, a behavioral longitudinal procedure was performed after prenatal sensitization and postnatal exposure to low doses of pollutants. Methods Maternal exposure to an acute immune challenge (first hit) was induced by an asymptomatic lipopolysaccharide (LPS) dose (0.008 mg/kg) in mice. This sensitization was followed by exposing the offspring to environmental chemicals (second hit) postnatally, by the oral route. The chemicals used were low doses of the cyanotoxin β-N-methylamino-l-alanine (BMAA; 50 mg/kg), the herbicide glufosinate ammonium (GLA; 0.2 mg/kg) or the pesticide glyphosate (GLY; 5 mg/kg). After assessing maternal parameters, a longitudinal behavioral assessment was carried out on the offspring in order to evaluate motor and emotional abilities in adolescence and adulthood. Results We showed that the low LPS immune challenge was an asymptomatic MIA. Even though a significant increase in systemic pro-inflammatory cytokines was detected in the dams, no maternal behavioral defects were observed. In addition, as shown by rotarod assays and open field tests, this prenatal LPS administration alone did not show any behavioral disruption in offspring. Interestingly, our data showed that offspring subjected to both MIA and post-natal BMAA or GLA exposure displayed motor and anxiety behavioral impairments during adolescence and adulthood. However, this synergistic effect was not observed in the GLY-exposed offspring. Conclusion These data demonstrated that prenatal and asymptomatic immune sensitization represents a priming effect to subsequent exposure to low doses of pollutants. These double hits act in synergy to induce motor neuron disease-related phenotypes in offspring. Thus, our data strongly emphasize that multiple exposures for developmental neurotoxicity regulatory assessment must be considered. This work paves the way for future studies aiming at deciphering cellular pathways involved in these sensitization processes.
Collapse
Affiliation(s)
- Asma Oummadi
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- Faculty of Medicine and Human Health Sciences, Center for MND Research, Macquarie University, Sydney, NSW, Australia
| | - Arnaud Menuet
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- UFR Sciences et Techniques, University of Orléans, Orléans, France
| | - Sarah Méresse
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- UFR Sciences et Techniques, University of Orléans, Orléans, France
| | - Anthony Laugeray
- Faculty of Biology and Medicine, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Gilles Guillemin
- Faculty of Medicine and Human Health Sciences, Center for MND Research, Macquarie University, Sydney, NSW, Australia
| | - Stéphane Mortaud
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- UFR Sciences et Techniques, University of Orléans, Orléans, France
| |
Collapse
|
20
|
Meyer M, Slot J. The evolution and ecology of psilocybin in nature. Fungal Genet Biol 2023; 167:103812. [PMID: 37210028 DOI: 10.1016/j.fgb.2023.103812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Fungi produce diverse metabolites that can have antimicrobial, antifungal, antifeedant, or psychoactive properties. Among these metabolites are the tryptamine-derived compounds psilocybin, its precursors, and natural derivatives (collectively referred to as psiloids), which have played significant roles in human society and culture. The high allocation of nitrogen to psiloids in mushrooms, along with evidence of convergent evolution and horizontal transfer of psilocybin genes, suggest they provide a selective benefit to some fungi. However, no precise ecological roles of psilocybin have been experimentally determined. The structural and functional similarities of psiloids to serotonin, an essential neurotransmitter in animals, suggest that they may enhance the fitness of fungi through interference with serotonergic processes. However, other ecological mechanisms of psiloids have been proposed. Here, we review the literature pertinent to psilocybin ecology and propose potential adaptive advantages psiloids may confer to fungi.
Collapse
Affiliation(s)
- Matthew Meyer
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA; Environmental Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Center for Psychedelic Drug Research and Education, The Ohio State University, Columbus, OH 43210, USA.
| | - Jason Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA; Center for Psychedelic Drug Research and Education, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
21
|
Iacono S, Schirò G, Davì C, Mastrilli S, Abbott M, Guajana F, Arnao V, Aridon P, Ragonese P, Gagliardo C, Colomba C, Scichilone N, D’Amelio M. COVID-19 and neurological disorders: what might connect Parkinson's disease to SARS-CoV-2 infection. Front Neurol 2023; 14:1172416. [PMID: 37273689 PMCID: PMC10232873 DOI: 10.3389/fneur.2023.1172416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
SARS-CoV-2 infection leading to Coronavirus disease 19 (COVID-19) rapidly became a worldwide health emergency due to its elevated infecting capacity, morbidity, and mortality. Parkinson’s disease (PD) is the second most common neurodegenerative disorder and, nowadays the relationship between SARS-CoV-2 outbreak and PD reached a great interest. Apparently independent one from the other, both diseases share some pathogenetic and clinical features. The relationship between SARS-CoV-2 infection and PD is complex and it depends on the direction of the association that is which of the two diseases comes first. Some evidence suggests that SARS-CoV-2 infection might be a possible risk factor for PD wherein the exposure to SARS-CoV-2 increase the risk for PD. This perspective comes out from the increasing cases of parkinsonism following COVID-19 and also from the anatomical structures affected in both COVID-19 and early PD such as olfactory bulb and gastrointestinal tract resulting in the same symptoms such as hyposmia and constipation. Furthermore, there are many reported cases of patients who developed hypokinetic extrapyramidal syndrome following SARS-CoV-2 infection although these would resemble a post-encephalitic conditions and there are to date relevant data to support the hypothesis that SARS-CoV-2 infection is a risk factor for the development of PD. Future large, longitudinal and population-based studies are needed to better assess whether the risk of developing PD after COVID-19 exists given the short time span from the starting of pandemic. Indeed, this brief time-window does not allow the precise estimation of the incidence and prevalence of PD after pandemic when compared with pre-pandemic era. If the association between SARS-CoV-2 infection and PD pathogenesis is actually putative, on the other hand, vulnerable PD patients may have a greater risk to develop COVID-19 being also more prone to develop a more aggressive disease course. Furthermore, PD patients with PD showed a worsening of motor and non-motor symptoms during COVID-19 outbreak due to both infection and social restriction. As well, the worries related to the risk of being infected should not be neglected. Here we summarize the current knowledge emerging about the epidemiological, pathogenetic and clinical relationship between SARS-CoV-2 infection and PD.
