1
|
Díaz S, Eisfeld AJ, Palma-Cuero M, Dinguirard N, Owens LA, Ciuoderis KA, Pérez-Restrepo LS, Chan JD, Goldberg TL, Hite JL, Hernandez-Ortiz JP, Kawaoka Y, Zamanian M, Osorio JE. Gut Microbiota and Parasite Dynamics in an Amazonian Community Undergoing Urbanization in Colombia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.16.25325921. [PMID: 40321249 PMCID: PMC12047915 DOI: 10.1101/2025.04.16.25325921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Studies on human gut microbiota have recently highlighted a significant decline in bacterial diversity associated with urbanization, driven by shifts toward processed diets, increased antibiotic usage, and improved sanitation practices. This phenomenon has been largely overlooked in the Colombian Amazon, despite rapid urbanization in the region. In this study, we investigate the composition of gut bacterial microbiota and intestinal protozoa and soil-transmitted helminths (STHs) in both urban and rural areas of Leticia, which is located in the southern Colombian Amazon. Despite their geographic proximity, the urban population is predominantly non-indigenous, while indigenous communities mostly inhabit the rural area, resulting in notable lifestyle differences between the two settings. Our analyses reveal a reduction in bacterial families linked to non-processed diets, such as Lachnospiraceae, Spirochaetaceae, and Succinivibrionaceae, in the urban environment compared to their rural counterparts. Interestingly, Prevotellaceae, typically associated with non-processed food consumption, shows a significantly higher abundance in urban Leticia. STH infections were primarily detected in rural Leticia, while intestinal protozoa were ubiquitous in both rural and urban areas. Both types of parasites were associated with higher gut bacterial richness and diversity. Additionally, microbial metabolic prediction analysis indicated differences in pathways related to unsaturated fatty acid production and aerobic respiration between rural and urban bacterial microbiomes. This finding suggests a tendency towards dysbiosis in the urban microbiota, possibly increasing susceptibility to non-communicable chronic diseases. These findings provide new insights into the impact of urbanization on gut microbiota dynamics in the Amazonian context and underscore the need for further research to elucidate any associated health outcomes.
Collapse
Affiliation(s)
- Sebastián Díaz
- UW-GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
| | - Amie J. Eisfeld
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Mónica Palma-Cuero
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública Departamental del Amazonas, Leticia, Colombia
- Global Health Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathalie Dinguirard
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Leah A. Owens
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Karl A. Ciuoderis
- UW-GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
- Global Health Institute, University of Wisconsin-Madison, Madison, WI, USA
- Corporacion Corpotropica, Villavicencio, Colombia
| | | | - John D. Chan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Global Health Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica L. Hite
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Juan Pablo Hernandez-Ortiz
- UW-GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
- Faculty of Life Sciences, Universidad Nacional de Colombia, Medellín, Colombia
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jorge E. Osorio
- UW-GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Global Health Institute, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Gerrick ER, Howitt MR. The Lost Kingdom: commensal protists in the gut microbiota. Trends Microbiol 2025:S0966-842X(25)00009-5. [PMID: 39952813 DOI: 10.1016/j.tim.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
The gut microbiota critically influences many aspects of host biology, from nutrient acquisition to immunological function, and is integral to metazoan life. While most microbiome research has focused on bacteria, the intestinal microbiota encompasses a diverse constellation of microorganisms, including viruses, fungi, archaea, and protists. Among these microbes, commensal protists have been particularly neglected, to the point that their status as true members of the microbiota remained contentious. However, findings over the past decade revealed that commensal protists, particularly those in the Parabasalia phylum (parabasalids), perform keystone roles within the intestinal ecosystem. Emerging evidence highlights how parabasalids dramatically impact host immunity, gut microbiome ecology, and host susceptibility to both infectious and inflammatory diseases. In this review, we discuss the recent discoveries of the varied and powerful roles of commensal parabasalids in the intestinal microbiota and outline the challenges and opportunities in this burgeoning new area of the microbiome field.
Collapse
Affiliation(s)
- Elias R Gerrick
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| | - Michael R Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Kaktcham PM, Kujawska M, Kouam EMF, Piame LT, Tientcheu MLT, Mueller J, Felsl A, Truppel BA, Ngoufack FZ, Hall LJ. Genomic insights into the beneficial potential of Bifidobacterium and Enterococcus strains isolated from Cameroonian infants. Microb Genom 2025; 11:001354. [PMID: 39969280 PMCID: PMC11840169 DOI: 10.1099/mgen.0.001354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025] Open
Abstract
A healthy early-life gut microbiota plays an important role in maintaining immediate and long-term health. Perturbations, particularly in low- to middle-income communities, are associated with increased infection risk. Thus, a promising avenue for restoring a healthy infant microbiota is to select key beneficial bacterial candidates from underexplored microbiomes for developing new probiotic-based therapies. This study aimed to recover bifidobacteria and lactic acid bacteria from the faeces of healthy Cameroonian infants and unravel the genetic basis of their beneficial properties. Faecal samples were collected from 26 infants aged 0-5 months recruited in Dschang (Cameroon). Recovered bacterial isolates were subjected to whole-genome sequencing and in silico analysis to assess their potential for carbohydrate utilization, their antimicrobial capacities, host-adaptation capabilities and their safety. From the range of infant-associated Bifidobacterium and Enterococcus strains identified, Bifidobacterium species were found to harbour putative gene clusters implicated in human milk oligosaccharide metabolism. Genes linked to the production of antimicrobial peptides such as class IV lanthipeptides were found in Bifidobacterium pseudocatenulatum, while those implicated in biosynthesis of cytolysins, enterolysins, enterocins and propeptins, among others, were identified in enterococci. Bifidobacterial isolates did not contain genes associated with virulence; however, we detected the presence of putative tetracycline resistance genes in several strains belonging to Bifidobacterium animalis subsp. lactis and Bifidobacterium longum subsp. longum. Among the enterococci, Enterococcus mundtii PM10 did not carry any genes associated with antimicrobial resistance or virulence. The latter, together with all the Bifidobacterium strains, also encoded several putative adaptive and stress-response-related genes, suggesting robust gastroinstestinal tract colonization potential. This work provides the first genomic characterization of Bifidobacterium and Enterococcus isolates from Cameroonian infants. Several strains showed the genomic potential to confer beneficial properties. Further phenotypic and clinical investigations are needed to confirm their suitability as customized probiotics.
Collapse
Affiliation(s)
- Pierre Marie Kaktcham
- Research Unit of Biochemistry of Medicinal Plants, Food Science and Nutrition (URBPMAN) – Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon. P.O Box 67, Dschang, Cameroon
| | - Magdalena Kujawska
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, B15 42TT, UK
| | - Edith Marius Foko Kouam
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Laverdure Tchamani Piame
- Research Unit of Biochemistry of Medicinal Plants, Food Science and Nutrition (URBPMAN) – Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon. P.O Box 67, Dschang, Cameroon
| | - Michele Letitia Tchabou Tientcheu
- Research Unit of Biochemistry of Medicinal Plants, Food Science and Nutrition (URBPMAN) – Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon. P.O Box 67, Dschang, Cameroon
| | - Julia Mueller
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
| | - Angela Felsl
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
| | - Bastian-Alexander Truppel
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
| | - François Zambou Ngoufack
- Research Unit of Biochemistry of Medicinal Plants, Food Science and Nutrition (URBPMAN) – Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon. P.O Box 67, Dschang, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Lindsay J. Hall
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, B15 42TT, UK
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UK
| |
Collapse
|
4
|
Tito Tadeo RY, Stensvold CR. Pitfalls in gut single-cell eukaryote research. Trends Parasitol 2025; 41:91-101. [PMID: 39814642 DOI: 10.1016/j.pt.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
Gut single-celled eukaryotes (GSCEs) are found in billions of people worldwide, but we still know little about their functions and relationships in human gut ecology. Lately, retrospective analysis of bacterial data obtained by next-generation sequencing (NGS) methods has been used to identify links between GSCEs, gut bacteria, host metabolism, and host phenotypical traits, suggesting possible direct or indirect associations to favorable gut microbiome features and other health parameters. Here, we highlight some of the pitfalls related to the research strategy typically used so far and propose action points that could pave the way for a more accurate understanding of GSCEs in human health and disease.
Collapse
Affiliation(s)
- Raul Yhossef Tito Tadeo
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium; Center for Microbiology, VIB, Leuven, Belgium
| | - Christen Rune Stensvold
- Laboratory of Parasitology, Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark; Department of Protozoology, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Stensvold CR. Metabarcoding in gut protozoology. Trends Parasitol 2024; 40:1173-1182. [PMID: 39521674 DOI: 10.1016/j.pt.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Next-generation sequencing (NGS) methods include whole-genome sequencing, metagenomic analysis, and amplicon-based NGS, all of which are gaining territory in parasitology. A modality of particular interest within the field of gut protozoology is exhaustive metabarcoding of ribosomal genes in a complex matrix such as faeces, by which method, amplicon-based NGS enables the detection and differentiation of both eukaryotic and prokaryotic organisms, circumventing Sanger sequencing-based limitations and representing a one-fits-most approach. Apart from being a tool to break the code of intracellular genetic variation and tell mixed species infections apart, metabarcoding can produce data that can serve to augment our understanding of the interplay between the organisms within the gut.
