1
|
Shankar-Hari M, Francois B, Remy KE, Gutierrez C, Pastores S, Daix T, Jeannet R, Blood J, Walton AH, Salomao R, Auzinger G, Striker D, Martin RS, Anand NJ, Bosanquet J, Blood T, Brakenridge S, Moldawer LL, Vachharajani V, Yee C, Dal-Pizzol F, Morre M, Berbille F, van den Brink M, Hotchkiss R. A randomized, double-blind, placebo-controlled trial of IL-7 in critically ill patients with COVID-19. JCI Insight 2025; 10:e189150. [PMID: 39903535 PMCID: PMC11949036 DOI: 10.1172/jci.insight.189150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Lymphopenia and failure of lymphocytes to mount an early IFN-γ response correlate with increased mortality in COVID-19. Given the essential role of CD4 helper and CD8 cytotoxic cells in eliminating viral pathogens, this profound loss in lymphocytes may impair patients' ability to eliminate the virus. IL-7 is a pleiotropic cytokine that is obligatory for lymphocyte survival and optimal function. METHODS We conducted a prospective, double-blind, randomized, placebo-controlled trial of CYT107, recombinant human IL-7, in 109 critically ill, patients with lymphopenia who have COVID-19. The primary endpoint was to assess CYT107's effect on lymphocyte recovery with secondary clinical endpoints including safety, ICU and hospital length-of-stay, incidence of secondary infections, and mortality. RESULTS CYT107 was well tolerated without precipitating a cytokine storm or worsening pulmonary function. Absolute lymphocyte counts increased in both groups without a significant difference between CYT107 and placebo. Patients with COVID-19 receiving CYT107 but not concomitant antiviral medications, known inducers of lymphopenia, had a final lymphocyte count that was 43% greater than placebo (P = 0.067). There were significantly fewer treatment-emergent adverse events in CYT107 versus placebo-treated patients (P < 0.001), consistent with a beneficial drug effect. Importantly, CYT107-treated patients had 44% fewer hospital-acquired infections versus placebo-treated patients (P = 0.014). CONCLUSION Given that hospital-acquired infections are responsible for a large percentage of COVID-19 deaths, this effect of CYT107 to decrease nosocomial infections could substantially reduce late morbidity and mortality in this highly lethal disease. The strong safety profile of CYT107 and its excellent tolerability provide support for trials of CYT107 in other potential pandemic respiratory viral infections. TRIAL REGISTRATION NCT04379076, NCT04426201, NCT04442178, NCT04407689, NCT04927169. FUNDING Funding for the trial was provided by RevImmune and the Cancer Research Institute.
Collapse
Affiliation(s)
- Manu Shankar-Hari
- Department of Translational Critical Care Medicine, Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Scotland, United Kingdom
| | - Bruno Francois
- Medical-Surgical ICU & Inserm CIC 1435 Centre Hospitalier Universitaire, Limoges, France
| | - Kenneth E. Remy
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Cristina Gutierrez
- Department of Critical Care Medicine, MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen Pastores
- Department of Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Thomas Daix
- Medical-Surgical ICU & Inserm CIC 1435 Centre Hospitalier Universitaire, Limoges, France
| | - Robin Jeannet
- Medical-Surgical ICU & Inserm CIC 1435 Centre Hospitalier Universitaire, Limoges, France
| | - Jane Blood
- Department of Anesthesiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Andrew H. Walton
- Department of Anesthesiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Reinaldo Salomao
- Department of Medicine, Universidade Federal de Sao Paulo (Unifesp), Sao Paulo, Brazil
| | - Georg Auzinger
- Department of Intensive Care Medicine, King’s College Hospital, London, United Kingdom
| | - David Striker
- Department of Critical Care Medicine, Missouri Baptist Medical Center, St. Louis, Missouri, USA
| | - Robert S. Martin
- Department of Critical Care Medicine, Missouri Baptist Medical Center, St. Louis, Missouri, USA
| | - Nitin J. Anand
- Department of Critical Care Medicine, Missouri Baptist Medical Center, St. Louis, Missouri, USA
| | - James Bosanquet
- Department of Critical Care Medicine, Missouri Baptist Medical Center, St. Louis, Missouri, USA
| | - Teresa Blood
- Department of Anesthesiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Scott Brakenridge
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Lyle L. Moldawer
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Vidula Vachharajani
- Department of Critical Care Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cassian Yee
- Department of Critical Care Medicine, MD Anderson Cancer Center, Houston, Texas, USA
| | - Felipe Dal-Pizzol
- Department of Medicine, Hospital Sao Jose, Criciuma, Santa Catarina, Brazil
| | | | | | | | - Richard Hotchkiss
- Department of Anesthesiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Abdolmohammadi-Vahid S, Baradaran B, Adcock IM, Mortaz E. Immune checkpoint inhibitors and SARS-CoV2 infection. Int Immunopharmacol 2024; 137:112419. [PMID: 38865755 DOI: 10.1016/j.intimp.2024.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) triggers coronavirus disease 2019 (COVID-19), which predominantly targets the respiratory tract. SARS-CoV-2 infection, especially severe COVID-19, is associated with dysregulated immune responses against the virus, including exaggerated inflammatory responses known as the cytokine storm, together with lymphocyte and NK cell dysfunction known as immune cell exhaustion. Overexpression of negative immune checkpoints such as PD-1 and CTLA-4 plays a considerable role in the dysfunction of immune cells upon SARS-CoV-2 infection. Blockade of these checkpoints has been suggested to improve the clinical outcome of COVID-19 patients by promoting potent immune responses against the virus. In the current review, we provide an overview of the potential of checkpoint inhibitors to induce potent immune responses against SARS-CoV-2 and improving the clinical outcome of severe COVID-19 patients.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ian M Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA; Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Guo J, Wang L. The complex landscape of immune dysregulation in multisystem inflammatory syndrome in children with COVID-19. LIFE MEDICINE 2024; 3:lnae034. [PMID: 39872865 PMCID: PMC11749780 DOI: 10.1093/lifemedi/lnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/12/2024] [Indexed: 01/30/2025]
Abstract
The immune responses following SARS-CoV-2 infection in children are still under investigation. While coronavirus disease 2019 (COVID-19) is usually mild in the paediatric population, some children develop severe clinical manifestations or multisystem inflammatory syndrome in children (MIS-C) after infection. MIS-C, typically emerging 2-6 weeks after SARS-CoV-2 exposure, is characterized by a hyperinflammatory response affecting multiple organs. This review aims to explore the complex landscape of immune dysregulation in MIS-C, focusing on innate, T cell-, and B cell-mediated immunity, and discusses the role of SARS-CoV-2 spike protein as a superantigen in MIS-C pathophysiology. Understanding these mechanisms is crucial for improving the management and outcomes for affected children.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311100, China
| |
Collapse
|
4
|
Dong J, Ismail N, Fitts E, Walker DH. Molecular testing in emerging infectious diseases. DIAGNOSTIC MOLECULAR PATHOLOGY 2024:175-198. [DOI: 10.1016/b978-0-12-822824-1.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Lopez-Gomez A, Pelaez-Prestel HF, Juarez I. Approaches to evaluate the specific immune responses to SARS-CoV-2. Vaccine 2023; 41:6434-6443. [PMID: 37770298 DOI: 10.1016/j.vaccine.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
The SARS-CoV-2 pandemic has a huge impact on public health and global economy, meaning an enormous scientific, political, and social challenge. Studying how infection or vaccination triggers both cellular and humoral responses is essential to know the grade and length of protection generated in the population. Nowadays, scientists and authorities around the world are increasingly concerned about the arrival of new variants, which have a greater spread, due to the high mutation rate of this virus. The aim of this review is to summarize the different techniques available for the study of the immune responses after exposure or vaccination against SARS-CoV-2, showing their advantages and limitations, and proposing suitable combinations of different techniques to achieve extensive information in these studies. We wish that the information provided here will helps other scientists in their studies of the immune response against SARS-CoV-2 after vaccination with new vaccine candidates or infection with upcoming variants.