Collapse
Affiliation(s)
- Salvatore Iacono
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Chiara Davì
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Sergio Mastrilli
- Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone di Palermo, Palermo, Italy
| | - Michelle Abbott
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Fabrizio Guajana
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Valentina Arnao
- UO Neurologia e Stroke Unit, Azienda di Rilievo Nazionale ad Alta Specializzazione, Ospedali Civico Di Cristina Benfratelli, Palermo, Italy
| | - Paolo Aridon
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Paolo Ragonese
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Claudia Colomba
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Nicola Scichilone
- Division of Respiratory Diseases, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Marco D’Amelio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
22
|
Hu Y, Hu K, Song H, Pawitan Y, Piehl F, Fang F. Infections among individuals with multiple sclerosis, Alzheimer's disease and Parkinson's disease. Brain Commun 2023; 5:fcad065. [PMID: 37006328 PMCID: PMC10053639 DOI: 10.1093/braincomms/fcad065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/12/2022] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
A link between neurodegenerative diseases and infections has been previously reported. However, it is not clear to what extent such link is caused by confounding factors or to what extent it is intimately connected with the underlying conditions. Further, studies on the impact of infections on mortality risk following neurodegenerative diseases are rare. We analysed two data sets with different characteristics: (i) a community-based cohort from the UK Biobank with 2023 patients with multiple sclerosis, 2200 patients with Alzheimer's disease, 3050 patients with Parkinson's disease diagnosed before 1 March 2020 and 5 controls per case who were randomly selected and individually matched to the case; (ii) a Swedish Twin Registry cohort with 230 patients with multiple sclerosis, 885 patients with Alzheimer's disease and 626 patients with Parkinson's disease diagnosed before 31 December 2016 and their disease-free co-twins. The relative risk of infections after a diagnosis of neurodegenerative disease was estimated using stratified Cox models, with adjustment for differences in baseline characteristics. Causal mediation analyses of survival outcomes based on Cox models were performed to assess the impact of infections on mortality. Compared with matched controls or unaffected co-twins, we observed an elevated infection risk after diagnosis of neurodegenerative diseases, with a fully adjusted hazard ratio (95% confidence interval) of 2.45 (2.24-2.69) for multiple sclerosis, 5.06 (4.58-5.59) for Alzheimer's disease and 3.72 (3.44-4.01) for Parkinson's disease in the UK Biobank cohort, and 1.78 (1.21-2.62) for multiple sclerosis, 1.50 (1.19-1.88) for Alzheimer's disease and 2.30 (1.79-2.95) for Parkinson's disease in the twin cohort. Similar risk increases were observed when we analysed infections during the 5 years before diagnosis of the respective disease. Occurrence of infections after diagnosis had, however, relatively little impact on mortality, as mediation of infections on mortality (95% confidence interval) was estimated as 31.89% (26.83-37.11%) for multiple sclerosis, 13.38% (11.49-15.29%) for Alzheimer's disease and 18.85% (16.95-20.97%) for Parkinson's disease in the UK Biobank cohort, whereas it was 6.56% (-3.59 to 16.88%) for multiple sclerosis, -2.21% (-0.21 to 4.65%) for Parkinson's disease and -3.89% (-7.27 to -0.51%) for Alzheimer's disease in the twin cohort. Individuals with studied neurodegenerative diseases display an increased risk of infections independently of genetic and familial environment factors. A similar magnitude of risk increase is present prior to confirmed diagnosis, which may indicate a modulating effect of the studied neurological conditions on immune defences.
Collapse
Affiliation(s)
- Yihan Hu
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kejia Hu
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Huan Song
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Heiden DL, Monogue B, Ali MDH, Beckham JD. A functional role for alpha-synuclein in neuroimmune responses. J Neuroimmunol 2023; 376:578047. [PMID: 36791583 PMCID: PMC10022478 DOI: 10.1016/j.jneuroim.2023.578047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Alpha-synuclein is a neuronal protein with unclear function but is associated with the pathogenesis of Parkinson's disease and other synucleinopathies. In this review, we discuss the emerging functional role of alpha-synuclein in support of the unique immune responses in the nervous system. Recent data now show that alpha-synuclein functions to support interferon signaling within neurons and is released from neurons to support chemoattraction and activation of local glial cells and infiltrating immune cells. Inflammatory activation and interferon signaling also induce post-translational modifications of alpha-synuclein that are commonly associated with Parkinson's disease pathogenesis. Taken together, emerging data implicate complex interactions between alpha-synuclein and host immune responses that may contribute to the pathogenesis of Parkinson's disease. Additional study of the function of alpha-synuclein in the brain's immune response may provide disease-modifying therapeutic targets for Parkinson's disease in the future.
Collapse
Affiliation(s)
- Dustin L Heiden
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brendan Monogue
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M D Haider Ali
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J David Beckham
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.
| |
Collapse
|
24
|
Wu J, Fan S, Feinberg D, Wang X, Jabbar S, Kang Y. Inhibition of Sphingosine Kinase 2 Results in PARK2-Mediated Mitophagy and Induces Apoptosis in Multiple Myeloma. Curr Oncol 2023; 30:3047-3063. [PMID: 36975444 PMCID: PMC10047154 DOI: 10.3390/curroncol30030231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Mitophagy plays an important role in maintaining mitochondrial homeostasis by clearing damaged mitochondria. Sphingosine kinase 2 (SK2), a type of sphingosine kinase, is an important metabolic enzyme involved in generating sphingosine-1-phosphate. Its expression level is elevated in many cancers and is associated with poor clinical outcomes. However, the relationship between SK2 and mitochondrial dysfunction remains unclear. We found that the genetic downregulation of SK2 or treatment with ABC294640, a specific inhibitor of SK2, induced mitophagy and apoptosis in multiple myeloma cell lines. We showed that mitophagy correlates with apoptosis induction and likely occurs through the SET/PP2AC/PARK2 pathway, where inhibiting PP2AC activity may rescue this process. Furthermore, we found that PP2AC and PARK2 form a complex, suggesting that they might regulate mitophagy through protein-protein interactions. Our study demonstrates the important role of SK2 in regulating mitophagy and provides new insights into the mechanism of mitophagy in multiple myeloma.
Collapse
Affiliation(s)
| | | | | | | | | | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
25
|
Portnyagina OY, Ivashkevich DN, Duizen IV, Shevchenko LS, Novikova OD. Effect of Non-Specific Porins from the Outer Membrane of Yersinia pseudotuberculosis on Mice Brain Cortex Tissues. BIOCHEMISTRY (MOSCOW) 2023; 88:142-151. [PMID: 37068878 DOI: 10.1134/s0006297923010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
It was found that a single-dose immunization of mice with Yersinia pseudotuberculosis porins OmpF and OmpC causes development of pathological changes in the deep layers of cerebral cortex characterized by dystrophic changes in the cells against the background of the increasing titer of specific antibodies. At the same time, the increased level of caspase-3 expression is observed in the neurons, which indicates induction of proapoptotic signaling pathways. The obtained results indicate potential ability of nonspecific pore-forming proteins of the outer membrane of Gram-negative bacteria to initiate development of degenerative changes in brain cells.
Collapse
Affiliation(s)
- Olga Yu Portnyagina
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok, 690021, Russia.
| | - Darya N Ivashkevich
- A. V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Inessa V Duizen
- A. V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Ludmila S Shevchenko
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Olga D Novikova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok, 690021, Russia
| |
Collapse
|
26
|
Yoo JE, Choi H, Han K, Park SH, Park J, Lee H, Shin DW. Tuberculosis and risk of Parkinson's disease: A nationwide cohort study. Pulmonology 2022; 29:250-252. [PMID: 36473828 DOI: 10.1016/j.pulmoe.2022.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/11/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- J E Yoo
- Department of Family Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - H Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University of College of Medicine, Seoul, Republic of Korea
| | - K Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - S H Park
- Department of Medical Statistics, The Catholic University of Korea, Seoul, Republic of Korea
| | - J Park
- Department of Neurology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea
| | - H Lee
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea.