Collapse
Affiliation(s)
- Christen Rune Stensvold
- Laboratory of Parasitology, Statens Serum Institut, Copenhagen, Denmark; Department of Protozoology, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Antonetti L, Berrilli F, Di Cristanziano V, Farowski F, Daeumer M, Eberhardt KA, Santoro M, Federici M, D'Alfonso R. Investigation of gut microbiota composition in humans carrying blastocystis subtypes 1 and 2 and Entamoeba hartmanni. Gut Pathog 2024; 16:72. [PMID: 39614306 DOI: 10.1186/s13099-024-00661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024] Open
Abstract
The composition of human gut microbiota is dominated by bacteria which have been extensively studied. The role of intestinal eukaryote microorganisms like Blastocystis, however, remains under investigation. Moreover, the potential impact on gut health related to Blastocystis presence was primarily investigated in symptomatic individuals mainly from industrialized countries, and appears to be mostly beneficial to the host microbiota. Data from surveys conducted in underdeveloped countries with higher prevalence and from asymptomatic individuals could therefore be valuable. The aim of this preliminary study was to analyze the composition of the gut microbiota in relation to the protozoa Blastocystis ST1 and ST2 and Entamoeba hartmanni carriage in asymptomatic subjects living in a semi-urban area of Côte d'Ivoire to add data into the ongoing debate on the role of Blastocystis in host health. The amplification of the V3 and V4 regions of bacterial 16S rDNA genes was performed to obtain the gut microbiota composition, and differential analyses on alpha and beta diversity were performed from the phylum to genus taxonomic level. The analysis revealed that individuals positive for both protozoa exhibited higher alpha and beta diversity compared to those who tested negative. Additionally, their bacterial composition showed a reduction in Bacteroides and an increase in Prevotella 9. Relative abundances of some OTUs, particularly Faecalibacterium, observed in individuals who tested positive for protozoa, were correlated with a good state of health of the gut microbiota. Blastocystis ST1 and ST2 associated with E. hartmanni thus appeared to be related to a state of intestinal eubiosis.
Collapse
Affiliation(s)
- Lorenzo Antonetti
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Federica Berrilli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Fedja Farowski
- Department I of Internal Medicine , University Hospital of Cologne, 50937, Cologne, Germany
- Department of Internal Medicine II, Infectious Diseases, Goethe University, University Hospital Frankfurt, 60596, Frankfurt am Main, Germany
| | | | - Kirsten Alexandra Eberhardt
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20539, Hamburg, Germany
| | - Maristella Santoro
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Rossella D'Alfonso
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
7
|
Marangi M, Boughattas S, Benslimane F. Gut microbiome profile to the level species in diarrheic protozoan-carrier patients in Italy. Life Sci 2024; 359:123182. [PMID: 39490521 DOI: 10.1016/j.lfs.2024.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
The human gastrointestinal microbiota contains a diverse consortium of microbes, including bacteria, protozoa, viruses, and fungi that are involved in many physiological and metabolic as well pathogenetic processes. However, microbiological research is dominated by studies describing the impact of prokaryotic bacteria on gut microbiome with a limited understanding of their relationship with other integral microbiota constituents as protozoa. Here, we investigated the gut microbiome composition using Oxford Nanopore Technology approach in relation to protozoan colonization of Giardia duodenalis, Cryptosporidium parvum, Blastocystis sp. and Dientamoeba fragilis in patients with diarrheal diseases in Italy, taking into consideration different risk factors as protozoan coinfection, Blastocystis-subtypes, gender, age classes, origin, eosinophilia level and positivity to SARS-CoV-2 infection. Overall, out of 1413 investigated patients, 123 (8.7 %) have found positive to one or more protozoan microorganisms with a prevalence statistically significant in individuals from Northern Africa (p < 0.0001) and in the age classes 40-59 years-old (p < 0.0022). Within the 57 individuals eligible for gut microbiome analysis, diverse profiles are observed but interestingly, a predominance of the emergent Escherichia fergusonii ATCC 35469, was found across the different risk factors. Our results emphasize the importance of studies to investigate these aspects of protozoa colonization that will undoubtedly increase our understanding of complex interactions between intestinal protozoa, other microbiota organisms, and the human host.
Collapse
Affiliation(s)
- Marianna Marangi
- Department of Clinical and Experimental Medicine, University of Foggia, Italy.
| | | | | |
Collapse
|
8
|
Bénard MV, de Goffau MC, Blonk J, Hugenholtz F, van Buuren J, Paramsothy S, Kaakoush NO, D'Haens GRAM, Borody TJ, Kamm MA, Ponsioen CY. Gut Microbiota Features in Relation to Fecal Microbiota Transplantation Outcome in Ulcerative Colitis: A Systematic Review and Meta-Analysis. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00907-8. [PMID: 39442743 DOI: 10.1016/j.cgh.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND & AIMS Fecal microbiota transplantation (FMT) can induce remission in patients with ulcerative colitis, yet its efficacy needs improvement. We conducted a comprehensive evaluation of the current literature on microbial factors affecting outcome, as well as a meta-analysis on some of the largest datasets regarding composition. METHODS MEDLINE, Embase, and Cochrane were systematically searched through August 2024 for relevant studies. The quality of studies was analyzed with JBI tools and a composite critical appraisal score. Additionally, species-level data from 2 landmark FMT trials (the Transplantation of Feces in Ulcerative Colitis; Returning Nature's Homeostasis [TURN] and Fecal Microbiota Transplantation for Chronic Active Ulcerative Colitis [FOCUS] trials) were reanalyzed from a compositional perspective. RESULTS Out of 3755 citations identified, 56 met the inclusion criteria, of which 29 fulfilled quality standards. Higher microbial α-diversity, either in donors or recipients (at baseline or following FMT treatment), was associated with better clinical response rates. Engraftment of the donors' microbiota could not be clearly linked with clinical response, possibly because not every donor has an ideal microbiome. Butyrate-producing species from the Lachnospiraceae and Oscillospiraceae families were often related with response, whereas the reverse was true for Fusobacteria, many Proteobacteria, and Ruminococcus gnavus. Compositional analyses showed that clinical response is associated with a shift from a low-diversity, often Bacteroides-dominant composition to one with higher diversity, either dominated by various butyrate producers, the Christensenellaceae-Methanobrevibacter trophic network, or a moderate/high-diversity composition with abundant but not excessive levels of Prevotella copri. CONCLUSIONS This systematic review/meta-analysis yielded a coherent picture from a compositional perspective, which may help identify beneficial donor profiles and guide personalized FMT approaches.
Collapse
Affiliation(s)
- Mèlanie V Bénard
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Inflammatory Bowel Disease Centre, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Justine Blonk
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Floor Hugenholtz
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joep van Buuren
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sudarshan Paramsothy
- Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia; Department of Gastroenterology, Concord Repatriation General Hospital, Concord, New South Wales, Australia; Department of Gastroenterology, Macquarie University Hospital, Sydney, New South Wales, Australia
| | - Nadeem O Kaakoush
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Geert R A M D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Inflammatory Bowel Disease Centre, Amsterdam UMC, Amsterdam, the Netherlands
| | - Thomas J Borody
- Centre for Digestive Diseases, Sydney, New South Wales, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Inflammatory Bowel Disease Centre, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Muñoz-Antoli C, Pavón A, Comas J, Toledo R, Esteban JG. Presence of Intestinal Parasites in Patients with Chronic Non-Communicable Diseases in Masaya (Nicaragua). Trop Med Infect Dis 2024; 9:171. [PMID: 39195609 PMCID: PMC11359410 DOI: 10.3390/tropicalmed9080171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
AIMS A cross-sectional study was conducted in Masaya (Nicaragua) to estimate the prevalence of intestinal parasite (IP) infections in patients with non-communicable diseases (NCDs) and to determine the associations between the types of NCDs and patients' epidemiological characteristics of infection. METHODS A total of 157 preserved faecal samples were examined (direct wet mount, formalin/ethyl acetate concentration and modified Ziehl-Neelsen technique). Microscopically positive faecal sample identification was completed by conducting a molecular study. RESULTS The total prevalence of IP was 52% in NCD patients. Diabetic patients presented an IP prevalence of 42%. Blastocystis presented the highest prevalence (42%). A molecular analysis of Giardia intestinalis (prevalence of 1.3%) revealed 100% of sub-assemblage BIII and the Entamoeba complex (5%) was identified as E. dispar. Blastocystis ST1 appeared in 44% of those suffering from diabetes and ST3 in 66% of those suffering from hypertension, while ST2 only appeared in those suffering with several NCDs simultaneously. In diabetic patients, the risk of infection is associated with having pets (p = 0.021) and land-floor houses. The risk of infection appears to be statistically related (p = 0.019) in those with several NCDs having received a previous helminthic deworming treatment. CONCLUSIONS Coordinated public health activities for IP and NCD screening and diagnosis are crucial to their successful control programmes.