Collapse
Affiliation(s)
- Ana Lopez-Gomez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Hector F Pelaez-Prestel
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| | - Ignacio Juarez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Jahankhani K, Ahangari F, Adcock IM, Mortaz E. Possible cancer-causing capacity of COVID-19: Is SARS-CoV-2 an oncogenic agent? Biochimie 2023; 213:130-138. [PMID: 37230238 PMCID: PMC10202899 DOI: 10.1016/j.biochi.2023.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown diverse life-threatening effects, most of which are considered short-term. In addition to its short-term effects, which has claimed many millions of lives since 2019, the long-term complications of this virus are still under investigation. Similar to many oncogenic viruses, it has been hypothesized that SARS-CoV-2 employs various strategies to cause cancer in different organs. These include leveraging the renin angiotensin system, altering tumor suppressing pathways by means of its nonstructural proteins, and triggering inflammatory cascades by enhancing cytokine production in the form of a "cytokine storm" paving the way for the emergence of cancer stem cells in target organs. Since infection with SARS-CoV-2 occurs in several organs either directly or indirectly, it is expected that cancer stem cells may develop in multiple organs. Thus, we have reviewed the impact of coronavirus disease 2019 (COVID-19) on the vulnerability and susceptibility of specific organs to cancer development. It is important to note that the cancer-related effects of SARS-CoV-2 proposed in this article are based on the ability of the virus and its proteins to cause cancer but that the long-term consequences of this infection will only be illustrated in the long run.
Collapse
Affiliation(s)
- Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahangari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Immune Health Program at Hunter Medical Research Institute and the College of Health and Medicine at the University of Newcastle, Australia
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zhang X, Ahn S, Qiu P, Datta S. Identification of shared biological features in four different lung cell lines infected with SARS-CoV-2 virus through RNA-seq analysis. Front Genet 2023; 14:1235927. [PMID: 37662846 PMCID: PMC10468990 DOI: 10.3389/fgene.2023.1235927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has resulted in millions of confirmed cases and deaths worldwide. Understanding the biological mechanisms of SARS-CoV-2 infection is crucial for the development of effective therapies. This study conducts differential expression (DE) analysis, pathway analysis, and differential network (DN) analysis on RNA-seq data of four lung cell lines, NHBE, A549, A549.ACE2, and Calu3, to identify their common and unique biological features in response to SARS-CoV-2 infection. DE analysis shows that cell line A549.ACE2 has the highest number of DE genes, while cell line NHBE has the lowest. Among the DE genes identified for the four cell lines, 12 genes are overlapped, associated with various health conditions. The most significant signaling pathways varied among the four cell lines. Only one pathway, "cytokine-cytokine receptor interaction", is found to be significant among all four cell lines and is related to inflammation and immune response. The DN analysis reveals considerable variation in the differential connectivity of the most significant pathway shared among the four lung cell lines. These findings help to elucidate the mechanisms of SARS-CoV-2 infection and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Seungjun Ahn
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peihua Qiu
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Somnath Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Fakharian F, Thirugnanam S, Welsh DA, Kim WK, Rappaport J, Bittinger K, Rout N. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023; 11:1849. [PMID: 37513022 PMCID: PMC10384393 DOI: 10.3390/microorganisms11071849] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome plays a critical role in maintaining overall health and immune function. However, dysbiosis, an imbalance in microbiome composition, can have profound effects on various aspects of human health, including susceptibility to viral infections. Despite numerous studies investigating the influence of viral infections on gut microbiome, the impact of gut dysbiosis on viral infection and pathogenesis remains relatively understudied. The clinical variability observed in SARS-CoV-2 and seasonal influenza infections, and the presence of natural HIV suppressors, suggests that host-intrinsic factors, including the gut microbiome, may contribute to viral pathogenesis. The gut microbiome has been shown to influence the host immune system by regulating intestinal homeostasis through interactions with immune cells. This review aims to enhance our understanding of how viral infections perturb the gut microbiome and mucosal immune cells, affecting host susceptibility and response to viral infections. Specifically, we focus on exploring the interactions between gamma delta (γδ) T cells and gut microbes in the context of inflammatory viral pathogenesis and examine studies highlighting the role of the gut microbiome in viral disease outcomes. Furthermore, we discuss emerging evidence and potential future directions for microbiome modulation therapy in the context of viral pathogenesis.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Siva Thirugnanam
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David A. Welsh
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70806, USA
| | - Woong-Ki Kim
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Namita Rout
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Cheng A, Ren H, Ma Z, Alam N, Jia L, Liu E. Trends and characteristics of COVID-19 and cardiovascular disease related studies. Front Pharmacol 2023; 14:1105459. [PMID: 37180704 PMCID: PMC10166808 DOI: 10.3389/fphar.2023.1105459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction: The new coronavirus has caused a pandemic that has infected hundreds of millions of people around the world since its outbreak. But the cardiovascular damage caused by the new coronavirus is unknown. We have analyzed the current global scenario and the general pattern of growth. After summarizing the known relationship between cardiovascular diseases and new coronary pneumonia, relevant articles are analyzed through bibliometrics and visualization. Methods: Following our pre-designed search strategy, we selected publications on COVID-19 and cardiovascular disease in the Web of Science database. In our relevant bibliometric visualization analysis, a total of 7,028 related articles in the WOS core database up to 20th October 2022 were summarized, and the most prolific authors, the most prolific countries, and the journals and institutions that published the most articles were summarized and quantitatively analyzed. Results: SARS-CoV-2 is more infectious than SARS-CoV-1 and has significant involvement in the cardiovascular system in addition to pulmonary manifestations, with a difference of 10.16% (20.26%/10.10%) in the incidence of cardiovascular diseases. The number of cases increases in winter and decreases slightly in summer with temperature changes, but the increase in cases tends to break out of seasonality across the region as mutant strains emerge. The co-occurrence analysis found that with the progress of the epidemic, the research keywords gradually shifted from ACE2 and inflammation to the treatment of myocarditis and complications, indicating that the research on the new crown epidemic has entered the stage of prevention and treatment of complications. Conclusion: When combined with the current global pandemic trend, how to improve prognosis and reduce human body damage could become a research focus. At the same time, timely detection, prevention, and discovery of new mutant strains have also become key tasks in the fight against the epidemic, and full preparations have been made to prevent the spread of the next wave of mutant strains, and still need to continue to pay attention to the differential performance of the variant "omicron."