| | - D W Shin
- Supportive Care Center/Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Antibodies against HSV-1 and Curli Show the Highest Correlation in Parkinson's Disease Patients in Comparison to Healthy Controls. Int J Mol Sci 2022; 23:ijms232314816. [PMID: 36499141 PMCID: PMC9740186 DOI: 10.3390/ijms232314816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder involving the accumulation of alpha-synuclein (α-syn)/Lewy bodies in the brain and -enteric nervous system. The etiology of the disease is not well understood, but bacterial and viral infections may contribute to the pathogenesis of PD. It has been suggested that the gastrointestinal (GI) complications observed in PD patients may arise from bacterial dysbiosis, leading to curli/α-syn deposits in the enteric nervous system. Enteric bacteria secrete curli, a functional amyloid peptide involved in adhesion to surfaces, cell invasion, and biofilm formation. However, these bacterial amyloids can initiate additional α-syn deposits through immune system activation and cross-seeding. In this study, we investigate the humoral response against α-syn, curli peptides, and various bacterial and viral immunogen peptides in PD patients, and compare them with those in healthy controls (HCs). Polyclonal IgG antibodies (Abs) were detected against peptides derived from α-syn (α-syn100−114), curli (Curli133−141), Porphyromonas gingivalis Pg (RgpA800−812, Kpg328−339), Aggregatibacter actinomycetemcomitans (LtxA1429−445, LtxA264−80), Mycobacterium avium subsp. paratuberculosis (MAP3865c125−133, MAP1,4-a-gbp157−173 and MAP_402718−32), Epstein−Barr virus (EBNA1400−413, BOLF1305−320), and Herpes Simplex virus 1 (UI4222−36), as investigated by indirect ELISA of 51 serum samples from PD and 58 sex and age-matched HCs. Significant differences in OD (optical density) values and Abs positivity between PD patients and HCs were observed for Kpg (82.3% vs. 10.3%), followed by RgpA (60.7% vs. 24.1%), curli (51% vs. 22.4%), and UI42 (43.1% vs. 25.8%) in PD, compared to HCs sera (p < 0.001). No significant difference was found in the ODs obtained from other tested peptides in PD patients, compared to HCs. Significant positive correlations between OD values obtained by ELISA were observed for UI42 and curli (r = 0.811, p < 0.0001), Kpg and RgpA (r = 0.659, p < 0.0001), followed by LtxA1 and LtxA2 (r = 0.653, p < 0.0001). The correlation between the HY scale (Hoehn and Yahr Scale) and LtxA1 (r = 0.306, p < 0.028) and HY and Kpg (r = 0.290, p < 0.038) were significantly positive. This study reports a significantly increased humoral response against curli, Pg, and HSV-1 in PD patients, implying that they could be important factors in the pathogenesis of the disease. In addition, the high positive correlation between UI42 and curli may suggest the involvement of HSV-1 in GI dysbiosis. Therefore, the role of each individual pathogen and curli in PD needs to be further investigated.
Collapse
|
28
|
Onisiforou A, Spyrou GM. Systems Bioinformatics Reveals Possible Relationship between COVID-19 and the Development of Neurological Diseases and Neuropsychiatric Disorders. Viruses 2022; 14:2270. [PMID: 36298824 PMCID: PMC9611753 DOI: 10.3390/v14102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is associated with increased incidence of neurological diseases and neuropsychiatric disorders after infection, but how it contributes to their development remains under investigation. Here, we investigate the possible relationship between COVID-19 and the development of ten neurological disorders and three neuropsychiatric disorders by exploring two pathological mechanisms: (i) dysregulation of host biological processes via virus-host protein-protein interactions (PPIs), and (ii) autoreactivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epitopes with host "self" proteins via molecular mimicry. We also identify potential genetic risk factors which in combination with SARS-CoV-2 infection might lead to disease development. Our analysis indicated that neurodegenerative diseases (NDs) have a higher number of disease-associated biological processes that can be modulated by SARS-CoV-2 via virus-host PPIs than neuropsychiatric disorders. The sequence similarity analysis indicated the presence of several matching 5-mer and/or 6-mer linear motifs between SARS-CoV-2 epitopes with autoreactive epitopes found in Alzheimer's Disease (AD), Parkinson's Disease (PD), Myasthenia Gravis (MG) and Multiple Sclerosis (MS). The results include autoreactive epitopes that recognize amyloid-beta precursor protein (APP), microtubule-associated protein tau (MAPT), acetylcholine receptors, glial fibrillary acidic protein (GFAP), neurofilament light polypeptide (NfL) and major myelin proteins. Altogether, our results suggest that there might be an increased risk for the development of NDs after COVID-19 both via autoreactivity and virus-host PPIs.
Collapse
Affiliation(s)
| | - George M. Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2370, Cyprus
| |
Collapse
|
29
|
Nakamura M, Ura S, Yabe I, Otsuki M, Soma H, Ogata A. Cat Scratch Disease-associated Encephalitis Followed by Parkinsonism. Intern Med 2022; 61:3115-3120. [PMID: 35314550 PMCID: PMC9646356 DOI: 10.2169/internalmedicine.9047-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cat scratch disease (CSD) is a zoonotic infection caused by Bartonella henselae typically resulting in self-limited regional lymphadenopathy. Encephalitis is a complication with a supposedly benign prognosis, but we encountered an exceptional case. A 19-year-old Japanese woman presented with status epilepticus. She was diagnosed with CSD-associated encephalitis based on her history of contact with a kitten and a high titre of serum IgG to B. henselae. Multimodal treatment ameliorated her encephalitis, but neurological sequelae including spastic paraparesis, persisted. After several months, she developed age-disproportionate parkinsonism inconsistent with a neurodegenerative disease. In conclusion, CSD-associated encephalitis can result in severe neurological sequelae and post-encephalitic parkinsonism.
Collapse
Affiliation(s)
- Masakazu Nakamura
- Department of Neurology, Hokkaido Neurosurgical Memorial Hospital, Japan
| | - Shigehisa Ura
- Department of Neurology, Japanese Red Cross Asahikawa Hospital, Japan
| | - Ichiro Yabe
- Department of Neurology, Hokkaido University Graduate School of Medicine, Japan
| | - Mika Otsuki
- Department of Neurology, Hokkaido Neurosurgical Memorial Hospital, Japan
- Graduate School of Health Sciences, Hokkaido University, Japan
| | - Hiroyuki Soma
- Department of Neurology, Hokkaido Neurosurgical Memorial Hospital, Japan
| | - Akihiko Ogata
- Department of Neurology, Hokkaido Neurosurgical Memorial Hospital, Japan
| |
Collapse
|
30
|
Stevenson TJ, Johnson RH, Savistchenko J, Rustenhoven J, Woolf Z, Smyth LCD, Murray HC, Faull RLM, Correia J, Schweder P, Heppner P, Turner C, Melki R, Dieriks BV, Curtis MA, Dragunow M. Pericytes take up and degrade α-synuclein but succumb to apoptosis under cellular stress. Sci Rep 2022; 12:17314. [PMID: 36243723 PMCID: PMC9569325 DOI: 10.1038/s41598-022-20261-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 01/10/2023] Open
Abstract
Parkinson's disease (PD) is characterised by the progressive loss of midbrain dopaminergic neurons and the presence of aggregated α-synuclein (α-syn). Pericytes and microglia, two non-neuronal cells contain α-syn in the human brain, however, their role in disease processes is poorly understood. Pericytes, found surrounding the capillaries in the brain are important for maintaining the blood-brain barrier, controlling blood flow and mediating inflammation. In this study, primary human brain pericytes and microglia were exposed to two different α-synuclein aggregates. Inflammatory responses were assessed using immunocytochemistry, cytometric bead arrays and proteome profiler cytokine array kits. Fixed flow cytometry was used to investigate the uptake and subsequent degradation of α-syn in pericytes. We found that the two α-syn aggregates are devoid of inflammatory and cytotoxic actions on human brain derived pericytes and microglia. Although α-syn did not induce an inflammatory response, pericytes efficiently take up and degrade α-syn through the lysosomal pathway but not the ubiquitin-proteasome system. Furthermore, when pericytes were exposed the ubiquitin proteasome inhibitor-MG132 and α-syn aggregates, there was profound cytotoxicity through the production of reactive oxygen species resulting in apoptosis. These results suggest that the observed accumulation of α-syn in pericytes in human PD brains likely plays a role in PD pathogenesis, perhaps by causing cerebrovascular instability, under conditions of cellular stress.