Collapse
Affiliation(s)
- Carla Muñoz-Antoli
- Área Parasitología, Departamento Farmacia y Tecnología Farmacéutica y Parasitología, Facultad Farmacia y Ciencias de la Alimentación, Universidad Valencia, Burjassot, 46100 Valencia, Spain; (J.C.); (R.T.); (J.G.E.)
| | - Aleyda Pavón
- Centro de Investigaciones y Estudios de la Salud, Universidad Nacional Autónoma de Nicaragua, Managua 14172, Nicaragua;
| | - Jacklyn Comas
- Área Parasitología, Departamento Farmacia y Tecnología Farmacéutica y Parasitología, Facultad Farmacia y Ciencias de la Alimentación, Universidad Valencia, Burjassot, 46100 Valencia, Spain; (J.C.); (R.T.); (J.G.E.)
- Health and Community Research Group, Tropical Infectious Diseases Line, Universidad Tecnológica del Chocó Diego Luis Córdoba, Quibdo 270001, Colombia
| | - Rafael Toledo
- Área Parasitología, Departamento Farmacia y Tecnología Farmacéutica y Parasitología, Facultad Farmacia y Ciencias de la Alimentación, Universidad Valencia, Burjassot, 46100 Valencia, Spain; (J.C.); (R.T.); (J.G.E.)
| | - José Guillermo Esteban
- Área Parasitología, Departamento Farmacia y Tecnología Farmacéutica y Parasitología, Facultad Farmacia y Ciencias de la Alimentación, Universidad Valencia, Burjassot, 46100 Valencia, Spain; (J.C.); (R.T.); (J.G.E.)
| |
Collapse
|
10
|
Badrfam R, Zandifar A, Hajialigol A, Rashidian M, Schmidt NB, Morabito D, Qorbani M, Shahrestanaki E, Mehrabani Natanzi M. Efficacy of probiotic supplements in improving the symptoms of psychosis, anxiety, insomnia, and anorexia due to amphetamine and methamphetamine use: a randomized clinical trial. Psychopharmacology (Berl) 2024; 241:1463-1476. [PMID: 38512593 DOI: 10.1007/s00213-024-06577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
RATIONALE Changes in the density and diversity of gut microbiota in chronic use of methamphetamine have been mentioned as contributors to psychotic and anxiety symptoms, sleep problems, and loss of appetite. OBJECTIVE In this placebo-controlled clinical trial, we investigated the effect of the probiotic Lactobacillus Acidophilus in improving psychiatric symptoms among hospitalized patients with chronic methamphetamine use along with psychotic symptoms. METHODS 60 inpatients with a history of more than 3 years of methamphetamine use, were randomly assigned to one of two groups receiving either a probiotic capsule or placebo along with risperidone for 8 weeks based on a simple randomization method. In weeks 0, 4, and 8, patients were evaluated using the Brief Psychiatric Rating Scale (BPRS), Beck Anxiety Inventory (BAI), Pittsburgh Sleep Quality Index (PSQI), Simple Appetite Nutritional Questionnaire (SANQ), and Body Mass Index (BMI). RESULTS Compared to the control group, patients receiving probiotics had better sleep quality, greater appetite, and higher body mass index (there were significant interaction effects of group and time at Week 8 in these variables (t = -3.32, B = -1.83, p = .001, d = 0.89), (t = 10.50, B = 2.65, p <.001, d = 1.25) and (t = 3.40, B = 0.76, p <.001, d = 0.30), respectively. In terms of the improvement of psychotic and anxiety symptoms, there was no statistically significant difference between the two groups. CONCLUSIONS The use of probiotics was associated with improved sleep quality, increased appetite, and increased body mass index in patients with chronic methamphetamine use. Conducting more definitive clinical trials with larger sample sizes and longer-term follow-up of cases is recommended.
Collapse
Affiliation(s)
- Rahim Badrfam
- Department of Psychiatry, Imam Hossein Hospital, School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Atefeh Zandifar
- Department of Psychiatry, Imam Hossein Hospital, School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran.
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Amirhossein Hajialigol
- Alborz Office of Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Rashidian
- Alborz Office of Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Norman Brad Schmidt
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Danielle Morabito
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ehsan Shahrestanaki
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahboobeh Mehrabani Natanzi
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
11
|
Naguib D, Gantois N, Desramaut J, Dominguez RG, Arafat N, Atwa SM, Even G, Devos DP, Certad G, Chabé M, Viscogliosi E. Large-Scale Molecular Epidemiological Survey of Blastocystis sp. among Herbivores in Egypt and Assessment of Potential Zoonotic Risk. Microorganisms 2024; 12:1286. [PMID: 39065057 PMCID: PMC11278737 DOI: 10.3390/microorganisms12071286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Given the proven zoonotic potential of the intestinal protozoan Blastocystis sp., a fast-growing number of surveys are being conducted to identify potential animal reservoirs for transmission of the parasite. Nevertheless, few epidemiological studies have been conducted on farmed animals in Egypt. Therefore, a total of 1089 fecal samples were collected from herbivores (sheep, goats, camels, horses, and rabbits) in six Egyptian governorates (Dakahlia, Gharbia, Kafr El Sheikh, Giza, Aswan, and Sharqia). Samples were screened for the presence of Blastocystis sp. by real-time PCR followed by sequencing of positive PCR products and phylogenetic analysis for subtyping of the isolates. Overall, Blastocystis sp. was identified in 37.6% of the samples, with significant differences in frequency between animal groups (sheep, 65.5%; camels, 62.2%; goats, 36.0%; rabbits, 10.1%; horses, 3.3%). Mixed infections were reported in 35.7% of the Blastocystis sp.-positive samples. A wide range of subtypes (STs) with varying frequency were identified from single infections in ruminants including sheep (ST1-ST3, ST5, ST10, ST14, ST21, ST24, ST26, and ST40), goats (ST1, ST3, ST5, ST10, ST26, ST40, ST43, and ST44), and camels (ST3, ST10, ST21, ST24-ST26, ST30, and ST44). Most of them overlapped across these animal groups, highlighting their adaptation to ruminant hosts. In other herbivores, only three and two STs were evidenced in rabbits (ST1-ST3) and horses (ST3 and ST44), respectively. The greater occurrence and wider genetic diversity of parasite isolates among ruminants, in contrast to other herbivores, strongly suggested that dietary habits likely played a significant role in influencing both the colonization rates of Blastocystis sp. and ST preference. Of all the isolates subtyped herein, 66.3% were reported as potentially zoonotic, emphasizing the significant role these animal groups may play in transmitting the parasite to humans. These findings also expand our knowledge on the prevalence, genetic diversity, host specificity, and zoonotic potential of Blastocystis sp. in herbivores.
Collapse
Affiliation(s)
- Doaa Naguib
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (D.N.); (N.G.); (J.D.); (D.P.D.); (G.C.); (M.C.)
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Nausicaa Gantois
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (D.N.); (N.G.); (J.D.); (D.P.D.); (G.C.); (M.C.)
| | - Jeremy Desramaut
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (D.N.); (N.G.); (J.D.); (D.P.D.); (G.C.); (M.C.)
| | - Ruben Garcia Dominguez
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Nagah Arafat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Samar Magdy Atwa
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid P.O. Box 3030, Jordan
| | - Gaël Even
- GD Biotech—Gènes Diffusion, F-59000 Lille, France;
- PEGASE-Biosciences (Plateforme d’Expertises Génomiques Appliquées aux Sciences Expérimentales), Institut Pasteur de Lille, F-59000 Lille, France
| | - Damien Paul Devos
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (D.N.); (N.G.); (J.D.); (D.P.D.); (G.C.); (M.C.)
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Gabriela Certad
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (D.N.); (N.G.); (J.D.); (D.P.D.); (G.C.); (M.C.)
- Délégation à la Recherche Clinique et à l’Innovation, Groupement des Hôpitaux de l’Institut Catholique de Lille, F-59000 Lille, France
| | - Magali Chabé
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (D.N.); (N.G.); (J.D.); (D.P.D.); (G.C.); (M.C.)
| | - Eric Viscogliosi
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (D.N.); (N.G.); (J.D.); (D.P.D.); (G.C.); (M.C.)
| |
Collapse
|
12
|
Aykur M, Malatyalı E, Demirel F, Cömert-Koçak B, Gentekaki E, Tsaousis AD, Dogruman-Al F. Blastocystis: A Mysterious Member of the Gut Microbiome. Microorganisms 2024; 12:461. [PMID: 38543512 PMCID: PMC10972062 DOI: 10.3390/microorganisms12030461] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 11/12/2024] Open
Abstract
Blastocystis is the most common gastrointestinal protist found in humans and animals. Although the clinical significance of Blastocystis remains unclear, the organism is increasingly being viewed as a commensal member of the gut microbiome. However, its impact on the microbiome is still being debated. It is unclear whether Blastocystis promotes a healthy gut and microbiome directly or whether it is more likely to colonize and persist in a healthy gut environment. In healthy people, Blastocystis is frequently associated with increased bacterial diversity and significant differences in the gut microbiome. Based on current knowledge, it is not possible to determine whether differences in the gut microbiome are the cause or result of Blastocystis colonization. Although it is possible that some aspects of this eukaryote's role in the intestinal microbiome remain unknown and that its effects vary, possibly due to subtype and intra-subtype variations and immune modulation, more research is needed to characterize these mechanisms in greater detail. This review covers recent findings on the effects of Blastocystis in the gut microbiome and immune modulation, its impact on the microbiome in autoimmune diseases, whether Blastocystis has a role like bacteria in the gut-brain axis, and its relationship with probiotics.