Collapse
Affiliation(s)
| | | | | | | | - Linying Jia
- Laboratory Animal Centre, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | | |
Collapse
|
10
|
Piqué B, Peña K, Riu F, Acosta JC, Torres-Royo L, Malave B, Araguas P, Benavides R, de Febrer G, Camps J, Joven J, Arenas M, Parada D. SARS-CoV-2 Serum Viral Load and Prognostic Markers Proposal for COVID-19 Pneumonia in Low-Dose Radiation Therapy Treated Patients. J Clin Med 2023; 12:jcm12030798. [PMID: 36769445 PMCID: PMC9918037 DOI: 10.3390/jcm12030798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Several studies have shown that the plasma RNA of SARS-CoV-2 seems to be associated with a worse prognosis of COVID-19. In the present study, we investigated plasma RNA in COVID-19 patients treated with low-dose radiotherapy to determine its prognostic value. Data were collected from the IPACOVID prospective clinical trial (NCT04380818). The study included 46 patients with COVID-19 pneumonia treated with a whole-lung dose of 0.5 Gy. Clinical follow-up, as well as laboratory variables, and SARS-CoV-2 serum viral load, were analyzed before LDRT, at 24 h, and one week after treatment. The mean age of the patients was 85 years, and none received any of the SARS-CoV-2 vaccine doses. The mortality ratio during the course of treatment was 33%. RT-qPCR showed amplification in 23 patients. Higher mortality rate was associated with detectable viremia. Additionally, C-reactive protein, lactate dehydrogenase, and aspartate aminotransferase were significant risk factors associated with COVID-19 mortality. Our present findings show that detectable SARS-CoV-2 plasma viremia 24 h before LDRT is significantly associated with increased mortality rates post-treatment, thus downsizing the treatment success.
Collapse
Affiliation(s)
- Berta Piqué
- Molecular Pathology Unit, Department of Pathology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Karla Peña
- Molecular Pathology Unit, Department of Pathology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Francesc Riu
- Molecular Pathology Unit, Department of Pathology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Johana C. Acosta
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Laura Torres-Royo
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Barbara Malave
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Pablo Araguas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Rocío Benavides
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Gabriel de Febrer
- Department of Geriatric and Palliative Care, Hospital Universitari Sant Joan de Reus, 43204 Tarragona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Meritxell Arenas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
- Correspondence: (M.A.); (D.P.)
| | - David Parada
- Molecular Pathology Unit, Department of Pathology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
- Correspondence: (M.A.); (D.P.)
| |
Collapse
|
11
|
Alkafaas SS, Abdallah AM, Ghosh S, Loutfy SA, Elkafas SS, Abdel Fattah NF, Hessien M. Insight into the role of clathrin-mediated endocytosis inhibitors in SARS-CoV-2 infection. Rev Med Virol 2023; 33:e2403. [PMID: 36345157 PMCID: PMC9877911 DOI: 10.1002/rmv.2403] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022]
Abstract
Emergence of SARS-CoV-2 variants warrants sustainable efforts to upgrade both the diagnostic and therapeutic protocols. Understanding the details of cellular and molecular basis of the virus-host cell interaction is essential for developing variant-independent therapeutic options. The internalization of SARS-CoV-2, into lung epithelial cells, is mediated by endocytosis, especially clathrin-mediated endocytosis (CME). Although vaccination is the gold standard strategy against viral infection, selective inhibition of endocytic proteins, complexes, and associated adaptor proteins may present a variant-independent therapeutic strategy. Although clathrin and/or dynamins are the most important proteins involved in CME, other endocytic mechanisms are clathrin and/or dynamin independent and rely on other proteins. Moreover, endocytosis implicates some subcellular structures, like plasma membrane, actin and lysosomes. Also, physiological conditions, such as pH and ion concentrations, represent an additional factor that mediates these events. Accordingly, endocytosis related proteins are potential targets for small molecules that inhibit endocytosis-mediated viral entry. This review summarizes the potential of using small molecules, targeting key proteins, participating in clathrin-dependent and -independent endocytosis, as variant-independent antiviral drugs against SARS-CoV-2 infection. The review takes two approaches. The first outlines the potential role of endocytic inhibitors in preventing endocytosis-mediated viral entry and its mechanism of action, whereas in the second computational analysis was implemented to investigate the selectivity of common inhibitors against endocytic proteins in SARS-CoV-2 endocytosis. The analysis revealed that remdesivir, methyl-β-cyclodextrin, rottlerin, and Bis-T can effectively inhibit clathrin, HMG-CoA reductase, actin, and dynamin I GTPase and are more potent in inhibiting SARS-CoV-2 than chloroquine. CME inhibitors for SARS-CoV-2 infection remain understudied.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology UniteDivision of BiochemistryDepartment of ChemistryFaculty of ScienceTanta UniversityTantaEgypt
| | - Abanoub Mosaad Abdallah
- Narcotic Research DepartmentNational Center for Social and Criminological Research (NCSCR)GizaEgypt
| | - Soumya Ghosh
- Department of GeneticsFaculty of Natural and Agricultural SciencesUniversity of the Free StateBloemfonteinSouth Africa
| | - Samah A. Loutfy
- Virology and Immunology UnitCancer Biology DepartmentNational Cancer Institute (NCI)Cairo UniversityCairoEgypt
- Nanotechnology Research CenterBritish UniversityCairoEgypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design DepartmentFaculty of EngineeringMenofia UniversityMenofiaEgypt
| | - Nasra F. Abdel Fattah
- Virology and Immunology UnitCancer Biology DepartmentNational Cancer Institute (NCI)Cairo UniversityCairoEgypt
| | - Mohamed Hessien
- Molecular Cell Biology UniteDivision of BiochemistryDepartment of ChemistryFaculty of ScienceTanta UniversityTantaEgypt
| |
Collapse
|
12
|
Chirinos JA, Lopez-Jaramillo P, Giamarellos-Bourboulis EJ, Dávila-Del-Carpio GH, Bizri AR, Andrade-Villanueva JF, Salman O, Cure-Cure C, Rosado-Santander NR, Cornejo Giraldo MP, González-Hernández LA, Moghnieh R, Angeliki R, Cruz Saldarriaga ME, Pariona M, Medina C, Dimitroulis I, Vlachopoulos C, Gutierrez C, Rodriguez-Mori JE, Gomez-Laiton E, Cotrina Pereyra R, Ravelo Hernández JL, Arbañil H, Accini-Mendoza J, Pérez-Mayorga M, Milionis C, Poulakou G, Sánchez G, Valdivia-Vega R, Villavicencio-Carranza M, Ayala-García RJ, Castro-Callirgos CA, Alfaro Carrasco RM, Garrido Lecca Danos W, Sharkoski T, Greene K, Pourmussa B, Greczylo C, Ortega-Legaspi J, Jacoby D, Chittams J, Katsaounou P, Alexiou Z, Sympardi S, Sweitzer NK, Putt M, Cohen JB. A randomized clinical trial of lipid metabolism modulation with fenofibrate for acute coronavirus disease 2019. Nat Metab 2022; 4:1847-1857. [PMID: 36344766 PMCID: PMC9640855 DOI: 10.1038/s42255-022-00698-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cytotoxicity may involve inhibition of peroxisome proliferator-activated receptor alpha. Fenofibrate activates peroxisome proliferator-activated receptor alpha and inhibits SARS-CoV-2 replication in vitro. Whether fenofibrate can be used to treat coronavirus disease 2019 (COVID-19) infection in humans remains unknown. Here, we randomly assigned inpatients and outpatients with COVID-19 within 14 d of symptom onset to 145 mg of oral fenofibrate nanocrystal formulation versus placebo for 10 d, in a double-blinded fashion. The primary endpoint was a severity score whereby participants were ranked across hierarchical tiers incorporating time to death, mechanical ventilation duration, oxygenation, hospitalization and symptom severity and duration. In total, 701 participants were randomized to fenofibrate (n = 351) or placebo (n = 350). The mean age of participants was 49 ± 16 years, 330 (47%) were female, mean body mass index was 28 ± 6 kg/m2 and 102 (15%) had diabetes. Death occurred in 41 participants. Compared with placebo, fenofibrate had no effect on the primary endpoint. The median (interquartile range) rank in the placebo arm was 347 (172, 453) versus 345 (175, 453) in the fenofibrate arm (P = 0.819). There was no difference in secondary and exploratory endpoints, including all-cause death, across arms. There were 61 (17%) adverse events in the placebo arm compared with 46 (13%) in the fenofibrate arm, with slightly higher incidence of gastrointestinal side effects in the fenofibrate group. Overall, among patients with COVID-19, fenofibrate has no significant effect on various clinically relevant outcomes ( NCT04517396 ).
