1
|
Mechanick JI, Butsch WS, Christensen SM, Hamdy O, Li Z, Prado CM, Heymsfield SB. Strategies for minimizing muscle loss during use of incretin-mimetic drugs for treatment of obesity. Obes Rev 2025; 26:e13841. [PMID: 39295512 PMCID: PMC11611443 DOI: 10.1111/obr.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
The rapid and widespread clinical adoption of highly effective incretin-mimetic drugs (IMDs), particularly semaglutide and tirzepatide, for the treatment of obesity has outpaced the updating of clinical practice guidelines. Consequently, many patients may be at risk for adverse effects and uncertain long-term outcomes related to the use of these drugs. Of emerging concern is the loss of skeletal muscle mass and function that can accompany rapid substantial weight reduction; such losses can lead to reduced functional and metabolic health, weight cycling, compromised quality of life, and other adverse outcomes. Available evidence suggests that clinical trial participants receiving IMDs for the treatment of obesity lost 10% or more of their muscle mass during the 68- to 72-week interventions, approximately equivalent to 20 years of age-related muscle loss. The ability to maintain muscle mass during caloric restriction-induced weight reduction is influenced by two key factors: nutrition and physical exercise. Nutrition therapy should ensure adequate intake and absorption of high-quality protein and micronutrients, which may require the use of oral nutritional supplements. Additionally, concurrent physical activity, especially resistance training, has been shown to effectively minimize loss of muscle mass and function during weight reduction therapy. All patients receiving IMDs for obesity should participate in comprehensive treatment programs emphasizing adequate protein and micronutrient intakes, as well as resistance training, to preserve muscle mass and function, maximize the benefit of IMD therapy, and minimize potential risks.
Collapse
Affiliation(s)
- Jeffrey I. Mechanick
- Marie‐Josée and Henry R. Kravis Center for Clinical Cardiovascular Health at Mount Sinai Fuster Heart Hospital and the Division of Endocrinology, Diabetes, and Bone DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - W. Scott Butsch
- Bariatric and Metabolic InstituteCleveland ClinicClevelandOhioUSA
| | | | - Osama Hamdy
- Harvard Medical School and Joslin Diabetes CenterBostonMassachusettsUSA
| | - Zhaoping Li
- Center for Human NutritionDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesCaliforniaUSA
| | - Carla M. Prado
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
| | - Steven B. Heymsfield
- Pennington Biomedical Research Center of the Louisiana State University SystemBaton RougeLouisianaUSA
| |
Collapse
|
2
|
Guarneiri LL, Adams CG, Garcia-Jackson B, Koecher K, Wilcox ML, Maki KC. Effects of Varying Protein Amounts and Types on Diet-Induced Thermogenesis: A Systematic Review and Meta-Analysis. Adv Nutr 2024; 15:100332. [PMID: 39486625 PMCID: PMC11625215 DOI: 10.1016/j.advnut.2024.100332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Protein is the most thermogenic macronutrient, but it is unclear how different amounts and types of protein impact diet-induced thermogenesis (DIT). The purpose of this meta-analysis was to compare the impact of isocaloric meals/diets containing different amounts or types of protein on energy metabolism. Databases were searched in June 2024 for studies that compare DIT or total daily energy expenditure (TDEE) in response to isocaloric acute meals or longer-term diets containing different amounts or types of protein. After identifying 3894 records, 52 studies were included. Standardized mean difference (SMD) estimates and 95% confidence intervals (CIs) were calculated for each outcome. In acute studies, intake of higher compared with lower-protein meals resulted in greater DIT (SMD: 0.45; 95% CI: 0.26, 0.65; P < 0.001) and TDEE (SMD: 0.52; 95% CI: 0.30, 0.73; P < 0.001). Notably, the subgroup analysis indicated that this effect on DIT was statistically significant for studies involving participants with normal weight but not overweight/obesity, although it is not clear if this finding was a true effect or because of study design characteristics. In chronic studies (ranging from 4 d to 1 y), intake of higher compared with lower-protein diets resulted in greater TDEE (SMD: 0.29; 95% CI: 0.10, 0.48; P = 0.003) and resting energy expenditure (SMD: 0.18; 95% CI: 0.01, 0.35; P = 0.039), but no differences in DIT (SMD: 0.10; 95% CI: -0.08, 0.28; P = 0.27). There was no evidence that different types of protein impacted energy metabolism. Higher protein meals/diets increase components of energy expenditure. This trial was registered at the International Prospective Register of Systematic Reviews (https://www.crd.york.ac.uk/prospero; PROSPERO 2023) as CRD42023389642.
Collapse
Affiliation(s)
| | - Caryn G Adams
- Midwest Biomedical Research, Addison, IL, United States
| | - Bibiana Garcia-Jackson
- Bell Institute of Health and Nutrition, General Mills Inc, Minneapolis, MN, United States
| | - Katie Koecher
- Bell Institute of Health and Nutrition, General Mills Inc, Minneapolis, MN, United States
| | | | - Kevin C Maki
- Midwest Biomedical Research, Addison, IL, United States; Department of Applied Health Science, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States.
| |
Collapse
|
3
|
Lamminpää I, Amedei A, Parolini C. Effects of Marine-Derived Components on Cardiovascular Disease Risk Factors and Gut Microbiota Diversity. Mar Drugs 2024; 22:523. [PMID: 39590803 PMCID: PMC11595733 DOI: 10.3390/md22110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiovascular diseases (CVDs), which comprise coronary heart disease, hypertension, and stroke, collectively represent the number one cause of death globally. Atherosclerosis is the dominant cause of CVDs, and its risk factors are elevated levels of low-density lipoprotein cholesterol and triglycerides, hypertension, cigarette smoking, obesity, and diabetes mellitus. In addition, diverse evidence highlights the role played by inflammation and clonal haematopoiesis, eventually leading to immunity involvement. The human microbiota project and subsequent studies using next-generation sequencing technology have indicated that thousands of different microbial species are present in the human gut. Disturbances in the gut microbiota (GM) composition, i.e., gut dysbiosis, have been associated with diseases ranging from localised gastrointestinal disorders to metabolic and cardiovascular illnesses. Of note, experimental studies suggested that GM, host immune cells, and marine-derived ingredients work together to ensure intestinal wall integrity. This review discusses current evidence concerning the links among GM, marine-derived ingredients, and human inflammatory disease. In detail, we summarise the impact of fish-derived proteins/peptides and algae components on CVD risk factors and gut microbiome. Furthermore, we describe the interplay among these dietary components, probiotics/prebiotics, and CVDs.
Collapse
Affiliation(s)
- Ingrid Lamminpää
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy;
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy;
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50134 Florence, Italy
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, ‘Rodolfo Paoletti’, Via Balzaretti 9, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
4
|
Gautier-Stein A, Vily-Petit J, Rajas F, Mithieux G. Intestinal gluconeogenesis: A translator of nutritional information needed for glycemic and emotional balance. Biochimie 2024; 223:206-214. [PMID: 38040189 DOI: 10.1016/j.biochi.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
At the interface between the outside world and the self, the intestine is the first organ receiving nutritional information. One intestinal function, gluconeogenesis, is activated by various nutrients, particularly diets enriched in fiber or protein, and thus results in glucose production in the portal vein in the post-absorptive period. The detection of portal glucose induces a nervous signal controlling the activity of the central nuclei involved in the regulation of metabolism and emotional behavior. Induction of intestinal gluconeogenesis is necessary for the beneficial effects of fiber or protein-enriched diets on metabolism and emotional behavior. Through its ability to translate nutritional information from the diet to the brain's regulatory centers, intestinal gluconeogenesis plays an essential role in maintaining physiological balance.
Collapse
Affiliation(s)
- Amandine Gautier-Stein
- Universite Claude Bernard Lyon 1, NUDICE, UMR_S 1213, Villeurbanne, 69100, France; Institut National de la Sante et de la Recherche Medicale, NUDICE, UMR_S 1213, Lyon, 69372, France.
| | - Justine Vily-Petit
- Universite Claude Bernard Lyon 1, NUDICE, UMR_S 1213, Villeurbanne, 69100, France; Institut National de la Sante et de la Recherche Medicale, NUDICE, UMR_S 1213, Lyon, 69372, France
| | - Fabienne Rajas
- Universite Claude Bernard Lyon 1, NUDICE, UMR_S 1213, Villeurbanne, 69100, France; Institut National de la Sante et de la Recherche Medicale, NUDICE, UMR_S 1213, Lyon, 69372, France
| | - Gilles Mithieux
- Universite Claude Bernard Lyon 1, NUDICE, UMR_S 1213, Villeurbanne, 69100, France; Institut National de la Sante et de la Recherche Medicale, NUDICE, UMR_S 1213, Lyon, 69372, France
| |
Collapse
|
5
|
AlMarzooqi SK, Almarzooqi F, Sadida HQ, Jerobin J, Ahmed I, Abou-Samra AB, Fakhro KA, Dhawan P, Bhat AA, Al-Shabeeb Akil AS. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes Rev 2024; 25:e13766. [PMID: 38745386 DOI: 10.1111/obr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara K AlMarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Fajr Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
6
|
Vily-Petit J, Taki A, Sinet F, Soty M, Guiard B, Zemdegs J, Malleret G, Stefanutti A, Mithieux G, Gautier-Stein A. Absence of the Peptide Transporter 1 Induces a Prediabetic and Depressive-Like Phenotype in Mice. Neuroendocrinology 2024; 115:226-241. [PMID: 38852578 DOI: 10.1159/000539499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Protein-enriched diets improve glycemic control in diabetes or emotional behavior in depressive patients. In mice, these benefits depend on intestinal gluconeogenesis activation by di-/tripeptides. Intestinal di-/tripeptides absorption is carried out by the peptide transporter 1, PEPT1. The lack of PEPT1 might thus alter glucose and emotional balance. METHODS To determine the effects of PEPT1 deficiency under standard dietary conditions or during a dietary challenge known to promote both metabolic and cognitive dysfunction, insulin sensitivity, anxiety, and depressive-like traits, hippocampal serotonin (5-HT) and insulin signaling pathway were measured in wild-type (WT) and Pept1-/- mice fed either a chow or a high-fat high-sucrose (HF-HS) diet. RESULTS Pept1-/- mice exhibited slight defects in insulin sensitivity and emotional behavior, which were aggravated by an HF-HS diet. Pept1-/- mice fed a chow diet had lower hippocampal 5-HT levels and exhibited cerebral insulin resistance under HF-HS diet. These defects were independent of intestinal gluconeogenesis but might be linked to increased plasma amino acids levels. CONCLUSION Pept1-/- mice develop prediabetic and depressive-like traits and could thus be used to develop strategies to prevent or cure both diseases.
Collapse
Affiliation(s)
| | - Amelie Taki
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Flore Sinet
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Maud Soty
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Bruno Guiard
- CRCA - UMR - Université Paul Sabatier, Toulouse, France
| | | | - Gael Malleret
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, Lyon, France
| | - Anne Stefanutti
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Gilles Mithieux
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France,
| | | |
Collapse
|
7
|
Jalo E, Fogelholm M, Westerterp-Plantenga M, Adam TC, Drummen M, Huttunen-Lenz M, Kjølbæk L, Martinez JA, Handjieva-Darlenska T, Taylor MA, Brand-Miller J, Poppitt S, Stratton G, Lam T, Navas-Carretero S, Bogdanov G, Simpson L, Muirhead R, Silvestre MP, Swindell N, Raben A, Konttinen H. Role of Eating Behavior and Stress in Maintenance of Dietary Changes During the PREVIEW Intervention. JOURNAL OF NUTRITION EDUCATION AND BEHAVIOR 2024; 56:276-286. [PMID: 38416096 DOI: 10.1016/j.jneb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE To examine whether eating behavior and perceived stress predict the maintenance of self-reported dietary change and adherence to dietary instructions during an intervention. DESIGN A secondary analysis of the behavior maintenance stage (6-36 months) of the 3-year PREVIEW intervention (PREVention of diabetes through lifestyle Intervention and population studies in Europe and around the World). PARTICIPANTS Adults (n = 1,311) with overweight and prediabetes at preintervention baseline. VARIABLES MEASURED Eating behavior (Three-Factor Eating Questionnaire), stress (Perceived Stress Scale), and dietary intake (4-day food records on 4 occasions) were reported. ANALYSIS Associations between predictors and dietary outcomes were examined with linear mixed-effects models for repeated measurements. RESULTS Eating behaviors and stress at 6 months did not predict the subsequent change in dietary outcomes, but higher cognitive restraint predicted lower energy intake, and both higher disinhibition and hunger predicted higher energy intake during the following behavior maintenance stage. In addition, higher disinhibition predicted higher saturated fat intake and lower fiber intake, and higher hunger predicted lower fiber intake. Stress was not associated with energy intake or dietary quality. Eating behaviors and stress were not consistently associated with adherence to dietary instructions. CONCLUSIONS AND IMPLICATIONS Higher cognitive restraint predicted lower energy intake (food quantity), but disinhibition and hunger were also associated with dietary quality.