Collapse
Affiliation(s)
- Taylor J. Stevenson
- grid.9654.e0000 0004 0372 3343Department of Pharmacology, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand
| | - Rebecca H. Johnson
- grid.9654.e0000 0004 0372 3343Department of Pharmacology, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand
| | - Jimmy Savistchenko
- grid.4444.00000 0001 2112 9282Alternative Energies and Atomic Energy Commission and Laboratory of Neurodegenerative Diseases, Molecular Imaging Research Center, Francois Jacob Institute, National Center for Scientific Research, Fontenay-Aux-Roses, France
| | - Justin Rustenhoven
- grid.9654.e0000 0004 0372 3343Department of Pharmacology, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand
| | - Zoe Woolf
- grid.9654.e0000 0004 0372 3343Department of Pharmacology, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand
| | - Leon C. D. Smyth
- grid.9654.e0000 0004 0372 3343Department of Pharmacology, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand
| | - Helen C. Murray
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Department of Anatomy and Medical Imaging, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Richard L. M. Faull
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Department of Anatomy and Medical Imaging, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Jason Correia
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.414055.10000 0000 9027 2851Auckland City Hospital, 2 Park Road, Auckland, 1010 New Zealand
| | - Patrick Schweder
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.414055.10000 0000 9027 2851Auckland City Hospital, 2 Park Road, Auckland, 1010 New Zealand
| | - Peter Heppner
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.414054.00000 0000 9567 6206Starship Children’s Hospital, 2 Park Road, Auckland, 1010 New Zealand
| | - Clinton Turner
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.414055.10000 0000 9027 2851Department of Anatomical Pathology, Lab Plus, Auckland City Hospital, 2 Park Road, Auckland, New Zealand
| | - Ronald Melki
- grid.4444.00000 0001 2112 9282Alternative Energies and Atomic Energy Commission and Laboratory of Neurodegenerative Diseases, Molecular Imaging Research Center, Francois Jacob Institute, National Center for Scientific Research, Fontenay-Aux-Roses, France
| | - Birger V. Dieriks
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Department of Anatomy and Medical Imaging, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Maurice A. Curtis
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Department of Anatomy and Medical Imaging, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Michael Dragunow
- grid.9654.e0000 0004 0372 3343Department of Pharmacology, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand
| |
Collapse
|
31
|
Sheng S, Zhao S, Zhang F. Insights into the roles of bacterial infection and antibiotics in Parkinson’s disease. Front Cell Infect Microbiol 2022; 12:939085. [PMID: 35967873 PMCID: PMC9366083 DOI: 10.3389/fcimb.2022.939085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which is accompanied with the classical motor symptoms and a range of non-motor symptoms. Bacterial infection affects the neuroinflammation associated with the pathology of PD and various antibiotics have also been confirmed to play an important role not only in bacterial infection, but also in the PD progression. This mini-review summarized the role of common bacterial infection in PD and introduced several antibiotics that had anti-PD effects.
Collapse
Affiliation(s)
- Shuo Sheng
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Shuo Zhao
- Electron Microscopy Room of School of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- Laboratory Animal Center, Zunyi Medical University, Zunyi, China
- *Correspondence: Feng Zhang,
| |
Collapse
|
32
|
Onisiforou A, Spyrou GM. Immunomodulatory effects of microbiota-derived metabolites at the crossroad of neurodegenerative diseases and viral infection: network-based bioinformatics insights. Front Immunol 2022; 13:843128. [PMID: 35928817 PMCID: PMC9344014 DOI: 10.3389/fimmu.2022.843128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Bidirectional cross-talk between commensal microbiota and the immune system is essential for the regulation of immune responses and the formation of immunological memory. Perturbations of microbiome-immune system interactions can lead to dysregulated immune responses against invading pathogens and/or to the loss of self-tolerance, leading to systemic inflammation and genesis of several immune-mediated pathologies, including neurodegeneration. In this paper, we first investigated the contribution of the immunomodulatory effects of microbiota (bacteria and fungi) in shaping immune responses and influencing the formation of immunological memory cells using a network-based bioinformatics approach. In addition, we investigated the possible role of microbiota-host-immune system interactions and of microbiota-virus interactions in a group of neurodegenerative diseases (NDs): Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Parkinson’s disease (PD) and Alzheimer’s disease (AD). Our analysis highlighted various aspects of the innate and adaptive immune response systems that can be modulated by microbiota, including the activation and maturation of microglia which are implicated in the development of NDs. It also led to the identification of specific microbiota components which might be able to influence immune system processes (ISPs) involved in the pathogenesis of NDs. In addition, it indicated that the impact of microbiota-derived metabolites in influencing disease-associated ISPs, is higher in MS disease, than in AD, PD and ALS suggesting a more important role of microbiota mediated-immune effects in MS.
Collapse
|
33
|
Mamais A, Kaganovich A, Harvey K. Convergence of signalling pathways in innate immune responses and genetic forms of Parkinson's disease. Neurobiol Dis 2022; 169:105721. [PMID: 35405260 DOI: 10.1016/j.nbd.2022.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022] Open
Abstract
In recent years progress in molecular biology and genetics have advanced our understanding of neurological disorders and highlighted synergistic relationships with inflammatory and age-related processes. Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Increasing extensive evidence supports the contribution of genetic risk variants and inflammation in the pathobiology of this disease. Functional and genetic studies demonstrate an overlap between genes linked to increased risk for PD and autoimmune diseases. Variants identified in loci adjacent to LRRK2, GBA, and HLA establish a crosstalk between the pathobiologies of the two disease spectra. Furthermore, common signalling pathways associated with the pathogenesis of genetic PD are also relevant to inflammatory signaling include MAPK, NF-κB, Wnt and inflammasome signaling. Importantly, post-mortem analyses of brain and cerebrospinal fluid from PD patients show the accumulation of proinflammatory cytokines. In this review we will focus on the principal mechanisms of genetic, inflammatory and age-related risk that intersect in the pathogenesis of PD.
Collapse
Affiliation(s)
- Adamantios Mamais
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Alice Kaganovich
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK..
| |
Collapse
|
34
|
Impact of Dexamethasone Preconditioning on Prevention of Development of Cognitive Impairment following Acute Inflammation. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6064007. [PMID: 35815058 PMCID: PMC9213130 DOI: 10.1155/2022/6064007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/31/2022] [Indexed: 12/16/2022]
Abstract
To assess the preventive role of dexamethasone (Dex) in the development of neuroinflammation and concomitant neurocognitive disorders following acute inflammation. C57BL6 mice were fallen into the sham group, ischemia-reperfusion (I/R) group, and I/R + Dex group randomly. In the end, behavioral alterations were assessed with the Morris water maze (MWM) test, passive avoidance test (PAT), and open field test (OFT). The serum levels of IL-1β and TNF-α were detected by ELISA. Immunofluorescence was adopted to observe the NF-kB expression in the hippocampus. In addition, TLR4, NF-kB, CD68, and CD206 were examined by Western blot. The cognitive ability of mice can be impaired by tourniquet-induced acute inflammation, and these changes were prevented by Dex. Compared to the I/R group, Dex pretreatment could decrease levels of IL-1β and TNF-α proteins in serum. Besides, Dex preconditioning significantly decreased the utterance of NF-kB immunoreactive cells and TLR4, NF-kB, and CD68 overexpression in the hippocampus. Dex partly through inhibiting microglia transformation to the M1 polarization state and inactivating the TLR4/NF-kB pathway attenuates the cognitive disorders in mice.
