1
|
Hussain R, Khan S, Sardar A, Rasheed L, Islam MS, Almutairi TM. Synthetic strategies, biological and computational screening of thiadiazole bearing benzothiazole derivatives as prospective anti-diabetic agents. J Mol Struct 2025; 1337:142141. [DOI: 10.1016/j.molstruc.2025.142141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
|
2
|
Yadav R, Baby K, Nayak Y, Patel D, Viswanathan K, Ghoshdastidar K, Patel A, Patel B. Unveiling the potential of tankyrase I inhibitors for the treatment of type 2 diabetes mellitus: A hybrid approach using network pharmacology, 2D structural similarity, molecular docking, MD simulation and in-vitro studies. Life Sci 2025; 369:123548. [PMID: 40058577 DOI: 10.1016/j.lfs.2025.123548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
AIMS This study explores the association between the Wnt signaling pathway and T2DM, emphasizing the role of Tankyrase1 (TNKS1) in metabolic regulation. Using network pharmacology and computational approaches, it aims to identify potential FDA-approved drugs for repurposing as Wnt inhibitors to improve insulin sensitivity and reduce fat accumulation. MATERIALS AND METHODS Network pharmacology analysis was performed to explore the association between the Wnt pathway and T2DM, identifying Catenin Beta 1 (CTNBB1) as a key hub gene involved in disease progression. A 2D structural similarity search was conducted using reference tankyrase inhibitors (E7449 and XAV939). Potential drug candidates were subjected to molecular docking and 100 ns molecular dynamics (MD) simulations with the Tankyrase I (PDB ID: 4W6E) protein. The shortlisted compounds were further evaluated for Wnt inhibitory activity using the TCF/LEF reporter assay, while their anti-diabetic potential was assessed through a glucose uptake assay in L6 myoblast cells. KEY FINDINGS Niclosamide, Capmatinib, Esomeprazole, and Fenofibrate were identified as promising candidates with strong binding affinities and stable interactions with key amino acids (Gly1185, Ser1221, Tyr1224, Asp1198, Tyr1213, and His1201). Experimental validation through in-vitro Wnt inhibition and glucose uptake assays confirmed that drugs Fenofibrate and Conivaptan exhibited significant Wnt inhibitory activity, suggesting their potential role in modulating T2DM-related pathways. SIGNIFICANCE This study highlights the role of the Wnt signaling pathway in T2DM pathogenesis and identifies potential drug candidates for repurposing as Tankyrase1/Wnt inhibitors. The findings provide a foundation for further in-vivo investigations into the anti-diabetic potential of the identified drugs, paving the way for novel therapeutic strategies in T2DM management.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dhaval Patel
- Gujarat Biotechnology University, Gujarat International Finance Tec-City, Gandhinagar 382355, Gujarat, India
| | - Kasinath Viswanathan
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. no. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Krishnarup Ghoshdastidar
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. no. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Ankit Patel
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. no. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
3
|
Sharma K, Rai P, Maurya SK, Tapadia MG. Anti-diabetic drug pioglitazone reduces Islet amyloid aggregation overload in the Drosophila neuronal cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6031-6041. [PMID: 39636405 DOI: 10.1007/s00210-024-03632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Amyloid-proteinopathy is observed in type 2 diabetes, where Islet amyloid polypeptide is secreted atypically and impedes cellular homeostasis. The thiazolidinediones family is reported to influence amyloid-beta aggregations. However, research on drug-based stimulation of insulin signaling to alleviate Islet amyloid aggregations is lacking. To understand the impact of pioglitazone on islet amyloid aggregation, we conducted an in vivo and in silico analysis. For in vivo analysis, we generated a transgenic Drosophila harboring the preproform of human Islet amyloid polypeptide (IAPP) that can be ectopically expressed in a spatio-temporal manner. We show that the unprocessed form of IAPP also has the propensity to form aggregates and cause degeneration. Pioglitazone feeding effectively reduces the burden of Islet amyloid aggregations in the larval brain. In silico analysis shows that there is a higher protein-ligand binding energy for IAPP with pioglitazone than amyloid-beta. These results suggests that pioglitazone might be repurposed as a drug to cure islet amyloidogenesis.
Collapse
Affiliation(s)
- Khushboo Sharma
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pooja Rai
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Madhu G Tapadia
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Oorschot T, Adams J, Sibbritt D. Diabetes, lowered mental health functioning and the use of conventional and complementary medicine: results from a secondary analysis of the complementary medicine use, health literacy and disclosure (CAMUHLD) study. BMC Complement Med Ther 2025; 25:140. [PMID: 40241122 PMCID: PMC12004669 DOI: 10.1186/s12906-025-04876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Diabetes Mellitus is often a long-term health condition that continues to raise concerns regarding the burden upon an individual's mental health, due to the commitment required for day-to-day self-care. People living with diabetes frequently use complementary medicine as part of their diabetes self-care to manage their mental health and this raises a number of significant risk management issues. Unfortunately, no research has explored the influence of lowered mental health functioning upon both the conventional and complementary medicine health service use amongst people living with diabetes. METHODS An examination of the conventional and complementary medicine health service use amongst men and women living with diabetes and normative or lowered mental health functioning, was undertaken by completing a secondary analysis of the Complementary Medicine Use, Health Literacy and Disclosure study. RESULTS Of the 176 participants reporting a diabetes diagnosis, 74% reported lowered mental health functioning, compared to 60% without a diabetes diagnosis. Compared to people living with diabetes and normative mental health functioning, those with lowered mental health functioning were 9 times more likely to consult with a Western herbalist (OR = 9.17, 95% CI: 1.097-76.84), twice as likely to use vitamins or minerals (OR = 2.34, 95% CI: 1.061-5.151), and 5 times more likely to engage in relaxation or meditation practice (OR = 5.10, 95% CI: 1.362-19.129). CONCLUSION People living with diabetes who have lowered mental health functioning appear even more likely to use complementary medicine than conventional medicine, than those with normative mental health functioning. This reinforces the need to resolve clinical governance issues associated with complementary medicine use, especially what role complementary medicine practitioners can fulfil as part of coordinated diabetes care teams, to support patient health and well-being.
Collapse
Affiliation(s)
- Tracey Oorschot
- School of Public Health, University of Technology Sydney, Broadway, PO Box 123, Sydney, NSW, 2007, Australia.
| | - Jon Adams
- School of Public Health, University of Technology Sydney, Broadway, PO Box 123, Sydney, NSW, 2007, Australia
| | - David Sibbritt
- School of Public Health, University of Technology Sydney, Broadway, PO Box 123, Sydney, NSW, 2007, Australia
| |
Collapse
|
5
|
Yang C, Du Y, Wei L, Tan Z, Zhou T, Wang L, Yang X, Zhao Y. Preventive effects of turmeric against HFD/STZ-induced type 2 diabetes in mice by activating IRS1/PI3K/Akt signaling in association with gut microbiota metabolism. Food Funct 2025. [PMID: 40232278 DOI: 10.1039/d5fo01001b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
This study is the first to investigate the antidiabetic effect of turmeric powder (TP) and its underlying molecular mechanism in type 2 diabetes mellitus (T2DM) mice. The T2DM mice were supplemented with or without TP (8%) for 8 weeks. The results indicated that the glucolipid metabolism disorder and insulin resistance in T2DM mice were significantly ameliorated through supplementation with TP. The consumption of TP also ameliorated the T2DM-induced gut microbiota dysbiosis, as reflected by a dramatic increase in the relative abundance of beneficial bacteria such as Bacteroides, Rikenella and Allobaculum at the genus level. Besides, TP significantly increased the colonic levels of short-chain fatty acids (SCFAs) and subsequently activated the IRS1/PI3K/Akt and AMPK-mediated gluconeogenesis signaling pathways to improve insulin resistance in T2DM mice. Interestingly, TP-activated IRS1/PI3K/Akt and AMPK-mediated gluconeogenesis signaling pathways were highly correlated with the reconstruction of the gut microbiome and the formation of SCFAs. Collectively, these findings, for the first time, highlight a novel antidiabetic mechanism of TP by alleviating intestinal microbiota dysbiosis and promoting SCFA production to trigger the IRS1/PI3K/Akt and AMPK-mediated gluconeogenesis signaling axis.
Collapse
Affiliation(s)
- Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yao Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lusha Wei
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhengwei Tan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Ting Zhou
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Lulu Wang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
6
|
Fei L, Zhao Y. Re-assessing the risk-benefit profile of Thiazolidinediones: Cardiovascular Risks and Stroke Prevention Through Real-World Data. Endocr Pract 2025:S1530-891X(25)00118-1. [PMID: 40246234 DOI: 10.1016/j.eprac.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVES Research has increasingly explored the benefits of thiazolidinediones (TZDs) beyond diabetes management, particularly in reducing stroke and dementia risks. However, concerns about cardiovascular adverse events, especially heart failure, necessitate a re-evaluation of TZD-associated cardiovascular risks using real-world data. METHODS This study re-evaluates the cardiovascular risks of TZDs and their efficacy in stroke prevention. We conducted a real-world pharmacovigilance study using the FDA Adverse Event Reporting System (FAERS) database (January 2004 to December 2023) to assess cardiovascular risks associated with TZDs, including myocardial infarction, heart failure, and stroke. Multivariable logistic regression adjusted the Reporting Odds Ratio from the disproportional analysis. Additionally, a network meta-analysis of clinical studies (January 2000 to March 2024) examined the efficacy of TZDs in stroke prevention. RESULTS Our analysis of the FAERS database revealed significantly higher cardiovascular risks associated with TZDs. However, clear differences exist in cardiovascular risks between pioglitazone and rosiglitazone. Rosiglitazone was linked to a markedly increased incidence of myocardial infarction, heart failure, and stroke. In contrast, we didn't observe strong cardiovascular risks associated with pioglitazone. Instead, pioglitazone was shown to slightly heighten the risk of heart failure. Further, the network meta-analysis, based on SUCRA rankings and ranking probabilities also disclosed similar findings: when compared to placebo, rosiglitazone increased stroke risk, while pioglitazone reduced stroke incidence in individuals with diabetes and pre-diabetes. CONCLUSIONS Our analysis shows that pioglitazone has potential therapeutic effects on stroke prevention and fewer cardiovascular adverse events compared to rosiglitazone, underscoring the importance of re-assessing TZD safety for optimal patient outcomes.
Collapse
Affiliation(s)
- Lu Fei
- Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| | - Yingjie Zhao
- Department of Cardiology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
7
|
Zhang T, Liu S, He S, Shi L, Ma R. Strategies to Enhance the Therapeutic Efficacy of GLP-1 Receptor Agonists through Structural Modification and Carrier Delivery. Chembiochem 2025; 26:e202400962. [PMID: 39744852 DOI: 10.1002/cbic.202400962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Diabetes is a metabolic disorder characterized by insufficient endogenous insulin production or impaired sensitivity to insulin. In recent years, a class of incretin-based hypoglycemic drugs, glucagon-like peptide-1 receptor agonists (GLP-1RAs), have attracted great attention in the management of type 2 diabetes mellitus (T2DM) due to their benefits, including stable glycemic control ability, a low risk of hypoglycemia, and weight reduction for patients. However, like other peptide drugs, GLP-1RAs face challenges such as instability, susceptibility to enzymatic degradation, and immunogenicity, which severely limit their clinical application. In recent years, various strategies have been developed to improve the bioavailability and therapeutic efficacy of GLP-1RAs, including structural modification and carrier-mediated delivery. This article briefly introduces the research and application status of several common GLP-1RAs and their limitations. Taking exendin-4 as an example, we focus on the research progress of improving bioavailability and therapeutic efficacy based on structural modification and carrier delivery strategies, aiming to provide reference for the development of new GLP-1RAs treatment systems.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Sainan Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Suning He
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
8
|
Du J, Duan Y, Yang L, Cui Y, Liu H. Garlic consumption and risk of diabetes mellitus in the Chinese elderly: A population-based cohort study. Asia Pac J Clin Nutr 2025; 34:165-173. [PMID: 40134055 PMCID: PMC11937495 DOI: 10.6133/apjcn.202504_34(2).0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 08/03/2024] [Indexed: 03/27/2025]
Abstract
BACKGROUND AND OBJECTIVES Diabetes mellitus (DM) is a major public health problem worldwide. Numerous traditional plants are used for preventing DM. However, limited evidence supports the association between garlic consumption and DM. METHODS AND STUDY DESIGN Data used in this study was from the 2008-2018 Chinese Longitudinal Healthy Longevity Survey. Data on garlic consumption was obtained by questionnaire, and DM by self-reported diagnosis. A multivariate adjusted Cox regression model was used to estimate haz-ard ratios (HR) and 95% confidence intervals (CI) to determine the incidence of DM. RESULTS A total of 1927 participants were included in this study, of which 24.08% consumed garlic daily and 20.08% developed DM. The HR for daily garlic consumption decreased by 42%, when compared to rare or no garlic con-sumption. Our subgroup analyses revealed that daily garlic consumption significantly reduced the risk of DM in older adults aged 65-79, rural, non-drinkers informal education, financial dependence, and working in agriculture (aged 65-79: HR = 0.54, 95% CI: 0.36-0.80; rural area: HR = 0.48, 95% CI: 0.29-0.77; non-drinkers: HR = 0.60, 95% CI: 0.41-0.86; informal education: HR = 0.46, 95% CI: 0.29-0.74; financial dependence: HR = 0.39, 95% CI: 0.23-0.65; agricultural work: HR = 0.49, 95% CI: 0.32-0.76). CONCLUSIONS Garlic consumption can reduce the risk of DM in older Chinese adults. This benefit varies by age, current residence, drinking status, education level, occupation, and economic source. Future efforts should focus on developing dietary intervention strategies that consider demographic, educational, financial, and occupational disparities to effectively prevent diabetes in older populations.