Collapse
Affiliation(s)
- Elli Jalo
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
| | - Mikael Fogelholm
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Margriet Westerterp-Plantenga
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Tanja C Adam
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Mathijs Drummen
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Maija Huttunen-Lenz
- Institute of Nursing Science, University of Education Schwäbisch Gmünd, Schwäbisch Gmünd, Germany
| | - Louise Kjølbæk
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - José Alfredo Martinez
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Navarra, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Precision Nutrition and Cardiometabolic Health Program, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence, University of Madrid-Spanish National Research Council, Madrid, Spain
| | | | - Moira A Taylor
- David Greenfield Human Physiology Unit, Division of Physiology, Pharmacology and Neuroscience, University of Nottingham School of Life Sciences, Queen's Medical Centre, Nottingham, United Kingdom
| | - Jennie Brand-Miller
- School of Life and Environmental Sciences and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Sally Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Gareth Stratton
- Applied Sports Technology, Exercise, and Medicine Research Centre, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Tony Lam
- NetUnion SARL, Lausanne, Switzerland
| | - Santiago Navas-Carretero
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Navarra, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria de Navarra, Pamplona, Navarra, Spain
| | - Georgi Bogdanov
- Department of Pharmacology and Toxicology, Medical University of Sofia, Sofia, Bulgaria
| | - Liz Simpson
- David Greenfield Human Physiology Unit, Division of Physiology, Pharmacology and Neuroscience, University of Nottingham School of Life Sciences, Queen's Medical Centre, Nottingham, United Kingdom; Medical Research Council/Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Roslyn Muirhead
- School of Life and Environmental Sciences and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Marta P Silvestre
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand; Centro de Investigação em Tecnologias e Serviços de Saúde, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - Nils Swindell
- Applied Sports Technology, Exercise, and Medicine Research Centre, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Hanna Konttinen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland; Social Psychology, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Stefanaki K, Karagiannakis DS, Peppa M, Vryonidou A, Kalantaridou S, Goulis DG, Psaltopoulou T, Paschou SA. Food Cravings and Obesity in Women with Polycystic Ovary Syndrome: Pathophysiological and Therapeutic Considerations. Nutrients 2024; 16:1049. [PMID: 38613082 PMCID: PMC11013286 DOI: 10.3390/nu16071049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), the most common endocrine disorder in women of reproductive age, constitutes a metabolic disorder frequently associated with obesity and insulin resistance (IR). Furthermore, women with PCOS often suffer from excessive anxiety and depression, elicited by low self-esteem due to obesity, acne, and hirsutism. These mood disorders are commonly associated with food cravings and binge eating. Hypothalamic signaling regulates appetite and satiety, deteriorating excessive food consumption. However, the hypothalamic function is incapable of compensating for surplus food in women with PCOS, leading to the aggravation of obesity and a vicious circle. Hyperandrogenism, IR, the reduced secretion of cholecystokinin postprandially, and leptin resistance defined by leptin receptors' knockout in the hypothalamus have been implicated in the pathogenesis of hypothalamic dysfunction and appetite dysregulation. Diet modifications, exercise, and psychological and medical interventions have been applied to alleviate food disorders, interrupting the vicious circle. Cognitive-behavioral intervention seems to be the mainstay of treatment, while the role of medical agents, such as GLP-1 analogs and naltrexone/bupropion, has emerged.
Collapse
Affiliation(s)
- Katerina Stefanaki
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.S.); (T.P.); (S.A.P.)
| | - Dimitrios S. Karagiannakis
- Academic Department of Gastroenterology, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Melpomeni Peppa
- Endocrine Unit and Diabetes Center, Second Department of Internal Medicine, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- 3rd Department of Internal Medicine, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, 11526 Athens, Greece;
| | - Sophia Kalantaridou
- 3rd Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios G. Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Theodora Psaltopoulou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.S.); (T.P.); (S.A.P.)
| | - Stavroula A. Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.S.); (T.P.); (S.A.P.)
| |
Collapse
|
9
|
Farkas GJ, Berg AS, Sneij A, Dolbow DR, Gorgey AS, Gater DR. The comparison of total energy and protein intake relative to estimated requirements in chronic spinal cord injury. Br J Nutr 2024; 131:489-499. [PMID: 37726106 PMCID: PMC10843126 DOI: 10.1017/s0007114523002088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
In chronic spinal cord injury (SCI), individuals experience dietary inadequacies complicated by an understudied research area. Our objectives were to assess (1) the agreement between methods of estimating energy requirement (EER) and estimated energy intake (EEI) and (2) whether dietary protein intake met SCI-specific protein guidelines. Persons with chronic SCI (n = 43) completed 3-day food records to assess EEI and dietary protein intake. EER was determined with the Long and Institute of Medicine (IOM) methods and the SCI-specific Farkas method. Protein requirements were calculated as 0·8-1·0 g/kg of body weight (BW)/d. Reporting accuracy and bias were calculated and correlated to body composition. Compared with IOM and Long methods (P < 0·05), the SCI-specific method did not overestimate the EEI (P = 0·200). Reporting accuracy and bias were best for SCI-specific (98·9 %, -1·12 %) compared with Long (94·8 %, -5·24 %) and IOM (64·1 %, -35·4 %) methods. BW (r = -0·403), BMI (r = -0·323) and total fat mass (r = -0·346) correlated with the IOM reporting bias (all, P < 0·05). BW correlated with the SCI-specific and Long reporting bias (r = -0·313, P = 0·041). Seven (16 %) participants met BW-specific protein guidelines. The regression of dietary protein intake on BW demonstrated no association between the variables (β = 0·067, P = 0·730). In contrast, for every 1 kg increase in BW, the delta between total and required protein intake decreased by 0·833 g (P = 0·0001). The SCI-specific method for EER had the best agreement with the EEI. Protein intake decreased with increasing BW, contrary to protein requirements for chronic SCI.
Collapse
Affiliation(s)
- Gary J. Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Arthur S. Berg
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Alicia Sneij
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David R. Dolbow
- Department of Physical Therapy, William Carey University, Hattiesburg, MS, USA
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS, USA
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
10
|
Zhang X, Kapoor D, Jeong SJ, Fappi A, Stitham J, Shabrish V, Sergin I, Yousif E, Rodriguez-Velez A, Yeh YS, Park A, Yurdagul A, Rom O, Epelman S, Schilling JD, Sardiello M, Diwan A, Cho J, Stitziel NO, Javaheri A, Lodhi IJ, Mittendorfer B, Razani B. Identification of a leucine-mediated threshold effect governing macrophage mTOR signalling and cardiovascular risk. Nat Metab 2024; 6:359-377. [PMID: 38409323 PMCID: PMC11448845 DOI: 10.1038/s42255-024-00984-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 01/09/2024] [Indexed: 02/28/2024]
Abstract
High protein intake is common in western societies and is often promoted as part of a healthy lifestyle; however, amino-acid-mediated mammalian target of rapamycin (mTOR) signalling in macrophages has been implicated in the pathogenesis of ischaemic cardiovascular disease. In a series of clinical studies on male and female participants ( NCT03946774 and NCT03994367 ) that involved graded amounts of protein ingestion together with detailed plasma amino acid analysis and human monocyte/macrophage experiments, we identify leucine as the key activator of mTOR signalling in macrophages. We describe a threshold effect of high protein intake and circulating leucine on monocytes/macrophages wherein only protein in excess of ∼25 g per meal induces mTOR activation and functional effects. By designing specific diets modified in protein and leucine content representative of the intake in the general population, we confirm this threshold effect in mouse models and find ingestion of protein in excess of ∼22% of dietary energy requirements drives atherosclerosis in male mice. These data demonstrate a mechanistic basis for the adverse impact of excessive dietary protein on cardiovascular risk.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Divya Kapoor
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
- John Cochran VA Medical Center, St Louis, MO, USA
| | - Se-Jin Jeong
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Alan Fappi
- Division of Nutritional Science and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Medicine and Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Jeremiah Stitham
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St Louis, MO, USA
| | - Vasavi Shabrish
- Division of Nutritional Science and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Medicine and Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Ismail Sergin
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Eman Yousif
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | | | - Yu-Sheng Yeh
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Arick Park
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Slava Epelman
- Peter Munk Cardiac Center and University Health Network, University of Toronto, Toronto, Canada
| | - Joel D Schilling
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Marco Sardiello
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Abhinav Diwan
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
- John Cochran VA Medical Center, St Louis, MO, USA
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Nathan O Stitziel
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Ali Javaheri
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
- John Cochran VA Medical Center, St Louis, MO, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St Louis, MO, USA
| | - Bettina Mittendorfer
- Division of Nutritional Science and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Departments of Medicine and Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.
| | - Babak Razani
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA.
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Song J, Wu J, Robichaux DJ, Li T, Wang S, Arredondo Sancristobal MJ, Dong B, Dobrev D, Karch J, Thomas SS, Li N. A High-Protein Diet Promotes Atrial Arrhythmogenesis via Absent-in-Melanoma 2 Inflammasome. Cells 2024; 13:108. [PMID: 38247800 PMCID: PMC10814244 DOI: 10.3390/cells13020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
High-protein diets (HPDs) offer health benefits, such as weight management and improved metabolic profiles. The effects of HPD on cardiac arrhythmogenesis remain unclear. Atrial fibrillation (AF), the most common arrhythmia, is associated with inflammasome activation. The role of the Absent-in-Melanoma 2 (AIM2) inflammasome in AF pathogenesis remains unexplored. In this study, we discovered that HPD increased susceptibility to AF. To demonstrate the involvement of AIM2 signaling in the pathogenesis of HPD-induced AF, wildtype (WT) and Aim2-/- mice were fed normal-chow (NC) and HPD, respectively. Four weeks later, inflammasome activity was upregulated in the atria of WT-HPD mice, but not in the Aim2-/--HPD mice. The increased AF vulnerability in WT-HPD mice was associated with abnormal sarcoplasmic reticulum (SR) Ca2+-release events in atrial myocytes. HPD increased the cytoplasmic double-strand (ds) DNA level, causing AIM2 activation. Genetic inhibition of AIM2 in Aim2-/- mice reduced susceptibility to AF, cytoplasmic dsDNA level, mitochondrial ROS production, and abnormal SR Ca2+-release in atrial myocytes. These data suggest that HPD creates a substrate conducive to AF development by activating the AIM2-inflammasome, which is associated with mitochondrial oxidative stress along with proarrhythmic SR Ca2+-release. Our data imply that targeting the AIM2 inflammasome might constitute a novel anti-AF strategy in certain patient subpopulations.
Collapse
Affiliation(s)
- Jia Song
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX 77030, USA (M.J.A.S.)
| | - Jiao Wu
- Department of Medicine, Section of Nephrology, Houston, TX 77030, USA
| | - Dexter J. Robichaux
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA (D.D.)
| | - Tingting Li
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX 77030, USA (M.J.A.S.)
| | - Shuyue Wang
- Department of Medicine, Section of Gastroenterology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Bingning Dong
- Department of Medicine, Section of Gastroenterology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dobromir Dobrev
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA (D.D.)
- Institute of Pharmacology, University Duisburg-Essen, 45147 Essen, Germany
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montréal, QC H1T 1C8, Canada
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA (D.D.)
| | - Sandhya S. Thomas
- Department of Medicine, Section of Nephrology, Houston, TX 77030, USA
- Michael E. Debakey VA Medical Center, Houston, TX 77030, USA
| | - Na Li
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX 77030, USA (M.J.A.S.)
| |
Collapse
|
12
|
Chien KY, Chen YJ, Hsu KJ, Chen CN. High-protein diet with immediate post-exercise protein drink: Impact on appetite in middle-aged obesity. Physiol Behav 2024; 273:114404. [PMID: 37935299 DOI: 10.1016/j.physbeh.2023.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
Successful management of obesity can be challenging if individuals constantly experience cravings. The present study investigated the effects of a high-protein diet, including a high-protein drink consumed immediately after high-intensity interval training (HIIT), on appetite and weight loss in obese middle-aged individuals. A total of 52 obese middle-aged individuals (58.2 ± 4.11 years old) were randomly assigned to one of three groups: the exercise group (E, n=19), exercise and high-protein diet group (ED, n=21), and a control group (n=12). The E and ED groups engaged in cycling HIIT (comprising 90 % of peak heart rate (HRpeak) for 3 min, followed by 70 % of HRpeak for 3 min, for a total of 5 cycles) three times a week for 3 months. The ED group consumed a high-protein drink immediately after HIIT and had a daily protein intake of 1.6g/kg. Body composition and eating behavior were assessed before and after the intervention. Additionally, appetite levels were measured before and after each exercise session, before dinner, and before bedtime during three phases of the intervention: the first phase (weeks 3-4), the second phase (weeks 5-8), and the third phase (weeks 9-12). Results showed that only the ED group experienced a decrease in body mass index (from 27.4 ± 4.28 to 26.8 ± 4.09 kg/m2, p=0.04). Appetite significantly increased after exercise in both E and ED groups (p values for the three phases ranged from 0.04 to 0.001 for the E group and from 0.042 to 0.003 for the ED group). The desire to eat significantly increased after exercise in the E group (phase 1: p = 0.026; phase 2: p = 0.011; phase 3: p = 0.003), but not in the ED group. Furthermore, the frequency of late-night snacking decreased in the ED group (the score changed from 2.4 ± 0.86 to 2.7 ± 0.80, p = 0.034). Notably, the E group tended to have a higher pre-dinner appetite score than the ED group in the third phase (p = 0.063). In summary, a high daily protein intake, combined with the consumption of high-protein drinks after exercise, resulted in reduced post-exercise appetite and a decrease in the frequency of late-night snacking.