Collapse
|
35
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
36
|
Bartolomé F, Rosa L, Valenti P, Lopera F, Hernández-Gallego J, Cantero JL, Orive G, Carro E. Lactoferrin as Immune-Enhancement Strategy for SARS-CoV-2 Infection in Alzheimer's Disease Patients. Front Immunol 2022; 13:878201. [PMID: 35547737 PMCID: PMC9083828 DOI: 10.3389/fimmu.2022.878201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Coronavirus 2 (SARS-CoV2) (COVID-19) causes severe acute respiratory syndrome. Severe illness of COVID-19 largely occurs in older people and recent evidence indicates that demented patients have higher risk for COVID-19. Additionally, COVID-19 further enhances the vulnerability of older adults with cognitive damage. A balance between the immune and inflammatory response is necessary to control the infection. Thus, antimicrobial and anti-inflammatory drugs are hopeful therapeutic agents for the treatment of COVID-19. Accumulating evidence suggests that lactoferrin (Lf) is active against SARS-CoV-2, likely due to its potent antiviral and anti-inflammatory actions that ultimately improves immune system responses. Remarkably, salivary Lf levels are significantly reduced in different Alzheimer's disease (AD) stages, which may reflect AD-related immunological disturbances, leading to reduced defense mechanisms against viral pathogens and an increase of the COVID-19 susceptibility. Overall, there is an urgent necessity to protect AD patients against COVID-19, decreasing the risk of viral infections. In this context, we propose bovine Lf (bLf) as a promising preventive therapeutic tool to minimize COVID-19 risk in patients with dementia or AD.
Collapse
Affiliation(s)
- Fernando Bartolomé
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Rome, Italy
| | - Francisco Lopera
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Jesús Hernández-Gallego
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Luis Cantero
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Vitoria, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Networked Center for Biomedical Research in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Neurobiology of Alzheimer’s Disease Unit, Chronic Disease Programme, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Redefining the hypotheses driving Parkinson's diseases research. NPJ Parkinsons Dis 2022; 8:45. [PMID: 35440633 PMCID: PMC9018840 DOI: 10.1038/s41531-022-00307-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/04/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) research has largely focused on the disease as a single entity centred on the development of neuronal pathology within the central nervous system. However, there is growing recognition that PD is not a single entity but instead reflects multiple diseases, in which different combinations of environmental, genetic and potential comorbid factors interact to direct individual disease trajectories. Moreover, an increasing body of recent research implicates peripheral tissues and non-neuronal cell types in the development of PD. These observations are consistent with the hypothesis that the initial causative changes for PD development need not occur in the central nervous system. Here, we discuss how the use of neuronal pathology as a shared, qualitative phenotype minimises insights into the possibility of multiple origins and aetiologies of PD. Furthermore, we discuss how considering PD as a single entity potentially impairs our understanding of the causative molecular mechanisms, approaches for patient stratification, identification of biomarkers, and the development of therapeutic approaches to PD. The clear consequence of there being distinct diseases that collectively form PD, is that there is no single biomarker or treatment for PD development or progression. We propose that diagnosis should shift away from the clinical definitions, towards biologically defined diseases that collectively form PD, to enable informative patient stratification. N-of-one type, clinical designs offer an unbiased, and agnostic approach to re-defining PD in terms of a group of many individual diseases.
Collapse
|
38
|
Effect of LRRK2 protein and activity on stimulated cytokines in human monocytes and macrophages. NPJ Parkinsons Dis 2022; 8:34. [PMID: 35347144 PMCID: PMC8960803 DOI: 10.1038/s41531-022-00297-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
Leucine-rich-repeat kinase 2 (LRRK2), a potential therapeutic target for the treatment of Parkinson's disease (PD), is highly expressed in monocytes and macrophages and may play a role in the regulation of inflammatory pathways. To determine how LRRK2 protein levels and/or its activity modulate inflammatory cytokine/chemokine levels in human immune cells, isogenic human induced pluripotent stem cells (iPSC) with the LRRK2-activating G2019S mutation, wild-type LRRK2, and iPSC deficient in LRRK2 were differentiated to monocytes and macrophages and stimulated with inflammatory toll-like receptor (TLR) agonists in the presence and absence of LRRK2 kinase inhibitors. The effect of LRRK2 inhibitors and the effect of increasing LRRK2 levels with interferon gamma on TLR-stimulated cytokines were also assessed in primary peripheral blood-derived monocytes. Monocytes and macrophages with the LRRK2 G2019S mutation had significantly higher levels of cytokines and chemokines in tissue culture media following stimulation with TLR agonists compared to isogenic controls. Knockout of LRRK2 impaired phagocytosis but did not significantly affect TLR-mediated cytokine levels. Interferon gamma significantly increased the levels of LRRK2 and phosphorylation of its downstream Rab10 substrate, and potentiated TLR-mediated cytokine levels. LRRK2 kinase inhibitors did not have a major effect on TLR-stimulated cytokine levels. Results suggest that the LRRK2 G2019S mutation may potentiate inflammation following activation of TLRs. However, this was not dependent on LRRK2 kinase activity. Indeed, LRRK2 kinase inhibitors had little effect on TLR-mediated inflammation under the conditions employed in this study.
Collapse
|
39
|
Schütze S, Döpke A, Kellert B, Seele J, Ballüer M, Bunkowski S, Kreutzfeldt M, Brück W, Nau R. Intracerebral Infection with E. coli Impairs Spatial Learning and Induces Necrosis of Hippocampal Neurons in the Tg2576 Mouse Model of Alzheimer’s Disease. J Alzheimers Dis Rep 2022; 6:101-114. [PMID: 35530117 PMCID: PMC9028720 DOI: 10.3233/adr-210049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background: In patients with Alzheimer’s disease (AD), bacterial infections are often associated with a cognitive decline. Animal models of genuine acute infections with viable bacteria which induce deterioration of neurodegenerative diseases are missing. Objective: We assessed the effect of an intracerebral infection with E. coli in a mouse model of AD. Methods: 13-month-old Tg2576 +/- mice and transgene negative littermates (Tg2576 -/-) received an intracerebral injection with E. coli K1 or saline followed by treatment with ceftriaxone starting 41 h post infection (p.i.) for 5 days. For 4 weeks, mice were monitored for clinical status, weight, motor functions, and neuropsychological status using the Morris water maze. ELISAs, stainings, and immunohistochemistry in brains were performed at the end of the experiment. Results: Mortality of the infection was approximately 20%. After 4 weeks, spatial learning of infected Tg2576 +/- mice was compromised compared to non-infected Tg2576 +/- mice (p < 0.05). E. coli infection did not influence spatial learning in Tg2576 -/- mice, or spatial memory in both Tg2576 +/- and -/- mice within 4 weeks p.i.. Necrosis of hippocampal neurons was induced in infected compared to non-infected Tg2576 +/- mice 4 weeks p.i., whereas brain concentrations of Aβ1–40, Aβ1–42, and phosphoTau as well as axonal damage and microglia density were not altered. Conclusion: Here, we proved in principle that a genuine acute bacterial infection can worsen cognitive functions of AD mice. Mouse models of subacute systemic infections are needed to develop new strategies for the treatment of bacterial infections in patients with AD in order to minimize their cognitive decline.