Collapse
Affiliation(s)
- Mehmet Aykur
- Department of Parasitology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat 60030, Türkiye
| | - Erdoğan Malatyalı
- Department of Parasitology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin 09010, Türkiye;
| | - Filiz Demirel
- Department of Medical Microbiology, Ankara City Hospital, Health Science University, Ankara 06500, Türkiye;
| | - Burçak Cömert-Koçak
- Department of Medical Microbiology, Karadeniz Ereğli State Hospital, Zonguldak 67300, Türkiye;
| | - Eleni Gentekaki
- Department of Veterinary Medicine, School of Veterinary Medicine, University of Nicosia, Nicosia 2414, Cyprus;
| | - Anastasios D. Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK;
| | - Funda Dogruman-Al
- Division of Medical Parasitology, Department of Medical Microbiology, Faculty of Medicine, Gazi University, Ankara 06560, Türkiye;
| |
Collapse
|
13
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
14
|
Abdollahiyan S, Nabavi-Rad A, Keshavarz Azizi Raftar S, Monnoye M, Salarieh N, Farahanie A, Asadzadeh Aghdaei H, Zali MR, Hatami B, Gérard P, Yadegar A. Characterization of gut microbiome composition in Iranian patients with nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Sci Rep 2023; 13:20584. [PMID: 37996480 PMCID: PMC10667333 DOI: 10.1038/s41598-023-47905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Gut microbiota dysbiosis is intimately associated with development of non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Nevertheless, the gut microbial community during the course of NAFLD and NASH is yet to be comprehensively profiled. This study evaluated alterations in fecal microbiota composition in Iranian patients with NAFLD and NASH compared with healthy individuals. This cross-sectional study enrolled 15 NAFLD, 15 NASH patients, and 20 healthy controls, and their clinical parameters were examined. The taxonomic composition of the fecal microbiota was determined by sequencing the V3-V4 region of 16S rRNA genes of stool samples. Compared to the healthy controls, NAFLD and NASH patients presented reduced bacterial diversity and richness. We noticed a reduction in the relative abundance of Bacteroidota and a promotion in the relative abundance of Proteobacteria in NAFLD and NASH patients. L-histidine degradation I pathway, pyridoxal 5'-phosphate biosynthesis I pathway, and superpathway of pyridoxal 5'-phosphate biosynthesis and salvage were more abundant in NAFLD patients than in healthy individuals. This study examined fecal microbiota dysbiosis in NAFLD and NASH patients and presented consistent results to European countries. These condition- and ethnicity-specific data could provide different diagnostic signatures and therapeutic targets.
Collapse
Affiliation(s)
- Sara Abdollahiyan
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrbanoo Keshavarz Azizi Raftar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Magali Monnoye
- Micalis Institute, INRAE, AgroParisTech, Paris-Saclay University, Jouy-en-Josas, France
| | - Naghmeh Salarieh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Farahanie
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Philippe Gérard
- Micalis Institute, INRAE, AgroParisTech, Paris-Saclay University, Jouy-en-Josas, France.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Backhaus J, Frickmann H, Hagen RM, Concha G, Molitor E, Hoerauf A, Kann S. Gastrointestinal Pathogens in Multi-Infected Individuals: A Cluster Analysis of Interaction. Microorganisms 2023; 11:2642. [PMID: 38004654 PMCID: PMC10673554 DOI: 10.3390/microorganisms11112642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Indigenous people live in remote areas of Colombia. Multiple infections with bacteria, protozoa and/or helminths are common, as well as colonization in various forms. This study focused on the question of whether and to what extent various pathogens interact with each other. Therefore, a mathematical approach was retrospectively applied to PCR-based data of 244 stool samples, collected in two datasets. A stable cluster solution of the pathogens assessed was determined, and a unique configuration between Blastocystis hominis/Campylobacter spp./Giardia lamblia forming cluster 1 and Dientaemoeba fragilis was verified. A pathogen density-dependent interplay appeared between the B. hominis/Campylobacter spp./G. lamblia cluster, D. fragilis and Ascaris lumbricoides. The applied mathematical approach demonstrated that co-infections with parasites of questionable pathological relevance such as B. hominis and D. fragilis can be of diagnostic relevance due to their ability to promote or repress other pathogens. With the increasing availability of highly sensitive multiplexed molecular diagnostic approaches even in resource-limited settings, where multiple colonization of infection events with enteric pathogens in parallel are common, the importance of interpreting whole pathogen patterns rather than just individual pathogen detection may become more and more relevant.
Collapse
Affiliation(s)
- Joy Backhaus
- Statistical Consulting, 97074 Wuerzburg, Germany;
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany;
- Department of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany;
| | - Gustavo Concha
- Organization Wiwa Yugumaiun Bunkauanarrua Tayrona (OWYBT), Department Health Advocacy, Valledupar 2000001, Colombia;
| | - Ernst Molitor
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, 53127 Bonn, Germany; (E.M.); (A.H.)
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, 53127 Bonn, Germany; (E.M.); (A.H.)
| | - Simone Kann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany;
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, 53127 Bonn, Germany; (E.M.); (A.H.)
| |
Collapse
|
16
|
Pheeha SM, Tamuzi JL, Chale-Matsau B, Manda S, Nyasulu PS. A Scoping Review Evaluating the Current State of Gut Microbiota Research in Africa. Microorganisms 2023; 11:2118. [PMID: 37630678 PMCID: PMC10458939 DOI: 10.3390/microorganisms11082118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The gut microbiota has emerged as a key human health and disease determinant. However, there is a significant knowledge gap regarding the composition, diversity, and function of the gut microbiota, specifically in the African population. This scoping review aims to examine the existing literature on gut microbiota research conducted in Africa, providing an overview of the current knowledge and identifying research gaps. A comprehensive search strategy was employed to identify relevant studies. Databases including MEDLINE (PubMed), African Index Medicus (AIM), CINAHL (EBSCOhost), Science Citation index (Web of Science), Embase (Ovid), Scopus (Elsevier), WHO International Clinical Trials Registry Platform (ICTRP), and Google Scholar were searched for relevant articles. Studies investigating the gut microbiota in African populations of all age groups were included. The initial screening included a total of 2136 articles, of which 154 were included in this scoping review. The current scoping review revealed a limited number of studies investigating diseases of public health significance in relation to the gut microbiota. Among these studies, HIV (14.3%), colorectal cancer (5.2%), and diabetes mellitus (3.9%) received the most attention. The top five countries that contributed to gut microbiota research were South Africa (16.2%), Malawi (10.4%), Egypt (9.7%), Kenya (7.1%), and Nigeria (6.5%). The high number (n = 66) of studies that did not study any specific disease in relation to the gut microbiota remains a gap that needs to be filled. This scoping review brings attention to the prevalent utilization of observational study types (38.3%) in the studies analysed and emphasizes the importance of conducting more experimental studies. Furthermore, the findings reflect the need for more disease-focused, comprehensive, and population-specific gut microbiota studies across diverse African regions and ethnic groups to better understand the factors shaping gut microbiota composition and its implications for health and disease. Such knowledge has the potential to inform targeted interventions and personalized approaches for improving health outcomes in African populations.
Collapse
Affiliation(s)
- Sara M. Pheeha
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Department of Chemical Pathology, Faculty of Medicine and Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- National Health Laboratory Service, Dr George Mukhari Academic Hospital, Pretoria 0208, South Africa
| | - Jacques L. Tamuzi
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
| | - Bettina Chale-Matsau
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- National Health Laboratory Service, Steve Biko Academic Hospital, Pretoria 0002, South Africa
| | - Samuel Manda
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Peter S. Nyasulu
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
17
|
Rudzińska M, Sikorska K. Epidemiology of Blastocystis Infection: A Review of Data from Poland in Relation to Other Reports. Pathogens 2023; 12:1050. [PMID: 37624010 PMCID: PMC10458783 DOI: 10.3390/pathogens12081050] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
Blastocystis is a common gut protist of humans and various animals worldwide, with a high level of genetic diversity. Neither its zoonotic potential and transmission routes nor its pathogenicity are fully known. This fact, and the fact that Blastocystis is the most abundant eukaryote in human faeces, raises the question of its relevance to public health. Here, we summarise (in relation to other reports) the results of studies on the prevalence and genotypic variation of Blastocystis, which were carried out in animals, humans, and in water environments in Poland. In humans, the prevalence ranged between 0.14 and 23.6%, in some animals reached 58.97%, and in water environments was 5.1%. Seven subtypes were identified in humans (ST1-ST4, ST6, ST7, and ST9), of which ST3 was the most common. Among animals (wild, livestock, and pet animals), eleven STs were identified, with differential host specificity. Humans and animals shared ST1, ST2, ST3, ST6, and ST7, while ST1 and ST3 were present in humans, animals, and water sources. These observations indicate the possibility of Blastocystis transmission between animals and humans. Further studies should be continued in search of the sources and transmission routes of Blastocystis in order to prevent the spread of infections among humans and animals.