Collapse
Affiliation(s)
- Kuei-Yu Chien
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Yun-Ju Chen
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Kuo-Jen Hsu
- Department of Physical Therapy and Assistive Technology, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chiao-Nan Chen
- Department of Physical Therapy and Assistive Technology, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
13
|
Siedler MR, Rodriguez C, White SJ, Tinoco E, DeHaven B, Brojanac A, LaValle C, Rasco J, Taylor LW, Tinsley GM. Chronic Thermogenic Dietary Supplement Consumption: Effects on Body Composition, Anthropometrics, and Metabolism. Nutrients 2023; 15:4806. [PMID: 38004200 PMCID: PMC10674526 DOI: 10.3390/nu15224806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Multi-ingredient thermogenic supplements can acutely increase resting energy expenditure (REE) and subjective energy. However, less is understood about the effects of chronic consumption on body composition, metabolism, and subjective variables such as mood, sleep quality, and eating behaviors. Fifty-two healthy, exercise-trained participants (50% female; mean ± SD age: 23.5 ± 3.0 years; body fat percentage: 27.3 ± 8.0%) were randomized 2:2:1 to take a whey protein supplement alone (PRO; n = 20), in combination with a thermogenic supplement (PRO + FB; n = 19), or no supplement at all (CON; n = 13) for four weeks. Body composition, anthropometric, metabolic, hemodynamic, and subjective outcomes were collected before and after the intervention. Greater changes in REE occurred in PRO + FB as compared to CON (111.2 kcal/d, 95% CI 2.4 to 219.9 kcal/d, p = 0.04), without significant differences between PRO and CON (42.7 kcal/d, 95% CI -65.0 to 150.3 kcal/d, p = 0.61) or between PRO + FB and PRO (68.5 kcal/d, 95% CI -28.3, 165.3, p = 0.21). No changes in hemodynamic outcomes (blood pressure and heart rate) were observed. In exercising adults, four weeks of supplementation with protein and a multi-ingredient thermogenic product maintained fasted REE as compared to no supplementation, for which a decrease in REE was observed, without differential effects on body composition, anthropometrics, or subjective variables.
Collapse
Affiliation(s)
- Madelin R. Siedler
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Christian Rodriguez
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Sarah J. White
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Ethan Tinoco
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Brielle DeHaven
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Alexandra Brojanac
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Christian LaValle
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Jaylynn Rasco
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Lem W. Taylor
- Human Performance Laboratory, School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX 76513, USA;
| | - Grant M. Tinsley
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| |
Collapse
|
14
|
Roba AA, Assefa N, Roba KT, Dessie Y, Hamler E, Fawzi W. Association between dietary protein intake, diet quality and diversity, and obesity among women of reproductive age in Kersa, Ethiopia. Front Public Health 2023; 11:1258515. [PMID: 38035304 PMCID: PMC10682820 DOI: 10.3389/fpubh.2023.1258515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction In Ethiopia, there is limited evidence on the effect of dietary protein intake on women's body mass index. Therefore, this study investigated the association between dietary protein intake, diet quality, and overweight and obesity. Methods A cross-sectional study was conducted among 897 women of reproductive age. Food frequency questionnaires were used to assess 7-day dietary intake. It was converted into protein and other macro-nutrient intakes, Minimum Dietary Diversity for Women, and Global Dietary Quality Score. Body Mass Index (BMI) of overweight & obese women were defined as ≥25 kg/m2. An adjusted odds ratio with a 95% confidence interval (in a multivariate logistic regression model) was used to determine the strength of the association between BMI and dietary protein intake, adjusting for potential confounders. Results The median dietary protein intake was 41.3 (32.9, 52.6) grams/day or 0.8 (0.6, 1.0) grams/kilogram of body weight/day. The prevalence of overweight and obesity was 7.5% (n = 67). Only 220 (24.5%) women could meet the recommended minimum dietary diversity of five or more food groups out of 10 per day. Furthermore, only 255 (28.4%) women were found to have a low risk for nutrient adequacy. Interestingly, women who consumed moderate dietary protein had a significantly lower likelihood of being overweight or obese, with AOR of 0.21 (95% CI 0.10-0.48). Similarly, those who consumed a high amount of protein had even lower odds, with AOR of 0.03 (95% CI 0.01-0.14), compared to those who consumed a low amount of dietary protein. Age of 40-49 years (AOR = 3.33, 95% CI 1.24-8.95) compared to 18-29 years, non-farmers (AOR = 3.21, 95% CI 1.55-6.62), higher consumption of food from unhealthy groups (AOR = 1.30, 95% CI 1.05-1.61), and high fat intake (AOR = 1.06, 95% CI 1.04-1.09) were associated with overweight and obesity. Conclusions and recommendations The study indicated an inverse relationship between BMI and dietary protein intake. It also revealed that women who consumed foods from unhealthy or unhealthy when consumed in excessive amounts were more likely to be overweight or obese. Increasing dietary protein consumption can help reproductive-age women reduce the odds of obesity and overweight. Furthermore, community-based educational programs, policy changes, and healthcare services can support this effort.
Collapse
Affiliation(s)
- Aklilu Abrham Roba
- College of Health and Medical Sciences, Haramaya University, Dire Dawa, Ethiopia
- Faculty of Health Science, Erciyes University, Kayseri, Türkiye
| | - Nega Assefa
- College of Health and Medical Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Kedir Teji Roba
- College of Health and Medical Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Yadeta Dessie
- College of Health and Medical Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Elena Hamler
- Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Wafaie Fawzi
- Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
15
|
Tiguridaane IA, Doku AO, Deku PD, Afrifa D, Akwa LG, Asamoah‐Mensah A, Moses MO. Ghanaian clients' perception of fitness instructors' adherence to exercise delivery services codes of conduct: An exploratory study. Health Sci Rep 2023; 6:e1632. [PMID: 37867786 PMCID: PMC10588556 DOI: 10.1002/hsr2.1632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Background and Aims Patronage for fitness and wellness activities has increased in Ghana, but the perception of primary consumers regarding exercise delivery service codes of conduct (EDCC) remains undocumented. This study reported the perception of clients about fitness instructors' adherence to EDCC. Methods Three hundred and seventy-nine (mean age = 26.12 ± 8.83 years) clients registered with National Sports for ALL Association, Ghana (NASFAAG) were recruited. The participants were not living with any diagnosed disability, using psychiatric medication, and had consistently participated in fitness training, at least three times a week for a year, and not below the age of 18 years. The participants were recruited from fitness and wellness centers, gyms, and fitness clubs in three regions (Greater Accra-GA, Upper East-UE, and Ashanti-A) of Ghana. A closed-ended, self-structured and validated awareness and adherence exercise delivery codes of conduct questionnaires was administered. The questionnaire focused on data protection and responsibility, informed consent, competence, and professional and personal conduct adapted from the British Association of Sports and Exercise Science codes of conduct was administered. Statistical Package for Social Sciences (SPSS) version 23.0 was used to run factor analysis which determined factorial distribution of clients' perception of instructors on codes of conduct. Results In total, 50.99% (UE), 47.68% (A), and 46.02% (GA) clients indicated that identities were unprotected when trainers displayed information. In all, 31.05% (UE), 40.34% (A), and 36.48% (GA) showed they were introduced to substances without consent. In total, 38.89% (UE), 32.70% (A), and 53.55% (GA) clients participated in training to realize that the expertise expected was not provided. In all, 38.10% (UE) and 36.23% (A) agreed that instructors put safety at risk, while 23.02% (GA) exploited clients for personal gain. Conclusion Fitness instructors need enlightenment to adhere ethically to EDCC activities in Ghana. Activities related to wellness and fitness in Ghana require regulations.
Collapse
Affiliation(s)
- Isaac A. Tiguridaane
- Department of Physiotherapy and Sports Science, Faculty of Allied Health Sciences, College of Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Abigail O. Doku
- Department of Physiotherapy and Sports Science, Faculty of Allied Health Sciences, College of Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Prince D.‐G. Deku
- Department of Physiotherapy and Sports Science, Faculty of Allied Health Sciences, College of Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Daniel Afrifa
- Department of Physiotherapy and Sports Science, Faculty of Allied Health Sciences, College of Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Lady G. Akwa
- Department of Physiotherapy and Sports Science, Faculty of Allied Health Sciences, College of Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Anthony Asamoah‐Mensah
- Department of Physiotherapy and Sports Science, Faculty of Allied Health Sciences, College of Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Monday O. Moses
- Department of Physiotherapy and Sports Science, Faculty of Allied Health Sciences, College of Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| |
Collapse
|
16
|
Choi RY, Lee MK. Effects of Mealworm Fermentation Extract and Soy Protein Mix Ratio on Hepatic Glucose and Lipid Metabolism in Obese-Induced Mice. Prev Nutr Food Sci 2023; 28:255-262. [PMID: 37842251 PMCID: PMC10567600 DOI: 10.3746/pnf.2023.28.3.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 10/17/2023] Open
Abstract
Previous studies found that mealworm fermentation extract (TMP) reduced alcoholic hepatic steatogenesis. This study examined how the ratio of TMP and soy protein (SP) mix affected glucose and lipid metabolism in obese mice given a high-fat diet (HFD). Mice were given HFD supplemented with 100% SP or the following three ratios of TMP and SP mix for 12 weeks: 20% (S4T1), 40% (S3T2), and 60% (S2T3) TMP. When compared to the SP group, the S2T3 group had considerably lower body weight gain and food consumption. When compared to the SP group, the S2T3 group had slightly lower blood insulin and leptin levels, as well as a lower homeostasis model assessment of insulin resistance score. The use of TMP instead of SP reduced the size of epididymal adipose tissue cells. An increase in the extent of substitution of SP with TMP inhibited the gene expression of hepatic fructolysis/gluconeogenesis (KHK, ALDOB, DLD, and FBP1), lipogenesis (FAS, SCD1, CD36, and DGAT2), and its transcriptional factors (PPARγ and ChREBP). Furthermore, the S2T3 group dramatically reduced the expression of hepatic genes implicated in endoplasmic reticulum stress (PDI) and antioxidant defense (SOD1). The 60% TMP mix, in particular, reduced the expression of hepatic glucose and lipid metabolismrelated genes in HFD-fed mice. The manufacturing of functional processed goods may be accomplished by combining SP and TMP in a 2:3 ratio.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Agricultural Biology, National Institution of Agricultural Sciences, Rural Development Administration, Jeonbuk 55365, Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Jeonnam 57922, Korea
| |
Collapse
|
17
|
Connolly G, Campbell WW. Poultry Consumption and Human Cardiometabolic Health-Related Outcomes: A Narrative Review. Nutrients 2023; 15:3550. [PMID: 37630747 PMCID: PMC10459134 DOI: 10.3390/nu15163550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Poultry meats, in particular chicken, have high rates of consumption globally. Poultry is the most consumed type of meat in the United States (US), with chicken being the most common type of poultry consumed. The amounts of chicken and total poultry consumed in the US have more than tripled over the last six decades. This narrative review describes nutritional profiles of commonly consumed chicken/poultry products, consumption trends, and dietary recommendations in the US. Overviews of the scientific literature pertaining to associations between, and effects of consuming chicken/poultry on, body weight and body composition, cardiovascular disease (CVD), and type II diabetes mellitus (T2DM) are provided. Limited evidence from randomized controlled trials indicates the consumption of lean unprocessed chicken as a primary dietary protein source has either beneficial or neutral effects on body weight and body composition and risk factors for CVD and T2DM. Apparently, zero randomized controlled feeding trials have specifically assessed the effects of consuming processed chicken/poultry on these health outcomes. Evidence from observational studies is less consistent, likely due to confounding factors such as a lack of a description of and distinctions among types of chicken/poultry products, amounts consumed, and cooking and preservation methods. New experimental and observational research on the impacts of consuming chicken/poultry, especially processed versions, on cardiometabolic health is sorely needed.