Collapse
Affiliation(s)
- Sandra Schütze
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Geriatrics, Neurogeriatric Section, AGAPLESION Frankfurter Diakonie Kliniken, Frankfurt, Germany
| | - Anika Döpke
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Benedikt Kellert
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Jana Seele
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Melissa Ballüer
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephanie Bunkowski
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mario Kreutzfeldt
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Pathology and Immunology, University of Geneva and Division of Clinical Pathology, Geneva University Hospital, Centre Médical Universitaire, Geneva, Switzerland
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| |
Collapse
|
40
|
Zhao WY, Yi J, Chang YB, Sun CP, Ma XC. Recent studies on terpenoids in Aspergillus fungi: Chemical diversity, biosynthesis, and bioactivity. PHYTOCHEMISTRY 2022; 193:113011. [PMID: 34775270 DOI: 10.1016/j.phytochem.2021.113011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Metabolites from fungi are a major source of natural small molecule drugs in addition to plants, while fungal derived terpenoids have been confirmed to have great potentials in many diseases. Aspergillus fungi are distributed in every corner of the earth, and their terpenoid metabolites exhibit promising diversity in term of both their chemistry and bioactivity. This review attempted to provide timely and comprehensive coverage of chemical, biosynthesis, and biological studies on terpenoids discovered from the genus Aspergillus, including mono-, sesqui-, di-, sester-, tri-, and meroterpenoids, in the last decade. The structural characteristics, biosynthesis, and pharmacological activities of 288 terpenoids were introduced.
Collapse
Affiliation(s)
- Wen-Yu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jing Yi
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yi-Bo Chang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China; Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
41
|
Gonzalez-Latapi P, Marras C. Epidemiological Evidence for an Immune Component of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S29-S43. [PMID: 35661019 PMCID: PMC9535552 DOI: 10.3233/jpd-223180] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 02/07/2023]
Abstract
There is a growing interest in the role the immune system and inflammatory response play on the pathophysiology of Parkinson's disease (PD). Epidemiological evidence lends support for the hypothesis that PD is an immune-mediated condition. An association between inflammatory bowel disease, including Crohn's and Ulcerative colitis, and the risk of PD has been described and replicated in several population-based cohorts. Other autoimmune conditions, such as Sjogren syndrome, ankylosing spondylitis, and rheumatoid arthritis also seem to be associated with an increased risk of PD. Immunosuppressant medications seem to be associated with a decreased risk of PD. Finally, variants in genes involved in immune system regulation are also shared between PD and autoimmune conditions. In this review, we will provide an overview of epidemiological evidence from population-based cohort studies, meta-analyses, and genome-wide association studies that analyze the association between the immune system and PD, discuss current gaps in the literature and future research directions in this field.
Collapse
Affiliation(s)
- Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Connie Marras
- Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Canada
| |
Collapse
|
42
|
Onisiforou A, Spyrou GM. Identification of viral-mediated pathogenic mechanisms in neurodegenerative diseases using network-based approaches. Brief Bioinform 2021; 22:bbab141. [PMID: 34237135 PMCID: PMC8574625 DOI: 10.1093/bib/bbab141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
During the course of a viral infection, virus-host protein-protein interactions (PPIs) play a critical role in allowing viruses to replicate and survive within the host. These interspecies molecular interactions can lead to viral-mediated perturbations of the human interactome causing the generation of various complex diseases. Evidences suggest that viral-mediated perturbations are a possible pathogenic etiology in several neurodegenerative diseases (NDs). These diseases are characterized by chronic progressive degeneration of neurons, and current therapeutic approaches provide only mild symptomatic relief; therefore, there is unmet need for the discovery of novel therapeutic interventions. In this paper, we initially review databases and tools that can be utilized to investigate viral-mediated perturbations in complex NDs using network-based analysis by examining the interaction between the ND-related PPI disease networks and the virus-host PPI network. Afterwards, we present our theoretical-driven integrative network-based bioinformatics approach that accounts for pathogen-genes-disease-related PPIs with the aim to identify viral-mediated pathogenic mechanisms focusing in multiple sclerosis (MS) disease. We identified seven high centrality nodes that can act as disease communicator nodes and exert systemic effects in the MS-enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways network. In addition, we identified 12 KEGG pathways, 5 Reactome pathways and 52 Gene Ontology Immune System Processes by which 80 viral proteins from eight viral species might exert viral-mediated pathogenic mechanisms in MS. Finally, our analysis highlighted the Th17 differentiation pathway, a disease communicator node and part of the 12 underlined KEGG pathways, as a key viral-mediated pathogenic mechanism and a possible therapeutic target for MS disease.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Bioinformatics, Cyprus Institute of Neurology & Genetics, and the Cyprus School of Molecular Medicine, Cyprus
| | - George M Spyrou
- Department of Bioinformatics, Cyprus Institute of Neurology & Genetics, and professor at the Cyprus School of Molecular Medicine, Cyprus
| |
Collapse
|
43
|
Fenner BM, Fenner ME, Prowse N, Hayley SP. LRRK2 and WAVE2 regulate microglial-transition through distinct morphological phenotypes to induce neurotoxicity in a novel two-hit in vitro model of neurodegeneration. J Cell Physiol 2021; 237:1013-1032. [PMID: 34543438 DOI: 10.1002/jcp.30588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022]
Abstract
We report a novel in vitro classification system that tracks microglial activation state and their potential neurotoxicity. Mixed live-cell imaging was used to characterize transition through distinct morphological phenotypes, production of reactive oxygen species (ROS), formation of reactive microglial aggregates, and subsequent cytokine production. Transwell cultures were used to determine microglial migration (control and lipopolysaccharide (LPS) treated) to glutamate pre-stressed or healthy neurons. This two-hit paradigm was developed to model the vast evidence that neurodegenerative conditions, like Parkinson's disease (PD), may stem from the collective impact of multiple environmental stressors. We found that healthy neurons were resistant to microglial-mediated inflammation, whereas glutamate pre-stressed neurons were highly susceptible and in fact, appeared to recruit microglia. The LPS treated microglia progressed through distinct morphological states and expressed high levels of ROS and formed large cellular aggregates. Recent evidence implicates leucine-rich repeat kinase 2 (LRRK2) as an important player in the microglial inflammatory state, as well as in the genesis of PD. We found that inhibition of the LRRK2 signaling pathway using the kinase inhibitor cis-2,6-dimethyl-4-(6-(5-(1-methylcyclopropoxy)-1H-indazol-3-yl)pyrimidin-4-yl)morpholine (MLi2) or inhibition of the actin regulatory protein, Wiskott-Aldrich syndrome family Verprolin-homologous Protein-2 (WAVE2), stunted microglial activation and prevented neurotoxicity. Furthermore, inhibition of LRRK2 kinase activity reduced pro-inflammatory chemokines including MIP-2, CRG-2, and RANTES. These data together support the notion that LRRK2 and WAVE2 are important mediators of cytokine production and cytoskeletal rearrangement necessary for microglial-induced neurotoxicity. Furthermore, our model demonstrated unique microglial phenotypic changes that might be mechanistically important for better understanding neuron-microglial crosstalk.
