1
|
Huang S, Li Q, Li X, Ye H, Zhang L, Zhu X. Recent Research Progress of Wound Healing Biomaterials Containing Platelet-Rich Plasma. Int J Nanomedicine 2025; 20:3961-3976. [PMID: 40191044 PMCID: PMC11970316 DOI: 10.2147/ijn.s506677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
Platelet-Rich Plasma (PRP) is a plasma product obtained by centrifuging autologous blood, containing a high concentration of platelets, white blood cells, and fibrin. PRP is enriched with various growth factors, such as Transforming Growth Factor-beta (TGF-β), Platelet-Derived Growth Factor (PDGF), Epidermal Growth Factor (EGF), Insulin-Like Growth Factor (IGF), and Vascular Endothelial Growth Factor (VEGF), all of which promote tissue growth and repair. Currently, PRP has been widely applied in the clinical field of wound repair and has achieved certain therapeutic effects. Biomaterials, as an important direction in the treatment of wounds, combined with PRP, provide new possibilities to enhance the regenerative repair of wounds by PRP. This article reviews the latest research progress of biomaterials combined with PRP in the treatment of wounds, aiming to provide references for PRP wound treatment, as well as to provide ideas for the development of subsequent medical materials.
Collapse
Affiliation(s)
- Sha Huang
- Department of Plastic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Qing Li
- Department of Electrocardiogram, The Second Affiliated Hospital, Zhejiang University School of College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiangyu Li
- Department of Plastic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Hailing Ye
- Department of Plastic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Luyang Zhang
- Department of Plastic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoyi Zhu
- Department of General Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, People’s Republic of China
- Department of General Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Eisa NM, Elshaer SS, Bakry S, Abdelzaher OF, Eldesoky NAR. Placental extract augments mesenchymal stem cells in pancreatic tissue regeneration: A new insight into diabetes treatment. Tissue Cell 2025; 95:102883. [PMID: 40157219 DOI: 10.1016/j.tice.2025.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Although a wide variety of medicinal interventions and lifestyles have been endeavored so far for the treatment of diabetes mellitus, it is still intractable. The current study aimed to examine the effect of mesenchymal stem cells (MSCs) and/or placental extract (PE) on streptozotocin (STZ) induced diabetic rats. METHODS Fifty male albino rats were used. Ten of them as negative control (group I) and the remaining forty rats were subjected to diabetes induction using 50 mg/kg STZ then divided into; group II (positive controls), group III (MSCs treated), group IV (PE treated), and group V (MSCs/PE combination treated). After 4 weeks of treatment, animals were sacrificed; blood samples were collected for determination of glycated hemoglobin by HPLC, and serum was separated for determination of glucose spectrophotometrically and insulin by ELISA. Pancreatic tissues were harvested for histopathological examination and pancreatic duodenal homeobox 1 (Pdx1) gene expression by PCR. RESULTS The three treated groups showed significant enhancement in glycemic parameters and Pdx1 gene expression compared with positive control group (P < 0.05). Histopathological examination revealed great improvement in the three treated groups where group V showed the best picture and the best glycemic control. CONCLUSIONS This study points to the possible role of PE in DM treatment. The MSCs/PE combination had the ability to return all parameters and Pdx1 gene expression to their normal levels. This action could be attributed to MSCs homing into the pancreas and the pancreatic rejuvenation provided by PE contents of growth factors; EGF, HGF, IGF-1 and IGF-II.
Collapse
Affiliation(s)
- Nehal Mohamed Eisa
- Clinical Research Department at Giza health affairs Directorate, MOHP, Giza, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Sayed Bakry
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | | | - Noha Abdel-Rahman Eldesoky
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| |
Collapse
|
3
|
Akhavan S, Sanati MH, Irani S, Soheili ZS, Arpanaei A. WS6 and 5-iodotubercidin small molecules and growth factors; TGF, HGF, and EGF synergistically enhance proliferation of β-like human induced pluripotent stem cells (iPSCs). J Diabetes Metab Disord 2024; 23:2355-2364. [PMID: 39610526 PMCID: PMC11599654 DOI: 10.1007/s40200-024-01503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/31/2024] [Indexed: 11/30/2024]
Abstract
Objectives It has been shown that growth factors and small molecules play an essential role in the proliferation of β cells and insulin production. In this study, we investigated the effects of small molecules (WS6 and 5-iodotubercidin) and growth factors (TGFβ, HGF, and EGF) on the proliferation of β-like human ipSCs. Methods iPSCs derived β cells were treated with small molecules and growth factors. Cytotoxic activity of small molecules and growth factors was determined using MTT assay. Insulin gene expression and secretion were measured by qPCR and ELISA, respectively. The protein expression of insulin was evaluated by western blot as well. Results Simltananeous addition of WS6 and Harmine into the culture media increased insulin gene expression compared to treatment by each molecule alone (p < 0.05). It was found that the simultaneous recruitment of EGH, HGF, and TGF-β increased insulin expression compared to treatment by each molecule alone (p < 0.05). Results showed that EGF, HGF, TGF-β growth factors increased insulin gene expression, eventually leading to insulin secretion from β cells (p < 0.05). Conclusions Growth factors and small molecules synergistically enhanced the proliferation of β cells and insulin production.