Collapse
Affiliation(s)
- Monika Rudzińska
- Department of Tropical Medicine and Epidemiology, Faculty of Health Sciences, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | | |
Collapse
|
18
|
Beyhan YE, Yıldız MR. Microbiota and parasite relationship. Diagn Microbiol Infect Dis 2023; 106:115954. [PMID: 37267741 DOI: 10.1016/j.diagmicrobio.2023.115954] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 06/04/2023]
Abstract
The diversity of microbiota is different in each person. Many health problems such as autoimmune diseases, diabetes, cardiovascular diseases, and depression can be caused by microbiota imbalance. Since the parasite needs a host to survive, it interacts closely with the microbiota elements. Blastocystis acts on the inflammatory state of the intestine and may cause various gastrointestinal symptoms, on the contrary, it is more important for gut health because it causes bacterial diversity and richness. Blastocystis is associated with changes in gut microbiota composition, the ultimate indicator of which is the Firmicutes/Bacteroidetes ratio. The Bifidobacterium genus was significantly reduced in IBS patients and Blastocystis, and there is a significant decrease in Faecalibacterium prausnitzii, which has anti-inflammatory properties in Blastocystis infection without IBS. Lactobacillus species reduce the presence of Giardia, and the produced bacteriocins prevent parasite adhesion. The presence of helminths has been strongly associated with the transition from Bacteroidetes to Firmicutes and Clostridia. Contrary to Ascaris, alpha diversity in the intestinal microbiota decreases in chronic Trichuris muris infection, and growth and nutrient metabolism efficiency can be suppressed. Helminth infections indirectly affect mood and behavior in children through their effects on microbiota change. The main and focus of this review is to address the relationship of parasites with microbiota elements and to review the data about what changes they cause. Microbiota studies have gained importance recently and it is thought that it will contribute to the treatment of many diseases as well as in the fight against parasitic diseases in the future.
Collapse
Affiliation(s)
- Yunus E Beyhan
- Department of Parasitology, Van Yüzüncü Yil University Faculty of Medicine, Van, Turkey.
| | - Muhammed R Yıldız
- Department of Parasitology, Van Yüzüncü Yil University Faculty of Medicine, Van, Turkey
| |
Collapse
|
19
|
Fu Y, Zhang K, Yang M, Li X, Chen Y, Li J, Xu H, Dhakal P, Zhang L. Metagenomic analysis reveals the relationship between intestinal protozoan parasites and the intestinal microecological balance in calves. Parasit Vectors 2023; 16:257. [PMID: 37525231 PMCID: PMC10388496 DOI: 10.1186/s13071-023-05877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND A close connection between a protozoan parasite and the balance of the other gut microbes of the host has been demonstrated. The calves may be naturally co-infected with many parasites, and the co-effects of parasites on other intestinal microbes of calves remain unclear. This study aims to preliminarily reveal the relationship between intestinal parasites and other intestinal microbes in calves. METHODS Fecal samples were collected from four calves with bloody diarrhea, four calves with watery diarrhea, and seven normal calves, and the microbial flora of the samples were analyzed by whole-genome sequencing. Protozoal parasites were detected in the metagenome sequences and identified using polymerase chain reaction (PCR). RESULTS Cryptosporidium, Eimeria, Giardia, Blastocystis, and Entamoeba were detected by metagenomic analysis, and the identified species were Giardia duodenalis assemblage E, Cryptosporidium bovis, Cryptosporidium ryanae, Eimeria bovis, Eimeria subspherica, Entamoeba bovis, and Blastocystis ST2 and ST10. Metagenomic analysis showed that the intestinal microbes of calves with diarrhea were disordered, especially in calves with bloody diarrhea. Furthermore, different parasites show distinct relationships with the intestinal microecology. Cryptosporidium, Eimeria, and Giardia were negatively correlated with various intestinal bacteria but positively correlated with some fungi. However, Blastocystis and Entamoeba were positively associated with other gut microbes. Twenty-seven biomarkers not only were significantly enriched in bloody diarrhea, watery diarrhea, and normal calves but were also associated with Eimeria, Cryptosporidium, and Giardia. Only Eimeria showed a distinct relationship with seven genera of bacteria, which were significantly enriched in the healthy calves. All 18 genera of fungi were positively correlated with Cryptosporidium, Eimeria, and Giardia, which were also significantly enriched in calves with bloody diarrhea. Functional genes related to parasites and diseases were found mainly in fungi. CONCLUSIONS This study revealed the relationship between intestinal protozoan parasites and the other calf gut microbiome. Different intestinal protozoan parasites have diametrically opposite effects on other gut microecology, which not only affects bacteria in the gut, but also is significantly related to fungi and archaea.
Collapse
Affiliation(s)
- Yin Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Kaihui Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Mengyao Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Yuancai Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Huiyan Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Pitambar Dhakal
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China.
| |
Collapse
|
20
|
Vonaesch P, Billy V, Mann AE, Morien E, Habib A, Collard JM, Dédé M, Kapel N, Sansonetti PJ, Parfrey LW. The eukaryome of African children is influenced by geographic location, gut biogeography, and nutritional status. MICROLIFE 2023; 4:uqad033. [PMID: 37680753 PMCID: PMC10481997 DOI: 10.1093/femsml/uqad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023]
Abstract
Eukaryotes have historically been studied as parasites, but recent evidence suggests they may be indicators of a healthy gut ecosystem. Here, we describe the eukaryome along the gastrointestinal tract of children aged 2-5 years and test for associations with clinical factors such as anaemia, intestinal inflammation, chronic undernutrition, and age. Children were enrolled from December 2016 to May 2018 in Bangui, Central African Republic and Antananarivo, Madagascar. We analyzed a total of 1104 samples representing 212 gastric, 187 duodenal, and 705 fecal samples using a metabarcoding approach targeting the full ITS2 region for fungi, and the V4 hypervariable region of the 18S rRNA gene for the overall eukaryome. Roughly, half of all fecal samples showed microeukaryotic reads. We find high intersubject variability, only a handful of taxa that are likely residents of the gastrointestinal tract, and frequent co-occurrence of eukaryotes within an individual. We also find that the eukaryome differs between the stomach, duodenum, and feces and is strongly influenced by country of origin. Our data show trends towards higher levels of Fusarium equiseti, a mycotoxin producing fungus, and lower levels of the protist Blastocystis in stunted children compared to nonstunted controls. Overall, the eukaryome is poorly correlated with clinical variables. Our study is of one of the largest cohorts analyzing the human intestinal eukaryome to date and the first to compare the eukaryome across different compartments of the gastrointestinal tract. Our results highlight the importance of studying populations across the world to uncover common features of the eukaryome in health.
Collapse
Affiliation(s)
- Pascale Vonaesch
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Vincent Billy
- Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 3200-6270 University Boulevard, V6T1Z4 Vancouver, Canada
| | - Allison E Mann
- Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 3200-6270 University Boulevard, V6T1Z4 Vancouver, Canada
| | - Evan Morien
- Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 3200-6270 University Boulevard, V6T1Z4 Vancouver, Canada
| | - Azimdine Habib
- Unité de Bactériologie Expérimentale, Institut Pasteur de Madagascar, BP1274 Ambatofotsikely Avaradoha 101 Antananarivo, Madagascar
| | - Jean-Marc Collard
- Unité de Bactériologie Expérimentale, Institut Pasteur de Madagascar, BP1274 Ambatofotsikely Avaradoha 101 Antananarivo, Madagascar
| | - Michel Dédé
- Laboratoire d’Analyse médicale, Institut Pasteur de Bangui, Avenue De Independence Bangui, 923 Central African Republic
| | - Nathalie Kapel
- Laboratoire de Coprologie Fonctionnelle, Assistance Publique- Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 47-83 Bd de l’Hôpital, 75013 Paris, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Laura Wegener Parfrey
- Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 3200-6270 University Boulevard, V6T1Z4 Vancouver, Canada
| |
Collapse
|
21
|
Rezzoug I, Visseaux B, Bertine M, Parisey M, Bonnal C, Ruppe E, Descamps D, Timsit JF, Yazdanpanah Y, Armand-Lefevre L, Houze S, Argy N. Faecal Viral Excretion and Gastrointestinal Co-Infection Do Not Explain Digestive Presentation in COVID-19 Patients. Microorganisms 2023; 11:1780. [PMID: 37512952 PMCID: PMC10383301 DOI: 10.3390/microorganisms11071780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
The physiopathological mechanisms responsible for digestive symptoms in COVID-19 patients are still unclear. The aim of this study was to determine the influence of faecal viral shedding on digestive symptoms and propose differential diagnoses in order to understand the gastrointestinal clinical spectrum in acute cases of COVID-19. All patients managed between March and May 2020, from whom stool samples were collected for microbiological investigations, were included. Microbiological analysis consisted of syndromic PCR screening and microscopic parasitological examination supplemented with microsporidia and multiplex protozoa PCR. SARS-CoV-2 infection was diagnosed via viral detection in respiratory and frozen stool samples, completed via serological test when necessary. Epidemiological, clinical, radiological, and biological data and clinical courses were compared according to COVID-19 status and faecal SARS-CoV-2 shedding and enteric co-infection status. The sample included 50 COVID+ and 67 COVID- patients. Faecal viral shedding was detected in 50% of stool samples and was associated with a higher viral load in the upper respiratory tract. Detected enteric pathogens were not different between subjects with different COVID-19 statuses or faecal SARS-CoV-2 shedding and had no impact on the clinical course for COVID-19 patients. The connection between SARS-CoV-2 shedding and enteric pathogen co-infection involvement in gastrointestinal presentation and clinical course is still unclear, suggesting other processes are involved in digestive disorders in COVID-19 patients.