Collapse
Affiliation(s)
- Julio A Chirinos
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Patricio Lopez-Jaramillo
- Instituto de Investigación MASIRA, Facultad de Ciencias de la Salud, Universidad de Santander, Bucaramanga, Colombia
| | - Evangelos J Giamarellos-Bourboulis
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School and Hellenic Institute for the Study of Sepsis, Athens, Greece
| | | | | | | | - Oday Salman
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School and Hellenic Institute for the Study of Sepsis, Athens, Greece
- Department of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | | | - Luz A González-Hernández
- Unidad de VIH, Hospital Civil de Guadalajara and Universidad de Guadalajara, Guadalajara, Mexico
| | - Rima Moghnieh
- Department of Medicine, Makassed General Hospital, Beirut, Lebanon
| | - Rapti Angeliki
- 6th Department of Pulmonary Medicine, SOTIRIA Athens General Hospital of Chest Disease, Athens, Greece
| | - María E Cruz Saldarriaga
- Centro de Investigación de Enfermedades Infecciosas y Tropicales, Hospital Nacional Adolfo Guevara Velasco, Cuzco, Peru
| | - Marcos Pariona
- Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | - Carola Medina
- Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | - Ioannis Dimitroulis
- 6th Department of Pulmonary Medicine, SOTIRIA Athens General Hospital of Chest Disease, Athens, Greece
| | - Charalambos Vlachopoulos
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School,, Athens, Greece
| | | | - Juan E Rodriguez-Mori
- Department of Nephrology, Hospital Nacional Alberto Sabogal Sologuren, EsSalud, Lima, Peru
| | | | | | | | | | | | | | - Charalampos Milionis
- Department of Internal Medicine, Ioannina University General Hospital, Ioannina, Greece
| | - Garyfallia Poulakou
- 3rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | | | | | | | | | | | | | - Tiffany Sharkoski
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School and Hellenic Institute for the Study of Sepsis, Athens, Greece
| | - Katherine Greene
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School and Hellenic Institute for the Study of Sepsis, Athens, Greece
| | - Bianca Pourmussa
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School and Hellenic Institute for the Study of Sepsis, Athens, Greece
| | - Candy Greczylo
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School and Hellenic Institute for the Study of Sepsis, Athens, Greece
| | - Juan Ortega-Legaspi
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School and Hellenic Institute for the Study of Sepsis, Athens, Greece
| | - Douglas Jacoby
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School and Hellenic Institute for the Study of Sepsis, Athens, Greece
| | - Jesse Chittams
- Biostatistics Analysis Core, Office of Nursing Research, University of Pennsylvania School of Nursing, Philadelphia, PA, USA
| | - Paraskevi Katsaounou
- Section of Pneumonology and Respiratory Failure, 1st Department of Critical Care Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Zoi Alexiou
- 2nd Department of Internal Medicine, THRIASIO Eleusis General Hospital, Eleusis, Greece
| | - Styliani Sympardi
- 1st Department of Internal Medicine, THRIASIO Eleusis General Hospital, Eleusis, Greece
| | - Nancy K Sweitzer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Division of Cardiology, University of Arizona, Tucson, AZ, USA
| | - Mary Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jordana B Cohen
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Paidas MJ, Cosio DS, Ali S, Kenyon NS, Jayakumar AR. Long-Term Sequelae of COVID-19 in Experimental Mice. Mol Neurobiol 2022; 59:5970-5986. [PMID: 35831558 PMCID: PMC9281331 DOI: 10.1007/s12035-022-02932-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
Abstract
We recently reported acute COVID-19 symptoms, clinical status, weight loss, multi-organ pathological changes, and animal death in a murine hepatitis virus-1 (MHV-1) coronavirus mouse model of COVID-19, which were similar to that observed in humans with COVID-19. We further examined long-term (12 months post-infection) sequelae of COVID-19 in these mice. Congested blood vessels, perivascular cavitation, pericellular halos, vacuolation of neuropils, pyknotic nuclei, acute eosinophilic necrosis, necrotic neurons with fragmented nuclei, and vacuolation were observed in the brain cortex 12 months post-MHV-1 infection. These changes were associated with increased reactive astrocytes and microglia, hyperphosphorylated TDP-43 and tau, and a decrease in synaptic protein synaptophysin-1, suggesting the possible long-term impact of SARS-CoV-2 infection on defective neuronal integrity. The lungs showed severe inflammation, bronchiolar airway wall thickening due to fibrotic remodeling, bronchioles with increased numbers of goblet cells in the epithelial lining, and bronchiole walls with increased numbers of inflammatory cells. Hearts showed severe interstitial edema, vascular congestion and dilation, nucleated red blood cells (RBCs), RBCs infiltrating between degenerative myocardial fibers, inflammatory cells and apoptotic bodies and acute myocyte necrosis, hypertrophy, and fibrosis. Long-term changes in the liver and kidney were less severe than those observed in the acute phase. Noteworthy, the treatment of infected mice with a small molecule synthetic peptide which prevents the binding of spike protein to its respective receptors significantly attenuated disease progression, as well as the pathological changes observed post-long-term infection. Collectively, these findings suggest that COVID-19 may result in long-term, irreversible changes predominantly in the brain, lung, and heart.
