1
|
Kozisek F, Cenovic J, Armendariz S, Muthukrishnan S, Park Y, Thomas VC, Chaudhari SS. An optimized artificial blood feeding assay to study tick cuticle biology. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104113. [PMID: 38527710 DOI: 10.1016/j.ibmb.2024.104113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Ticks, ectoparasitic arachnids, are prominent disease vectors impacting both humans and animals. Their unique blood-feeding phase involves significant abdominal cuticle expansion, sharing certain similarities with insects. However, vital aspects, including the mechanisms of cuticle expansion, changes in cuticular protein composition, chitin synthesis, and cuticle function, remain poorly understood. Given that the cuticle expansion is crucial for complete engorgement of the ticks, addressing these knowledge gaps is essential. Traditional tick research involving live animal hosts has inherent limitations, such as ethical concerns and host response variability. Artificial membrane feeding systems provide an alternative approach, offering controlled experimental conditions and reduced ethical dilemmas. These systems enable precise monitoring of tick attachment, feeding parameters, and pathogen acquisition. Despite the existence of various methodologies for artificial tick-feeding systems, there is a pressing need to enhance their reproducibility and effectiveness. In this context, we introduce an improved tick-feeding system that incorporates adjustments related to factors like humidity, temperature, and blood-feeding duration. These refinements markedly boost tick engorgement rates, presenting a valuable tool for in-depth investigations into tick cuticle biology and facilitating studies on molting. This refined system allows for collecting feeding ticks at specific stages, supporting research on tick cuticle biology, and evaluating chemical agents' efficacy in the engorgement process.
Collapse
Affiliation(s)
- Faith Kozisek
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Jonathon Cenovic
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Savannah Armendariz
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, United States
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Waters Hall, Manhattan, KS, 66506, United States
| | - Vinai C Thomas
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Sujata S Chaudhari
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198-5900, United States.
| |
Collapse
|
2
|
de Araújo FES, Martins TF, Ramos CCM, Nogueira RMS, Faccini JLH, Tavares MA, de Lima NJ, de Almeida Júnior EB, de Sousa-Paula LC, Dantas-Torres F, da Silva Krawczak F, Costa-Junior LM, Labruna MB, Dall Agnol LT, Luz HR. Seasonal dynamics of Amblyomma cajennense (Fabricius, 1787) sensu stricto in a degraded area of the Amazon biome, with notes on Rickettsia amblyommatis infection. Parasit Vectors 2023; 16:391. [PMID: 37891604 PMCID: PMC10612284 DOI: 10.1186/s13071-023-05978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The tick Amblyomma cajennense sensu stricto (A. cajennense s.s.) frequently parasitizes animals and humans in the Amazon biome, in addition to being a vector of Rickettsia amblyommatis. In the present study, we evaluated both the population dynamics of A. cajennense s.s. in a degraded area of the Amazon biome and the presence of rickettsial organisms in this tick population. METHODS The study was carried out in a rural area of the Santa Inês municipality (altitude: 24 m a.s.l.), Maranhão state, Brazil. Ticks were collected from the environment for 24 consecutive months, from June 2021 to May 2023. The region is characterized by two warm seasons: a rainy season (November-May) and a dry season (June-October). We characterized the temporal activity of A. cajennense s.s. on the vegetation by examining questing activity for each life stage (larvae, nymphs, adults [males and females]) in relation to the dry and rainy season. Ticks collected in this study were randomly selected and individually tested by a TaqMan real-time PCR assay that targeted a 147-bp fragment of the rickettsial gltA gene. RESULTS Overall, 1843 (62.4%) adults (52.6% females, 47.4% males), 1110 (37.6%) nymphs and 398 larval clusters were collected. All adult females and nymphs were morphologically identified as A. cajennense s.s. Larval activity was observed from April to December, with a peak from June to September (dry season); nymph abundance peaked from September to November (transition period between dry and rainy seasons); and adult ticks were abundant from October to May (spring/summer/early autumn). The infection rate by R. amblyommatis in A. cajennense s.s. ticks was at least 7% (7/99). CONCLUSION Our data suggest a 1-year generation pattern for A. cajennense s.s., with a well-defined seasonality of larvae, nymphs and adults in the Amazon biome. Larvae predominate during the dry season, nymphs are most abundant in the dry-rainy season transition and adults are most abundant in the rainy season. The presence of R. amblyommatis in adult ticks suggests that animals and humans in the study region are at risk of infection by this species belonging to the spotted fever group of Rickettsia.
Collapse
Affiliation(s)
| | - Thiago Fernandes Martins
- Pasteur Institute, São Paulo State Department of Health, São Paulo, SP, Brazil
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | - João Luiz Horacio Faccini
- Post-Graduation Program in Health Sciences, Center of Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | | | | | - Eduardo Bezerra de Almeida Júnior
- Post-Graduation Program in Biodiversity and Conservation, Center of Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Lucas Christian de Sousa-Paula
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Filipe Dantas-Torres
- Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, PE, Brazil
| | | | - Livio Martins Costa-Junior
- Post-Graduation Program in Northeast Biotechnology Network (RENORBIO), Biodiversity and Conservation, Center of Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Marcelo Bahia Labruna
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Hermes Ribeiro Luz
- Post-Graduation Program in Health and Environment, Federal University of Maranhão, São Luís, MA, Brazil.
- Post-Graduation Program in Northeast Biotechnology Network (RENORBIO), Biodiversity and Conservation, Center of Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil.
| |
Collapse
|
3
|
Bowen HG, Kenedy MR, Johnson DK, MacKerell AD, Akins DR. Identification of a novel transport system in Borrelia burgdorferi that links the inner and outer membranes. Pathog Dis 2023; 81:ftad014. [PMID: 37385817 PMCID: PMC10353723 DOI: 10.1093/femspd/ftad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
Borrelia burgdorferi, the spirochete that causes Lyme disease, is a diderm organism that is similar to Gram-negative organisms in that it contains both an inner and outer membrane. Unlike typical Gram-negative organisms, however, B. burgdorferi lacks lipopolysaccharide (LPS). Using computational genome analyses and structural modeling, we identified a transport system containing six proteins in B. burgdorferi that are all orthologs to proteins found in the lipopolysaccharide transport (LPT) system that links the inner and outer membranes of Gram-negative organisms and is responsible for placing LPS on the surface of these organisms. While B. burgdorferi does not contain LPS, it does encode over 100 different surface-exposed lipoproteins and several major glycolipids, which like LPS are also highly amphiphilic molecules, though no system to transport these molecules to the borrelial surface is known. Accordingly, experiments supplemented by molecular modeling were undertaken to determine whether the orthologous LPT system identified in B. burgdorferi could transport lipoproteins and/or glycolipids to the borrelial outer membrane. Our combined observations strongly suggest that the LPT transport system does not transport lipoproteins to the surface. Molecular dynamic modeling, however, suggests that the borrelial LPT system could transport borrelial glycolipids to the outer membrane.
Collapse
Affiliation(s)
- Hannah G Bowen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| | - Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| | - David K Johnson
- Shenkel Structural Biology Center, Molecular Graphics and Modeling Laboratory and the Computational Biology Core, University of Kansas, 2034 Becker Drive Lawrence, Kansas 66047, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore 20 North Pine Street Baltimore, Maryland 21201, United States
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| |
Collapse
|