Collapse
Affiliation(s)
- Jing Du
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Ying Duan
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Ling Yang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Yan Cui
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Huaqing Liu
- School of Public Health, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
9
|
Jain MR, Giri SR, Trivedi CJ, Bhoi BB, Rath AC, Rathod RM, Sundar R, Bandyopadhyay D, Ramdhave R, Patel GD, Srivastava BK, Desai RC. Discovery of ZYDG2: A potent, selective, and safe GPR40 agonist for treatment of type 2 diabetes. J Pharmacol Exp Ther 2025; 392:103534. [PMID: 40158321 DOI: 10.1016/j.jpet.2025.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
GPR40/FFA1 receptor, predominantly expressed in pancreatic β-cells, mediates glucose-stimulated insulin secretion by free fatty acids. Fasiglifam-GPR40 agonist was terminated in phase III clinical trials due to adverse liver effects. ZYDG2 is identified as a novel, potent and selective agonist for GPR40, exhibiting EC50 of 41 nM and 17 nM in cell-based functional inositol 1-phosphate-ELISA assay and Ca2+ mobilization assay, respectively. ZYDG2 has demonstrated dose-dependent improvement in glucose tolerance tests and increased insulin secretion in neonatal streptozotocin Wistar rats. After repeated dose administration for 15 weeks, ZYDG2 showed efficacy without tachyphylaxis. ZYDG2 significantly increased the glucose infusion rate in a hyperglycemic clamp study and demonstrated antidiabetic efficacy in mice models of type 2 diabetes mellitus, which was not reported for fasiglifam. ZYDG2 exhibited 60%-100% oral bioavailability across preclinical species, including mice, rats, dogs, and primates. Liver toxicity of fasiglifam was associated with its bile acid transporter inhibition, whereas ZYDG2 showed no inhibition (up to 300 μM). In rat acute toxicity studies, the maximum tolerated dose for ZYDG2 was 2000 mg/kg, whereas fasiglifam was tolerable up to 300 mg/kg. Fasiglifam treatment at 300 mg/kg for 10 days in rats caused a significant rise in serum alanine aminotransferase, aspartate aminotransferase, and total bilirubin level along with vacuolation, ulceration, and red foci in liver tissue, whereas ZYDG2 showed no liver toxicity up to 300 mg/kg. Moreover, after 28 days of repeated dose treatment of ZYDG2, the no-observed-adverse-effect-level was found to be 300 mg/kg. This robust data conclusively demonstrates that ZYDG2 is a highly promising and unequivocally safe therapeutic candidate for the treatment of type 2 diabetes. SIGNIFICANCE STATEMENT: ZYDG2 is a potent, selective, and safe GPR40 agonist which may be a promising candidate for the treatment of type 2 diabetes as it has shown better efficacy and safety profile compared with fasiglifam.
Collapse
Affiliation(s)
- Mukul R Jain
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Suresh R Giri
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India.
| | - Chitrang J Trivedi
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Bibhuti B Bhoi
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | | | - Rohan M Rathod
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Rajesh Sundar
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | | | - Rashmi Ramdhave
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Gautam D Patel
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | | | - Ranjit C Desai
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| |
Collapse
|
10
|
Zhong X, Wei Q, Tiwari A, Wang Q, Tan Y, Chen R, Yan Y, Cox NJ, Li B. A Genetics-guided Integrative Framework for Drug Repurposing: Identifying Anti-hypertensive Drug Telmisartan for Type 2 Diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.22.25324223. [PMID: 40166562 PMCID: PMC11957187 DOI: 10.1101/2025.03.22.25324223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Drug development is a long and costly process, and repurposing existing drugs for use toward a different disease or condition may serve as a cost-effective alternative. As drug targets with genetic support have a doubled success rate, genetics-informed drug repurposing holds promise in translating genetic findings into therapeutics. In this study, we developed a Genetics Informed Network-based Drug Repurposing via in silico Perturbation (GIN-DRIP) framework and applied the framework to repurpose drugs for type-2 diabetes (T2D). In GIN-DRIP for T2D, it integrates multi-level omics data to translate T2D GWAS signals into a genetics-informed network that simultaneously encodes gene importance scores and a directional effect (up/down) of risk genes for T2D; it then bases on the GIN to perform signature matching with drug perturbation experiments to identify drugs that can counteract the effect of T2D risk alleles. With this approach, we identified 3 high-confidence FDA-approved candidate drugs for T2D, and validated telmisartan, an anti-hypertensive drug, in our EHR data with over 3 million patients. We found that telmisartan users were associated with a reduced incidence of T2D compared to users of other anti-hypertensive drugs and non-users, supporting the therapeutic potential of telmisartan for T2D. Our framework can be applied to other diseases for translating GWAS findings to aid drug repurposing for complex diseases.
Collapse
Affiliation(s)
- Xue Zhong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Qiang Wei
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Anshul Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Quan Wang
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Yuting Tan
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Rui Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Yan Yan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Nancy J Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| |
Collapse
|
11
|
El Allaoui H, Haboubi K, El Ahmadi K, Bouhrim M, ElAbdouni A, Eto B, Shahat AA, Herqash RN, El Bestrioui M, Zouaoui Z, Nhiri M. Comprehensive assessment of antioxidant, antidiabetic, and anti-glycation properties of aqueous and methanolic extracts from Pistacia lentiscus L. leaves: a potential natural source for managing oxidative stress and diabetes-related complications. Front Pharmacol 2025; 16:1551841. [PMID: 40191421 PMCID: PMC11970035 DOI: 10.3389/fphar.2025.1551841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
This study evaluates the phenolic and flavonoid contents, as well as the antioxidant, antidiabetic, and anti-glycation properties of aqueous and methanolic extracts from Pistacia lentiscus L. leaves. The antioxidant activity was assessed using DPPH, ABTS, FRAP, and iron-chelation assays, revealing superior activity in the aqueous extract. Both extracts exhibited potent antidiabetic effects by inhibiting the digestive enzyme alpha-amylase, with IC50 values of 2,291 ± 0.002 μg/mL (aqueous) and 2,889 ± 0.002 μg/mL (methanolic). Additionally, the extracts demonstrated significant anti-glycation activity, reducing advanced glycation end-product (AGE) formation, inhibiting fructosamine levels, and protecting thiol groups, with the aqueous extract providing greater protection. These findings underscore the potential of P. lentiscus L. as a natural source of bioactive compounds for managing oxidative stress and diabetes-related complications.
Collapse
Affiliation(s)
- Hasnae El Allaoui
- Laboratory of Engineering Sciences and Applications, National School of Applied Sciences of Al Hoceima, Abdelmalek Essâadi University, Al-Hoceima, Morocco
| | - Khadija Haboubi
- Laboratory of Engineering Sciences and Applications, National School of Applied Sciences of Al Hoceima, Abdelmalek Essâadi University, Al-Hoceima, Morocco
| | - Kawthar El Ahmadi
- Laboratory of Engineering Sciences and Applications, National School of Applied Sciences of Al Hoceima, Abdelmalek Essâadi University, Al-Hoceima, Morocco
| | - Mohamed Bouhrim
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
- Laboratoires TBC, UFR3S, Département de Pharmacie, Université de Lille, Lille, France
| | - Aouatif ElAbdouni
- Laboratory of Engineering Sciences and Applications, National School of Applied Sciences of Al Hoceima, Abdelmalek Essâadi University, Al-Hoceima, Morocco
| | - Bruno Eto
- Laboratoires TBC, UFR3S, Département de Pharmacie, Université de Lille, Lille, France
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saudi University, Riyadh, Saudi Arabia
| | - Rashed N. Herqash
- Department of Pharmacognosy, College of Pharmacy, King Saudi University, Riyadh, Saudi Arabia
| | - Mohmed El Bestrioui
- Laboratory of Engineering Sciences and Applications, National School of Applied Sciences of Al Hoceima, Abdelmalek Essâadi University, Al-Hoceima, Morocco
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Tangier, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Tangier, Morocco
| |
Collapse
|
12
|
Guan W, Zhang L. Applications and prospects of biomaterials in diabetes management. Front Bioeng Biotechnol 2025; 13:1547343. [PMID: 40124248 PMCID: PMC11926158 DOI: 10.3389/fbioe.2025.1547343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/30/2025] [Indexed: 03/25/2025] Open
Abstract
Diabetes is a widespread metabolic disorder that presents considerable challenges in its management. Recent advancements in biomaterial research have shed light on innovative approaches for the treatment of diabetes. This review examines the role of biomaterials in diabetes diagnosis and treatment, as well as their application in managing diabetic wounds. By evaluating recent research developments alongside future obstacles, the review highlights the promising potential of biomaterials in diabetes care, underscoring their importance in enhancing patient outcomes and refining treatment methodologies.
Collapse
Affiliation(s)
- Wenhe Guan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liang Zhang
- Department of Human Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Roney M, Huq AKMM, Rullah K, Zamri NB, Mohd Aluwi MFF. Curcumin, a bioactive compound of Turmeric (Curcuma longa) and its derivatives as α-amylase and α-glucosidase inhibitors. Cell Biochem Biophys 2025; 83:53-71. [PMID: 39112903 DOI: 10.1007/s12013-024-01477-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 03/03/2025]
Abstract
Diabetes mellitus (DM) is a long-term metabolic disease characterised by a controlled metabolism of fat, carbohydrates, and proteins. In recent decades, it has grown into a significant global public health issue. According to the International Diabetes Federation, there were 425 million DM globally in 2017, and the number might be increased to 629 million by 2045 (a global 48% increase). Approximately 4.2 million deaths globally attributed to DM occur before the age of 60. The existing class of anti-diabetic medications is limited by side effects, which has led to the hunt for novel inhibitors that specifically target the α-amylase and α-glucosidase enzymes. Curcumin is a small-molecular-weight compound found in the roots of the Curcuma longa L (C. longa). plant, which has been used for culinary, medicinal, and other purposes throughout Asia for thousands of years. Curcumin has potent anti-inflammatory, anti-cancer, anti-angiogenic, antispasmodic, antibacterial, and anti-parasitic qualities. Even though the potential of curcumin to cure DM has been well investigated, its low solubility, rapid metabolism, and short plasma half-life have limited its application in DM. Therefore, the objectives of this review were to review the chemical composition of C. longa, the structure of curcumin, the degradation of curcumin, and the effects of curcumin derivatives on anti-diabetic properties against α-amylase and α-glucosidase enzymes. The results showed that C. longa contains carbohydrates, moisture, protein, fat, minerals, volatiles, fibre, and curcuminoids. Among the curcuminoids, curcumin is 60-70% present in C. longa. Moreover, curcumin and its derivatives have a lot of potential for treating DM, which was highlighted in this review. This review emphasises the several biological applications of curcumin, which collectively establish the foundation for its anti-diabetic characteristics. Considering these results, curcumin derivatives may be considered as potential agents in the pharmacotherapeutic management of patients with DM.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - A K M Moyeenul Huq
- Centre for Drug and Herbal Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kualalampu, 5300, Malaysia
| | - Kamal Rullah
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Normaiza Binti Zamri
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia.