Collapse
Affiliation(s)
- Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street, Suite # 1154, Miami, FL 33136 USA
| | - Daniela S. Cosio
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street, Suite # 1154, Miami, FL 33136 USA
| | - Saad Ali
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Norma Sue Kenyon
- Microbiology & Immunology and Biomedical Engineering, Diabetes Research Institute, University of Miami, Miami, FL USA
| | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street, Suite # 1154, Miami, FL 33136 USA
| |
Collapse
|
14
|
Malagón-Rojas J, Mercado-Reyes M, Toloza-Pérez YG, Galindo M, Palma RM, Catama J, Bedoya JF, Parra-Barrera EL, Meneses X, Barbosa J, Tavera-Rodríguez P, Bermúdez-Forero A, Ospina-Martínez ML. Comparison of Anti-SARS-CoV-2 IgG Antibody Responses Generated by the Administration of Ad26.COV2.S, AZD1222, BNT162b2, or CoronaVac: Longitudinal Prospective Cohort Study in the Colombian Population, 2021/2022. Vaccines (Basel) 2022; 10:vaccines10101609. [PMID: 36298474 PMCID: PMC9608587 DOI: 10.3390/vaccines10101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
To mitigate the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccines have been rapidly developed and introduced in many countries. In Colombia, the population was vaccinated with four vaccines. Therefore, this research aimed to determine the ability of the vaccines introduced in the National Vaccination Plan to prevent SARS-CoV-2 infection and induce seroconversion and sought to investigate the longevity of antibodies in the blood. We conducted a prospective, nonprobabilistic, consecutive cross-sectional cohort study in a population with access to vaccination with CoronaVac, Ad26.COV2.S, AZD1222, and BNT162b2 from March 2021 to March 2022. The study included 1327 vaccinated people. A plurality of participants were vaccinated with BNT162b2 (36.1%; n = 480), followed by Ad26.COV2.S (26.9%; n = 358), CoronaVac (24%; n = 331), and AZD1222 (11.9%; n = 158). The crude seroprevalence on day zero varied between 18.1% and 57.8%. Participants who received BNT162b2 had a lower risk of SARS-CoV-2 infection than those who received the other vaccines. Participants who were immunized with BNT162b2 and AZD1222 had a higher probability of losing reactivity on day 210 after receiving the vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Ruth M. Palma
- Instituto Nacional de Salud, Bogotá 111321, Colombia or
| | - Jenssy Catama
- Instituto Nacional de Salud, Bogotá 111321, Colombia or
| | | | | | | | | | | | | | - Martha Lucía Ospina-Martínez
- Instituto Nacional de Salud, Bogotá 111321, Colombia or
- PhD (C) Modelado en Política y Gestión Pública, Universidad Jorge Tadeo Lozano, Bogotá 111711, Colombia
| |
Collapse
|
15
|
Chirinos J, Lopez-Jaramillo P, Giamarellos-Bourboulis E, Dávila-Del-Carpio G, Bizri A, Andrade-Villanueva J, Salman O, Cure-Cure C, Rosado-Santander N, Giraldo MC, González-Hernández L, Moghnieh R, Angeliki R, Saldarriaga MC, Pariona M, Medina C, Dimitroulis I, Vlachopoulos C, Gutierrez C, Rodriguez-Mori J, Gomez-Laiton E, Pereyra R, Hernández JR, Arbañil H, Accini-Mendoza J, Pérez-Mayorga M, Milionis H, Poulakou G, Sánchez G, Valdivia-Vega R, Villavicencio-Carranza M, Ayala-Garcia R, Castro-Callirgos C, Carrasco RA, Danos WL, Sharkoski T, Greene K, Pourmussa B, Greczylo C, Chittams J, Katsaounou P, Alexiou Z, Sympardi S, Sweitzer N, Putt M, Cohen J. A Randomized Trial of Lipid Metabolism Modulation with Fenofibrate for Acute Coronavirus Disease 2019. RESEARCH SQUARE 2022:rs.3.rs-1933913. [PMID: 35982675 PMCID: PMC9387540 DOI: 10.21203/rs.3.rs-1933913/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Background Abnormal cellular lipid metabolism appears to underlie SARS-CoV-2 cytotoxicity and may involve inhibition of peroxisome proliferator activated receptor alpha (PPARα). Fenofibrate, a PPAR-α activator, modulates cellular lipid metabolism. Fenofibric acid has also been shown to affect the dimerization of angiotensin-converting enzyme 2, the cellular receptor for SARS-CoV-2. Fenofibrate and fenofibric acid have been shown to inhibit SARS-CoV-2 replication in cell culture systems in vitro . Methods We randomly assigned 701 participants with COVID-19 within 14 days of symptom onset to 145 mg of fenofibrate (nanocrystal formulation with dose adjustment for renal function or dose-equivalent preparations of micronized fenofibrate or fenofibric acid) vs. placebo for 10 days, in a double-blinded fashion. The primary endpoint was a ranked severity score in which participants were ranked across hierarchical tiers incorporating time to death, duration of mechanical ventilation, oxygenation parameters, subsequent hospitalizations and symptom severity and duration. ClinicalTrials.gov registration: NCT04517396. Findings: Mean age of participants was 49 ± 16 years, 330 (47%) were female, mean BMI was 28 ± 6 kg/m 2 , and 102 (15%) had diabetes mellitus. A total of 41 deaths occurred. Compared with placebo, fenofibrate administration had no effect on the primary endpoint. The median (interquartile range [IQR]) rank in the placebo arm was 347 (172, 453) vs. 345 (175, 453) in the fenofibrate arm (P = 0.819). There was no difference in various secondary and exploratory endpoints, including all-cause death, across randomization arms. These results were highly consistent across pre-specified sensitivity and subgroup analyses. Conclusion Among patients with COVID-19, fenofibrate has no significant effect on various clinically relevant outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Oday Salman
- Hospital of the University of Pennsylvania and Perelman School of Medicine, American University of Beirut
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tiffany Sharkoski
- Hospital of the University of Pennsylvania and Perelman School of Medicine
| | - Katherine Greene
- Hospital of the University of Pennsylvania and Perelman School of Medicine
| | - Bianca Pourmussa
- Hospital of the University of Pennsylvania and Perelman School of Medicine
| | - Candy Greczylo
- Hospital of the University of Pennsylvania and Perelman School of Medicine
| | | | | | | | | | | | - Mary Putt
- Perelman School of Medicine. University of Pennsylvania
| | | |
Collapse
|
16
|
Jain M, Anand A, Shah A. Exploring the Potential Role of Theaflavin-3,3′-Digallate in Inhibiting Various Stages of SARS-CoV-2 Life Cycle: An In-Silico Approach. CHEMISTRY AFRICA 2022. [PMCID: PMC9219385 DOI: 10.1007/s42250-022-00376-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction Theaflavins belong to the class of polyphenols that are predominantly found in black tea. The major derivatives of theaflavins found in black tea are theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3′-gallate (TF2B), and theaflavin-3,3′-digallate (TF3). Theaflavin-3,3′-digallate (TF3) is a natural compound present in black tea and known to possess antiviral activity. This study had attempted to explore the potential role of TF3 in inhibiting various stages of the SARS-CoV-2 life cycle. Methods Molecular docking studies of TF3 along with positive controls was performed on eight different targets of SARS-CoV-2 followed by binding free energy (MM-GBSA) calculations. The docked complexes with favourable docking and binding free energy results were subjected to molecular dynamics (MD) simulation studies to assess the stability of the dock complex. Finally, TF3 and all the positive controls were taken for ADMET analysis. Results The docking and binding free energy results of TF3 was compared against the positive controls. TF3 showed the highest binding energy against all the targets and formed more stable interactions for a longer duration on MD simulations with CLpro, RdRp, helicase and spike protein. Also, the promising in-silico ADMET profile further warrants the exploration of this compound through in-vitro and in-vivo methods. Conclusion Through this study, we tried to evaluate the role of theaflavin-3,3’-digallate on multiple targets of SARS-CoV-2, and the positive in-silico results which were obtained on various pharmacodynamic and pharmacokinetic parameters, give a ray of hope as a potential therapeutic drug to this rapidly spreading disease. The search for a curative therapy for SARS-CoV-2 is still ongoing. The favourable preliminary results of TF3 through in-silico analysis offers a ray of hope in ending this devasting pandemic. Supplementary Information The online version contains supplementary material available at 10.1007/s42250-022-00376-7.