Collapse
Affiliation(s)
| | - Wayne W. Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
18
|
Kebbe M, Most J, Altazan AD, Redman LM. No strong evidence of the protein leverage hypothesis in pregnant women with obesity and their infants. Obesity (Silver Spring) 2023; 31:2057-2064. [PMID: 37387452 PMCID: PMC10524422 DOI: 10.1002/oby.23789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 07/01/2023]
Abstract
OBJECTIVE The goal of this study was to investigate the role of dietary protein on macronutrient and energy intake, maternal adiposity during pregnancy, and infant adiposity at birth. METHODS In 41 women with obesity, early-pregnancy (13-16 weeks) protein intake was assessed with food photography and expressed as a ratio of Estimated Average Requirements (EAR) in pregnancy for protein (0.88 g/kg/d), herein "protein balance." Energy intake was measured by the intake-balance method, gestational weight gain as grams per week, and fat mass by a three-compartment model. Spearman correlations and linear models were computed using R version 4.1.1 (p < 0.05 considered significant). RESULTS Women had a mean (SD) age of 27.5 (4.8) years and a pregravid BMI of 34.4 (2.9), kg/m2 , and the majority were non-White (n = 23, 56.1%). Protein balance in early pregnancy was not significantly associated with energy intake across mid and mid/late pregnancy (β = 328.7, p = 0.30 and β = 286.2, p = 0.26, respectively) or gestational weight gain (β = 117.0, p = 0.41). Protein balance was inversely associated with fat mass in early, mid, and late pregnancy (β = -10.6, p = 0.01, β = -10.4, p = 0.03, β = -10.3, p = 0.03, respectively). Protein balance did not predict infant adiposity at birth (p > 0.05). CONCLUSIONS Low protein intake may have been present before pregnancy, explaining early relationships with adiposity in this cohort. The protein leverage hypothesis is likely not implicated in the intergenerational transmission of obesity.
Collapse
Affiliation(s)
- Maryam Kebbe
- Reproductive Endocrinology & Women’s Health Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808
| | - Jasper Most
- Zuyderland Medical Center, Limburg, Netherlands
| | - Abby D. Altazan
- Reproductive Endocrinology & Women’s Health Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808
| | - Leanne M. Redman
- Reproductive Endocrinology & Women’s Health Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808
| |
Collapse
|
19
|
Lee LMY, Lin ZQ, Zheng LX, Tu YF, So YH, Zheng XH, Feng TJ, Wang XY, Wong WT, Leung YC. Lysine Deprivation Suppresses Adipogenesis in 3T3-L1 Cells: A Transcriptome Analysis. Int J Mol Sci 2023; 24:ijms24119402. [PMID: 37298352 DOI: 10.3390/ijms24119402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Growing evidence proves that amino acid restriction can reverse obesity by reducing adipose tissue mass. Amino acids are not only the building blocks of proteins but also serve as signaling molecules in multiple biological pathways. The study of adipocytes' response to amino acid level changes is crucial. It has been reported that a low concentration of lysine suppresses lipid accumulation and transcription of several adipogenic genes in 3T3-L1 preadipocytes. However, the detailed lysine-deprivation-induced cellular transcriptomic changes and the altered pathways have yet to be fully studied. Here, using 3T3-L1 cells, we performed RNA sequencing on undifferentiated and differentiated cells, and differentiated cells under a lysine-free environment, and the data were subjected to KEGG enrichment. We found that the differentiation process of 3T3-L1 cells to adipocytes required the large-scale upregulation of metabolic pathways, mainly on the mitochondrial TCA cycle, oxidative phosphorylation, and downregulation of the lysosomal pathway. Single amino acid lysine depletion suppressed differentiation dose dependently. It disrupted the metabolism of cellular amino acids, which could be partially reflected in the changes in amino acid levels in the culture medium. It inhibited the mitochondria respiratory chain and upregulated the lysosomal pathway, which are essential for adipocyte differentiation. We also noticed that cellular interleukin 6 (IL6) expression and medium IL6 level were dramatically increased, which was one of the targets for suppressing adipogenesis induced by lysine depletion. Moreover, we showed that the depletion of some essential amino acids such as methionine and cystine could induce similar phenomena. This suggests that individual amino acid deprivation may share some common pathways. This descriptive study dissects the pathways for adipogenesis and how the cellular transcriptome was altered under lysine depletion.
Collapse
Affiliation(s)
- Leo Man-Yuen Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Zhi-Qiang Lin
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Lu-Xi Zheng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Yi-Fan Tu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, New Territory, Hong Kong, China
| | - Yik-Hing So
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiu-Hua Zheng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Tie-Jun Feng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Xi-Yue Wang
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Wai-Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
20
|
Mazumder MAR, Sukchot S, Phonphimai P, Ketnawa S, Chaijan M, Grossmann L, Rawdkuen S. Mushroom-Legume-Based Minced Meat: Physico-Chemical and Sensory Properties. Foods 2023; 12:foods12112094. [PMID: 37297339 DOI: 10.3390/foods12112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
A growing number of health-conscious consumers are looking for animal protein alternatives with similar texture, appearance, and flavor. However, research and development still needs to find alternative non-meat materials. The aim of this study was to develop a mushroom-based minced meat substitute (MMMS) from edible Pleurotus sajor-caju (PSC) mushrooms and optimize the concentration of chickpea flour (CF), beetroot extract, and canola oil. CF was used to improve the textural properties of the MMMS by mixing it with PSC mushrooms in ratios of 0:50, 12.5:37.5, 25:25, 37.5:12.5, and 50:0. Textural and sensory attributes suggest that PSC mushrooms to CF in a ratio of 37.5:12.5 had better textural properties, showing hardness of 2610 N and higher consumer acceptability with protein content up to 47%. Sensory analysis suggests that 5% (w/w) canola oil showed the most acceptable consumer acceptability compared to other concentrations. Color parameters indicate that 0.2% beetroot extract shows higher whiteness, less redness, and higher yellowness for both fresh and cooked MMMS. This research suggests that MMMS containing PSC, CF, canola oil, and beetroot extract could be a suitable alternative and sustainable food product which may lead to higher consumer adoption as a meat substitute.
Collapse
Affiliation(s)
- Md Anisur Rahman Mazumder
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shanipa Sukchot
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Piyawan Phonphimai
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Sunantha Ketnawa
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01002, USA
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
21
|
Mazumder MAR, Sujintonniti N, Chaum P, Ketnawa S, Rawdkuen S. Developments of Plant-Based Emulsion-Type Sausage by Using Grey Oyster Mushrooms and Chickpeas. Foods 2023; 12:1564. [PMID: 37107359 PMCID: PMC10137549 DOI: 10.3390/foods12081564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-based (PB) meat alternatives are developing due to the consumer's demand, especially those who are mainly health-concerned. Soy proteins (SP) are commonly used as the main ingredients for PB meat analogues; however, SP may have adverse effects on the cognitive function and mood of humans. This study aimed to use grey oyster mushroom (GOM) and chickpea flour (CF) as an alternative source of SP to prepare emulsion-type sausages (ES). The effect of different hydrocolloids and oil on the quality of sausage was also investigated. The sausage was prepared using different concentrations of GOM and CF (20:20, 25:15, and 30:10 w/w). The GOM to CF ratio 25:15 was selected for the ES based on protein content, textural properties, and sensory attributes. The result indicated that sausage containing konjac powder (KP) and rice bran oil (RBO) provided a better texture and consumer acceptability. The final product showed higher protein (36%, dry basis), less cooking loss (4.08%), purge loss (3.45%), higher emulsion stability, and better consumer acceptability than the commercial sausage. The best recipe for mushroom-based ES is 25% GOM, 15% CF, 5% KP, and 5% RBO. In addition, GOM and CF could be an alternative option to replace SP in PB meat products.
Collapse
Affiliation(s)
- Md. Anisur Rahman Mazumder
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Naphat Sujintonniti
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Pranchalee Chaum
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Sunantha Ketnawa
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
22
|
Braden ML, Gwin JA, Leidy HJ. Protein Source Influences Acute Appetite and Satiety but not Subsequent Food Intake in Healthy Adults. J Nutr 2023:S0022-3166(23)35542-1. [PMID: 37030593 DOI: 10.1016/j.tjnut.2023.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Although current recommendations encourage plant-based dietary patterns, data is limited as to whether the equivalent substitution of animal-based protein-rich foods with plant-based versions impacts ingestive behavior. OBJECTIVE To compare higher-protein preloads, varying in protein source, on appetite, satiety, and subsequent energy intake. METHODS Thirty-two adults (Age: 25±1y; Body Mass Index (BMI): 24.2±0.5kg/m) randomly consumed 250kcal, protein-preload beverages (24g protein), varying in protein source (whey, soy, pea protein isolates (WHEY, SOY, PEA) or micellar casein (CAS)) each morning for 3 acclimation days/preload. On day 4, participants completed a 4-h clinical testing day in which the respective preload was consumed followed by blood sampling and questionnaires every 30min for appetite and satiety. An ad libitum lunch was provided 4-h post-preload. On day 5, participants consumed the respective preload at home followed by an ad libitum breakfast 30min afterwards. For normally-distributed data, repeated-measures analysis of variance (ANOVA) or Friedman non-parametric test were utilized to compare main effects of protein source on study outcomes. Post-hoc pairwise comparisons using least significant differences (LSD) were then performed. RESULTS CAS (-3330±690mm*240min) and PEA (-2840±930mm*240min) reduced 4-h appetite vs. SOY (-1440±936mm*240min; both, P<0.05). WHEY was not different (-2290±930mm*240min). CAS (3520±84pg/ml*240min) and PEA (3860±864pg/ml*240min) increased 4-h PYY concentrations vs. SOY (2200±869pg/ml*240min; both, P<0.05). WHEY was not different (3870±932pg/ml*240 min). No differences in ad libitum energy intake were observed. CONCLUSIONS CAS and PEA, but not WHEY, elicited greater acute changes in appetite and satiety vs. SOY in healthy adults, supporting that not all protein sources are equivalent. This trial is registered at clinicaltrials.gov (NCT03154606).
Collapse
|
23
|
van der Heijden I, Monteyne AJ, Stephens FB, Wall BT. Alternative dietary protein sources to support healthy and active skeletal muscle aging. Nutr Rev 2023; 81:206-230. [PMID: 35960188 DOI: 10.1093/nutrit/nuac049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To mitigate the age-related decline in skeletal muscle quantity and quality, and the associated negative health outcomes, it has been proposed that dietary protein recommendations for older adults should be increased alongside an active lifestyle and/or structured exercise training. Concomitantly, there are growing environmental concerns associated with the production of animal-based dietary protein sources. The question therefore arises as to where this dietary protein required for meeting the protein demands of the rapidly aging global population should (or could) be obtained. Various non-animal-derived protein sources possess favorable sustainability credentials, though much less is known (compared with animal-derived proteins) about their ability to influence muscle anabolism. It is also likely that the anabolic potential of various alternative protein sources varies markedly, with the majority of options remaining to be investigated. The purpose of this review was to thoroughly assess the current evidence base for the utility of alternative protein sources (plants, fungi, insects, algae, and lab-grown "meat") to support muscle anabolism in (active) older adults. The solid existing data portfolio requires considerable expansion to encompass the strategic evaluation of the various types of dietary protein sources. Such data will ultimately be necessary to support desirable alterations and refinements in nutritional guidelines to support healthy and active aging, while concomitantly securing a sustainable food future.
Collapse
Affiliation(s)
- Ino van der Heijden
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
24
|
Silveira JS, Júnior OVR, Schmitz F, Ferreira FS, Rodrigues FC, Deon M, Ribas G, Coutinho-Silva R, Vargas CR, Savio LEB, Wyse AT. High-protein nutrition during pregnancy increases neuroinflammation and homocysteine levels and impairs behavior in male adolescent rats offspring. Life Sci 2022; 310:121084. [DOI: 10.1016/j.lfs.2022.121084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
|
25
|
Vidal-Ostos F, Ramos-Lopez O, Jebb SA, Papadaki A, Pfeiffer AFH, Handjieva-Darlenska T, Kunešová M, Blaak EE, Astrup A, Martinez JA. Dietary protein and the glycemic index handle insulin resistance within a nutritional program for avoiding weight regain after energy-restricted induced weight loss. Nutr Metab (Lond) 2022; 19:71. [PMID: 36261843 PMCID: PMC9583584 DOI: 10.1186/s12986-022-00707-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND AIM The role of dietary protein and glycemic index on insulin resistance (based on TyG index) within a nutritional program for weight loss and weight maintenance was examined. METHODS This study analyzed 744 adults with overweight/obesity within the DIOGenes project. Patients who lost at least 8% of their initial weight (0-8 weeks) after a low-calorie diet (LCD) were randomly assigned to one of five ad libitum diets designed for weight maintenance (8-34 weeks): high/low protein (HP/LP) and high/low glycemic index (HGI/LGI), plus a control. The complete nutritional program (0-34 weeks) included both LCD plus the randomized diets intervention. The TyG index was tested as marker of body mass composition and insulin resistance. RESULTS In comparison with the LP/HGI diet, the HP/LGI diet induced a greater BMI loss (p < 0.05). ∆TyG was positively associated with resistance to BMI loss (β = 0.343, p = 0.042) during the weight maintenance stage. In patients who followed the HP/LGI diet, TyG (after LCD) correlated with greater BMI loss in the 8-34 weeks period (r = -0.256; p < 0.05) and during the 0-34 weeks intervention (r = -0.222, p < 0.05) periods. ΔTyG1 value was associated with ΔBMI2 (β = 0.932; p = 0.045) concerning the HP/LGI diet. CONCLUSIONS A HP/LGI diet is beneficial not only for weight maintenance after a LCD, but is also related to IR amelioration as assessed by TyG index changes. Registration Clinical Trials NCT00390637.