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia.
| |
Collapse
|
14
|
Asaad GF, Doghish AS, Rashad AA, El-Dakroury WA. Exploring cutting-edge approaches in diabetes care: from nanotechnology to personalized therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2443-2458. [PMID: 39453501 PMCID: PMC11919990 DOI: 10.1007/s00210-024-03532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Diabetes mellitus (DM) is a persistent condition characterized by high levels of glucose in the blood due to irregularities in the secretion of insulin, its action, or both. The disease was believed to be incurable until insulin was extracted, refined, and produced for sale. In DM, insulin delivery devices and insulin analogs have improved glycemic management even further. Sulfonylureas, biguanides, alpha-glucosidase inhibitors, and thiazolidinediones are examples of newer-generation medications having high efficacy in decreasing hyperglycemia as a result of scientific and technological advancements. Incretin mimetics, dual glucose-dependent insulinotropic polypeptide, GLP-1 agonists, PPARs, dipeptidyl peptidase-4 inhibitors, anti-CD3 mAbs, glucokinase activators, and glimins as targets have all performed well in recent clinical studies. Considerable focus was placed on free FA receptor 1 agonist, protein tyrosine phosphatase-1B inhibitors, and Sparc-related modular calcium-binding protein 1 which are still being studied. Theranostics, stem cell therapy, gene therapy, siRNA, and nanotechnology are some of the new therapeutic techniques. Traditional Chinese medicinal plants will also be discussed. This study seeks to present a comprehensive analysis of the latest research advancements, the emerging trends in medication therapy, and the utilization of delivery systems in treating DM. The objective is to provide valuable insights into the application of different pharmaceuticals in the field of diabetes mellitus treatment. Also, the therapeutic approach for diabetic patients infected with COVID-19 will be highlighted. Recent clinical and experimental studies evidence the Egyptian experience. Finally, as per the knowledge of the state of the art, our conclusion and future perspective will be declared.
Collapse
Affiliation(s)
- Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11651, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
15
|
Awan ZA, Khan HA, Jamal A, Shams S, Zheng G, Wadood A, Shahab M, Khan MI, Kalantan AA. In silico exploration of the potential inhibitory activities of in-house and ZINC database lead compounds against alpha-glucosidase using structure-based virtual screening and molecular dynamics simulation approach. J Biomol Struct Dyn 2025; 43:2412-2422. [PMID: 38294714 DOI: 10.1080/07391102.2023.2298391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/14/2023] [Indexed: 02/01/2024]
Abstract
Inhibitors of α-glucosidase have been used to treat type-2 diabetes (T2DM) by preventing the breakdown of carbohydrates into glucose and prevent enhancing glucose conversion. Structure-based virtual screening (SBVS) was used to generate novel chemical scaffold-ligand α-glucosidase inhibitors. The databases were screened against the receptor α-glucosidase using SBVS and molecular dynamics simulation (MDS) techniques in this study. Based on molecular docking studies, three and two compounds of α-glucosidase inhibitors were chosen from a commercial database (ZINC) and an In-house database for this study respectively. The mode of binding interactions of the selected compounds later predicted their α-glucosidase inhibitory potential. Finally, one out of three lead compound from ZINC and one out of two lead compound from In-house database were shortlisted based on interactions. Furthermore, MDS and post-MDS strategies were used to refine and validate the shortlisted leads along with the reference acarbose/α-glucosidase. The Hits' ability to inhibit α-glucosidase was predicted by SBVS, indicating that these compounds have good inhibitory activities. The lead inhibitor's structure may serve as templates for the design of novel inhibitors, and in vitro testing to confirm their anti-diabetic potential is necessary. These insights can help rationally design new effective anti-diabetic drugs.
Collapse
Affiliation(s)
- Zuhier A Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haider Ali Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Alam Jamal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulaziz A Kalantan
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Alasvand Zarasvand S, Ogawa S, Nestor B, Bridges W, Haley-Zitlin V. Effects of Herbal Tea (Non-Camellia sinensis) on Glucose Homeostasis and Serum Lipids in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutr Rev 2025; 83:e1128-e1145. [PMID: 38894639 DOI: 10.1093/nutrit/nuae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
CONTEXT Hyperglycemia and hyperlipidemia increase the risk for diabetes and its complications, atherosclerosis, heart failure, and stroke. Identification of safe and cost-effective means to reduce risk factors is needed. Herbal teas may be a vehicle to deliver antioxidants and polyphenols for prevention of complications. OBJECTIVE This systematic review and meta-analysis were conducted to evaluate and summarize the impact of herbal tea (non-Camellia sinensis) on glucose homeostasis and serum lipids in individuals with type 2 diabetes (T2D). DATA SOURCES PubMed, FSTA, Web of Science, CINAHL, MEDLINE, and Cochrane Library databases were searched from inception through February 2023 using relevant keyword proxy terms for diabetes, serum lipids, and "non-Camellia sinensis" or "tea." DATA EXTRACTION Data from 14 randomized controlled trials, totaling 551 participants, were included in the meta-analysis of glycemic and serum lipid profile end points. RESULTS Meta-analysis suggested a significant association between drinking herbal tea (prepared with 2-20 g d-1 plant ingredients) and reduction in fasting blood glucose (FBG) (P = .0034) and glycated hemoglobin (HbA1c; P = .045). In subgroup analysis based on studies using water or placebo as the control, significant reductions were found in serum total cholesterol (TC; P = .024), low-density lipoprotein cholesterol (LDL-C; P = .037), and triglyceride (TG; P = .043) levels with a medium effect size. Meta-regression analysis suggested that study characteristics, including the ratio of male participants, trial duration, and region, were significant sources of FBG and HbA1c effect size heterogeneity; type of control intervention was a significant source of TC and LDL-C effect size heterogeneity. CONCLUSIONS Herbal tea consumption significantly affected glycemic profiles in individuals with T2D, lowering FBG levels and HbA1c. Significance was seen in improved lipid profiles (TC, TG, and LDL-C levels) through herbal tea treatments when water or placebo was the control. This suggests water or placebo may be a more suitable control when examining antidiabetic properties of beverages. Additional research is needed to corroborate these findings, given the limited number of studies.
Collapse
Affiliation(s)
- Sepideh Alasvand Zarasvand
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634-0316, United States
| | - Shintaro Ogawa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | - Bailey Nestor
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634-0316, United States
| | - William Bridges
- Department of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, United States
| | - Vivian Haley-Zitlin
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634-0316, United States
| |
Collapse
|
17
|
Shahzad A, Liu W, Hussain S, Ni Y, Cui K, Sun Y, Liu X, Duan Q, Xia J, Zhang J, Xu Z, Sai B, Zhu Y, Zhang Q, Yang Z. Integrated in vitro, in silico, and in vivo approaches to elucidate the antidiabetic mechanisms of Cicer arietinum and Hordeum vulgare extract and secondary metabolites. Sci Rep 2025; 15:6620. [PMID: 39994296 PMCID: PMC11850774 DOI: 10.1038/s41598-025-89642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Diabetes mellitus is a group of metabolic disorders that can lead to severe health problems, and the current treatments often have harmful side effects. Therefore, there is a growing interest in discovering new antidiabetic drugs with fewer adverse effects, and natural products are a promising source for this purpose. Cicer arietinum and Hordeum vulgare are plants with high levels of phytochemicals that have been shown to have therapeutic properties. This study investigates the anti-diabetic potential of C. arietinum and H. vulgare seeds and their secondary metabolites. We employed a comprehensive approach combining in vitro, in silico, and in vivo methods to evaluate the efficacy of the compounds. Our findings reveal that the extracts of C. arietinum (IC50 55.08 μg/mL) and H. vulgare (IC50 115.8 ± 5 μg/mL) demonstrated a stronger inhibitory effect on α-amylase compared to acarbose (standard drug) (IC50 196.3 ± 10 μg/mL). Similarly, both C. arietinum and H. vulgare exhibited significant inhibitory activity against α-glucosidase (IC50 100.2 ± 5 μg/mL and IC50 216.2 ± 5 μg/mL, respectively) compared to acarbose (IC50 246.5 ± 10 μg/mL). To further investigate their mechanism of action, a computational screening of 194 phytochemicals from these plants was conducted, followed by molecular docking with α-amylase (PDB ID#1B2Y) and α-Glucosidase (PDB ID# 5NN8) receptors. According to the binding affinities and molecular dynamics (MD) simulations, Medicagol, Euphol, Stigmasterol, and Beta-Sitosterol emerged as promising candidates for diabetes treatment. Molecular dynamics showed that Medicagol was a strong inhibitor against selected receptor proteins because the ligand-protein complexes remained stabilized during the entire simulation time of 100 ns. In vitro analysis also confirmed that Medicagol, stigmasterol, and Euphol have significant potential for type 2 diabetes prevention via inhibition of carbohydrates hydrolyzing enzymes. In vivo study demonstrated significant therapeutic effects in STZ-induced diabetes mice. Including reductions in hyperlipidemia, hyperglycemia, and insulin resistance. Histopathological analysis revealed that plant extracts mitigated STZ-induced pancreatic and liver damage. Additionally, extracts enhanced antioxidant defenses by increasing SOD, CAT, and GSH levels, while decreasing MDA levels in the liver, kidneys, and pancreas, highlighting their protective role against oxidative stress. These results support the potential of Cicer arietinum and Hordeum vulgare as natural sources for developing antidiabetic agents.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
- Departments of Biochemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Shoukat Hussain
- Departments of Biochemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China.
| | - Zhe Yang
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua, , Kunming, 650032, Yunnan, People's Republic of China.
| |
Collapse
|
18
|
Ma Y, Zhang H, Yan Q, Wang P, Guo W, Yu L. The antidiabetic effect of safflower yellow by regulating the GOAT/ghrelin/GHS-R1a/cAMP/TRPM2 pathway. Sci Rep 2025; 15:5037. [PMID: 39934157 PMCID: PMC11814266 DOI: 10.1038/s41598-025-87201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Safflower yellow (SY), derived from Carthamus tinctorius L., is a valuable natural edible pigment that exhibits anti-type 2 diabetes mellitus (T2DM) efficacy; however, its mechanism of action is unclear, which hinders its effective use. In this study, we examined the impact of SY on glucose metabolism and insulin secretion both in vivo and in vitro and elucidated the possible underlying mechanism. First, molecular docking demonstrated a strong binding affinity between SY and ghrelin O-acyltransferase (GOAT) protein, which was validated by a cell heat transfer assay (CETSA) and drug affinity response target stability (DARTS) in MIN6 cells. In MIN6 cells, SY increased insulin secretion and showed time- and dose-dependent inhibition of GOAT expression and acyl ghrelin (AG) secretion without affecting the overall levels of ghrelin. Furthermore, ELISA revealed that SY enhanced high glucose (HG)-induced insulin secretion, and immunofluorescence revealed the co-localization of GOAT and ghrelin in MIN6 cells, which was suppressed by SY treatment. The mechanism analysis by Western blot demonstrated that SY downregulated the protein levels of GOAT and GHS-R1a in MIN6 cells while increasing HG-stimulated cAMP and activation of transient receptor potential melastatin 2 (TRPM2). In in vivo experiments, the intraperitoneal injection of SY significantly improved pathological damage to the pancreas, glucose tolerance, and insulin resistance in a mouse model of high-fat diet (HFD)/streptozotocin (STZ)-induced T2DM in a dose-dependent manner. SY enhanced insulin secretion by inhibiting the GOAT/ghrelin system in vivo. In conclusion, we demonstrated that SY exhibits an observable protective effect on diabetes through the GOAT/ghrelin/GHS-R1a/cAMP/TRPM2 pathway. Our findings provide a basis for further investigation of the hypoglycemic mechanism of SY and its potential for further development and utilization.