Collapse
Affiliation(s)
- Manav Jain
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab India
| | - Aishwarya Anand
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab India
| | - Ashish Shah
- Department of Pharmacy, Sumandeep Vidyapeeth, Vadodara, Gujarat India
| |
Collapse
|
17
|
Mushtaq A, Iqbal MZ, Kong X. Antiviral effects of coinage metal-based nanomaterials to combat COVID-19 and its variants. J Mater Chem B 2022; 10:5323-5343. [PMID: 35775993 DOI: 10.1039/d2tb00849a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The world has been suffering from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, and millions of people have been infected through human-to-human transmission and lost their lives within months. Although multidisciplinary scientific approaches have been employed to fight against this deadly pandemic, various mutations and diverse environments keep producing constraints in treating SARS-CoV-2. Indeed, the efficacy of the developed vaccines has been limited, and inoculation with the vaccines does not guarantee complete protection even though multiple doses are required, which is a frustrating process. Historically, coinage metals (Cu, Ag, and Au) have been well-known for their effectiveness in antiviral action as well as good biocompatibility, binding receptor inhibition, reactive oxygen species, and phototherapy properties. Thus, this review highlights the diagnostic and therapeutic mechanisms of SARS-CoV-2 using the antivirus ability and mode of action of coinage metals such as viral entry mechanisms into host cells and the NP-inhibition process, which are explained in detail. This article also draws attention to coinage metal nanomaterial-based approaches to treat other contagious viruses. In addition, coinage metal-based biosensors and an overview of some other biocompatible metal-based nanomaterials to fight against SARS-CoV-2 variants are discussed. Finally, the advantages, perspectives and challenges of coinage metal nanoparticles are given to fight against viral infections in the future.
Collapse
Affiliation(s)
- Asim Mushtaq
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| |
Collapse
|
18
|
Anti-Inflammatory Mechanisms of Total Flavonoids from Mosla scabra against Influenza A Virus-Induced Pneumonia by Integrating Network Pharmacology and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2154485. [PMID: 35722153 PMCID: PMC9200497 DOI: 10.1155/2022/2154485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022]
Abstract
Influenza virus is one of the most common infectious pathogens that could cause high morbidity and mortality in humans. However, the occurrence of drug resistance and serious complications extremely complicated the clinic therapy. Mosla scabra is a natural medicinal plant used for treating various lung and gastrointestinal diseases, including viral infection, cough, chronic obstructive pulmonary disease, acute gastroenteritis, and diarrhoea. But the therapeutic effects of this herbal medicine had not been expounded clearly. In this study, a network pharmacology approach was employed to investigate the protective mechanism of total flavonoids from M. scabra (MSTF) against influenza A virus- (IAV-) induced acute lung damage and inflammation. The active compounds of MSTF were analyzed by LC-MS/MS and then evaluated according to their oral bioavailability and drug-likeness index. The potential targets of each active compound in MSTF were identified by using PharmMapper Server, whereas the potential genes involved in IAV infection were obtained from GeneGards. The results showed that luteoloside, apigenin, kaempherol, luteolin, mosloflavone I, and mosloflavone II were the main bioactive compounds found in MSTF. Primarily, 23 genes were identified as the targets of those five active compounds, which contributed to the inactivation of chemical carcinogenesis ROS, lipid and atherosclerosis, MAPK signaling pathway, pathways in cancer, PI3K-AKT signaling pathway, proteoglycans in cancer, and viral carcinogenesis. Finally, the animal experiments validated that MSTF improved IAV-induced acute lung inflammation via inhibiting MAPK, PI3K-AKT, and oxidant stress pathways. Therefore, our study demonstrated the potential inhibition of MSTF on viral pneumonia in mice and provided a strategy to characterize the molecular mechanism of traditional Chinese medicine by a combinative method using network pharmacology and experimental validation.
Collapse
|
19
|
Histopathological and molecular links of COVID-19 with novel clinical manifestations for the management of coronavirus-like complications. Inflammopharmacology 2022; 30:1219-1257. [PMID: 35637319 PMCID: PMC9150634 DOI: 10.1007/s10787-022-00999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) causes transmissible viral illness of the respiratory tract prompted by the SARS-CoV-2 virus. COVID-19 is one of the worst global pandemics affecting a large population worldwide and causing catastrophic loss of life. Patients having pre-existing chronic disorders are more susceptible to contracting this viral infection. This pandemic virus is known to cause notable respiratory pathology. Besides, it can also cause extra-pulmonary manifestations. Multiple extra-pulmonary tissues express the SARS-CoV-2 entry receptor, hence causing direct viral tissue damage. This insightful review gives a brief description of the impact of coronavirus on the pulmonary system, extra-pulmonary systems, histopathology, multiorgan consequences, the possible mechanisms associated with the disease, and various potential therapeutic approaches to tackle the manifestations.
Collapse
|
20
|
Abstract
The lung is the primary site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced immunopathology whereby the virus enters the host cells by binding to angiotensin-converting enzyme 2 (ACE2). Sophisticated regeneration and repair programs exist in the lungs to replenish injured cell populations. However, known resident stem/progenitor cells have been demonstrated to express ACE2, raising a substantial concern regarding the long-term consequences of impaired lung regeneration after SARS-CoV-2 infection. Moreover, clinical treatments may also affect lung repair from antiviral drug candidates to mechanical ventilation. In this review, we highlight how SARS-CoV-2 disrupts a program that governs lung homeostasis. We also summarize the current efforts of targeted therapy and supportive treatments for COVID-19 patients. In addition, we discuss the pros and cons of cell therapy with mesenchymal stem cells or resident lung epithelial stem/progenitor cells in preventing post-acute sequelae of COVID-19. We propose that, in addition to symptomatic treatments being developed and applied in the clinic, targeting lung regeneration is also essential to restore lung homeostasis in COVID-19 patients.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qingwen Ma
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Yue
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| |
Collapse
|
21
|
Ahmad R, Haque M. Surviving the Storm: Cytokine Biosignature in SARS-CoV-2 Severity Prediction. Vaccines (Basel) 2022; 10:vaccines10040614. [PMID: 35455363 PMCID: PMC9026643 DOI: 10.3390/vaccines10040614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The world has been stricken mentally, physically, and economically by the COVID-19 virus. However, while SARS-CoV-2 viral infection results in mild flu-like symptoms in most patients, a number of those infected develop severe illness. These patients require hospitalization and intensive care. The severe disease can spiral downwards with eventual severe damage to the lungs and failure of multiple organs, leading to the individual’s demise. It is necessary to identify those who are developing a severe form of illness to provide early management. Therefore, it is crucial to learn about the mechanisms and chemical mediators that lead to critical conditions in SARS-CoV-2 infection. This paper reviews studies regarding the individual chemical mediators, pathways, and means that contribute to worsening health conditions in SARS-CoV-2 infection. Abstract A significant part of the world population has been affected by the devastating SARS-CoV-2 infection. It has deleterious effects on mental and physical health and global economic conditions. Evidence suggests that the pathogenesis of SARS-CoV-2 infection may result in immunopathology such as neutrophilia, lymphopenia, decreased response of type I interferon, monocyte, and macrophage dysregulation. Even though most individuals infected with the SARS-CoV-2 virus suffer mild symptoms similar to flu, severe illness develops in some cases, including dysfunction of multiple organs. Excessive production of different inflammatory cytokines leads to a cytokine storm in COVID-19 infection. The large quantities of inflammatory cytokines trigger several inflammation pathways through tissue cell and immune cell receptors. Such mechanisms eventually lead to complications such as acute respiratory distress syndrome, intravascular coagulation, capillary leak syndrome, failure of multiple organs, and, in severe cases, death. Thus, to devise an effective management plan for SARS-CoV-2 infection, it is necessary to comprehend the start and pathways of signaling for the SARS-CoV-2 infection-induced cytokine storm. This article discusses the current findings of SARS-CoV-2 related to immunopathology, the different paths of signaling and other cytokines that result in a cytokine storm, and biomarkers that can act as early signs of warning for severe illness. A detailed understanding of the cytokine storm may aid in the development of effective means for controlling the disease’s immunopathology. In addition, noting the biomarkers and pathophysiology of severe SARS-CoV-2 infection as early warning signs can help prevent severe complications.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Plot No 4 Road 8/9, Sector-1, Dhaka 1230, Bangladesh;