Collapse
Affiliation(s)
- Barbara M Fenner
- Department of Biology, King's College, Wilkes-Barre, Pennsylvania, USA
| | - Mark E Fenner
- Fenner Training and Consulting, LLC, Kingston, Pennsylvania, USA
| | - Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Shawn P Hayley
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
44
|
Chidambaram SB, Essa MM, Rathipriya AG, Bishir M, Ray B, Mahalakshmi AM, Tousif AH, Sakharkar MK, Kashyap RS, Friedland RP, Monaghan TM. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol Ther 2021; 231:107988. [PMID: 34536490 DOI: 10.1016/j.pharmthera.2021.107988] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
The human microbiota comprises trillions of symbiotic microorganisms and is involved in regulating gastrointestinal (GI), immune, nervous system and metabolic homeostasis. Recent observations suggest a bidirectional communication between the gut microbiota and the brain via immune, circulatory and neural pathways, termed the Gut-Brain Axis (GBA). Alterations in gut microbiota composition, such as seen with an increased number of pathobionts and a decreased number of symbionts, termed gut dysbiosis or microbial intestinal dysbiosis, plays a prominent role in the pathogenesis of central nervous system (CNS)-related disorders. Clinical reports confirm that GI symptoms often precede neurological symptoms several years before the development of neurodegenerative diseases (NDDs). Pathologically, gut dysbiosis disrupts the integrity of the intestinal barrier leading to ingress of pathobionts and toxic metabolites into the systemic circulation causing GBA dysregulation. Subsequently, chronic neuroinflammation via dysregulated immune activation triggers the accumulation of neurotoxic misfolded proteins in and around CNS cells resulting in neuronal death. Emerging evidence links gut dysbiosis to the aggravation and/or spread of proteinopathies from the peripheral nervous system to the CNS and defective autophagy-mediated proteinopathies. This review summarizes the current understanding of the role of gut microbiota in NDDs, and highlights a vicious cycle of gut dysbiosis, immune-mediated chronic neuroinflammation, impaired autophagy and proteinopathies, which contributes to the development of neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We also discuss novel therapeutic strategies targeting the modulation of gut dysbiosis through prebiotics, probiotics, synbiotics or dietary interventions, and faecal microbial transplantation (FMT) in the management of NDDs.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India.
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman; Biomedical Sciences Department, University of Pacific, Sacramento, CA, USA.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai 600 094, Tamil Nadu, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - A H Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Meena K Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Rajpal Singh Kashyap
- Research Centre, Dr G. M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, Louisville, KY 40292, USA
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
45
|
Munoz-Pinto MF, Empadinhas N, Cardoso SM. The neuromicrobiology of Parkinson's disease: A unifying theory. Ageing Res Rev 2021; 70:101396. [PMID: 34171417 DOI: 10.1016/j.arr.2021.101396] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023]
Abstract
Recent evidence confirms that PD is indeed a multifactorial disease with different aetiologies and prodromal symptomatology that likely depend on the initial trigger. New players with important roles as triggers, facilitators and aggravators of the PD neurodegenerative process have re-emerged in the last few years, the microbes. Having evolved in association with humans for ages, microbes and their products are now seen as fundamental regulators of human physiology with disturbances in their balance being increasingly accepted to have a relevant impact on the progression of disease in general and on PD in particular. In this review, we comprehensively address early studies that have directly or indirectly linked bacteria or other infectious agents to the onset and progression of PD, from the earliest suspects to the most recent culprits, the gut microbiota. The quest for effective treatments to arrest PD progression must inevitably address the different interactions between microbiota and human cells, and naturally consider the gut-brain axis. The comprehensive characterization of such mechanisms will help design innovative bacteriotherapeutic approaches to selectively shape the gut microbiota profile ultimately to halt PD progression. The present review describes our current understanding of the role of microorganisms and their endosymbiotic relatives, the mitochondria, in inducing, facilitating, or aggravating PD pathogenesis.
Collapse
|
46
|
Squitti R, Faller P, Hureau C, Granzotto A, White AR, Kepp KP. Copper Imbalance in Alzheimer's Disease and Its Link with the Amyloid Hypothesis: Towards a Combined Clinical, Chemical, and Genetic Etiology. J Alzheimers Dis 2021; 83:23-41. [PMID: 34219710 DOI: 10.3233/jad-201556] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cause of Alzheimer's disease (AD) is incompletely defined. To date, no mono-causal treatment has so far reached its primary clinical endpoints, probably due to the complexity and diverse neuropathology contributing to the neurodegenerative process. In the present paper, we describe the plausible etiological role of copper (Cu) imbalance in the disease. Cu imbalance is strongly associated with neurodegeneration in dementia, but a complete biochemical etiology consistent with the clinical, chemical, and genetic data is required to support a causative association, rather than just correlation with disease. We hypothesize that a Cu imbalance in the aging human brain evolves as a gradual shift from bound metal ion pools, associated with both loss of energy production and antioxidant function, to pools of loosely bound metal ions, involved in gain-of-function oxidative stress, a shift that may be aggravated by chemical aging. We explain how this may cause mitochondrial deficits, energy depletion of high-energy demanding neurons, and aggravated protein misfolding/oligomerization to produce different clinical consequences shaped by the severity of risk factors, additional comorbidities, and combinations with other types of pathology. Cu imbalance should be viewed and integrated with concomitant genetic risk factors, aging, metabolic abnormalities, energetic deficits, neuroinflammation, and the relation to tau, prion proteins, α-synuclein, TAR DNA binding protein-43 (TDP-43) as well as systemic comorbidity. Specifically, the Amyloid Hypothesis is strongly intertwined with Cu imbalance because amyloid-β protein precursor (AβPP)/Aβ are probable Cu/Zn binding proteins with a potential role as natural Cu/Zn buffering proteins (loss of function), and via the plausible pathogenic role of Cu-Aβ.
Collapse
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Alberto Granzotto
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.,Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences (DNISC), Laboratory of Molecular Neurology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Anthony R White
- Mental Health Program, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
47
|
Auffret M, Meuric V, Boyer E, Bonnaure-Mallet M, Vérin M. Oral Health Disorders in Parkinson's Disease: More than Meets the Eye. JOURNAL OF PARKINSONS DISEASE 2021; 11:1507-1535. [PMID: 34250950 PMCID: PMC8609694 DOI: 10.3233/jpd-212605] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite clinical evidence of poor oral health and hygiene in Parkinson’s disease (PD) patients, the mouth is often overlooked by both patients and the medical community, who generally focus on motor or psychiatric disorders considered more burdensome. Yet, oral health is in a two-way relationship with overall health—a weakened status triggering a decline in the quality of life. Here, we aim at giving a comprehensive overview of oral health disorders in PD, while identifying their etiologies and consequences. The physical (abnormal posture, muscle tone, tremor, and dyskinesia), behavioral (cognitive and neuropsychiatric disorders), and iatrogenic patterns associated with PD have an overall detrimental effect on patients’ oral health, putting them at risk for other disorders (infections, aspiration, pain, malnutrition), reducing their quality of life and increasing their isolation (anxiety, depression, communication issues). Interdisciplinary cooperation for prevention, management and follow-up strategies need to be implemented at an early stage to maintain and improve patients’ overall comfort and condition. Recommendations for practice, including (non-)pharmacological management strategies are discussed, with an emphasis on the neurologists’ role. Of interest, the oral cavity may become a valuable tool for diagnosis and prognosis in the near future (biomarkers). This overlooked but critical issue requires further attention and interdisciplinary research.