Collapse
Affiliation(s)
- Yunxiao Ma
- Department of Endocrinology, Interventional Therapy, and Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Haifeng Zhang
- Department of Endocrinology, Interventional Therapy, and Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Qihui Yan
- Department of Endocrinology, Interventional Therapy, and Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Ping Wang
- Department of Endocrinology, Interventional Therapy, and Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Weiying Guo
- Department of Endocrinology, Interventional Therapy, and Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130000, China.
| | - Lu Yu
- Department of Endocrinology, Interventional Therapy, and Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130000, China.
| |
Collapse
|
19
|
Luo J, Fang Y, Qi Z, Cui F, Hu H, Li S, Chen T, Zhang H. Administration of a Next-Generation Probiotic Escherichia coli Nissle 1917-GLP-1 Alleviates Diabetes in Mice With Type 1 and Type 2 Diabetes. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2025; 2025:6675676. [PMID: 39949529 PMCID: PMC11824388 DOI: 10.1155/cjid/6675676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/05/2024] [Accepted: 12/26/2024] [Indexed: 02/16/2025]
Abstract
Diabetes mellitus (DM) is a persistent and steadily progressing metabolic condition distinguished by unregulated high levels of blood glucose. GLP1 receptor agonists have recently gained recognition as first-line therapies in selected instances, as per the updated ADA guidelines, highlighting their efficacy not only in glycemic control but also in their broader health benefits. Nonetheless, the efficacy of GLP-1 is limited by its brief duration of action, rapid clearance from the body, and challenges associated with subcutaneous administration. In this study, we examined the potential diabetes-mitigating effects of a genetically engineered strain of Escherichia coli Nissle 1917 (EcN)-GLP-1, previously developed by our group. We utilized mouse models for both Type 1 diabetes mellitus (T1DM) and Type 2 diabetes mellitus (T2DM) to assess its efficacy. In the case of T1DM mice, the results revealed that EcN-GLP-1 resulted in a notable decrease in blood glucose levels. Furthermore, it exhibited a protective influence on the structural integrity of islet β-cells; downregulated the expressions of key inflammatory markers such as TLR-4, p-NF-κB/NF-κB, and Bax/Bcl-2; promoted the insulin secretion; and reinstated the perturbed diversity of microbial species to a normal state. Similarly, EcN-GLP-1 had a pronounced impact on T2DM mice, manifesting increased presence of islet β-cells, decreased inflammatory response and apoptosis, and regulation of lipid metabolism in the liver. In summary, the genetically modified EcN-GLP-1 strain demonstrates the ability to alleviate diabetes by enhancing the islet β-cell population, mitigating inflammatory reactions and apoptosis, optimizing liver lipid metabolism, and reinstating a balanced microbial diversity. These findings hold promise as a potential avenue for treating DM.
Collapse
Affiliation(s)
- Jie Luo
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yilin Fang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhanghua Qi
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fengyang Cui
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hong Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shengjie Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Roldan Munoz S, Mol PGM, de Vries F, van Dijk PR, Hillege H, Postmus D, de Vries ST. Perspectives of People with Type 2 Diabetes Mellitus Towards a Decision Aid Assessing Preferences of Glucose-Lowering Drugs: The Dilemma of Choosing. Patient Prefer Adherence 2025; 19:215-234. [PMID: 39882148 PMCID: PMC11776401 DOI: 10.2147/ppa.s486553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025] Open
Abstract
Background Treatment guidelines recommend metformin as initial drug in many people with type 2 diabetes (T2D) and low risk of cardiovascular disease, with the possibility to switch to or add other drug classes. A decision aid (DA) could be useful to incorporate a patient's preferences in the decision of which drug class to choose. We developed such a DA and assessed the perspectives of people with T2D towards its comprehensibility and usability. Methods The DA consists of a paper-based leaflet followed by a web-based preference elicitation exercise. The leaflet aims at informing patients about drug characteristics (eg, efficacy, safety). The relative importance of these drug characteristics for each participant are then assessed in a web-based exercise, which results in a ranking of the preferred drug classes. A qualitative study using semi-structured interviews was conducted among Dutch patients with T2D who were or had ever been under pharmacological treatment for T2D. The audio-recorded interviews were transcribed verbatim. Thematic analysis was conducted. Results Fifteen patients participated (median age 64 years, nine women, and most had T2D >10 years). Risk of hypoglycaemia was most often the characteristic to which patients attached the highest importance (n=5). A glucagon-like peptide-1-antagonist weekly injection fitted best the preferences of most patients (n=8). The interviews revealed improvements for text, pictograms and figures, and formatting, and increased comprehension of how patients completed the DA. Regarding usability, missing information was identified, as well as patients' perspectives about the usefulness of the DA and its role in shared-decision making. Conclusion The DA was considered promising for shared-decision making but further improvements regarding its comprehensibility and usability are needed, for which this study provides clear guidance.
Collapse
Affiliation(s)
- Sonia Roldan Munoz
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter G M Mol
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Femke de Vries
- Faculty of Beta Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Peter R van Dijk
- Division of Endocrinology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hans Hillege
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Douwe Postmus
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sieta T de Vries
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Wu M, He C, Yu H, Zhang Y, Tang L, Liu M, Gao M, Wu J, Zeng F, Chen H, Jiang S, Zhu Z. Therapeutic targets of antidiabetic drugs and kidney stones: A druggable mendelian randomization study and experimental study in rats. Eur J Pharmacol 2025; 987:177197. [PMID: 39662658 DOI: 10.1016/j.ejphar.2024.177197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Diabetes is known to increase the risk of kidney stones, but the influence of antidiabetic drugs on this risk remains uncertain. Genetic instruments for antidiabetic drugs were identified as variants, which were associated with both the expression of genes encoding target proteins of drugs and glycated hemoglobin level (HbA1c). Here, we investigated the effect of antidiabetic drugs on kidney stones in a mendelian randomization (MR) framework, and further explore the potential effect on CaOx stone rat models induced by glyoxylic acid. Genetically proxied thiazolidinediones (PPARG agonists) significantly reduced the risk of kidney stones (OR = 0.42; P=0.004) per 1-SD decrement in HbA1c, while no significant association was noted in sulfonylureas, SGLT2 inhibitors, or GLP-1 analogs. Other antidiabetic drugs were not analyzed due to unclear pharmacological targets or no identified instruments. Additionally, PPARG agonists pioglitazone ameliorated CaOx nephrocalcinosis in glyoxylic acid-induced rats. The summary-data-based MR (SMR) results showed that PPARG mRNA expression in blood or kidney was not associated with kidney stone risk, and thus we performed mediation MR of PPARG agonists, circulating metabolites, and kidney stones. Among 249 circulating metabolites, we identified an indirect effect of PPARG agonists on kidney stones through increasing phospholipids to total lipids ratio in very large VLDL, with a mediated proportion of 6.87% (P = 0.018). Our study provided evidence that PPARG agonists reduced the risk of kidney stones partially via regulating lipid metabolism, and PPARG agonists may be a promising study subject in clinical studies for the prevention of kidney stones.
Collapse
Affiliation(s)
- Maolan Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cheng He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hao Yu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Youjie Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Liang Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Minghui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Meng Gao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jian Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Feng Zeng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shilong Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, 06519, USA.
| |
Collapse
|
22
|
Kim JE, Lee JW, Cha GD, Yoon JK. The Potential of Mesenchymal Stem Cell-Derived Exosomes to Treat Diabetes Mellitus. Biomimetics (Basel) 2025; 10:49. [PMID: 39851765 PMCID: PMC11760843 DOI: 10.3390/biomimetics10010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Diabetes mellitus (DM) is a fatal metabolic disease characterized by persistent hyperglycemia. In recent studies, mesenchymal stem cell (MSC)-derived exosomes, which are being investigated clinically as a cell-free therapy for various diseases, have gained attention due to their biomimetic properties that closely resemble natural cellular communication systems. These MSC-derived exosomes inherit the regenerative and protective effects from MSCs, inducing pancreatic β-cell proliferation and inhibiting apoptosis, as well as ameliorating insulin resistance by suppressing the release of various inflammatory cytokines. Consequently, MSC-derived exosomes have attracted attention as a novel treatment for DM as an alternative to stem cell therapy. In this review, we will introduce the potential of MSC-derived exosomes for the treatment of DM by discussing the studies that have used MSC-derived exosomes to treat DM, which have shown therapeutic effects in both type 1 and type 2 DM.
Collapse
Affiliation(s)
| | | | | | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea (G.D.C.)
| |
Collapse
|
23
|
Guerrero-Becerra L, Morimoto S, Arrellano-Ordoñez E, Morales-Miranda A, Guevara-Gonzalez RG, Feregrino-Pérez AA, Lomas-Soria C. Polyphenolic Compounds in Fabaceous Plants with Antidiabetic Potential. Pharmaceuticals (Basel) 2025; 18:69. [PMID: 39861134 PMCID: PMC11768933 DOI: 10.3390/ph18010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic non-communicable disease with an increasing prevalence in Latin America and worldwide, impacting various social and economic areas. It causes numerous complications for those affected. Current treatments for diabetes include oral hypoglycemic drugs, which can lead to adverse effects and health complications. Other natural alternatives for DM treatment have been studied as adjunct therapies that could reduce or eliminate the need for antidiabetic medications. Several natural supplements may offer an alternative way to improve the quality of life for patients with DM, and they may have other nutraceutical applications. Due to their phenolic compound content, some leguminous substances have been proposed as these alternatives. Phenolic compounds, with their high antioxidant activity, have shown promising potential in insulin synthesis, secretion, and the functionality of the endocrine pancreas. This review provides valuable information on various leguminous plants with anti-diabetic properties, including antioxidant, hypoglycemic, anti-fat-induced damage, and anti-apoptotic properties in vitro and in vivo, attributed to the high content of phenolic compounds in their seeds. Natural products with antidiabetic and pharmacological treatment potential improve diabetes management by offering more effective and complementary alternatives. To integrate these herbal remedies into modern medicine, further research on phenolic compound type, doses, efficacy, and safety in the human population is needed.
Collapse
Affiliation(s)
- Lucia Guerrero-Becerra
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazacala-Chichimequillas km 1.0, El Marqués, Querétaro 76265, Mexico; (L.G.-B.); (E.A.-O.); (R.G.G.-G.)
- Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués, Querétaro 76265, Mexico
| | - Sumiko Morimoto
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (S.M.); (A.M.-M.)
| | - Estefania Arrellano-Ordoñez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazacala-Chichimequillas km 1.0, El Marqués, Querétaro 76265, Mexico; (L.G.-B.); (E.A.-O.); (R.G.G.-G.)
| | - Angélica Morales-Miranda
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (S.M.); (A.M.-M.)
| | - Ramón G. Guevara-Gonzalez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazacala-Chichimequillas km 1.0, El Marqués, Querétaro 76265, Mexico; (L.G.-B.); (E.A.-O.); (R.G.G.-G.)
| | - Ana Angélica Feregrino-Pérez
- Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués, Querétaro 76265, Mexico
| | - Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (S.M.); (A.M.-M.)
| |
Collapse
|
24
|
Tiwari RK, Ahmad A, Chadha M, Saha K, Verma H, Borgohain K, Shukla R. Modern-Day Therapeutics and Ongoing Clinical Trials against Type 2 Diabetes Mellitus: A Narrative Review. Curr Diabetes Rev 2025; 21:59-74. [PMID: 38766831 DOI: 10.2174/0115733998294919240506044544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES Diabetes Mellitus (DM) is a global health concern that affects millions of people globally. The present review aims to narrate the clinical guidelines and therapeutic interventions for Type 2 Diabetes Mellitus (T2DM) patients. Furthermore, the present work summarizes the ongoing phase 1/2/3 and clinical trials against T2DM. METHODS A meticulous and comprehensive literature review was performed using various databases, such as PubMed, MEDLINE, Clinical trials database (https://clinicaltrials.gov/), and Google Scholar, to include various clinical trials and therapeutic interventions against T2DM. RESULTS Based on our findings, we concluded that most T2DM-associated clinical trials are interventional. Anti-diabetic therapeutics, including insulin, metformin, Dipeptidyl Peptidase-4 (DPP-4) inhibitors, Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs), and Sodium- Glucose cotransporter-2 (SGLT-2) inhibitors are frontline therapeutics being clinically investigated. Currently, the therapeutics in phase IV clinical trials are mostly SGLT-2 inhibitors, implicating their critical contribution to the clinical management of T2DM. CONCLUSION Despite the success of T2DM treatments, a surge in innovative treatment options to reduce diabetic consequences and improve glycemic control is currently ongoing. More emphasis needs to be on exploring novel targeted drug candidates that can offer more sustained glycemic control.