Collapse
Affiliation(s)
- Inès Rezzoug
- Laboratoire de Parasitologie-Mycologie, Hôpital Bichat-Claude Bernard, Assistance Publique des Hôpitaux de Paris, 75018 Paris, France
| | - Benoit Visseaux
- Laboratoire de Virologie, Hôpital Bichat-Claude Bernard, Assistance Publique des Hôpitaux de Paris, 75018 Paris, France
- IAME Unit, INSERM, Faculté de Médecine, Université de Paris Cité, 75018 Paris, France
| | - Mélanie Bertine
- Laboratoire de Virologie, Hôpital Bichat-Claude Bernard, Assistance Publique des Hôpitaux de Paris, 75018 Paris, France
| | - Marion Parisey
- Service des Maladies Infectieuses et Tropicales, Hôpital Bichat-Claude Bernard, Assistance Publique des Hôpitaux de Paris, 75018 Paris, France
| | - Christine Bonnal
- Laboratoire de Parasitologie-Mycologie, Hôpital Bichat-Claude Bernard, Assistance Publique des Hôpitaux de Paris, 75018 Paris, France
| | - Etienne Ruppe
- IAME Unit, INSERM, Faculté de Médecine, Université de Paris Cité, 75018 Paris, France
- Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, Assistance Publique des Hôpitaux de Paris, 75018 Paris, France
| | - Diane Descamps
- Laboratoire de Virologie, Hôpital Bichat-Claude Bernard, Assistance Publique des Hôpitaux de Paris, 75018 Paris, France
- IAME Unit, INSERM, Faculté de Médecine, Université de Paris Cité, 75018 Paris, France
| | - Jean François Timsit
- IAME Unit, INSERM, Faculté de Médecine, Université de Paris Cité, 75018 Paris, France
- Service de Réanimation Médicale et Infectieuses, Hôpital Bichat-Claude Bernard, Assistance Publique des Hôpitaux de Paris, 75018 Paris, France
| | - Yazdan Yazdanpanah
- IAME Unit, INSERM, Faculté de Médecine, Université de Paris Cité, 75018 Paris, France
- Service des Maladies Infectieuses et Tropicales, Hôpital Bichat-Claude Bernard, Assistance Publique des Hôpitaux de Paris, 75018 Paris, France
| | - Laurence Armand-Lefevre
- IAME Unit, INSERM, Faculté de Médecine, Université de Paris Cité, 75018 Paris, France
- Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, Assistance Publique des Hôpitaux de Paris, 75018 Paris, France
| | - Sandrine Houze
- Laboratoire de Parasitologie-Mycologie, Hôpital Bichat-Claude Bernard, Assistance Publique des Hôpitaux de Paris, 75018 Paris, France
- MERIT UMR 261 Unit, IRD, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France
| | - Nicolas Argy
- Laboratoire de Parasitologie-Mycologie, Hôpital Bichat-Claude Bernard, Assistance Publique des Hôpitaux de Paris, 75018 Paris, France
- MERIT UMR 261 Unit, IRD, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France
| |
Collapse
|
22
|
Hoque MM, Espinoza-Vergara G, McDougald D. Protozoan predation as a driver of diversity and virulence in bacterial biofilms. FEMS Microbiol Rev 2023; 47:fuad040. [PMID: 37458768 DOI: 10.1093/femsre/fuad040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Protozoa are eukaryotic organisms that play a crucial role in nutrient cycling and maintaining balance in the food web. Predation, symbiosis and parasitism are three types of interactions between protozoa and bacteria. However, not all bacterial species are equally susceptible to protozoan predation as many are capable of defending against predation in numerous ways and may even establish either a symbiotic or parasitic life-style. Biofilm formation is one such mechanism by which bacteria can survive predation. Structural and chemical components of biofilms enhance resistance to predation compared to their planktonic counterparts. Predation on biofilms gives rise to phenotypic and genetic heterogeneity in prey that leads to trade-offs in virulence in other eukaryotes. Recent advances, using molecular and genomics techniques, allow us to generate new information about the interactions of protozoa and biofilms of prey bacteria. This review presents the current state of the field on impacts of protozoan predation on biofilms. We provide an overview of newly gathered insights into (i) molecular mechanisms of predation resistance in biofilms, (ii) phenotypic and genetic diversification of prey bacteria, and (iii) evolution of virulence as a consequence of protozoan predation on biofilms.
Collapse
Affiliation(s)
- M Mozammel Hoque
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Gustavo Espinoza-Vergara
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Diane McDougald
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
23
|
Jagare L, Rozenberga M, Silamikelis I, Ansone L, Elbere I, Briviba M, Megnis K, Konrade I, Birka I, Straume Z, Klovins J. Metatranscriptome analysis of blood in healthy individuals and irritable bowel syndrome patients. J Med Microbiol 2023; 72. [PMID: 37335601 DOI: 10.1099/jmm.0.001719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Introduction. Although the presence of micro-organisms in the blood of healthy humans is a relatively new concept, there is a growing amount of evidence that blood might have its own microbiome.Gap Statement. Previous research has targeted the taxonomic composition of the blood microbiome using DNA-based sequencing methods, while little information is known about the presence of microbial transcripts obtained from the blood and their relation to conditions connected with increased gut permeability.Aim. To detect potentially alive and active micro-organisms and investigate differences in taxonomic composition between healthy people and patients with irritable bowel syndrome (IBS), we used the metatranscriptomics approach.Methodology. We collected blood samples from 23 IBS patients and 26 volunteers from the general population, and performed RNAseq on the isolated RNA. Reads corresponding to microbial genomes were identified with Kraken 2's standard plus protozoa and fungi database, and re-estimated at genus level with Bracken 2.7. We looked for trends in the taxonomic composition, making a comparison between the IBS and control groups, accounting for other different factors.Results. The dominant genera in the blood microbiome were found to be Cutibacterium, Bradyrhizobium, Escherichia, Pseudomonas, Micrococcus, Delftia, Mediterraneibacter, Staphylococcus, Stutzerimonas and Ralstonia. Some of these are typical environmental bacteria and could partially represent contamination. However, analysis of sequences from the negative controls suggested that some genera which are characteristic of the gut microbiome (Mediterraneibacter, Blautia, Collinsella, Klebsiella, Coprococcus, Dysosmobacter, Anaerostipes, Faecalibacterium, Dorea, Simiaoa, Bifidobacterium, Alistipes, Prevotella, Ruminococcus) are less likely to be a result of contamination. Differential analysis of microbes between groups showed that some taxa associated with the gut microbiome (Blautia, Faecalibacterium, Dorea, Bifidobacterium, Clostridium, Christensenella) are more prevalent in IBS patients compared to the general population. No significant correlations with any other factors were identified.Conclusion. Our findings support the existence of the blood microbiome and suggest the gut and possibly the oral microbiome as its origin, while the skin microbiome is a possible but less certain source. The blood microbiome is likely influenced by states of increased gut permeability such as IBS.
Collapse
Affiliation(s)
- Lauma Jagare
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Maija Rozenberga
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Ivars Silamikelis
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Laura Ansone
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Ilze Elbere
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Monta Briviba
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Ilze Konrade
- Riga Stradins University, Dzirciema iela 16, Riga, LV-1007, Latvia
| | - Ilze Birka
- Pauls Stradins Clinical University Hospital, Pilsonu iela 13, Riga, LV-1002, Latvia
| | - Zane Straume
- Ogre Regional Hospital, Slimnicas iela 2, Ogre, LV-5001, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| |
Collapse
|
24
|
Nguyen LDN, Gantois N, Hoang TT, Do BT, Desramaut J, Naguib D, Tran TN, Truong AD, Even G, Certad G, Chabé M, Viscogliosi E. First Epidemiological Survey on the Prevalence and Subtypes Distribution of the Enteric Parasite Blastocystis sp. in Vietnam. Microorganisms 2023; 11:microorganisms11030731. [PMID: 36985304 PMCID: PMC10056178 DOI: 10.3390/microorganisms11030731] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Although Blastocystis sp. is the most common enteric protozoan in human stools worldwide, various geographical areas remain to be investigated regarding the frequency and circulation of this parasite. Such is the case of some developing countries in Southeast Asia that exhibit a higher risk for parasitic infections due to unsanitary conditions. While several epidemiological surveys have been conducted, for instance, in Thailand, little or no data are available from neighboring countries, such as Vietnam. Therefore, in order to determine the prevalence and subtype (ST) distribution of Blastocystis sp. and to clarify the transmission of the parasite, the first molecular epidemiological survey ever conducted in this country was performed. For this purpose, a total of 310 stool specimens were collected from patients enrolled at the Family Hospital of Da Nang and then tested for the presence of Blastocystis sp. by real-time Polymerase Chain Reaction (qPCR), followed by subtyping of the isolates. The overall prevalence of the parasite reached 34.5% in this Vietnamese cohort. No significant association was found between parasite infection and gender, age, symptomatic status, contact with animals or source of drinking water. Out of the 107 positive patients, nearly half presented mixed infections. Therefore, some of the corresponding samples were reanalyzed by end-point PCR, followed by PCR products cloning and sequencing. Of the 88 total subtyped isolates, ST3 was predominant, followed by ST10, ST14, ST7, ST1, ST4, ST6 and ST8. Our study was, thus, the first to report ST8, ST10 and ST14 in the Southeast Asian population. The predominance of ST3 within this Vietnamese cohort, coupled with its low intra-ST genetic variability, reflected a large inter-human transmission, while ST1 transmission was suggested to be not only anthroponotic, but also likely correlated to animal or environmental sources. Strikingly, isolates considered of animal origin (ST6-ST8, ST10 and ST14) accounted for more than 50% of the subtyped isolates. These findings improved our knowledge of the epidemiology and circulation of Blastocystis sp. in Southeast Asia, and in particular, in Vietnam, and highlighted both a major burden of the parasite in this country and a high risk of zoonotic transmission, mainly from poultry and livestock.