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|
22
|
Alipoor SD, Mirsaeidi M. SARS-CoV-2 cell entry beyond the ACE2 receptor. Mol Biol Rep 2022; 49:10715-10727. [PMID: 35754059 PMCID: PMC9244107 DOI: 10.1007/s11033-022-07700-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) is known as the major viral entry site for SARS-CoV-2. However, viral tissue tropism and high rate of infectivity do not directly correspond with the level of ACE2 expression in the organs. It may suggest involvement of other receptors or accessory membrane proteins in SARSCoV-2 cell entry. METHODS AND RESULTS A systematic search was carried out in PubMed/Medline, EMBASE, and Cochrane Library for studies reporting SARS-CoV-2 cell entry. We used a group of the MeSH terms including "cell entry", "surface receptor", "ACE2", and "SARS-CoV-2". We reviewed all selected papers published in English up to end of February 2022. We found several receptors or auxiliary membrane proteins (including CD147, NRP-1, CD26, AGTR2, Band3, KREMEN1, ASGR1, ANP, TMEM30A, CLEC4G, and LDLRAD3) along with ACE2 that facilitate virus entry and transmission. Expression of Band3 protein on the surface of erythrocytes and evidence of binding with S protein of SARS-CoV-2 may explain asymptomatic hypoxemia during COVID19 infection. The variants of SARS-CoV-2 including the B.1.1.7 (Alpha), B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.617.2+ (Delta+), and B.1.1.529 (Omicron) may have different potency to bond with these receptors. CONCLUSIONS The high rate of infectivity of SARS-CoV-2 may be due to its ability to enter the host cell through a group of cell surface receptors. These receptors are potential targets to develop novel therapeutic agents for SARS-CoV-2.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- grid.419420.a0000 0000 8676 7464Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic, Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Mirsaeidi
- grid.15276.370000 0004 1936 8091Division of Pulmonary, Critical Care, and Sleep Disease, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL USA
| |
Collapse
|
23
|
Emadi-Baygi M, Ehsanifard M, Afrashtehpour N, Norouzi M, Joz-Abbasalian Z. Corona Virus Disease 2019 (COVID-19) as a System-Level Infectious Disease With Distinct Sex Disparities. Front Immunol 2021; 12:778913. [PMID: 34912345 PMCID: PMC8667725 DOI: 10.3389/fimmu.2021.778913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023] Open
Abstract
The current global pandemic of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) causing COVID-19, has infected millions of people and continues to pose a threat to many more. Angiotensin-Converting Enzyme 2 (ACE2) is an important player of the Renin-Angiotensin System (RAS) expressed on the surface of the lung, heart, kidney, neurons, and endothelial cells, which mediates SARS-CoV-2 entry into the host cells. The cytokine storms of COVID-19 arise from the large recruitment of immune cells because of the dis-synchronized hyperactive immune system, lead to many abnormalities including hyper-inflammation, endotheliopathy, and hypercoagulability that produce multi-organ dysfunction and increased the risk of arterial and venous thrombosis resulting in more severe illness and mortality. We discuss the aberrated interconnectedness and forthcoming crosstalks between immunity, the endothelium, and coagulation, as well as how sex disparities affect the severity and outcome of COVID-19 and harm men especially. Further, our conceptual framework may help to explain why persistent symptoms, such as reduced physical fitness and fatigue during long COVID, may be rooted in the clotting system.
Collapse
Affiliation(s)
- Modjtaba Emadi-Baygi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Mahsa Ehsanifard
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Najmeh Afrashtehpour
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Mahnaz Norouzi
- Department of Research and Development, Erythrogen Medical Genetics Lab, Isfahan, Iran
| | - Zahra Joz-Abbasalian
- Clinical Laboratory, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Lim J, Puan KJ, Wang LW, Teng KWW, Loh CY, Tan KP, Carissimo G, Chan YH, Poh CM, Lee CYP, Fong SW, Yeo NKW, Chee RSL, Amrun SN, Chang ZW, Tay MZ, Torres-Ruesta A, Leo Fernandez N, How W, Andiappan AK, Lee W, Duan K, Tan SY, Yan G, Kalimuddin S, Lye DC, Leo YS, Ong SWX, Young BE, Renia L, Ng LFP, Lee B, Rötzschke O. Data-Driven Analysis of COVID-19 Reveals Persistent Immune Abnormalities in Convalescent Severe Individuals. Front Immunol 2021; 12:710217. [PMID: 34867943 PMCID: PMC8640498 DOI: 10.3389/fimmu.2021.710217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/03/2021] [Indexed: 01/08/2023] Open
Abstract
Severe SARS-CoV-2 infection can trigger uncontrolled innate and adaptive immune responses, which are commonly associated with lymphopenia and increased neutrophil counts. However, whether the immune abnormalities observed in mild to severely infected patients persist into convalescence remains unclear. Herein, comparisons were drawn between the immune responses of COVID-19 infected and convalescent adults. Strikingly, survivors of severe COVID-19 had decreased proportions of NKT and Vδ2 T cells, and increased proportions of low-density neutrophils, IgA+/CD86+/CD123+ non-classical monocytes and hyperactivated HLADR+CD38+ CD8+ T cells, and elevated levels of pro-inflammatory cytokines such as hepatocyte growth factor and vascular endothelial growth factor A, long after virus clearance. Our study suggests potential immune correlates of "long COVID-19", and defines key cells and cytokines that delineate true and quasi-convalescent states.
Collapse
Affiliation(s)
- Jackwee Lim
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kia Joo Puan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Liang Wei Wang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Karen Wei Weng Teng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chiew Yee Loh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kim Peng Tan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Guillaume Carissimo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chek Meng Poh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Cheryl Yi-Pin Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Siew-Wai Fong
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Nicholas Kim-Wah Yeo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Rhonda Sin-Ling Chee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Siti Naqiah Amrun
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zi Wei Chang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Matthew Zirui Tay
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Anthony Torres-Ruesta
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Norman Leo Fernandez
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wilson How
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wendy Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Seow-Yen Tan
- Department of Infectious Diseases, Changi General Hospital, Singapore, Singapore
| | - Gabriel Yan
- Department of Medicine, National University Hospital, Singapore, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Sean W. X. Ong
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Barnaby E. Young
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Olaf Rötzschke
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
25
|
Ari Yuka S, Yilmaz A. Effect of SARS-CoV-2 infection on host competing endogenous RNA and miRNA network. PeerJ 2021; 9:e12370. [PMID: 34722003 PMCID: PMC8541317 DOI: 10.7717/peerj.12370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Competing endogenous RNAs (ceRNA) play a crucial role in cell functions. Computational methods that provide large-scale analysis of the interactions between miRNAs and their competitive targets can contribute to the understanding of ceRNA regulations and critical regulatory functions. Recent reports showed that viral RNAs can compete with host RNAs against host miRNAs. Regarding SARS-CoV-2 RNA, no comprehensive study had been reported about its competition with cellular ceRNAs. In this study, for the first time, we used the ceRNAnetsim package to assess ceRNA network effects per individual cell and competitive behavior of SARS-CoV-2 RNA in the infected cells using single-cell sequencing data. Our computations identified 195 genes and 29 miRNAs which vary in competitive behavior specifically in presence of SARS-CoV-2 RNA. We also investigated 18 genes that are affected by genes that lost perturbation ability in presence of SARS-CoV-2 RNA in the human miRNA:ceRNA network. These transcripts have associations with COVID-19-related symptoms as well as many dysfunctions such as metabolic diseases, carcinomas, heart failure. Our results showed that the effects of the SARS-CoV-2 genome on host ceRNA interactions and consequent dysfunctions can be explained by competition among various miRNA targets. Our perturbation ability perspective has the potential to reveal yet to be discovered SARS-CoV-2 induced effects invisible to conventional approaches.