Collapse
Affiliation(s)
- Rohit Kumar Tiwari
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Afza Ahmad
- Department of Public Health, Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Muskan Chadha
- Department of Nutrition & Dietetics, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Kingshuk Saha
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Harshitha Verma
- Department of Science in Biochemistry, Manasagangothri, University of Mysuru, Mysuru, 570006, Karnataka, India
| | - Kalpojit Borgohain
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Ratnakar Shukla
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| |
Collapse
|
25
|
Maharajan N, Kim KH, Vijayakumar KA, Cho GW. Unlocking Therapeutic Potential: Camphorquinone's Role in Alleviating Non-Alcoholic Fatty Liver Disease via SIRT1/LKB1/AMPK Pathway Activation. Tissue Eng Regen Med 2025; 22:129-144. [PMID: 39680356 PMCID: PMC11712022 DOI: 10.1007/s13770-024-00684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a pathological condition that increase the risk of simple steatosis to hepatocellular carcinoma. This study aimed to investigate the biological effects of camphorquinone (CQ) in a high-fat diet (HFD)-fed and low dose streptozotocin (STZ)-induced mouse model, widely used to mimic the concurrent development of NAFLD pathological conditions in vivo, and a free fatty acid-induced hepatic steatosis cell model in vitro. METHODS CQ (10 or 30 mg/kg/day; i.p.) was injected for three weeks, and fasting blood glucose levels, glucose tolerance, and liver lipid metabolism were assessed. RESULTS CQ administration alleviated the increase in body and liver weights and improved glucose tolerance in NAFLD mice model. CQ also reduced the gene expression levels of lipid biosynthesis and inflammation markers, while increasing the levels of fatty acid oxidation markers in liver tissues and HepG2 cells. These beneficial effects of CQ were mediated via activation of the sirtuin 1 (SIRT1)/adenosine monophosphate-activated protein kinase (AMPK) signalling pathway in vitro and in vivo. CONCLUSION Collectively, our data suggest that CQ improves liver lipid metabolism and reduces blood glucose levels via activation of the SIRT1/serine/threonine kinase 11 (STK11/LKB1)/AMPK axis.
Collapse
Affiliation(s)
- Nagarajan Maharajan
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kil Hwan Kim
- Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, 05368, Korea
| | - Karthikeyan A Vijayakumar
- Department of Biological Science, College of Natural Sciences, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 501-759, Korea
- The Basic Science Institute of Chosun University, Chosun University, Gwangju, 61452, Korea
| | - Gwang-Won Cho
- Department of Biological Science, College of Natural Sciences, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 501-759, Korea.
- The Basic Science Institute of Chosun University, Chosun University, Gwangju, 61452, Korea.
- Department of Integrative Biological Science, BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Korea.
| |
Collapse
|
26
|
Forouzanmehr B, Hemmati MA, Atkin SL, Jamialahmadi T, Yaribeygi H, Sahebkar A. GLP-1 mimetics and diabetic ketoacidosis: possible interactions and clinical consequences. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:351-362. [PMID: 39172148 DOI: 10.1007/s00210-024-03384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Diabetic ketoacidosis is a serious diabetes-related consequence that occurs in type 1 diabetes and less commonly in type 2 diabetes and is a major cause of death. It results from the metabolic consequences due to a lack of insulin secretion or impaired insulin activity in diabetes leading to dysregulated pathophysiologic pathways resulting in excessive ketone body formation. While ketone bodies are physiologic molecules, their high levels reduce the physiological pH of the blood and induce ketoacidosis, leading to increasing metabolic dysfunction. Glucagon-like peptide-1 (GLP-1) mimetics are a class of recently developed diabetes therapy that do not lead to hypoglycemic, but some reports have suggested a relationship between GLP-1 mimetics and ketogenesis. To clarify the possible interactions between GLP-1 mimetics and ketogenesis in diabetes, this review was undertaken to collate and interpret the literature.
Collapse
Affiliation(s)
- Behina Forouzanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Roy S, Pattanaik PP, K M N, Moitra P, Dandela R. Rational design and syntheses of naphthalimide-based fluorescent probes for targeted detection of diabetes biomarkers. Bioorg Chem 2025; 154:108013. [PMID: 39652983 DOI: 10.1016/j.bioorg.2024.108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
Diabetes poses serious health risks, leading to complications such as liver damage, renal issues, and heart inflammation. Diagnosis typically relies on blood sugar level testing, but qualitative markers like obesity and fatigue often manifest only after prolonged illness. To address the delay in diagnosis, the development of fluorescent probes has drawn the key attention. This review examines the recent advancements especially on Naphthalimide (NM) based fluorescent construct for detecting biomolecular changes related to diabetes and its complications. For the first time this review discusses the synthetic methods and design principles for these probes, providing valuable insights for researchers focused on diabetes treatment and probe development, and laying the groundwork for future clinical applications of these probes in early diabetes diagnosis and intervention.
Collapse
Affiliation(s)
- Sanjukta Roy
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Piyusa Priyadarsan Pattanaik
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Neethu K M
- Department of Chemical Sciences, Indian Institute of Science and Education Research Berhampur, Odisha 760003, India
| | - Parikshit Moitra
- Department of Chemical Sciences, Indian Institute of Science and Education Research Berhampur, Odisha 760003, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
28
|
Den Hartogh DJ, MacPherson REK, Tsiani E. Muscle cell palmitate-induced insulin resistance, JNK, IKK/NF-κB, and STAT3 activation are attenuated by carnosic and rosmarinic acid. Appl Physiol Nutr Metab 2025; 50:1-14. [PMID: 39805098 DOI: 10.1139/apnm-2024-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The worldwide epidemic of obesity has drastically worsened with the increase in more sedentary lifestyles and increased consumption of fatty foods. Increased blood free fatty acids, often observed in obesity, lead to impaired insulin action, and promote the development of insulin resistance and type 2 diabetes mellitus. c-Jun N-terminal kinase (JNK), inhibitor of kappa B (IκB) kinase (IKK)-nuclear factor-kappa B (NF-κB), and signal transducer and activator of transcription 3 (STAT3) are known to be involved in skeletal muscle insulin resistance. We reported previously that carnosic acid (CA) and rosmarinic acid (RA) attenuated the palmitate-induced skeletal muscle insulin resistance, an effect that was associated with increased AMPK activation and reduced mammalian target of rapamycin-p70S6K signaling. In the present study, we examined the effects of CA and RA on JNK, IKK-NF-κB, and STAT3. Exposure of cells to palmitate increased the phosphorylation/activation of JNK, IKKα/β, IκBα, NF-κBp65, and STAT3. Importantly, CA and RA attenuated the deleterious effects of palmitate. Our data indicate that CA and RA have the potential to counteract the palmitate-induced skeletal muscle cell insulin resistance by modulating JNK, IKK-NF-κB, and STAT3 signaling.
Collapse
Affiliation(s)
- Danja J Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
29
|
Mohamed HA, Mohamed NA, Macasa SS, Basha HK, Adan AM, Crovella S, Ding H, Triggle CR, Marei I, Abou-Saleh H. Metformin-loaded nanoparticles reduce hyperglycemia-associated oxidative stress and induce eNOS phosphorylation in vascular endothelial cells. Sci Rep 2024; 14:30870. [PMID: 39730492 DOI: 10.1038/s41598-024-81427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024] Open
Abstract
Diabetes mellitus is a chronic disease characterized by metabolic defects, including insulin deficiency and resistance. Individuals with diabetes are at increased risk of developing cardiovascular complications, such as atherosclerosis, coronary artery disease, and hypertension. Conventional treatment methods, though effective, are often challenging, costly, and may lead to systemic side effects. This study explores the potential of nanomedicine applications, specifically Metal-Organic Frameworks (MOFs), as drug carriers to overcome these limitations. The Materials Institute Lavoisier-89 nanoparticles (nanoMIL-89) have previously demonstrated promise as a drug delivery vehicle for chronic diseases due to their anti-oxidant and cardio-protective properties. In this investigation, nanoMIL-89 was loaded with the anti-diabetic drug metformin (MET), creating MET@nanoMIL-89 formulation. We examined the drug release kinetics of MET@nanoMIL-89 over 96 h and assessed its impact on the viability of various endothelial cells. Furthermore, we investigated the nanoformulation effect on the inflammatory marker CXCL8 in these cells and explored its influence on phosphorylated eNOS, total eNOS, and AKT levels. Our findings indicate that nanoMIL-89 effectively released metformin over 96 h and caused a concentration-dependent reduction in CXCL8 release from endothelial cells. Notably, MET@nanoMIL-89 reduced dihydroethidium levels and increased phosphorylated eNOS, total eNOS, and AKT levels. Our results underscore the potential of nanoMIL-89 as a versatile potential drug delivery platform for anti-diabetic drugs, offering a prospective therapeutic approach for diabetic patients with associated cardiovascular complications.
Collapse
Affiliation(s)
- Hana A Mohamed
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
| | - Nura A Mohamed
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
| | - Shantelle S Macasa
- Biological and Environmental Sciences Department, Qatar University, PO Box 2713, Doha, Qatar
| | - Hamda K Basha
- Biological and Environmental Sciences Department, Qatar University, PO Box 2713, Doha, Qatar
| | - Adna M Adan
- Biological and Environmental Sciences Department, Qatar University, PO Box 2713, Doha, Qatar
| | - Sergio Crovella
- Laboratory Animal Research Center, Qatar University, PO Box 2713, Doha, Qatar
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Doha, Qatar
| | - Christopher R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Doha, Qatar.
- Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, SW7 2AZ, UK.
| | - Haissam Abou-Saleh
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
30
|
Wang T, Tao W, Kou X, Zhao L, Sun P, Lu G. Bi 2Sn 2O 7 Overlayer Assists Bilayer Chemiresistor in Humidity-Independent and Highly Selective Detection of Expiratory Acetone. ACS Sens 2024; 9:6717-6727. [PMID: 39680889 DOI: 10.1021/acssensors.4c02378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Constructing a bilayer structure has not been reported as a method to mitigate the adverse effect of water poisoning on oxide chemiresistors while simultaneously enhancing gas selectivity and sensitivity. To address this challenge, pyrochlore-Bi2Sn2O7 has been first utilized as an overlayer on a ZnO sensing layer for constructing a bilayer acetone chemiresistor, leading to remarkable improvement in the performance for trace-level (500 p-p-b) acetone detection under high humidity (80% relative humidity). In addition, owing to the catalytic predecompositions of ethanol across the overlayer, an outstanding acetone gas selectivity (Sacetone/Sethanol = 2.9) has been achieved, with a more than 4-fold improvement compared with monolayer ZnO chemiresistor (Sacetone/Sethanol = 0.7). More significantly, comprehensive experiments coupled with in situ characterizations have verified the generation of hydroxyl radicals (•OH) on the Bi2Sn2O7 overlayer. These radicals are capable of enhancing the kinetics between •OH and acetone, reducing the activation energy required for the gas sensing reaction, and thus leading to an unexpected phenomenon of enhanced acetone sensitivity under high humid conditions (Sacetone at 80% RH > Sacetone at 5% RH). These demonstrations offer crucial insight into the precise design of highly efficient overlayers for breath sensing.
Collapse
Affiliation(s)
- Tianshuang Wang
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wei Tao
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xueying Kou
- School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 13000, China
| | - Liupeng Zhao
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Peng Sun
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Geyu Lu
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
31
|
Khashayar P, Rad FF, Tabatabaei-Malazy O, Golabchi SM, Khashayar P, Mohammadi M, Ebrahimpour S, Larijani B. Hypoglycemic agents and bone health; an umbrella systematic review of the clinical trials' meta-analysis studies. Diabetol Metab Syndr 2024; 16:310. [PMID: 39716250 DOI: 10.1186/s13098-024-01518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/09/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND No clear consensus exists regarding the safest anti-diabetic drugs with the least adverse events on bone health. This umbrella systematic review therefore aims to assess the published meta-analysis studies of randomized controlled trials (RCTs) conducted in this field. METHODS All relevant meta-analysis studies of RCTs assessing the effects of anti-diabetic agents on bone health in patients with diabetes mellitus (DM) were collected in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). English articles published until 15 March 2023 were collected through the search of Cochrane Library, Scopus, ISI Web of Sciences, PubMed, and Embase using the terms "Diabetes mellitus", "anti-diabetic drugs", "Bone biomarker", "Bone fracture, "Bone mineral density" and their equivalents. The methodological and evidence quality assessments were performed for all included studies. RESULTS From among 2220 potentially eligible studies, 71 meta-analyses on diabetic patients were included. Sodium-glucose cotransporter-2 inhibitors (SGLT-is) showed no or equivalent effect on the risk of fracture. Dipeptidyl peptidase-4 inhibitors (DPP-4is) and Glucagon-like peptide-1 receptor agonists (GLP-1Ras) were reported to have controversial effects on bone fracture, with some RCTs pointing out the bone protective effects of certain members of these two medication classes. Thiazolidinediones (TZDs) were linked with increased fracture risk as well as higher concentrations of C-terminal telopeptide of type I collagen (CTx), a bone resorption marker. CONCLUSION The present systematic umbrella review observed varied results on the association between the use of anti-diabetic drugs and DM-related fracture risk. The clinical efficacy of various anti-diabetic drugs, therefore, should be weighed against their risks and benefits in each patient.