Collapse
Affiliation(s)
| | - Nausicaa Gantois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, F-59000 Lille, France
| | | | - Bong Thi Do
- Family Hospital, 73 Nguyen Huu Tho Street, Da Nang 550000, Vietnam
| | - Jeremy Desramaut
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, F-59000 Lille, France
| | - Doaa Naguib
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Tuan Ngoc Tran
- Family Hospital, 73 Nguyen Huu Tho Street, Da Nang 550000, Vietnam
| | - Anh Duc Truong
- Family Hospital, 73 Nguyen Huu Tho Street, Da Nang 550000, Vietnam
| | - Gaël Even
- GD Biotech-Gènes Diffusion, F-59000 Lille, France
- PEGASE-Biosciences (Plateforme d’Expertises Génomiques Appliquées aux Sciences Expérimentales), Institut Pasteur de Lille, F-59000 Lille, France
| | - Gabriela Certad
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, F-59000 Lille, France
- Délégation à la Recherche Clinique et à l’Innovation, Groupement des Hôpitaux de l’Institut Catholique de Lille, F-59000 Lille, France
| | - Magali Chabé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, F-59000 Lille, France
- Correspondence: (M.C.); (E.V.)
| | - Eric Viscogliosi
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, F-59000 Lille, France
- Correspondence: (M.C.); (E.V.)
| |
Collapse
|
25
|
Dubik M, Pilecki B, Moeller JB. Commensal Intestinal Protozoa-Underestimated Members of the Gut Microbial Community. BIOLOGY 2022; 11:1742. [PMID: 36552252 PMCID: PMC9774987 DOI: 10.3390/biology11121742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
The human gastrointestinal microbiota contains a diverse consortium of microbes, including bacteria, protozoa, viruses, and fungi. Through millennia of co-evolution, the host-microbiota interactions have shaped the immune system to both tolerate and maintain the symbiotic relationship with commensal microbiota, while exerting protective responses against invading pathogens. Microbiome research is dominated by studies describing the impact of prokaryotic bacteria on gut immunity with a limited understanding of their relationship with other integral microbiota constituents. However, converging evidence shows that eukaryotic organisms, such as commensal protozoa, can play an important role in modulating intestinal immune responses as well as influencing the overall health of the host. The presence of several protozoa species has recently been shown to be a common occurrence in healthy populations worldwide, suggesting that many of these are commensals rather than invading pathogens. This review aims to discuss the most recent, conflicting findings regarding the role of intestinal protozoa in gut homeostasis, interactions between intestinal protozoa and the bacterial microbiota, as well as potential immunological consequences of protozoa colonization.
Collapse
Affiliation(s)
- Magdalena Dubik
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Bartosz Pilecki
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Jesper Bonnet Moeller
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
26
|
Naguib D, Gantois N, Desramaut J, Arafat N, Even G, Certad G, Chabé M, Viscogliosi E. Prevalence, Subtype Distribution and Zoonotic Significance of Blastocystis sp. Isolates from Poultry, Cattle and Pets in Northern Egypt. Microorganisms 2022; 10:2259. [PMID: 36422329 PMCID: PMC9696183 DOI: 10.3390/microorganisms10112259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 07/25/2023] Open
Abstract
Blastocystis sp. is a widespread enteric protozoan that frequently infects human and animal groups. Despite its burden and zoonotic potential worldwide, epidemiological investigations remain limited in animal groups that come in contact with humans. Therefore, the largest survey ever conducted in North Africa was performed in Egypt with the aim to investigate the prevalence and subtype (ST) distribution of Blastocystis sp. in animals. For this purpose, a total of 889 fecal specimens were collected from chickens (217), cattle (373), dogs (144) and cats (155) from six governorates of northern Egypt. These specimens were then screened for the presence of Blastocystis sp. using a quantitative real-time PCR, followed by subtyping the isolates. The overall prevalence of Blastocystis sp. reached 9.2% (82/889), with the highest infection rates reported in chickens (17.0%) and domestic cattle (11.0%), highlighting an active circulation of the parasite in both animal groups. In contrast, the low prevalence in cats (2.6%) and the absence of the parasite in dogs suggested that pets are not natural hosts of Blastocystis sp. ST10 and ST14 were largely predominant in cattle, confirming that both STs represented cattle-adapted STs. The report of one ST3 and one ST4 isolate in this animal group could be explained by an accidental zoonosis from humans to animals. All but one of the subtyped isolates in poultry belonged to ST7, which was considered as an avian ST. The presence of a remaining isolate of ST14 likely reflected a transient infection from contact between birds and cattle feces. The same environmental contamination was also likely the source of the ST14 infection in three of the four positive cats, with the remaining animals infected by ST3 as the result of human-to-animal transmission. These occurrences and subtyping data, combined with those previously collected in the Egyptian population, implies that poultry could play a significant role as reservoir for zoonotic transmission, which would not be the case for cattle and pets.
Collapse
Affiliation(s)
- Doaa Naguib
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Nausicaa Gantois
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France
| | - Jeremy Desramaut
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France
| | - Nagah Arafat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Gaël Even
- GD Biotech-Gènes Diffusion, F-59000 Lille, France
- PEGASE-Biosciences (Plateforme d’Expertises Génomiques Appliquées aux Sciences Expérimentales), Institut Pasteur de Lille, F-59000 Lille, France
| | - Gabriela Certad
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France
- Délégation à la Recherche Clinique et à l’Innovation, Groupement des Hôpitaux de l’Institut Catholique de Lille, F-59000 Lille, France
| | - Magali Chabé
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France
| | - Eric Viscogliosi
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France
| |
Collapse
|
27
|
Suzuki TA, Fitzstevens JL, Schmidt VT, Enav H, Huus KE, Ngwese MM, Grießhammer A, Pfleiderer A, Adegbite BR, Zinsou JF, Esen M, Velavan TP, Adegnika AA, Song LH, Spector TD, Muehlbauer AL, Marchi N, Kang H, Maier L, Blekhman R, Ségurel L, Ko G, Youngblut ND, Kremsner P, Ley RE. Codiversification of gut microbiota with humans. Science 2022; 377:1328-1332. [PMID: 36108023 PMCID: PMC10777373 DOI: 10.1126/science.abm7759] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The gut microbiomes of human populations worldwide have many core microbial species in common. However, within a species, some strains can show remarkable population specificity. The question is whether such specificity arises from a shared evolutionary history (codiversification) between humans and their microbes. To test for codiversification of host and microbiota, we analyzed paired gut metagenomes and human genomes for 1225 individuals in Europe, Asia, and Africa, including mothers and their children. Between and within countries, a parallel evolutionary history was evident for humans and their gut microbes. Moreover, species displaying the strongest codiversification independently evolved traits characteristic of host dependency, including reduced genomes and oxygen and temperature sensitivity. These findings all point to the importance of understanding the potential role of population-specific microbial strains in microbiome-mediated disease phenotypes.