Collapse
Affiliation(s)
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Universidad 14418, UABC, Parque Internacional Industrial Tijuana, 22390, Tijuana, B.C., Mexico.
| | - Susan A Jebb
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Angeliki Papadaki
- Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité Universitätsmedizin Berlin, German Center of Diabetes Research, DZD, Berlin, Germany
| | | | - Marie Kunešová
- Obesity Management Centre, Institute of Endocrinology, Prague, Czech Republic
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Arne Astrup
- Obesity and Nutrition Science, Novo Nordisk Fonden, Tuborg Havnevej 15, 2900, Hellerup, Denmark
| | - J Alfredo Martinez
- Navarra's Health Research Institute (IdiSNA), Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Carlos III Health Institute, Madrid, Spain
- Precision Nutrition Program, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
26
|
Zhu Y, Bailey D, Childress A, Dawson JA, Binks M, Dhurandhar NV. Greater protein quality of an egg breakfast may be inadequate to induce satiety during weight loss, compared with a cereal breakfast of equal protein quantity. Int J Food Sci Nutr 2022; 73:1096-1103. [PMID: 36237122 DOI: 10.1080/09637486.2022.2133097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We compared the effects of consuming egg-breakfast of superior protein quality to cereal-breakfast of similar energy density and protein quantity, but lower protein quality. Two, two-week randomised crossover clinical trials included 30 otherwise healthy women with overweight or obesity. Subjects received counselling to follow a reduced-calorie diet. Under supervision, participants consumed either breakfast for one-week then crossed over to the opposite breakfast. Experiment-1 outcome variables included post-breakfast appetite hormones, glucose and insulin, subjective markers of satiety and energy intake at lunch and dinner. In Experiment-2, an appealing food (brownies) was included in lunch. Following the breakfasts, Experiment-1 showed no significant differences in outcome variables. In Experiment-2, the egg-breakfast increased fullness (p = 0.038), but lunch-time energy intake was not different. If these findings apply to other breakfasts, it suggests that in comparing two breakfasts with similar protein quantity, the greater protein quality of a breakfast may not be adequate to induce satiety.
Collapse
Affiliation(s)
- Yaqiong Zhu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Dylan Bailey
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Allison Childress
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - John A Dawson
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Martin Binks
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
27
|
Rakha A, Mehak F, Shabbir MA, Arslan M, Ranjha MMAN, Ahmed W, Socol CT, Rusu AV, Hassoun A, Aadil RM. Insights into the constellating drivers of satiety impacting dietary patterns and lifestyle. Front Nutr 2022; 9:1002619. [PMID: 36225863 PMCID: PMC9549911 DOI: 10.3389/fnut.2022.1002619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Food intake and body weight regulation are of special interest for meeting today's lifestyle essential requirements. Since balanced energy intake and expenditure are crucial for healthy living, high levels of energy intake are associated with obesity. Hence, regulation of energy intake occurs through short- and long-term signals as complex central and peripheral physiological signals control food intake. This work aims to explore and compile the main factors influencing satiating efficiency of foods by updating recent knowledge to point out new perspectives on the potential drivers of satiety interfering with food intake regulation. Human internal factors such as genetics, gender, age, nutritional status, gastrointestinal satiety signals, gut enzymes, gastric emptying rate, gut microbiota, individual behavioral response to foods, sleep and circadian rhythms are likely to be important in determining satiety. Besides, the external factors (environmental and behavioral) impacting satiety efficiency are highlighted. Based on mechanisms related to food consumption and dietary patterns several physical, physiological, and psychological factors affect satiety or satiation. A complex network of endocrine and neuroendocrine mechanisms controls the satiety pathways. In response to food intake and other behavioral cues, gut signals enable endocrine systems to target the brain. Intestinal and gastric signals interact with neural pathways in the central nervous system to halt eating or induce satiety. Moreover, complex food composition and structures result in considerable variation in satiety responses for different food groups. A better understanding of foods and factors impacting the efficiency of satiety could be helpful in making smart food choices and dietary recommendations for a healthy lifestyle based on updated scientific evidence.
Collapse
Affiliation(s)
- Allah Rakha
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fakiha Mehak
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad Asim Shabbir
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Waqar Ahmed
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Alexandru Vasile Rusu
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Rana Muhammad Aadil
| |
Collapse
|
28
|
Suriano F, Nyström EEL, Sergi D, Gustafsson JK. Diet, microbiota, and the mucus layer: The guardians of our health. Front Immunol 2022; 13:953196. [PMID: 36177011 PMCID: PMC9513540 DOI: 10.3389/fimmu.2022.953196] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022] Open
Abstract
The intestinal tract is an ecosystem in which the resident microbiota lives in symbiosis with its host. This symbiotic relationship is key to maintaining overall health, with dietary habits of the host representing one of the main external factors shaping the microbiome-host relationship. Diets high in fiber and low in fat and sugars, as opposed to Western and high-fat diets, have been shown to have a beneficial effect on intestinal health by promoting the growth of beneficial bacteria, improve mucus barrier function and immune tolerance, while inhibiting pro-inflammatory responses and their downstream effects. On the contrary, diets low in fiber and high in fat and sugars have been associated with alterations in microbiota composition/functionality and the subsequent development of chronic diseases such as food allergies, inflammatory bowel disease, and metabolic disease. In this review, we provided an updated overview of the current understanding of the connection between diet, microbiota, and health, with a special focus on the role of Western and high-fat diets in shaping intestinal homeostasis by modulating the gut microbiota.
Collapse
Affiliation(s)
- Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth E. L. Nyström
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Jenny K. Gustafsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Ehrlicher SE, Chui TK, Clina JG, Ellison KM, Sayer RD. The Data Behind Popular Diets for Weight Loss. Med Clin North Am 2022; 106:739-766. [PMID: 36154698 DOI: 10.1016/j.mcna.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Both scientific evidence and popular diet trends have sought to identify the ideal diet for weight loss with strategies focused on either restricting carbohydrates or fat. While there is a strong physiologic rationale for either carbohydrate restriction or fat restriction to achieve a calorie deficit needed for weight loss, evidence from randomized controlled trials suggest either type of diet is effective for weight loss. The level of adherence, rather than macronutrient content, is the driver of successful weight loss.
Collapse
Affiliation(s)
- Sarah E Ehrlicher
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 256, 1675 University Boulevard, Birmingham, AL 35294, USA.
| | - Tsz-Kiu Chui
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 630, 1675 University Blvd, Birmingham, AL 35294, USA
| | - Julianne G Clina
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 630, 1675 University Blvd, Birmingham, AL 35294, USA
| | - Katie M Ellison
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 630, 1675 University Blvd, Birmingham, AL 35294, USA
| | - R Drew Sayer
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 634, 1675 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
30
|
Makama M, Earnest A, Lim S, Skouteris H, Hill B, Teede H, Boyle JA, Brown WJ, Hodge AM, Moran LJ. Assessing patterns of change in lifestyle behaviours by parity: a longitudinal cohort study. Int J Epidemiol 2022; 52:589-599. [PMID: 35776100 PMCID: PMC10114083 DOI: 10.1093/ije/dyac139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The time constraints and reprioritization of personal health associated with having children may lead women to adopt less healthy lifestyles. We assessed the patterns of change in weight and lifestyle behaviours associated with having children and whether these differ between primiparous and multiparous women. METHODS Data were from Surveys 3 and 5 of the 1973-1978 birth cohort of the Australian Longitudinal Study on Women's Health. In women who were nulliparous at Survey 3, we assessed changes in weight, energy intake, diet (diet quality, macronutrients and micronutrients), physical activity and sitting time by parity status at Survey 5 using one-way analysis of covariance. RESULTS Of 4927 eligible women, 2503 gave birth (1090 primiparous and 1413 multiparous) by Survey 5. Women who had given birth 6 years later increased weight (1.0 kg; 95% CI 0.5, 1.5), energy intake (833.9 kJ/day; 95% CI 706.7, 961.1) and diet quality (1.5 units; 95% CI 0.8, 2.1), but decreased physical activity [-405.0 Metabolic Equivalent of Task.min/week; 95% CI -464.2, -345.8] and sitting time (-1.8 h/day; 95% CI -1.9, -1.6) (adjusted mean differences) relative to those who remained nulliparous. In subgroup analysis involving further stratification by parity, the increase in diet quality was only seen in women who became primiparous and the decrease in sitting time was more marked in multiparous women. CONCLUSION Childbearing is associated with increased weight and energy intake, decreased physical activity, increased diet quality and decreased sitting time. More research targeting weight, energy intake and physical activity for improvement in women during the childbearing years is warranted.
Collapse
Affiliation(s)
- Maureen Makama
- Monash Centre for Health Research and Implementation, Monash University, Clayton, Victoria, Australia
| | - Arul Earnest
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Siew Lim
- Monash Centre for Health Research and Implementation, Monash University, Clayton, Victoria, Australia
| | - Helen Skouteris
- Health and Social Care Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Warwick Business School, Warwick University, Coventry, UK
| | - Briony Hill
- Health and Social Care Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Helena Teede
- Monash Centre for Health Research and Implementation, Monash University, Clayton, Victoria, Australia
| | - Jacqueline A Boyle
- Monash Centre for Health Research and Implementation, Monash University, Clayton, Victoria, Australia
| | - Wendy J Brown
- School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Allison M Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Lisa J Moran
- Monash Centre for Health Research and Implementation, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
31
|
Ogilvie AR, Schlussel Y, Sukumar D, Meng L, Shapses SA. Higher protein intake during caloric restriction improves diet quality and attenuates loss of lean body mass. Obesity (Silver Spring) 2022; 30:1411-1419. [PMID: 35538903 PMCID: PMC9256776 DOI: 10.1002/oby.23428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Higher protein intake during weight loss is associated with better health outcomes, but whether this is because of improved diet quality is not known. The purpose of this study was to examine how the change in self-selected protein intake during caloric restriction (CR) alters diet quality and lean body mass (LBM). METHODS In this analysis of pooled data from multiple weight loss trials, 207 adults with overweight or obesity were examined before and during 6 months of CR (approximately 10 food records/person). Body composition was measured by dual-energy x-ray absorptiometry. Diet quality was assessed using the Healthy Eating Index in 2 groups: lower (LP) and higher (HP) protein intake. RESULTS Participants (mean [SD], 54 [11] years; 29 [4] kg/m2 ) lost 5.0% (5.4%) of weight. Protein intake was 79 (9) g/d (1.0 [0.2] g/kg/d) and 58 (6) g/d (0.8 [0.1] g/kg/d) in the HP and LP groups, respectively (p < 0.05), and there was an attenuated LBM (kilograms) loss in the HP (-0.6% [1.5%]) compared with the LP (-1.2% [1.4%]) group (p < 0.01). The increased Healthy Eating Index score in the HP compared with the LP group was attributed to greater total protein and green vegetable intake and reduced refined grain and added-sugar intake (p < 0.05). CONCLUSIONS Increasing dietary protein during CR improves diet quality and may be another reason for reduced LBM, but it requires further study.