Collapse
Affiliation(s)
- Pouria Khashayar
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Farid Farahani Rad
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara MohammadHosseinzadeh Golabchi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Patricia Khashayar
- Department of Chemistry, Ghent University, Krijgslaan 281-S12, 9000, Gent, Belgium.
| | - Mehdi Mohammadi
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Sholeh Ebrahimpour
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Yarahmadi A, Afkhami H, Javadi A, Kashfi M. Understanding the complex function of gut microbiota: its impact on the pathogenesis of obesity and beyond: a comprehensive review. Diabetol Metab Syndr 2024; 16:308. [PMID: 39710683 PMCID: PMC11664868 DOI: 10.1186/s13098-024-01561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
Obesity is a multifactorial condition influenced by genetic, environmental, and microbiome-related factors. The gut microbiome plays a vital role in maintaining intestinal health, increasing mucus creation, helping the intestinal epithelium mend, and regulating short-chain fatty acid (SCFA) production. These tasks are vital for managing metabolism and maintaining energy balance. Dysbiosis-an imbalance in the microbiome-leads to increased appetite and the rise of metabolic disorders, both fuel obesity and its issues. Furthermore, childhood obesity connects with unique shifts in gut microbiota makeup. For instance, there is a surge in pro-inflammatory bacteria compared to children who are not obese. Considering the intricate nature and variety of the gut microbiota, additional investigations are necessary to clarify its exact involvement in the beginnings and advancement of obesity and related metabolic dilemmas. Currently, therapeutic methods like probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), dietary interventions like Mediterranean and ketogenic diets, and physical activity show potential in adjusting the gut microbiome to fight obesity and aid weight loss. Furthermore, the review underscores the integration of microbial metabolites with pharmacological agents such as orlistat and semaglutide in restoring microbial homeostasis. However, more clinical tests are essential to refine the doses, frequency, and lasting effectiveness of these treatments. This narrative overview compiles the existing knowledge on the multifaceted role of gut microbiota in obesity and much more, showcasing possible treatment strategies for addressing these health challenges.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Ali Javadi
- Department of Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran.
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Zhao Y, Fei L, Duan Y. Movement disorders related to antidiabetic medications: a real-world pharmacovigilance study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111128. [PMID: 39181309 DOI: 10.1016/j.pnpbp.2024.111128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Diabetic Mellitus (DM) has progressively emerged as a worldwide health problem, leading to the widespread deployment of antidiabetic drugs as the primary therapy in the global population. The incidence of diabetes medications-related movement disorders (drMD) is noteworthy but underestimated by clinical practitioners. RESEARCH DESIGN AND METHODS In order to address the incidence of drMD in DM patients and realize the serious outcomes associated with drMD, we conducted a real-world pharmacovigilance study of 612,043 DM patients using the FDA Adverse Event Reporting System (FAERS) database from January 2004 to September 2023. Reporting Odd Ratio (ROR) was calculated to reflect the risk of drMD. A multivariable logistic regression analysis was employed to adjust crude ROR with the mixed factors including age, sex and various antidiabetic treatments. Afterward, a Mendelian Randomization (MR) study was performed to elucidate the underlying genetic correlation between the genetically proxied targets of antidiabetic drugs and motor disorders. RESULTS Among 11,729 cases of motor adverse events in DM patients, six categories of drMD were significantly associated with DM medications. Noticeably, metformin was revealed to drastically increase the incidence of parkinsonism (adjusted ROR:3.97; 95 %CI (3.03, 5.19), p = 5.68e-24), bradykinesia (adjusted ROR:1.69; 95 %CI (1.07,2.59), p = 0.02) and irregular hyperkinesia, including chorea, choreoathetosis and athetosis. Insulin/insulin analogues and GLP-1 analogues presented notably higher odds of tremor: the adjusted ROR (aROR) of insulin and GLP-1 analogue is respectively 1.24 (95 %CI (1.15,1.34), p = 2.51e-08) and 1.78 (95 %CI (1.65,1.91), p = 5.64e-54). The combined therapeutic effects of multiple genetic variants of metformin, especially AMP-activated protein kinase (AMPK) were markedly linked to a greater likelihood of developing secondary parkinsonism (OR:10.816, p = 0.049) according to MR analyses. CONCLUSION The use of antidiabetic medications was significantly related to an increased incidence of movement disorders in DM patients. Moreover, MR analyses provided further genetic evidence for the pharmacovigilance study. This comprehensive investigation might help physicians recognize neurological adverse events associated with antidiabetic treatments and administer effective interventions.
Collapse
Affiliation(s)
- Yingjie Zhao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Henan Province 450053, China; Department of Geriatrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan Province 450053, China
| | - Lu Fei
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Henan Province 450053, China; Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Henan Province 450053, China
| |
Collapse
|
34
|
Kumar N, Kaur K, Kaur Jassal A, Bedi PMS. Flavin mononucleotide, a potent inhibitor of insulin-degrading enzyme: an in-silico study. J Biomol Struct Dyn 2024:1-11. [PMID: 39659241 DOI: 10.1080/07391102.2024.2440146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/13/2024] [Indexed: 12/12/2024]
Abstract
Diabetes Mellitus is a metabolic disorder which has affected over 476 million people globally with projections indicating a further increase in this number. Despite the availability of treatment therapies, maintaining optimal blood glucose levels remains a critical task. During literature survey, we came across Insulin degrading enzyme (IDE) which is responsible for insulin degradation in the body and inhibition of this enzyme could increase the bioavailability of insulin in the body. Therefore, a library of phytoconstituents isolated from anti-diabetic plants was prepared and screened against the IDE by using various in silico tools. This screening suggested Flavin mononucleotide (derivative of Vitamin B12) to possess the highest affinity towards IDE which interacted with a binding energy value of -332.686 kcal/mol. Moreover, molecular dynamic simulations and MMGBSA studies confirms the stability of Compound Flavin mononucleotide-IDE complex for at least 200 ns. These findings suggest that Compound Flavin mononucleotide has ability to halt the activity of this enzyme, but this study also underscores the need for confirming the anti-diabetic action of Flavin mononucleotide via in vitro assay and subsequent in vivo studies.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anupmjot Kaur Jassal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
35
|
Wang Y, Yu J, Chen B, Jin W, Wang M, Chen X, Jian M, Sun L, Piao C. Bile acids as a key target: traditional Chinese medicine for precision management of insulin resistance in type 2 diabetes mellitus through the gut microbiota-bile acids axis. Front Endocrinol (Lausanne) 2024; 15:1481270. [PMID: 39720247 PMCID: PMC11666381 DOI: 10.3389/fendo.2024.1481270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease caused by insulin resistance (IR) and insufficient insulin secretion. Its characteristic pathophysiological processes involve the interaction of multiple mechanisms. In recent years, globally, the prevalence of T2DM has shown a sharp rise due to profound changes in socio-economic structure, the persistent influence of environmental factors, and the complex role of genetic background. It is worth noting that most T2DM patients show significant IR, which further exacerbates the difficulty of disease progression and prevention. In the process of extensively exploring the pathogenesis of T2DM, the dynamic equilibrium of gut microbes and its diverse metabolic activities have increasingly emphasized its central role in the pathophysiological process of T2DM. Bile acids (BAs) metabolism, as a crucial link between gut microbes and the development of T2DM, not only precisely regulates lipid absorption and metabolism but also profoundly influences glucose homeostasis and energy balance through intricate signaling pathways, thus playing a pivotal role in IR progression in T2DM. This review aims to delve into the specific mechanism through which BAs contribute to the development of IR in T2DM, especially emphasizing how gut microbes mediate the metabolic transformation of BAs based on current traditional Chinese medicine research. Ultimately, it seeks to offer new insights into the prevention and treatment of T2DM. Diet, genetics, and the environment intricately sculpt the gut microbiota and BAs metabolism, influencing T2DM-IR. The research has illuminated the significant impact of single herbal medicine, TCM formulae, and external therapeutic methods such as electroacupuncture on the BAs pool through perturbations in gut microbiota structure. This interaction affects glucose and lipid metabolism as well as insulin sensitivity. Additionally, multiple pathways including BA-FXR-SHP, BA-FXR-FGFR15/19, BA-FXR-NLRP3, BA-TGR5-GLP-1, BAs-TGR5/FXR signaling pathways have been identified through which the BAs pool significantly alter blood glucose levels and improve IR. These findings offer novel approaches for enhancing IR and managing metabolic disorders among patients with T2DM.
Collapse
Affiliation(s)
- Yu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jing Yu
- Department of Endocrinology, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Binqin Chen
- Applicants with Equivalent Academic Qualifications for Master Degree, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meili Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengqiong Jian
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chunli Piao
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
36
|
Zheng X, Zhu J, Haedi AR, Zhou M. The effect of curcumin supplementation on glycemic indices in adults: A meta-analysis of meta-analyses. Prostaglandins Other Lipid Mediat 2024; 175:106908. [PMID: 39270815 DOI: 10.1016/j.prostaglandins.2024.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Curcumin, an inherent polyphenolic compound, has the potential to influence glycemic indices. Nevertheless, the conclusions drawn from extant meta-analyses remain contentious. To determine the impact of curcumin supplementation on these indices, the current umbrella meta-analysis included existing systematic reviews and meta-analyses. A thorough systematic search was conducted using databases Embase, PubMed, WOS, Scopus, and the Cochrane Library to acquire peer-reviewed literature published before January 2024. The random-effects model was employed to conduct a meta-analysis. The present analysis incorporated a total of 22 meta-analytic studies. The findings of our study indicate that the administration of curcumin supplements leads to a significant decrease in fasting blood sugar levels (FBS) (ES: -1.63; 95 % CI: -2.36, -0.89, P<0.001; I2=88.4 %, P<0.001), homeostasis model assessment-estimated insulin resistance (HOMA-IR) (ES: -0.38; 95 % CI: -0.48, -0.28, P<0.001; I2=35.9 %, P=0.142), hemoglobin A1c (HbA1c) (ES: -0.44; 95 % CI: -0.67, -0.21, P<0.001; I2=65.0 %, P=0.014), and insulin (ES: -0.86; 95 % CI: -1.52, -0.21, P=0.010; I2=92.5 %, P<0.001). The results of this study suggest that the administration of curcumin supplements may be a beneficial intervention for enhancing glycemic indices.
Collapse
Affiliation(s)
- Xiaoying Zheng
- Nursing Department, First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jinhua Zhu
- Second Department of Surgery, First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Amir Reza Haedi
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miaomiao Zhou
- Third Department of Surgery, First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
37
|
Roslizawaty R, Abrar M, Khairan K, Gholib G, Siregar TN, Syafruddin S, Sutriana A, Azzahra P, Aini H. Potential of ant nest extract ( Hydnophytum formicarum) for protection of testicular morphometry, epididymal functions, and sperm quality in male rats with alloxan- induced diabetes. NARRA J 2024; 4:e922. [PMID: 39816055 PMCID: PMC11731819 DOI: 10.52225/narra.v4i3.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 01/30/2025]
Abstract
Medicinal herbs, such as the ant nest plant (Hydnophytum formicarum), are promising for the management of diabetes mellitus-associated infertility. The aim of this study was to evaluate the biological activity of the ant nest plant and its capacity to mitigate the adverse effects of alloxan-induced diabetes on testicular morphology, epididymal function, and sperm quality in male rats. The tuber of the ant nest plant was extracted using methanol and then subjected to phytochemical screenings. For the experiment, 20 male white rats (Rattus norvegicus), aged 3-4 months and weighing 150-200 g, were equally divided into four groups. The ant nest extract was administered orally using oral gavage over 14 days. The testes, epididymis, and sperm were collected for weighing, morphometric measurements, and quality evaluation. Qualitative testing of phytochemical compounds indicated the presence of flavonoids, tannins, steroids, terpenoids, and phenolic compounds in the plants. The results revealed the protective effects of ant nest extract against the adverse fertility effects induced by alloxan and a high- fat diet, as observed in testicular weight (p=0.045), epididymal weight (p=0.041), and sperm quality (p>0.05).