Collapse
Affiliation(s)
- Selcen Ari Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Alper Yilmaz
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
26
|
Alipoor SD, Mortaz E, Varahram M, Garssen J, Adcock IM. The Immunopathogenesis of Neuroinvasive Lesions of SARS-CoV-2 Infection in COVID-19 Patients. Front Neurol 2021; 12:697079. [PMID: 34393976 PMCID: PMC8363128 DOI: 10.3389/fneur.2021.697079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
The new coronavirus disease COVID-19 was identified in December 2019. It subsequently spread across the world with over 125 M reported cases and 2.75 M deaths in 190 countries. COVID-19 causes severe respiratory distress; however, recent studies have reported neurological consequences of infection by the COVID-19 virus SARS-CoV-2 even in subjects with mild infection and no initial neurological effects. It is likely that the virus uses the olfactory nerve to reach the CNS and that this transport mechanism enables virus access to areas of the brain stem that regulates respiratory rhythm and may even trigger cell death by alteration of these neuronal nuclei. In addition, the long-term neuronal effects of COVID-19 suggest a role for SARS-CoV-2 in the development or progression of neurodegerative disease as a result of inflammation and/or hypercoagulation. In this review recent findings on the mechanism(s) by which SARS-CoV-2 accesses the CNS and induces neurological dysregulation are summarized.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London and the National Institute for Health Research Imperial Biomedical Research Centre, London, United Kingdom
- Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
27
|
Mortaz E, Bezemer G, Alipoor SD, Varahram M, Mumby S, Folkerts G, Garssen J, Adcock IM. Nutritional Impact and Its Potential Consequences on COVID-19 Severity. Front Nutr 2021; 8:698617. [PMID: 34291074 PMCID: PMC8287001 DOI: 10.3389/fnut.2021.698617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background: During late 2019 a viral disease due to a novel coronavirus was reported in Wuhan, China, which rapidly developed into an exploding pandemic and poses a severe threat to human health all over the world. Until now (May 2021), there are insufficient treatment options for the management of this global disease and shortage of vaccines. Important aspects that help to defeat coronavirus infection seems to be having a healthy, strong, and resilient immune system. Nutrition and metabolic disorders, such as obesity and diabetes play a crucial role on the community health situation in general and especially during this new pandemic. There seems to be an enormous impact of lifestyle, metabolic disorders, and immune status on coronavirus disease 2019 (COVID-19) severity and recovery. For this reason, it is important to consider the impact of lifestyle and the consumption of well-defined healthy diets during the pandemic. Aims: In this review, we summarise recent findings on the effect of nutrition on COVID-19 susceptibility and disease severity and treatment. Understanding how specific dietary features might help to improve the public health strategies to reduce the rate and severity of COVID-19.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gillina Bezemer
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Impact Station, Hilversum, Netherlands
| | - Shamila D. Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharon Mumby
- Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Center of Excellence Immunology, Nutricia Research, Utrecht, Netherlands
| | - Ian M. Adcock
- Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Maple PAC. Population (Antibody) Testing for COVID-19-Technical Challenges, Application and Relevance, an English Perspective. Vaccines (Basel) 2021; 9:550. [PMID: 34073985 PMCID: PMC8225097 DOI: 10.3390/vaccines9060550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
In the UK, population virus or antibody testing using virus swabs, serum samples, blood spots or oral fluids has been performed to a limited extent for several diseases including measles, mumps, rubella and hepatitis and HIV. The collection of population-based infection and immunity data is key to the monitoring of disease prevalence and assessing the effectiveness of interventions such as behavioural modifications and vaccination. In particular, the biological properties of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its interaction with the human host have presented several challenges towards the development of population-based immunity testing. Measuring SARS-CoV-2 immunity requires the development of antibody assays of acceptable sensitivity and specificity which are capable of accurately detecting seroprevalence and differentiating protection from non-protective responses. Now that anti-COVID-19 vaccines are becoming available there is a pressing need to measure vaccine efficacy and the development of herd immunity. The unprecedented impact of the SARS-CoV-2 pandemic in the UK in terms of morbidity, mortality, and economic and social disruption has mobilized a national scientific effort to learn more about this virus. In this article, the challenges of testing for SARS-CoV-2 infection, particularly in relation to population-based immunity testing, will be considered and examples given of relevant national level studies.
Collapse
Affiliation(s)
- Peter A. C. Maple
- Clinical Neurology Research Group, Department of Neurology, Division of Clinical Neuroscience, University of Nottingham School of Medicine, Queen’s Medical Centre, Nottingham NG7 2UH, UK;
- Molecular (COVID) Department, UK Lighthouse Laboratory, Cheshire SK10 4TG, UK
| |
Collapse
|
29
|
Zhang J, Wu Y, Li S, Wang X, Wang R, Wang X. Bioinformatic and mouse model reveal the potential high vulnerability of Leydig cells on SARS-CoV-2. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:678. [PMID: 33987376 PMCID: PMC8106040 DOI: 10.21037/atm-21-936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in China and spread rapidly since the end of 2019. Previous studies have confirmed that SARS-CoV-2 infects host cells via binding to angiotensin converting enzyme II (ACE2). Methods To explore the expression of ACE2 and the potential risk of infection in testis, we performed a bioinformatic analysis based on public databases, and conducted a pilot study using a mouse model. We also collected clinical follow-up date on male patients who had recovered from COVID-19 for 6 months. Results The results showed that the RNA expression of ACE2 was higher in testis compared with other organs. Single-cell analysis and immunocytochemistry further indicated that Leydig cells were at risk of SARS-CoV-2 infection. Green fluorescence was only detected in the Leydig cells after intratesticular injection of pseudovirus SARS-CoV-2 in the mouse model. In the clinical follow-up, serum total testosterone level was statistically lower in patients who had recovered from COVID-19 compared with healthy men (P=0.010). Conclusions The findings of the present study indicate the potential vulnerability of Leydig cells. It is important to monitor the reproductive system and its complications in male COVID-19 patients. Further studies are still needed on SARS-CoV-2-associated reproductive complications.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China
| | - Yuqi Wu
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China
| | - Shulin Li
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China
| | - Xiaobin Wang
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China
| | - Rui Wang
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China
| | - Xiangwei Wang
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China.,Department of Urology, Southern University of Science and Technology Hospital, Shenzhen, China.,Department of Perioperative Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|