Collapse
Affiliation(s)
- Manon Auffret
- Behavior & Basal Ganglia Research Unit (EA 4712), University of Rennes 1, Rennes, France.,Institut des Neurosciences Cliniques de Rennes (INCR), Rennes, France
| | - Vincent Meuric
- INSERM, INRAE, Université de Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| | - Emile Boyer
- INSERM, INRAE, Université de Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| | - Martine Bonnaure-Mallet
- INSERM, INRAE, Université de Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| | - Marc Vérin
- Behavior & Basal Ganglia Research Unit (EA 4712), University of Rennes 1, Rennes, France.,Institut des Neurosciences Cliniques de Rennes (INCR), Rennes, France.,Movement Disorders Unit, Neurology Department, Pontchaillou University Hospital, Rennes, France
| |
Collapse
|
48
|
Farmen K, Tofiño-Vian M, Iovino F. Neuronal Damage and Neuroinflammation, a Bridge Between Bacterial Meningitis and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:680858. [PMID: 34149363 PMCID: PMC8209290 DOI: 10.3389/fncel.2021.680858] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial meningitis is an inflammation of the meninges which covers and protects the brain and the spinal cord. Such inflammation is mostly caused by blood-borne bacteria that cross the blood-brain barrier (BBB) and finally invade the brain parenchyma. Pathogens such as Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae are the main etiological causes of bacterial meningitis. After trafficking across the BBB, bacterial pathogens in the brain interact with neurons, the fundamental units of Central Nervous System, and other types of glial cells. Although the specific molecular mechanism behind the interaction between such pathogens with neurons is still under investigation, it is clear that bacterial interaction with neurons and neuroinflammatory responses within the brain leads to neuronal cell death. Furthermore, clinical studies have shown indications of meningitis-caused dementia; and a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease are characterized by the loss of neurons, which, unlike many other eukaryotic cells, once dead or damaged, they are seldom replaced. The aim of this review article is to provide an overview of the knowledge on how bacterial pathogens in the brain damage neurons through direct and indirect interactions, and how the neuronal damage caused by bacterial pathogen can, in the long-term, influence the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet Biomedicum, Stockholm, Sweden
| |
Collapse
|
49
|
Amoriello R, Chernigovskaya M, Greiff V, Carnasciali A, Massacesi L, Barilaro A, Repice AM, Biagioli T, Aldinucci A, Muraro PA, Laplaud DA, Lossius A, Ballerini C. TCR repertoire diversity in Multiple Sclerosis: High-dimensional bioinformatics analysis of sequences from brain, cerebrospinal fluid and peripheral blood. EBioMedicine 2021; 68:103429. [PMID: 34127432 PMCID: PMC8245901 DOI: 10.1016/j.ebiom.2021.103429] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND T cells play a key role in the pathogenesis of multiple sclerosis (MS), a chronic, inflammatory, demyelinating disease of the central nervous system (CNS). Although several studies recently investigated the T-cell receptor (TCR) repertoire in cerebrospinal fluid (CSF) of MS patients by high-throughput sequencing (HTS), a deep analysis on repertoire similarities and differences among compartments is still missing. METHODS We performed comprehensive bioinformatics on high-dimensional TCR Vβ sequencing data from published and unpublished MS and healthy donors (HD) studies. We evaluated repertoire polarization, clone distribution, shared CDR3 amino acid sequences (CDR3s-a.a.) across repertoires, clone overlap with public databases, and TCR similarity architecture. FINDINGS CSF repertoires showed a significantly higher public clones percentage and sequence similarity compared to peripheral blood (PB). On the other hand, we failed to reject the null hypothesis that the repertoire polarization is the same between CSF and PB. One Primary-Progressive MS (PPMS) CSF repertoire differed from the others in terms of TCR similarity architecture. Cluster analysis splits MS from HD. INTERPRETATION In MS patients, the presence of a physiological barrier, the blood-brain barrier, does not impact clone prevalence and distribution, but impacts public clones, indicating CSF as a more private site. We reported a high Vβ sequence similarity in the CSF-TCR architecture in one PPMS. If confirmed it may be an interesting insight into MS progressive inflammatory mechanisms. The clustering of MS repertoires from HD suggests that disease shapes the TCR Vβ clonal profile. FUNDING This study was partly financially supported by the Italian Multiple Sclerosis Foundation (FISM), that contributed to Ballerini-DB data collection (grant #2015 R02).
Collapse
Affiliation(s)
- Roberta Amoriello
- Dipartimento di Medicina Sperimentale e Clinica (DMSC), Laboratory of Neuroimmunology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Alberto Carnasciali
- Dipartimento di Medicina Sperimentale e Clinica (DMSC), Laboratory of Neuroimmunology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Luca Massacesi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Italy
| | - Alessandro Barilaro
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Italy
| | - Anna M Repice
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Italy
| | - Tiziana Biagioli
- Laboratorio Generale, Careggi University Hospital, Florence, Italy
| | | | - Paolo A Muraro
- Wolfson Neuroscience Laboratory, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - David A Laplaud
- CRTI-Inserm U1064, CIC0004 and Service de Neurologie, CHU de Nantes, Hôpital Nord Laënnec, Nantes, France
| | - Andreas Lossius
- Institute of Clinical Medicine, University of Oslo, Postboks 1105, Blindern 0317 Oslo, Norway.
| | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica (DMSC), Laboratory of Neuroimmunology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
50
|
Wang L, Jiang T, Huang X, Zhou S. The protective role of the miR-25-mediated notch signaling pathway in the memory capacity and brain tissue of mice with central nervous system infections. Am J Transl Res 2021; 13:4835-4843. [PMID: 34150065 PMCID: PMC8205715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE The study aimed to explore the role of miR-25 and the notch signaling pathway in the memory capacity and brain tissue of mice with central nervous system (CNS) infections. METHODS A bioinformatics website and the dual-luciferase reporter assay were used to analyze the targeting relationship between miR-25 and Notch1. The mice were randomized into 7 groups (n=10 per group), including the normal group, the model group (lipopolysaccharide at a dose of 500 μg/kg for the model establishment), the NC group, the miR-25 mimic group, the miR-25 inhibitor group, the DAPT group, and the miR-25 inhibitor + DAPT group. qRT-PCR and western blot were used to measure the miR-25, Notch1, and Hes5 expression levels in the hippocampal CA1 region of the mice's brains, along with the cyclo-oxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) levels in the mice's hippocampi. RESULTS Compared with the normal mice, the model mice had up-regulated miR-25, COX-2, and iNOS expressions and down-regulated Notch1 and Hes5 expressions, lower superoxide dismutase (SOD) levels in the hippocampi, and higher malondialdehyde (MDA) levels. Compared with the model group, the miR-25 mimic and DAPT groups had down-regulated Notch1 and Hes5 expressions, lower learning and memory capacities and SOD levels, higher MDA levels, and up-regulated COX-2 and iNOS expressions. CONCLUSION Down-regulating miR-25 may improve the memory capacity in mice with CNS infections by activating the Notch signaling pathway.
Collapse
Affiliation(s)
- Lizhou Wang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University Guiyang, Guizhou Province, China
| | - Tianpeng Jiang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University Guiyang, Guizhou Province, China
| | - Xueqing Huang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University Guiyang, Guizhou Province, China
| | - Shi Zhou
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University Guiyang, Guizhou Province, China
| |
Collapse
|