Collapse
Affiliation(s)
- Roslizawaty Roslizawaty
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Laboratory of Clinic, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Mahdi Abrar
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Khairan Khairan
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Gholib Gholib
- Laboratory of Physiology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Tongku N. Siregar
- Laboratory of Reproduction, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Syafruddin Syafruddin
- Laboratory of Clinic, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Amalia Sutriana
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Putri Azzahra
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Hanipah Aini
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
38
|
Al-Masri AA, Ameen F, Davella R, Mamidala E. Antidiabetic effect of flavonoid from Rumex vesicarius on alloxan induced diabetes in Male Albino Wistar rats and its validation through in silico molecular docking and dynamic simulation studies. Biotechnol Genet Eng Rev 2024; 40:4479-4494. [PMID: 37191034 DOI: 10.1080/02648725.2023.2213042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
The leaves of Rumex vescarius L. are used locally to treat diabetes, a chronic illness. A flavonoid called Luteolin from R. vesicarius was chosen to explore for the antidiabetic potential through the in vivo antidiabetic test against male albino Wistar rats that had been induced with diabetes due to alloxan. Additionally, docking screening was carried out with the aid of autodock software to identify probable moiety that might be in charge of its anti-diabetic effect. Given at a dose of 100 mg/kg body weight, luteolin from R. vesicarius leaves had a significant (p < 0.05) hypoglycaemic impact after just one week. The blood glucose level significantly decreased during the third week (p < 0.05). All provided doses of luteolin from R. vesicarius leaves resulted in a reduction, however on all study days, the highest concentration (400 mg/kg body weight) produced the biggest reduction. The results of luteolin's molecular docking and dynamic modelling studies with a variety of targets revealed significant binding interactions at the active site binding pocket, with the target α-glucosidase having the highest binding affinity (-9.35 kcal/mol). In conclusion, the plant and the flavonoid luteolin it contains have potent anti-diabetic properties, possibly through an interaction with the enzyme α-glucosidase.
Collapse
Affiliation(s)
- Abeer A Al-Masri
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rakesh Davella
- Infectious Diseases Research Lab, Department of Zoology, Kakatiya University, Warangal, India
| | - Estari Mamidala
- Infectious Diseases Research Lab, Department of Zoology, Kakatiya University, Warangal, India
| |
Collapse
|
39
|
Siam NH, Snigdha NN, Tabasumma N, Parvin I. Diabetes Mellitus and Cardiovascular Disease: Exploring Epidemiology, Pathophysiology, and Treatment Strategies. Rev Cardiovasc Med 2024; 25:436. [PMID: 39742220 PMCID: PMC11683709 DOI: 10.31083/j.rcm2512436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025] Open
Abstract
Diabetes mellitus (DM) affects 537 million people as of 2021, and is projected to rise to 783 million by 2045. This positions DM as the ninth leading cause of death globally. Among DM patients, cardiovascular disease (CVD) is the primary cause of morbidity and mortality. Notably, the prevalence rates of CVD is alarmingly high among diabetic individuals, particularly in North America and the Caribbean (46.0%), and Southeast Asia (42.5%). The predominant form of CVD among diabetic patients is coronary artery disease (CAD), accounting for 29.4% of cases. The pathophysiology of DM is complex, involving insulin resistance, β-cell dysfunction, and associated cardiovascular complications including diabetic cardiomyopathy (DCM) and cardiovascular autonomic neuropathy (CAN). These conditions exacerbate CVD risks underscoring the importance of managing key risk factors including hypertension, dyslipidemia, obesity, and genetic predisposition. Understanding the genetic networks and molecular processes that link diabetes and cardiovascular disease can lead to new diagnostics and therapeutic interventions. Imeglimin, a novel mitochondrial bioenergetic enhancer, represents a promising medication for diabetes with the potential to address both insulin resistance and secretion difficulties. Effective diabetes management through oral hypoglycemic agents (OHAs) can protect the cardiovascular system. Additionally, certain antihypertensive medications can significantly reduce the risk of diabetes-related CVD. Additionally, lifestyle changes, including diet and exercise are vital in managing diabesity and reducing CVD risks. These interventions, along with emerging therapeutic agents and ongoing clinical trials, offer hope for improved patient outcomes and long-term DM remission. This study highlights the urgent need for management strategies to address the overlapping epidemics of DM and CVD. By elucidating the underlying mechanisms and risk factors, this study aims to guide future perspectives and enhance understanding of the pathogenesis of CVD complications in patients with DM, thereby guiding more effective treatment strategies.
Collapse
Affiliation(s)
- Nawfal Hasan Siam
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), 1229 Dhaka, Bangladesh
| | - Nayla Nuren Snigdha
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), 1229 Dhaka, Bangladesh
| | - Noushin Tabasumma
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), 1229 Dhaka, Bangladesh
| | - Irin Parvin
- Department of Biomedical Science, School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
| |
Collapse
|
40
|
Talib N, Mohamad NE, Yeap SK, Ho CL, Masarudin MJ, Abd-Aziz S, Izham MNM, Kumar MR, Hussin Y, Alitheen NB. Anti-Diabetic Effect of Lactobacillus Paracasei Isolated from Malaysian Water Kefir Grains. Probiotics Antimicrob Proteins 2024; 16:2161-2180. [PMID: 37755545 DOI: 10.1007/s12602-023-10159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is alarming because it is always linked to the increase in chronic diseases, mortality, and socioeconomic burden. Water kefir has a wide range of functional and probiotic characteristics attributed to the microorganisms present in the kefir grains. The present study aims to evaluate the in vivo anti-diabetic potential of the isolated Lactobacillus paracasei from Malaysian water kefir grains (MWKG) which was reported to have excellent probiotic properties and high antioxidant activities as reported previously. High-fat diet/streptozotocin (HFD/STZ) induction was used to obtain a T2DM model followed by treatment with the isolated L. paracasei from MWKG. The levels of glucose, insulin, and in vivo liver antioxidants were quantified after 14 weeks. Gene expression analysis of the liver was also carried out using microarray analysis, and several genes were selected for validation using quantitative real-time PCR. Insulin tolerance test demonstrated that the L. paracasei isolated from the MWKG alleviated T2DM by improving the area under the curve of the insulin tolerance test whereby low-dose and high-dose concentrations treated groups showed 2424.50 ± 437.02 mmol/L·min and 2017.50 ± 347.09 mmol/L·min, respectively, compared to untreated diabetic mice which was 3884.50 ± 39.36 mmol/L·min. Additionally, treatment with the isolated L. paracasei from MWKG regulated the expression of several genes related to glucose homeostasis and lipid metabolism in diabetic mice. These results suggested that the isolated L. paracasei from MWKG could be a potential dietary supplement for T2DM.
Collapse
Affiliation(s)
- Noorshafadzilah Talib
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Nurul Elyani Mohamad
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Mira Nadiah Mohd Izham
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Muganti Rajah Kumar
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Yazmin Hussin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
41
|
Cuevas-Martínez R, González-Chávez SA, Bermúdez M, Salas-Leiva JS, Vázquez-Olvera G, Hinojos-Gallardo LC, Chaparro-Barrera E, Pacheco-Silva C, Romero-Sánchez C, Villegas-Mercado CE, Pacheco-Tena C. Intermittent fasting reduces inflammation and joint damage in a murine model of rheumatoid arthritis: insights from transcriptomic and metagenomic analyses. BMC Rheumatol 2024; 8:64. [PMID: 39587696 PMCID: PMC11587710 DOI: 10.1186/s41927-024-00436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Intermittent fasting (IF) has shown benefits in various pathological conditions. Although its anti-inflammatory potential has been recognized, its effects on the mechanism underlying rheumatoid arthritis (RA) remain insufficiently characterized. This study aimed to investigate the effects of IF in a murine model of RA. METHODS Collagen-induced arthritis (CIA) was developed in sixteen male DBA/1 mice, randomly assigned to two groups, with one undergoing IF every other day for four weeks. The effects of IF on joint inflammation and remodeling were evaluated clinically, histologically, and through tomography. Transcriptomic changes were characterized using expression microarrays, validated by RT-qPCR, and confirmed by immunohistochemistry. Additionally, modifications in gut microbiota were assessed through 16 S sequencing. RESULTS Mice subjected to IF significantly reduced the incidence and severity of clinical arthritis. Histological and radiographic assessments confirmed a decrease in inflammation and joint damage. Transcriptomic analysis revealed that IF led to the upregulation of 364 genes and the downregulation of 543 genes, with notable reductions in inflammatory signaling pathways associated with RA-related genes, including Cd72, Cd79a, Ifna, Il33, and Bglap 2. Notably, IL33 emerged as a pivotal mediator in the inflammatory processes mitigated by fasting. Key regulators associated with IF effects, such as CEBPA, FOXO1, HIF1A, PPARG, and PPARA, were identified, indicating a complex interplay between metabolic and inflammatory pathways. Furthermore, differential expression of microRNAs and lncRNAs, including miR-15b, miR-103-2, miR-302a, miR-6985, and miR- 5624, was observed. Metagenomic analysis indicated that IF enhanced the abundance and diversity of the gut microbiome, explicitly promoting anti-inflammatory bacterial populations, notably within the genus Ruminococcaceae. CONCLUSION Our findings suggest that IF exerts significant anti-inflammatory and immunoregulatory effects in the context of CIA. Given its non-risky nature, further investigation into the potential benefits of IF in patients with RA is warranted. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Rubén Cuevas-Martínez
- PABIOM Laboratory, Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario Campus II, Chihuahua, CP, 31125, Mexico
| | - Susana Aideé González-Chávez
- PABIOM Laboratory, Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario Campus II, Chihuahua, CP, 31125, Mexico.
| | - Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | - Eduardo Chaparro-Barrera
- PABIOM Laboratory, Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario Campus II, Chihuahua, CP, 31125, Mexico
| | - César Pacheco-Silva
- PABIOM Laboratory, Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario Campus II, Chihuahua, CP, 31125, Mexico
| | - Consuelo Romero-Sánchez
- Cellular and Molecular Immunology Group (INMUBO), School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | | | - César Pacheco-Tena
- PABIOM Laboratory, Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario Campus II, Chihuahua, CP, 31125, Mexico.
| |
Collapse
|
42
|
Zhao J, Zhang Y, Li J, Li Q, Teng Z. Genetic association of type 2 diabetes and antidiabetic drug target with skin cancer. Front Med (Lausanne) 2024; 11:1445853. [PMID: 39640975 PMCID: PMC11617162 DOI: 10.3389/fmed.2024.1445853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Background Several observational studies have suggested that type 2 diabetes (T2D) is a risk factor for skin cancer, and antidiabetic drugs may reduce skin cancer risk. Nevertheless, the findings remain ambiguous. This Mendelian randomization (MR) study aimed to investigate the causal association of T2D with skin cancer and evaluate the potential impact of antidiabetic drug targets on skin cancer. Methods Genetic variants associated with glycated hemoglobin (HbA1c), Type 2 Diabetes (T2D), and antidiabetic drug targets (KCNJ11, ABCC8, PPARG, INSR, GLP1R, SLC5A2, and DPP4) were sourced from genome-wide association studies in the UK Biobank and the DIAMANTE consortium. Genetic summary statistics on skin cancer were obtained from the FinnGen consortium. MR analysis was primarily performed leveraging the inverse-variance weighted method, with additional sensitivity analyses conducted. Summary data-based MR (SMR) was utilized to further investigate the association between antidiabetic drug target gene expression and skin cancer. Colocalization analysis was carried out to verify the robustness of the results. Results Genetically proxied elevated levels of HbA1c were found to be suggestively associated with a reduced risk of melanoma (OR: 0.886, 95% confidence interval (CI): 0.792-0.991, p = 0.0347). Additionally, genetically proxied T2D was notably associated with a lower risk of basal cell carcinoma (OR: 0.960, 95% CI: 0.928-0.992, p = 0.0147). The study also discovered that perturbation of the antidiabetic drug target SLC5A2 was significantly associated with an increased risk of basal cell carcinoma (for SLC5A2 perturbation equivalent to a 6.75 mmol/mol decrement in HbA1c: OR: 2.004, 95% CI: 1.270-3.161, p = 0.0027). However, this finding was not supported by colocalization analysis. Notably, no other drug target perturbations were found to be associated with skin cancer. Furthermore, SMR analysis failed to detect an association between antidiabetic drug target genes and skin cancer. Conclusion The study suggests that higher HbA1c levels and T2D may be associated with a reduced risk of skin cancer. However, the results did not provide evidence to support the association between antidiabetic drug targets and skin cancer. Further evaluation of these drug targets is required to confirm the findings in this analysis.