Collapse
Affiliation(s)
- Taichi A. Suzuki
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - J. Liam Fitzstevens
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Victor T. Schmidt
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Hagay Enav
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Kelsey E. Huus
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Mirabeau Mbong Ngwese
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Anne Grießhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anne Pfleiderer
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Bayode R. Adegbite
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jeannot F. Zinsou
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Meral Esen
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Thirumalaisamy P. Velavan
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese German Center for Medical Research, Hanoi, Vietnam
| | - Ayola A. Adegnika
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research, Tübingen, Germany
- Fondation pour la Recherche Scientifique, Cotonou, Bénin
| | - Le Huu Song
- Vietnamese German Center for Medical Research, Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Amanda L. Muehlbauer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Nina Marchi
- Eco-anthropologie, Muséum National d’Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Hyena Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Laure Ségurel
- Eco-anthropologie, Muséum National d’Histoire Naturelle, CNRS, Université de Paris, Paris, France
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, Université Lyon 1, Villeurbanne, France
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Nicholas D. Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Peter Kremsner
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
Deng L, Lee JWJ, Tan KSW. Infection with pathogenic Blastocystis ST7 is associated with decreased bacterial diversity and altered gut microbiome profiles in diarrheal patients. Parasit Vectors 2022; 15:312. [PMID: 36064620 PMCID: PMC9446694 DOI: 10.1186/s13071-022-05435-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background Blastocystis is a common protistan parasite inhabiting the gastrointestinal tract of humans and animals. While there are increasing reports characterizing the associations between Blastocystis and the gut microbiome in healthy individuals, only a few studies have investigated the relationships between Blastocystis and the gut microbiota in diarrheal patients. Methods The effects of a specific subtype (ST7) of Blastocystis on the composition of gut microbiota in diarrheal patients were investigated using 16S ribosomal RNA (rRNA) gene sequencing and bioinformatic analyses. Results Compared with diarrheal patients without Blastocystis, diarrheal patients infected with Blastocystis ST7 exhibited lower bacterial diversity. Beta diversity analysis revealed significant differences in bacterial community structure between ST7-infected and Blastocystis-free patients. The proportion of Enterobacteriaceae and Escherichia-Shigella were significantly enriched in ST7-infected patients. In contrast, the abundance of Bacteroides and Parabacteroides were more prevalent in Blastocystis-free patients. Conclusions The results of this study revealed, for the first time, that infection with Blastocystis ST7 is associated with lower bacterial diversity and altered microbial structure in diarrheal patients. Our study on clinical diarrheal patients is also the first to reinforce the notion that ST7 is a pathogenic subtype of Blastocystis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05435-z.
Collapse
Affiliation(s)
- Lei Deng
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore. .,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Jonathan W J Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.,Division of Gastroenterology & Hepatology, National University Hospital, Singapore, 119074, Singapore
| | - Kevin S W Tan
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore. .,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
29
|
Rojas-Velázquez L, Morán P, Serrano-Vázquez A, Portillo-Bobadilla T, González E, Pérez-Juárez H, Hernández E, Partida-Rodríguez O, Nieves-Ramírez M, Padilla A, Zaragoza M, Ximénez C. The regulatory function of Blastocystis spp. on the immune inflammatory response in the gut microbiome. Front Cell Infect Microbiol 2022; 12:967724. [PMID: 36118018 PMCID: PMC9470931 DOI: 10.3389/fcimb.2022.967724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Blastocystis spp. is a unicellular organism that resides in digestive tract of various vertebrates, with a worldwide distribution and a variable prevalence. For many years, Blastocystis spp. was considered a cyst of a flagellate, a fungus, or a saprophyte yeast of the digestive tract; in 1996, it is placed in the group of stramenopiles (heterokonts). Since its new classification, many questions have arisen around this protist about its role as a pathogen or non-pathogen organism. Recent evidence indicates that Blastocystis spp. participates in the immune inflammatory response in the intestinal microbiome generating an anti-inflammatory response, showing a lower concentration of fecal inflammatory markers in infected human hosts. Here, we review recent findings on the regulatory function of Blastocystis spp. in the immune inflammatory response to comprehend the purpose of Blastocystis spp. in health and disease, defining if Blastocystis spp. is really a pathogen, a commensal or even a mutualist in the human gut microbiome.
Collapse
Affiliation(s)
- Liliana Rojas-Velázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- *Correspondence: Liliana Rojas-Velázquez, ; Cecilia Ximénez,
| | - Patricia Morán
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Angélica Serrano-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Tobías Portillo-Bobadilla
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México (UNAM) e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Enrique González
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Horacio Pérez-Juárez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Eric Hernández
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Oswaldo Partida-Rodríguez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Miriam Nieves-Ramírez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Angeles Padilla
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Zaragoza
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Cecilia Ximénez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- *Correspondence: Liliana Rojas-Velázquez, ; Cecilia Ximénez,
| |
Collapse
|
30
|
Alteration of gut bacteria composition among individuals with asymptomatic Blastocystis infection: A case-control study. Microb Pathog 2022; 169:105639. [PMID: 35716924 DOI: 10.1016/j.micpath.2022.105639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
Abstract
The gut microbiota consists a diverse and complex ecosystem that is involved in beneficial functions as well as potentially harmful conditions for human. Blastocystis sp. is a common parasite of the digestive tract of animals and humans; however, limited data is available concerning the association of asymptomatic Blastocystis infection and gut bacteria composition. Hence, in this cross-sectional study, the gut bacteria composition of twenty asymptomatic Blastocystis sp. positive and twenty Blastocystis sp. negative individuals was assessed with real time PCR. The case and control groups were matched for age and sex. Both groups were negative for other gastrointestinal infections and did not have any gastrointestinal symptoms. The subtype of ten Blastocystis sp. isolates was assessed based on sequencing. Sequencing of ten Blastocystis sp. isolates revealed the ST1, ST2, and ST3 subtypes in 40%, 30%, and 30% of the isolates. The relative expression of each bacteria in the case than control group revealed that the expression level of Bifidobacterium group (P < 0.033), Peptostreptococcus productus (P < 0.014), Lactobacillus/Enterococcus group (P < 0.001), and Escherichia coli (P < 0.001) were significantly upregulate in the Blastocystis sp. carriers than the control group, while the relative amounts of Bacteroides fragilis (P < 0.001) and Enterococcus sp. (P < 0.001) were significantly downregulated in the case than the control group. Taken together, the results of this study have shown that asymptomatic Blastocystis infection could alter the composition of gut bacteria in healthy individuals.
Collapse
|
31
|
Detection, Molecular Identification and Transmission of the Intestinal Protozoa Blastocystis sp. in Guinea from a Large-Scale Epidemiological Study Conducted in the Conakry Area. Microorganisms 2022; 10:microorganisms10020446. [PMID: 35208899 PMCID: PMC8876712 DOI: 10.3390/microorganisms10020446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Blastocystis sp. is a single-celled parasite estimated to colonize the digestive tract of 1 to 2 billion people worldwide. Although it represents the most frequent intestinal protozoa in human stools, it remains still under-investigated in countries with a high risk of infection due to poor sanitary and hygiene conditions, such as in Africa. Therefore, the present study was carried out to determine the prevalence and subtype (ST) distribution of Blastocystis sp. in the Guinean population. For this purpose, fecal samples were collected from 500 individuals presenting or not digestive disorders in two hospitals of Conakry. Search for the parasite in stools was performed by real-time PCR targeting the small subunit rDNA gene followed by sequencing of the PCR products for subtyping of the isolates. A total of 390 participants (78.0%) was positive for Blastocystis sp. Five STs were identified in the Guinean cohort (ST1, ST2, ST3, ST4 and ST14) with varying frequency, ST3 being predominant. Among them, ST4 was found in only two patients confirming its global rarity in Africa whereas infections by ST14 were likely the result of zoonotic transmission from bovid. No significant association was detected between Blastocystis sp. colonization or ST distribution and the symptomatic status of Guinean subjects or the presence of digestive symptoms. In contrast, drilling water consumption represented a significant risk factor for infection by Blastocystis sp. Predominance of ST3 coupled with its low intra-ST diversity strongly suggested large-scale human-to-human transmission of this ST within this cohort. In parallel, the highest intra-ST diversity of ST1 and ST2 was likely correlated with various potential sources of infection in addition to anthroponotic transmission. These findings highlighted the active circulation of the parasite in Guinea as reported in some low-income African countries and the necessity to implement prevention and control measures in order to limit the circulation of this parasite in this endemic geographical area.
Collapse
|
32
|
Stool Microbiota Diversity Analysis of Blastocystis-Positive and Blastocystis-Negative Individuals. Microorganisms 2022; 10:microorganisms10020326. [PMID: 35208781 PMCID: PMC8878401 DOI: 10.3390/microorganisms10020326] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/07/2022] Open
Abstract
Blastocystis is a unicellular eukaryote found in the gastrointestinal tract of both human and other animal hosts. The clinical significance of colonic Blastocystis colonization remains obscure. In this study, we used metabarcoding and bioinformatics analyses to identify differences in stool microbiota diversity between Blastocystis-positive and Blastocystis-negative individuals (n = 1285). Alpha diversity was significantly higher in Blastocystis carriers. At phylum level, Firmicutes and Bacteroidetes were enriched in carriers, while Proteobacteria were enriched in non-carriers. The genera Prevotella, Faecalibacterium, Flavonifracter, Clostridium, Succinivibrio, and Oscillibacter were enriched in carriers, whereas Escherichia, Bacteroides, Klebsiella, and Pseudomonas were enriched in non-carriers. No difference in beta diversity was observed. Individuals with Blastocystis-positive stools appear to have gut microbiomes associated with eubiosis unlike those with Blastocystis-negative stools, whose gut microbiomes are similar to those associated with dysbiosis. The role of Blastocystis as an indicator organism and potential modulator of the gut microbiota warrants further scrutiny.
Collapse
|