Collapse
Affiliation(s)
- Anna R Ogilvie
- Department of Nutritional Sciences, Institute of Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Yvette Schlussel
- Department of Nutritional Sciences, Institute of Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Deeptha Sukumar
- Department of Nutrition Sciences, Drexel University, Philadelphia, Pennsylvania, USA
| | - Lingqiong Meng
- Department of Nutritional Sciences, Institute of Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Sue A Shapses
- Department of Nutritional Sciences, Institute of Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
32
|
Sarker A. A Review on the Application of Bioactive Peptides as Preservatives and Functional Ingredients in Food Model Systems. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ayesha Sarker
- Assistant Professor for Food Science Agricultural and Environmental Research Station, West Virginia State University Institute WV USA
| |
Collapse
|
33
|
Griffen C, Renshaw D, Duncan M, Weickert MO, Hattersley J. Changes in 24-h energy expenditure, substrate oxidation, and body composition following resistance exercise and a high protein diet via whey protein supplementation in healthy older men. Physiol Rep 2022; 10:e15268. [PMID: 37815091 PMCID: PMC9332127 DOI: 10.14814/phy2.15268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate changes in 24-h energy expenditure (EE), substrate oxidation, and body composition following resistance exercise (RE) and a high protein diet via whey protein supplementation (alone and combined) in healthy older men. METHODS In a pooled groups analysis, 33 healthy older men [(mean ± SE) age: 67 ± 1 years; BMI: 25.4 ± 0.4 kg/m2] were randomized to either RE (2×/week; n = 17) or non-exercise (n = 16) and either a high protein diet via whey protein supplementation (PRO, 2 × 25 g whey protein isolate/d; n = 17) or control (CON, 2 × 23.75 g maltodextrin/d; n = 16). An exploratory sub-analysis was also conducted between RE+CON (n = 8) and RE+PRO (n = 9). At baseline and 12 weeks, participants resided in respiration chambers for measurement of 24-h EE and substrate oxidation and wore an accelerometer for 7 days for estimation of free-living EE. RESULTS Resistance exercise resulted in greater increases in fat-free mass (1.0 ± 0.3 kg), resting metabolic rate [(RMR) 36 ± 14 kcal/d], sedentary EE (60 ± 33 kcal/d), and sleeping metabolic rate [(SMR) 45 ± 7 kcal/d] compared to non-exercise (p < 0.05); however, RE decreased activity energy expenditure in free-living (-90 ± 25 kcal/d; p = 0.049) and non-exercise activity inside the respiration chamber (-1.9 ± 1.1%; p = 0.049). PRO decreased fat mass [(FM) -0.5 ± 0.3 kg], increased overnight protein oxidation (30 ± 6 g/d), and decreased 24-h protein balance (-20 ± 4 g/d) greater than CON (p < 0.05). RE+PRO decreased FM (-1.0 ± 0.5 kg) greater than RE+CON (p = 0.04). CONCLUSION Resistance exercise significantly increased RMR, SMR, and sedentary EE in healthy older men, but not total EE. PRO alone and combined with RE decreased FM and aided body weight maintenance. This study was registered at clinicaltrials.gov as NCT03299972.
Collapse
Affiliation(s)
- Corbin Griffen
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
- Human Metabolism Research UnitUniversity Hospitals Coventry and Warwickshire NHS TrustCoventryUK
| | - Derek Renshaw
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
| | - Michael Duncan
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
- School of Life SciencesFaculty of Health and Life SciencesCoventry UniversityCoventryUK
| | - Martin O. Weickert
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
- Department of Endocrinology and DiabetesUniversity Hospitals Coventry and Warwickshire NHS TrustCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - John Hattersley
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
- Human Metabolism Research UnitUniversity Hospitals Coventry and Warwickshire NHS TrustCoventryUK
- School of EngineeringUniversity of WarwickCoventryUK
| |
Collapse
|
34
|
Brouns F, Shewry PR. Do gluten peptides stimulate weight gain in humans? NUTR BULL 2022; 47:186-198. [PMID: 35915782 PMCID: PMC9328276 DOI: 10.1111/nbu.12558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Observations from animal and in vitro laboratory research, and anecdotal evidence, have led to the suggestion that gluten consumption stimulates weight gain by the presence of peptides expressing opioid activity. Another proposed mechanism is that gluten peptides decrease resting energy expenditure resulting in a positive energy balance. In order to induce such effects in vivo, intact food peptides must be absorbed in sufficient quantities, remain intact in the blood for sufficient time to have long-lasting biological activity and bind to receptors involved in appetite, satiety and energy regulation. However, although peptides from food may pass from the intestine into the blood in extremely low quantities, they are generally rapidly degraded by plasma and vasculum-bound aminopeptidases, resulting in very short half-lives and loss of bioactivity. At present, gluten peptide sequences that influence regulators of energy metabolism have not been identified. Furthermore, data on the quantitative absorption of gluten peptides in the blood stream, their stability and lasting bioactivity are also lacking. Therefore, there is no evidence for proposed effects on driving appetite by the brain, nor on energy expenditure and weight gain. Furthermore, the level of overweight observed in various countries appears to be independent of the level of wheat consumption, and abundant observational evidence in humans shows that the levels of gluten consumption are neither related to daily calorie intake nor to BMI. This narrative review therefore discusses the proposed effects of gluten on bodyweight (BW) and putative biological mechanisms in the light of the current evidence.
Collapse
Affiliation(s)
- Fred Brouns
- School for Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | | |
Collapse
|
35
|
Abstract
BACKGROUND Obesity develops due to an imbalance in energy homeostasis, wherein energy intake exceeds energy expenditure. Accumulating evidence shows that manipulations of dietary protein and their component amino acids affect the energy balance, resulting in changes in fat mass and body weight. Amino acids are not only the building blocks of proteins but also serve as signals regulating multiple biological pathways. SCOPE OF REVIEW We present the currently available evidence regarding the effects of dietary alterations of a single essential amino acid (EAA) on energy balance and relevant signaling mechanisms at both central and peripheral levels. We summarize the association between EAAs and obesity in humans and the clinical use of modifying the dietary EAA composition for therapeutic intervention in obesity. Finally, similar mechanisms underlying diets varying in protein levels and diets altered of a single EAA are described. The current review would expand our understanding of the contribution of protein and amino acids to energy balance control, thus helping discover novel therapeutic approaches for obesity and related diseases. MAJOR CONCLUSIONS Changes in circulating EAA levels, particularly increased branched-chain amino acids (BCAAs), have been reported in obese human and animal models. Alterations in dietary EAA intake result in improvements in fat and weight loss in rodents, and each has its distinct mechanism. For example, leucine deprivation increases energy expenditure, reduces food intake and fat mass, primarily through regulation of the general control nonderepressible 2 (GCN2) and mammalian target of rapamycin (mTOR) signaling. Methionine restriction by 80% decreases fat mass and body weight while developing hyperphagia, primarily through fibroblast growth factor 21 (FGF-21) signaling. Some effects of diets with different protein levels on energy homeostasis are mediated by similar mechanisms. However, reports on the effects and underlying mechanisms of dietary EAA imbalances on human body weight are few, and more investigations are needed in future.
Collapse
Affiliation(s)
- Fei Xiao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Feifan Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China; Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China.
| |
Collapse
|
36
|
Vacca M, Raspini B, Calabrese FM, Porri D, De Giuseppe R, Chieppa M, Liso M, Cerbo RM, Civardi E, Garofoli F, Cena H, De Angelis M. The establishment of the gut microbiota in 1-year-aged infants: from birth to family food. Eur J Nutr 2022; 61:2517-2530. [PMID: 35211851 PMCID: PMC9279275 DOI: 10.1007/s00394-022-02822-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Purpose With the aim of characterizing the gastrointestinal (GI) microbiota and contextually determine how different prenatal, perinatal, and postnatal factors affected its composition in early childhood, infants were enrolled in a longitudinal-prospective study named “A.MA.MI.” (Alimentazione MAmma e bambino nei primi MIlle giorni; NCT04122612, October 2019). Methods Forty-five fecal samples were collected at 12 months of infants’ age, identified as the 3rd follow-up (T3). The evaluated variables were pre-gestational weight and weight gain during pregnancy, delivery mode, feeding, timing of weaning, and presence/absence of older siblings. Fecal alpha and beta-diversities were analyzed. Noteworthy, to determine the impact of the influencing factors, multivariate analyses were conducted. Results At T3, all prenatal and perinatal variables did not result to be significant whereas, among the postnatal variables, type of milk-feeding and weaning showed the greatest contribution in shaping the microbiota. Although aged 1 year, infants exclusively breastfed until 6 months were mainly colonized by Lactobacillaceae and Enterobacteriaceae. Differently, Bacteroidaceae characterized the microbiota of infants that were never breastfed in an exclusive way. Moreover, although an early introduction of solid foods determined higher values of Faith’s PD, high abundances of Ruminococcaceae and Faecalibacterium mainly associated with infants weaned after the 4th month of age. Conclusion The microbial colonization during the first year of life is likely affected by a simultaneous effect of multiple variables playing a significant role at different times. Therefore, these data contribute to add evidence concerning the complex multifactorial interaction between GI microbiota and various stimuli affecting infants during the early stages of life. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-022-02822-1.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Benedetta Raspini
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | | | - Debora Porri
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Marcello Chieppa
- Institute of Research, National Institute of Gastroenterology "S. de Bellis", Castellana Grotte, Italy
| | - Marina Liso
- Institute of Research, National Institute of Gastroenterology "S. de Bellis", Castellana Grotte, Italy
| | - Rosa Maria Cerbo
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Civardi
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Garofoli
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy. .,Unit of Internal Medicine and Endocrinology, Clinical Nutrition and Dietetics Service, ICS Maugeri IRCCS, Pavia, Italy.
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
37
|
Abstract
In this paper, the extraction of polyphenols from amaranth seed using a Box–Benhken design using four factors—ultra-turrax speed, solid-to-liquid ratio (RSL), methanol concentration and extraction time—were studied. There were two responses studied for the model: total phenolic content (TPC) and total flavonoid content (TFC). The factors which influenced the most the extraction of the TPC and TFC were the RSL, methanol concentration and ultra-turrax speed. Twelve phenolic acids (rosmarinic acid, p-coumaric acid, chlorogenic acid, vanillic acid, caffeic acid, p-hydroxybenzoic acid, protocatechuic acid and gallic acid) and flavonoids (kaempferol, quercetin, luteolin and myricetin) were studied, and the most abundant one was kaempferol followed by myricetin. The amaranth seed is a valuable source of fatty acids, and 16.54% of the total fatty acids determined were saturated fatty acids, while 83.45% of the fatty acids were unsaturated ones. Amaranth seed is a valuable source of amino acids, with 9 essential amino acids being reported: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine.
Collapse
|
38
|
Ademosun AO, Oboh G, Ajeigbe OF. Influence of Moringa (Moringa oleifera) enriched ice creams on rats’ brain: Exploring the redox and cholinergic systems. Curr Res Food Sci 2022; 5:366-373. [PMID: 35198996 PMCID: PMC8850994 DOI: 10.1016/j.crfs.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
The broad application of Moringa oleifera leaves in the treatment of numerous diseases is prevalent globally where it extends to the management of diabetes, hypertension, inflammation, hypercholesterolemia and neurodegenerative diseases. This study provides findings on the role of Moringa oleifera leaves (MO) [MO leaves] formulated ice creams on brain cholinergic enzymes [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)], antioxidant enzymes, glycemic index and blood lipid profile of rats. Thirty (30) adult male rats acclimatized for 2 weeks were divided into five groups: Group 1 rats received commercial ice cream, Group 2 rats were received plain ice-cream, Group 3, 4 and 5 received 0.5 g, 1.0 g and 2.0 g of MO-formulated ice creams. Rats were fed on normal pellets and exposed to ice creams produced from whipping cream, skimmed milk and Moringa oleifera leaves for 30 consecutive days. Following administration, results from this study revealed that rats that received Moringa formulated ice-creams had reduced brain butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes activities, glycemic index (GI), total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) levels and significantly increased high-density lipoprotein-cholesterol (HDL-C) level in the plasma while revealing elevated brain antioxidant status (Superoxide dismutase (SOD) and Catalase (CAT)) when compared against rats consuming commercial ice creams. Therefore, results from this study attests to the intake of ice creams made from blends of Moringa leaves in the reduction of rats’ body weight, glycemic index and lipid profile (TC, TG, LDL-C), inhibition of brain cholinergic enzymes (AChE and BChE) while increasing brain antioxidant enzymes activities (SOD and CAT). Ice creams enriched with Moringa leaves reduces rats' body weight gain and GI. Also, rats' brain antioxidant and cholinergic enzymes activities was modulated. This study shows the influence of Moringa ice creams on brain enzymes activities.
Collapse
Affiliation(s)
- Ayokunle Olubode Ademosun
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
- Corresponding author.
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
| | - Olufunke Florence Ajeigbe
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
- Department of Physical and Chemical Sciences, Biochemistry Programme, Elizade University, P.M.B. 002, Ilara-Mokin, Ondo State, Nigeria
| |
Collapse
|
39
|
Lim JJ, Liu Y, Lu LW, Barnett D, Sequeira IR, Poppitt SD. Does a Higher Protein Diet Promote Satiety and Weight Loss Independent of Carbohydrate Content? An 8-Week Low-Energy Diet (LED) Intervention. Nutrients 2022; 14:nu14030538. [PMID: 35276894 PMCID: PMC8838013 DOI: 10.3390/nu14030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Both higher protein (HP) and lower carbohydrate (LC) diets may promote satiety and enhance body weight (BW) loss. This study investigated whether HP can promote these outcomes independent of carbohydrate (CHO) content. 121 women with obesity (BW: 95.1 ± 13.0 kg, BMI: 35.4 ± 3.9 kg/m2) were randomised to either HP (1.2 g/kg BW) or normal protein (NP, 0.8 g/kg BW) diets, in combination with either LC (28 en%) or normal CHO (NC, 40 en%) diets. A low-energy diet partial diet replacement (LEDpdr) regime was used for 8 weeks, where participants consumed fixed-energy meal replacements plus one ad libitum meal daily. Four-day dietary records showed that daily energy intake (EI) was similar between groups (p = 0.744), but the difference in protein and CHO between groups was lower than expected. Following multiple imputation (completion rate 77%), decrease in mean BW, fat mass (FM) and fat-free mass (FFM) at Week 8 in all was 7.5 ± 0.7 kg (p < 0.001), 5.7 ± 0.5 kg (p < 0.001), and 1.4 ± 0.7 kg (p = 0.054) respectively, but with no significant difference between diet groups. LC (CHO×Week, p < 0.05), but not HP, significantly promoted postprandial satiety during a preload challenge. Improvements in blood biomarkers were unrelated to LEDpdr macronutrient composition. In conclusion, HP did not promote satiety and BW loss compared to NP LEDpdr, irrespective of CHO content.