Collapse
Affiliation(s)
- Juyan Zhao
- Department of Dermatology, Kunming City Maternal and Child Health Hospital, Kunming, China
| | - Yu Zhang
- Department of Dermatology, Ganmei Affiliated Hospital of Kunming Medical University, First People's Hospital of Kunming, Kunming, China
| | - Jianbo Li
- Department of Respiratory, Yan’an Hospital Affiliated to Kunming Medical University, Yan’an Hospital of Kunming City, Kunming, China
| | - Qi Li
- Department of Dermatology, Ganmei Affiliated Hospital of Kunming Medical University, First People's Hospital of Kunming, Kunming, China
| | - Ziyue Teng
- Department of Dermatology, Ganmei Affiliated Hospital of Kunming Medical University, First People's Hospital of Kunming, Kunming, China
| |
Collapse
|
43
|
Zhang H, Wang C, Xu T, Liu L, Ban X, Liu W, Yan C, Han X. Benchmarking the medication efficiency and technological progress of diabetes drugs. Front Public Health 2024; 12:1396832. [PMID: 39583077 PMCID: PMC11582034 DOI: 10.3389/fpubh.2024.1396832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Background Diabetes poses a serious global challenge, given its increasing prevalence, detrimental effects on public health, and substantial economic burden. Since 1950s, tens of drugs have been approved by the United States (US) Food and Drug Administration (FDA). In the past decade, the medical community and regulatory agencies have moved away from the glucose-centric paradigm and increasingly call for a holistic approach to assess different treatments' benefits and harms. Objective This study aimed to assess the medication efficiency and technological progress of Type 2 Diabetes (T2D) drugs, by considering their physiological outcomes, including both benefits (i.e., glucose lowering and weight loss) and adverse effects (mortality), relative to dosing frequency. Methods To derive medication efficiency, this study utilized data from the US FDA and prominent meta-analyses. Given that both the benefits and adverse effects of medications are multidimensional, this study employed a nonparametric frontier method, the data envelopment analysis (DEA) model, to integrate these factors into a measure of medication efficiency. Physiological outcomes could assume both positive and negative values. Adverse effects were regarded undesirable outputs. The DEA model was built under the framework of directional distance function and was able to handle negative and undesirable values which naturally arose in the case of T2D medications. Results The paper presented a ranking of 20 T2D drugs in terms of medication efficiency. Three of them were able to attain the highest medication efficiency, all of which were in the GLP-1 class, including oral Semaglutide, subcutaneous Semaglutide and Dulaglutide. However, the other two GLP-1 drugs, Lixisenatide and Liraglutide, were less efficient. The average medication efficiency of drugs approved post-2010 was significantly higher than pre-2010 drugs. High dose frequency, low HbA1c reduction and insignificant weight loss were the main driving factors behind inefficiencies. Overall, medication efficiency provided an alternative perspective on treatment effectiveness other than conventional measures such as cost-effectiveness.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Metabolic and Bariatric Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Wang
- Department of Metabolic and Bariatric Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Xu
- Department of Metabolic and Bariatric Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Liu
- Department of Metabolic and Bariatric Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuyan Ban
- Department of Metabolic and Bariatric Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijie Liu
- Department of Metabolic and Bariatric Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenli Yan
- Technological Economics and Management, School of Business Administration, Capital University of Economics and Business, Beijing, China
| | - Xiaodong Han
- Department of Metabolic and Bariatric Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Rabbani SA, El-Tanani M, Matalka II, Rangraze IR, Aljabali AAA, Khan MA, Tambuwala MM. Tirzepatide: unveiling a new dawn in dual-targeted diabetes and obesity management. Expert Rev Endocrinol Metab 2024; 19:487-505. [PMID: 39194153 DOI: 10.1080/17446651.2024.2395540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Incretin-based therapies have emerged as effective treatments for type 2 diabetes (T2D) and obesity. However, not all patients achieve optimal outcomes with existing treatments, highlighting the need for more effective solutions. AREAS COVERED We present a comprehensive evaluation of Tirzepatide (TZP), a novel dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 (GIP/GLP-1) receptor agonist, for managing obesity and T2D. We conducted a systematic search of Cochrane, PubMed, Scopus, and Web of Science databases from inception to April 2024. The focus of the review is on the development and therapeutic potential of TZP, with detailed exploration on pharmacodynamics, pharmacokinetics, clinical efficacy, and safety. Furthermore, it reviews TZP's impacts on glycemic control, weight management, and its potential cardiovascular (CV) benefits. EXPERT OPINION TZP represents a significant advancement in the dual-targeted approach to treating T2D and obesity. Its unique mechanism of action offers superior efficacy in reducing glycemic levels and body weight compared to existing therapies. New data suggesting improvements in CV outcomes indicate that TZP could set a new standard in the treatment paradigm. While long-term data on efficacy and safety are still forthcoming, current evidence positions TZP as a promising option for patients who have not reached their therapeutic goals with existing treatments.
Collapse
Affiliation(s)
- Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ismail I Matalka
- RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Department of Pathology and Microbiology, Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Imran Rashid Rangraze
- Internal Medicine Department, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
45
|
Ghareghomi S, Arghavani P, Mahdavi M, Khatibi A, García-Jiménez C, Moosavi-Movahedi AA. Hyperglycemia-driven signaling bridges between diabetes and cancer. Biochem Pharmacol 2024; 229:116450. [PMID: 39059774 DOI: 10.1016/j.bcp.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Growing epidemiological evidence indicates an association between obesity, type 2 diabetes, and certain cancers, suggesting the existence of common underlying mechanisms in these diseases. Frequent hyperglycemias in type 2 diabetes promote pro-inflammatory responses and stimulate intracellular metabolic flux which rewires signaling pathways and influences the onset and advancement of different types of cancers. Here, we review the provocative impact of hyperglycemia on a subset of interconnected signalling pathways that regulate (i) cell growth and survival, (ii) metabolism adjustments, (iii) protein function modulation in response to nutrient availability (iv) and cell fate and proliferation and which are driven respectively by PI3K (Phosphoinositide 3-kinase), AMPK (AMP-activated protein kinase), O-GlcNAc (O-linked N-acetylglucosamine) and Wnt/β-catenin. Specifically, we will elaborate on their involvement in glucose metabolism, inflammation, and cell proliferation, highlighting their interplay in the pathogenesis of diabetes and cancer. Furthermore, the influence of antineoplastic and antidiabetic drugs on the unbridled cellular pathways will be examined. This review aims to inspire the next molecular studies to understand how type 2 diabetes may lead to certain cancers. This will contribute to personalized medicine and direct better prevention strategies.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos. Alcorcón, Madrid, Spain.
| | - Ali A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran, Iran.
| |
Collapse
|
46
|
Fan S, Liu Q, Du Q, Zeng X, Wu Z, Pan D, Tu M. Multiple roles of food-derived bioactive peptides in the management of T2DM and commercial solutions: A review. Int J Biol Macromol 2024; 279:134993. [PMID: 39181375 DOI: 10.1016/j.ijbiomac.2024.134993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a disease that threatens public health worldwide and can cause a series of irreversible complications, has been a major concern. Although the treatment based on hypoglycemic drugs is effective, its side effects should not be ignored, which has led to an urgent need for developing new hypoglycemic drugs. Bioactive peptides with antidiabetic effects obtained from food proteins have become a research hotspot as they are safer and with higher specificity than traditional hypoglycemic drugs. Here, we reviewed antidiabetic peptides that have the ability to inhibit key enzymes (α-glucosidase, α-amylase, and DPP-IV) in T2DM, the hypoglycemic mechanisms and structure-activity relationships were summarized, some antidiabetic peptides that improve insulin resistance and reverse gut microbiota and their metabolites were overviewed, the bitterness of antidiabetic peptides was predicted in silico, proposed solutions to the current challenges encountered in the development of antidiabetic peptide drugs, and provided an outlook on the future focus of commercial production. It provides a reference for the application of food-derived antidiabetic peptides.
Collapse
Affiliation(s)
- Shuo Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China.
| |
Collapse
|
47
|
Kha QH, Nguyen NTK, Le NQK, Kang JH. Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications. Methods 2024; 232:81-88. [PMID: 39489198 DOI: 10.1016/j.ymeth.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024] Open
Abstract
Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings.
Collapse
Affiliation(s)
- Quang-Hien Kha
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan
| | - Ngan Thi Kim Nguyen
- Programs of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei 106, Taiwan
| | - Nguyen Quoc Khanh Le
- AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan; In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Jiunn-Horng Kang
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei 110, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
48
|
Tian C, Li X, Zhang H, He J, Zhou Y, Song M, Yang P, Tan X. Differences in IgG afucosylation between groups with and without carotid atherosclerosis. BMC Cardiovasc Disord 2024; 24:612. [PMID: 39487405 PMCID: PMC11529013 DOI: 10.1186/s12872-024-04296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND A previous study demonstrated that N-glycosylation profiles of IgG are associated with subclinical atherosclerosis in a British population. However, the generalisability of this finding to other ethnic groups remains to be investigated, and it has yet to account for additional traditional atherosclerotic risk factors. The present study, thus, aims to explore IgG N-glycosylation profiles in Han Chinese with atherosclerosis, and their potential role in atherosclerosis, while controlling for traditional atherosclerotic risk factors. METHODS Data of this case-control study were obtained from an established umbrella Health Examination Cohort Study (registration number: ChiCTR2100048740). The investigation was conducted at the Health Care Centre of the First Affiliated Hospital of Shantou University Medical College in China, from August 1, 2021, to July 31, 2022. A sample of 69 carotid atherosclerosis (CAS) cases was recruited from the umbrella cohort, along with 69 controls without carotid atherosclerosis, matched by traditional atherosclerosis-related risk factors, including gender, age, smoking, alcohol consumption, hypertension, diabetes, dyslipidemia and obesity. Subsequently, serum IgG N-glycosylation was profiled using Ultra-Performance Liquid Chromatography. RESULTS After propensity score matching, the relative abundance of IgG fucosylation in CAS cases was significantly lower than that in controls [95.32 (92.96, 95.99) vs. 95.96 (94.70, 96.58), P = 0.022]. The traditional atherosclerosis-related risk factors showed no statistically significant difference between CAS cases and controls (P > 0.05). CONCLUSIONS The reduced fucosylation of IgG in CAS cases underscores the pivotal role of afucosylation in CAS. Enhancing the inflammatory capability of IgG via initiating antibody-dependent cell-mediated cytotoxicity could be the potential mechanism behind this, which should be further verified by functional studies.
Collapse
Affiliation(s)
- Cuihong Tian
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Clinical Research Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Centre for Precision Health, Edith Cowan University, Perth, WA, 6027, Australia
- Human Phenome Institute of Shantou University Medical College, Guangdong Engineering Research Centre of Human Phenome, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, Guangdong , China
- Glycome Research Institute, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Molecular Cardiology Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xingang Li
- Centre for Precision Health, Edith Cowan University, Perth, WA, 6027, Australia
| | - Hongxia Zhang
- Health Care Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jieyi He
- Health Care Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yan Zhou
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Manshu Song
- Centre for Precision Health, Edith Cowan University, Perth, WA, 6027, Australia
| | - Peixuan Yang
- Health Care Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xuerui Tan
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Clinical Research Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Glycome Research Institute, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
49
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
50
|
Tegegne BA, Adugna A, Yenet A, Yihunie Belay W, Yibeltal Y, Dagne A, Hibstu Teffera Z, Amare GA, Abebaw D, Tewabe H, Abebe RB, Zeleke TK. A critical review on diabetes mellitus type 1 and type 2 management approaches: from lifestyle modification to current and novel targets and therapeutic agents. Front Endocrinol (Lausanne) 2024; 15:1440456. [PMID: 39493778 PMCID: PMC11527681 DOI: 10.3389/fendo.2024.1440456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Diabetes mellitus (DM) has emerged as an international health epidemic due to its rapid rise in prevalence. Consequently, scientists and or researchers will continue to find novel, safe, effective, and affordable anti-diabetic medications. The goal of this review is to provide a thorough overview of the role that lifestyle changes play in managing diabetes, as well as the standard medications that are currently being used to treat the condition and the most recent advancements in the development of novel medical treatments that may be used as future interventions for the disease. A literature search was conducted using research databases such as PubMed, Web of Science, Scopus, ScienceDirect, Wiley Online Library, Google Scholar, etc. Data were then abstracted from these publications using words or Phrases like "pathophysiology of diabetes", "Signe and symptoms of diabetes", "types of diabetes", "major risk factors and complication of diabetes", "diagnosis of diabetes", "lifestyle modification for diabetes", "current antidiabetic agents", and "novel drugs and targets for diabetes management" that were published in English and had a strong scientific foundation. Special emphasis was given to the importance of lifestyle modification, as well as current, novel, and emerging/promising drugs and targets helpful for the management of both T1DM and T2DM.
Collapse
Affiliation(s)
- Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Aderaw Yenet
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Wubetu Yihunie Belay
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Yared Yibeltal
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Haymanot Tewabe
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|