Collapse
Affiliation(s)
- Jia Jiet Lim
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand; (Y.L.); (L.W.L.); (I.R.S.); (S.D.P.)
- Riddet Institute, Palmerston North 4474, New Zealand
- Correspondence:
| | - Yutong Liu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand; (Y.L.); (L.W.L.); (I.R.S.); (S.D.P.)
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
| | - Louise Weiwei Lu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand; (Y.L.); (L.W.L.); (I.R.S.); (S.D.P.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Daniel Barnett
- Department of Statistics, University of Auckland, Auckland 1010, New Zealand;
| | - Ivana R. Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand; (Y.L.); (L.W.L.); (I.R.S.); (S.D.P.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Sally D. Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand; (Y.L.); (L.W.L.); (I.R.S.); (S.D.P.)
- Riddet Institute, Palmerston North 4474, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| |
Collapse
|
40
|
Dugardin C, Fleury L, Touche V, Ahdach F, Lesage J, Tenenbaum M, Everaert N, Briand O, Lestavel S, Ravallec R, Cudennec B. An Exploratory Study of the Role of Dietary Proteins in the Regulation of Intestinal Glucose Absorption. Front Nutr 2022; 8:769773. [PMID: 35127780 PMCID: PMC8808719 DOI: 10.3389/fnut.2021.769773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Several studies have demonstrated that high protein diets improve glucose homeostasis. Nevertheless, the mechanisms underlying this effect remain elusive. This exploratory study aims to screen and compare the acute effects of dietary proteins from different sources on intestinal glucose absorption. Six dietary proteins from various sources were thus selected and digested thanks to the INFOGEST static gastrointestinal digestion protocol. The digested proteins were able to decrease intestinal glucose absorption in vitro and ex vivo. Moreover, acute ingestion of casein and fish gelatin led to improved glucose tolerance in Wistar rats without significant effect on insulin secretion. In parallel, GLUT2 mRNA expression in enterocytes was decreased following short-term incubation with some of the digested proteins. These results strengthen the evidence that digested protein-derived peptides and amino acids are key regulators of glucose homeostasis and highlight their role in intestinal glucose absorption.
Collapse
Affiliation(s)
- Camille Dugardin
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
- *Correspondence: Camille Dugardin
| | - Léa Fleury
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
| | - Véronique Touche
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, Lille, France
| | - Farah Ahdach
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
| | - Jean Lesage
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE, Lille, France
| | - Mathie Tenenbaum
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
| | - Nadia Everaert
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
- Animal and Human Health Engineering, Department of Biosystems, Katholieke Universiteit Leuven, Heverlee, Belgium
| | - Olivier Briand
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, Lille, France
| | - Sophie Lestavel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, Lille, France
| | - Rozenn Ravallec
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
| | - Benoit Cudennec
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
- Benoit Cudennec
| |
Collapse
|
41
|
Algazali A, Sayadi Shahraki M, Mahmoudieh M, Keleidari B, Melali H. A comparative study of the effect of two procedures of classic Roux-en-Y and omega bariatric surgery on the control and management of diabetes. Adv Biomed Res 2022; 11:41. [PMID: 35814297 PMCID: PMC9259453 DOI: 10.4103/abr.abr_179_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Patient management after bariatric surgery is important in controlling patients’ diabetes and recurrence prevention. This study aimed to meet the medical managements of patients with diabetes 6 months after the bariatric surgery. Materials and Methods: This cross-sectional study was performed on 77 type 2 diabetes patients’ candidates for bariatric surgery (Roux-en-Y [RYGP] and Omega). Postoperative implementation protocol was one-third of insulin for patients taking long-term insulin and the discontinuation of medications for patients of oral antidiabetic agents. Blood glucose (BG) level was checked regularly by the patients at home and the necessary medical management was applied. The weight, BG and HbA1C levels, and use of oral antidiabetic agents and insulin were assessed and recorded before 1, 3, and 6 months after the surgery. Results: BG levels and HbA1C percentage in the 1st, 3rd, and 6th months after the intervention in Omega group were significantly lower than RYGB group (P value < 0.05). At 1 and 3 months after surgery, the mean insulin dose received by the Omega and RYGB groups was reduced to <30 units/day and 10 units/day, respectively, following the management protocol in this study. Moreover, 23.1% and 7.7% of patients in RYGB group and 12.1% and 3% of patients in Omega group took oral antidiabetic agents 1and 3 months after surgery, respectively. Insulin and oral antidiabetic agents were completely discontinued 6 months after the surgery. Conclusion: The long-term management and support of the patients by the implementation of a standard protocol after surgery are of great significance in obtaining the optimal outcome after bariatric surgery.
Collapse
|
42
|
Oliveira CLP, Boulé NG, Elliott SA, Sharma AM, Siervo M, Berg A, Ghosh S, Prado CM. A high-protein total diet replacement alters the regulation of food intake and energy homeostasis in healthy, normal-weight adults. Eur J Nutr 2021; 61:1849-1861. [PMID: 34928408 PMCID: PMC9106637 DOI: 10.1007/s00394-021-02747-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/16/2021] [Indexed: 10/24/2022]
Abstract
PURPOSE Dietary intake can affect energy homeostasis and influence body weight control. The aim of this study was to compare the impact of high-protein total diet replacement (HP-TDR) versus a control (CON) diet in the regulation of food intake and energy homeostasis in healthy, normal-weight adults. METHODS In this acute randomized controlled, cross-over study, participants completed two isocaloric arms: a) HP-TDR: 35% carbohydrate, 40% protein, and 25% fat; b) CON: 55% carbohydrate, 15% protein, and 30% fat. The diets were provided for 32 h while inside a whole-body calorimetry unit. Appetite sensations, appetite-related hormones, and energy metabolism were assessed. RESULTS Forty-three healthy, normal-weight adults (19 females) participated. Appetite sensations did not differ between diets (all p > 0.05). Compared to the CON diet, the change in fasting blood markers during the HP-TDR intervention was smaller for peptide tyrosine-tyrosine (PYY; - 18.9 ± 7.9 pg/mL, p = 0.02) and greater for leptin (1859 ± 652 pg/mL, p = 0.007). Moreover, postprandial levels of glucagon-like peptide 1 (1.62 ± 0.36 pM, p < 0.001) and PYY (31.37 ± 8.05 pg/mL, p < 0.001) were higher in the HP-TDR. Significant correlations were observed between energy balance and satiety (r = - 0.41, p = 0.007), and energy balance and PFC (r = 0.33, p = 0.033) in the HP-TDR. CONCLUSION Compared to the CON diet, the HP-TDR increased blood levels of anorexigenic hormones. Moreover, females and males responded differently to the intervention in terms of appetite sensations and appetite-related hormones. TRIAL REGISTRATION NCT02811276 (retrospectively registered on 16 June 2016) and NCT03565510 (retrospectively registered on 11 June 2018).
Collapse
Affiliation(s)
- Camila L P Oliveira
- Human Nutrition Research Unit, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Normand G Boulé
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Sarah A Elliott
- Human Nutrition Research Unit, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Alberta Research Centre for Health Evidence, University of Alberta, Edmonton, AB, Canada
| | - Arya M Sharma
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Mario Siervo
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, Nottingham, England, UK
| | - Aloys Berg
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sunita Ghosh
- Department of Medical Oncology, University of Alberta, Edmonton, AB, Canada
| | - Carla M Prado
- Human Nutrition Research Unit, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada. .,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
43
|
Nutrients and Dietary Approaches in Patients with Type 2 Diabetes Mellitus and Cardiovascular Disease: A Narrative Review. Nutrients 2021; 13:nu13114150. [PMID: 34836405 PMCID: PMC8622886 DOI: 10.3390/nu13114150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) is the most common cause of morbidity and mortality in developed countries. The prevalence of CVD is much higher in patients with type 2 diabetes mellitus (T2DM), who may benefit from lifestyle changes, which include adapted diets. In this review, we provide the role of different groups of nutrients in patients with T2DM and CVD, as well as dietary approaches that have been associated with better and worse outcomes in those patients. Many different diets and supplements have proved to be beneficial in T2DM and CVD, but further studies, guidelines, and dietary recommendations are particularly required for patients with both diseases.
Collapse
|
44
|
Habiba U, Robin MA, Hasan MM, Toma MA, Akhter D, Mazumder MAR. Nutritional, textural, and sensory quality of bars enriched with banana flour and pumpkin seed flour. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-282-289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Nowadays, health-conscious consumers attend to nutritional, health, and easy-to-use products. Demand for healthy snacks is significantly increasing. Our study aimed to develop high protein nutrition bars by incorporating pumpkin seed flour and banana flour and assess their quality.
Study objects and methods. We analyzed three bar samples for nutritional, textural, and sensory quality. The bars contained banana flour, pumpkin seed flour, and the mixed flour. Proximate analysis was performed following the AOAC method. The mineral content and antioxidant properties of the bars were determined by using emission spectrophotometry and the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging modified method, respectively.
Results and discussion. The mixed flour nutrition bar had significantly higher total phenolic content and antioxidant activity than the bar with banana flour and the bar with pumpkin seed flour. Textural analysis demonstrated that the mixed flour sample had significantly (P < 0.05) higher hardness and color parameters compared to the other bar samples. Nutritional analysis indicated that mixed flour bar contained significantly higher amounts of protein, fat, and calcium; while pumpkin seed flour bar had higher ash, iron, and magnesium contents. The mixed flour sample also had better sensory parameters.
Conclusion. The mixed flour demonstrated good quality. Hence, both banana and pumpkin seed flour have a potential to be used in bar formulations.
Collapse
|
45
|
Drummen M, Adam TC, Macdonald IA, Jalo E, Larssen TM, Martinez JA, Handjiev-Darlenska T, Brand-Miller J, Poppitt SD, Stratton G, Pietiläinen KH, Taylor MA, Navas-Carretero S, Handjiev S, Muirhead R, Silvestre MP, Swindell N, Huttunen-Lenz M, Schlicht W, Lam T, Sundvall J, Raman L, Feskens E, Tremblay A, Raben A, Westerterp-Plantenga MS. Associations of changes in reported and estimated protein and energy intake with changes in insulin resistance, glycated hemoglobin, and BMI during the PREVIEW lifestyle intervention study. Am J Clin Nutr 2021; 114:1847-1858. [PMID: 34375397 PMCID: PMC8574694 DOI: 10.1093/ajcn/nqab247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Observed associations of high-protein diets with changes in insulin resistance are inconclusive. OBJECTIVES We aimed to assess associations of changes in both reported and estimated protein (PRep; PEst) and energy intake (EIRep; EIEst) with changes in HOMA-IR, glycated hemoglobin (HbA1c), and BMI (in kg/m2), in 1822 decreasing to 833 adults (week 156) with overweight and prediabetes, during the 3-y PREVIEW (PREVention of diabetes through lifestyle intervention and population studies In Europe and around the World) study on weight-loss maintenance. Eating behavior and measurement errors (MEs) of dietary intake were assessed. Thus, observational post hoc analyses were applied. METHODS Associations of changes in EIEst, EIRep, PEst, and PRep with changes in HOMA-IR, HbA1c, and BMI were determined by linear mixed-model analysis in 2 arms [high-protein-low-glycemic-index (GI) diet and moderate-protein-moderate-GI diet] of the PREVIEW study. EIEst was derived from energy requirement: total energy expenditure = basal metabolic rate × physical activity level; PEst from urinary nitrogen, and urea. MEs were calculated as [(EIEst - EIRep)/EIEst] × 100% and [(PRep - PEst)/PEst] × 100%. Eating behavior was determined using the Three Factor Eating Questionnaire, examining cognitive dietary restraint, disinhibition, and hunger. RESULTS Increases in PEst and PRep and decreases in EIEst and EIRep were associated with decreases in BMI, but not independently with decreases in HOMA-IR. Increases in PEst and PRep were associated with decreases in HbA1c. PRep and EIRep showed larger changes and stronger associations than PEst and EIEst. Mean ± SD MEs of EIRep and PRep were 38% ± 9% and 14% ± 4%, respectively; ME changes in EIRep and En% PRep were positively associated with changes in BMI and cognitive dietary restraint and inversely with disinhibition and hunger. CONCLUSIONS During weight-loss maintenance in adults with prediabetes, increase in protein intake and decrease in energy intake were not associated with decrease in HOMA-IR beyond associations with decrease in BMI. Increases in PEst and PRep were associated with decrease in HbA1c.This trial was registered at clinicaltrials.gov as NCT01777893.
Collapse
Affiliation(s)
- Mathijs Drummen
- Department of Nutrition and Movement Sciences, NUTRIM—School of Nutrition and Translational Research in Metabolism, Maastricht University,
Maastricht, Netherlands
| | - Tanja C Adam
- Department of Nutrition and Movement Sciences, NUTRIM—School of Nutrition and Translational Research in Metabolism, Maastricht University,
Maastricht, Netherlands
| | - Ian A Macdonald
- MRC/Arthritis Research UK (ARUK) Centre for Musculoskeletal Ageing Research, ARUK Centre for Sport, Exercise, and Osteoarthritis, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Division of Physiology, Pharmacology, and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Elli Jalo
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Thomas M Larssen
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - J Alfredo Martinez
- Department of Physiology and Nutrition, University of Navarra, Pamplona, Spain,Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN),
Madrid, Spain,IdisNA Institute for Health Research, Pamplona, Spain,Precision Nutrition and Cardiometabolic Health Program, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM + CSIC, Madrid, Spain
| | | | - Jennie Brand-Miller
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Gareth Stratton
- Applied Sports Technology, Exercise, and Medicine (A-STEM), College of Engineering Research Centre, Swansea University, Swansea, United Kingdom
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Obesity Center, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Moira A Taylor
- MRC/Arthritis Research UK (ARUK) Centre for Musculoskeletal Ageing Research, ARUK Centre for Sport, Exercise, and Osteoarthritis, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Division of Physiology, Pharmacology, and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Santiago Navas-Carretero
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain,IdisNA Institute for Health Research, Pamplona, Spain,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Svetoslav Handjiev
- Department of Pharmacology and Toxicology, Medical University of Sofia, Sofia, Bulgaria
| | - Roslyn Muirhead
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Marta P Silvestre
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand,Center for Research in Health Technologies and Services (CINTESIS), NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - Nils Swindell
- Applied Sports Technology, Exercise, and Medicine (A-STEM), College of Engineering Research Centre, Swansea University, Swansea, United Kingdom
| | - Maija Huttunen-Lenz
- Exercise and Health Sciences, University of Stuttgart, Stuttgart, Germany,Institute of Nursing Science, Schwäbisch Gmünd University of Education, Schwäbisch Gmünd, Germany
| | - Wolfgang Schlicht
- Exercise and Health Sciences, University of Stuttgart, Stuttgart, Germany
| | - Tony Lam
- NetUnion sarl, Lausanne, Switzerland
| | - Jouko Sundvall
- Biochemistry Laboratory, Forensic Toxicology Unit, Department of Government Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Laura Raman
- Biochemistry Laboratory, Forensic Toxicology Unit, Department of Government Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Edith Feskens
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Angelo Tremblay
- Department of Kinesiology, Laval University, Quebec City, Quebec, Canada
| | - Anne Raben
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark,Steno Diabetes Center, Copenhagen, Denmark
| | | |
Collapse
|
46
|
Szepe KJ, Dyer PS, Johnson RI, Salter AM, Avery SV. Influence of environmental and genetic factors on food protein quality: current knowledge and future directions. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Effects of Quality and Quantity of Protein Intake for Type 2 Diabetes Mellitus Prevention and Metabolic Control. Curr Nutr Rep 2021; 9:329-337. [PMID: 32572702 DOI: 10.1007/s13668-020-00324-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to evaluate the ideal protein quality and quantity and the dietary composition for the prevention and metabolic control of type 2 diabetes mellitus (T2DM). INTRODUCTION Although some reviews demonstrate the advantages of a diet with a higher protein intake, other reviews have observed that a diet high in carbohydrates, with low-glycaemic index carbohydrates and good fibre intake, is equally effective in improving insulin sensitivity. METHODS Over 2831 articles were screened, and 24 from the last 5 years were analysed and summarised for this review, using the protein, diabetes and insulin glucose metabolic keywords in Pubmed in June 2019. RESULTS Eleven studies demonstrate that a higher consumption of proteins has a positive effect on insulin sensitivity. A higher intake of animal protein seems to be related to an increased risk of T2DM. Four studies show that consumption of meat has a deleterious effect. Higher intake of plant protein and dairy products is associated with a modestly reduced risk. DISCUSSION Based on the results obtained, for the prevention of T2DM and all disorders related to metabolic syndrome, no ideal dietary composition has yet been found. The advantage of plant protein sources may be related to the foods' low-glycaemic index due to the high fibre content. However, the right protein quality (animal and plant) and the quantity for T2DM prevention and metabolic control are unclear and need to be investigated with further long-term studies.
Collapse
|
48
|
Khatibi N, Setayesh L, Yarizade H, Mirzababaei A, Sajadi F, Mirzaei K. Interactions between dietary patterns with the age of onset of obesity and body composition among obese and overweight female: A cross -sectional study. Clin Nutr ESPEN 2021; 44:324-330. [PMID: 34330485 DOI: 10.1016/j.clnesp.2021.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Obesity is associated to dietary factors, mostly those related to nutrients and energy. The aim of the present study was to explore the interaction of dietary patterns and the age of onset of obesity on anthropometric indicators among Iranian women. METHODS A cross-sectional study was conducted on 266 obese and overweight Iranian females who were between 18 and 48 years old with BMI>25 (kg/m2).Dietary intake was assessed using a semi-quantitative Food Frequency Questionnaire (FFQ) was calculated for all participants. Three dietary patterns principle component analysis (PCA) was used as a factor score for each of the three dietary patterns. Anthropometric evaluation was performed for participants. RESULTS A significant inverse relationship (p < 0.05) was found between DASH score and the age of onset of obesity under 18 years old, fat-free mass, and weight in women. Conversely it was observed that higher weight and body mass index (BMI) were associated with the age of onset of obesity under 18 years old compared to participants more than 18 years old (p < 0.05). Moreover, it was observed that higher adherence to DASH dietary pattern has a positive correlation with lower BMI (P = 0.07), visceral fat (P = 0.03), and body fat mass (BFM) (P = 0.07). A significant interaction between DASH pattern and onset obesity under 18 years old on weight observed in women (P = 0.001). CONCLUSIONS This study suggested that DASH dietary pattern is a good choice for weight management and a healthier body in general and may decrease the development of obesity-related diseases. It was suggested that higher adherence to DASH pattern may reduce the obesity markers and decrease the development of obesity-related diseases.
Collapse
Affiliation(s)
- Nasim Khatibi
- Registered Dietitian, Shahid Sadoughi University of Medical Science, Yazd, Iran; Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Leila Setayesh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Yarizade
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Forogh Sajadi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
49
|
Knopp T, Bieler T, Jung R, Ringen J, Molitor M, Jurda A, Münzel T, Waisman A, Wenzel P, Karbach SH, Wild J. Effects of Dietary Protein Intake on Cutaneous and Systemic Inflammation in Mice with Acute Experimental Psoriasis. Nutrients 2021; 13:nu13061897. [PMID: 34072973 PMCID: PMC8228490 DOI: 10.3390/nu13061897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Psoriasis is a systemic inflammatory disorder, primarily characterized by skin plaques. It is linked to co-morbidities including cardiovascular disease and metabolic syndrome. Several studies demonstrate that dietary habits can influence psoriasis development and severity. However, the effect of different dietary protein levels on psoriasis development and severity is poorly understood. In this study, we examine the influence of dietary protein on psoriasis-like skin disease in mice. Methods: We fed male C57BL/6J mice with regular, low protein and high protein chow for 4 weeks. Afterwards, we induced psoriasis-like skin disease by topical imiquimod (IMQ)-treatment on ear and back skin. The local cutaneous and systemic inflammatory response was investigated using flow cytometry analysis, histology and quantitative rt-PCR. Results: After 5 days of IMQ-treatment, both diets reduced bodyweight in mice, whereas only the high protein diet slightly aggravated IMQ-induced skin inflammation. IMQ-treatment induced infiltration of myeloid cells, neutrophils, and monocytes/macrophages into skin and spleen independently of diet. After IMQ-treatment, circulating neutrophils and reactive oxygen species were increased in mice on low and high protein diets. Conclusion: Different dietary protein levels had no striking effect on IMQ-induced psoriasis but aggravated the systemic pro-inflammatory phenotype.
Collapse
Affiliation(s)
- Tanja Knopp
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, 55131 Mainz, Germany; (T.K.); (T.B.); (R.J.); (J.R.); (M.M.); (A.J.); (P.W.); (S.H.K.)
| | - Tabea Bieler
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, 55131 Mainz, Germany; (T.K.); (T.B.); (R.J.); (J.R.); (M.M.); (A.J.); (P.W.); (S.H.K.)
| | - Rebecca Jung
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, 55131 Mainz, Germany; (T.K.); (T.B.); (R.J.); (J.R.); (M.M.); (A.J.); (P.W.); (S.H.K.)
| | - Julia Ringen
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, 55131 Mainz, Germany; (T.K.); (T.B.); (R.J.); (J.R.); (M.M.); (A.J.); (P.W.); (S.H.K.)
| | - Michael Molitor
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, 55131 Mainz, Germany; (T.K.); (T.B.); (R.J.); (J.R.); (M.M.); (A.J.); (P.W.); (S.H.K.)
- Center for Cardiology—Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany;
- German Center for Cardiovascular Research (DZHK)—Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Annika Jurda
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, 55131 Mainz, Germany; (T.K.); (T.B.); (R.J.); (J.R.); (M.M.); (A.J.); (P.W.); (S.H.K.)
| | - Thomas Münzel
- Center for Cardiology—Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany;
- German Center for Cardiovascular Research (DZHK)—Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Ari Waisman
- Institute of Molecular Medicine, University Medical Center Mainz, 55131 Mainz, Germany;
- Focus Program Translational Neurosciences, University Medical Center Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, 55131 Mainz, Germany; (T.K.); (T.B.); (R.J.); (J.R.); (M.M.); (A.J.); (P.W.); (S.H.K.)
- Center for Cardiology—Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany;
- German Center for Cardiovascular Research (DZHK)—Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Susanne Helena Karbach
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, 55131 Mainz, Germany; (T.K.); (T.B.); (R.J.); (J.R.); (M.M.); (A.J.); (P.W.); (S.H.K.)
- Center for Cardiology—Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany;
- German Center for Cardiovascular Research (DZHK)—Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Johannes Wild
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, 55131 Mainz, Germany; (T.K.); (T.B.); (R.J.); (J.R.); (M.M.); (A.J.); (P.W.); (S.H.K.)
- Center for Cardiology—Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany;
- German Center for Cardiovascular Research (DZHK)—Partner Site Rhine-Main, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
50
|
Yılmaz SK, Eskici G, Mertoǧlu C, Ayaz A. Effect of different protein diets on weight loss, inflammatory markers, and cardiometabolic risk factors in obese women. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2021; 26:28. [PMID: 34345239 PMCID: PMC8305754 DOI: 10.4103/jrms.jrms_611_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/08/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Reducing and maintaining body weight has become more important than ever as obesity is becoming increasingly common worldwide. This study was aimed to investigate the effects of diets with different protein contents administered to obese women on anthropometric measurements, inflammatory markers, and cardiometabolic risk factors. MATERIALS AND METHODS This randomized controlled trial was conducted with sixty volunteering obese women aged between 20 and 45 years. The subjects were divided into two groups in equal numbers. The high-protein (HP) group (n = 30) was administered an iso-caloric HP diet (25% protein, 30% fat, and 45% carbohydrate), and the control group (n = 30) an isocaloric low-protein diet (15% protein, 30% fat, and 55% carbohydrate), and both groups were followed up for 8 weeks. The subjects' descriptive data, anthropometric measurements, homeostatic model assessment-insulin resistance (HOMA-IR), lipid profiles, and high-sensitive C-reactive protein (hs-CRP), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) levels were analyzed. RESULTS There was no significant difference at baseline (except for low-density lipoprotein cholesterol [LDL-C]), and end-of-study (except for IL-6, systolic blood pressure [SBP], and diastolic blood pressure) values of parameters between the two groups; after adjusted for baseline measurements, a significant difference was observed between the groups for body weight, body mass index, waist circumference, HOMA-IR, LDL-C, hs-CRP, TNF-α, IL-6, and SBP (P = 0.004, P = 0.001, P = 0.003, P = 0.029, P = 0.004, P = 0.016, P = 0.004, P = 0.010, and P = 0.000, respectively) and were greater in the HP group than in the control group (P < 0.05). CONCLUSION The HP diet was effective on improvement in HOMA-IR, SBP, LDL-C, hs-CRP, TNF-α, IL-6, and resulted in body weight loss.
Collapse
Affiliation(s)
- Sevil Karahan Yılmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Günay Eskici
- Department of Coaching, Faculty of Sport Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Cuma Mertoǧlu
- Department of Clinical Biochemistry, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Aylin Ayaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|