Collapse
Affiliation(s)
- Saeedeh Akhavan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Sanati
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, PO Box 14965-16, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Biochemistry, National Institute of Genetic Engineering and Biotechnology, P.O. Box: 14965/161, Tehran, Iran
| | | |
Collapse
|
4
|
Xing D, Xia G, Tang X, Zhuang Z, Shan J, Fang X, Qiu L, Zha X, Chen XL. A Multifunctional Nanocomposite Hydrogel Delivery System Based on Dual-Loaded Liposomes for Scarless Wound Healing. Adv Healthc Mater 2024; 13:e2401619. [PMID: 39011810 DOI: 10.1002/adhm.202401619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Increased inflammatory responses and oxidative stress at the wound site following skin trauma impair healing. Furthermore, skin scarring places fibroblasts under severe mechanical stress and aggravates pathological fibrosis. A novel liposomal composite hydrogel is engineered for wound microenvironment remodeling, incorporating dual-loaded liposomes into gelatin methacrylate to create a nanocomposite hydrogel. Notably, tetrahydrocurcumin (THC) and hepatocyte growth factor (HGF) are encapsulated in the hydrophobic and hydrophilic layers of liposomes, respectively. The composite hydrogel maintains porous nanoarchitecture, demonstrating sustainable THC and HGF release and enhanced mechanical properties and biocompatibility. This system effectively promotes cell proliferation and angiogenesis and attenuates apoptosis. It decreases the expression of the inflammatory factors by inhibiting the high-mobility group box /receptor for advanced glycation end product/NF-κB (HMGB1/RAGE/NF-κB)pathway and increases macrophage polarization from M1 to M2 in vitro, effectively controlling inflammatory responses. It exhibits remarkable antioxidant properties by scavenging excess reactive oxygen species and free radicals. Most importantly, it effectively prevents scar formation by restraining the transforming growth factor beta (TGF-β)/Smads pathway that downregulates associated fibrotic factors. It demonstrates strong therapeutic effects against inflammation and fibrosis in a rat skin wound model with biosafety, advancing the development of innovative hydrogel-based therapeutic delivery strategies for clinical scarless wound therapy.
Collapse
Affiliation(s)
- Danlei Xing
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Guoqing Xia
- Institute for Liver Diseases of Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230022, P. R. China
| | - Xudong Tang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zhiwei Zhuang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jie Shan
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Xiao Fang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Le Qiu
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xu-Lin Chen
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| |
Collapse
|
5
|
Aplin AC, Aghazadeh Y, Mohn OG, Hull-Meichle RL. Role of the Pancreatic Islet Microvasculature in Health and Disease. J Histochem Cytochem 2024; 72:711-728. [PMID: 39601198 PMCID: PMC11600425 DOI: 10.1369/00221554241299862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The pancreatic islet vasculature comprises microvascular endothelial cells surrounded by mural cells (pericytes). Both cell types support the islet by providing (1) a conduit for delivery and exchange of nutrients and hormones; (2) paracrine signals and extracellular matrix (ECM) components that support islet development, architecture, and endocrine function; and (3) a barrier against inflammation and immune cell infiltration. In type 2 diabetes, the islet vasculature becomes inflamed, showing loss of endothelial cells, detachment, and/or trans-differentiation of pericytes, vessel dilation, and excessive ECM deposition. While most work to date has focused either on endothelial cells or pericytes in isolation, it is very likely that the interaction between these cell types and disruption of that interaction in diabetes are critically important. In fact, dissociation of pericytes from endothelial cells is an early, key feature of microvascular disease in multiple tissues/disease states. Moreover, in beta-cell replacement therapy, co-transplantation with microvessels versus endothelial cells alone is substantially more effective in improving survival and function of the transplanted cells. Ongoing studies, including characterization of islet vascular cell signatures, will aid in the identification of new therapeutic targets aimed at improving islet function and benefiting people living with all forms of diabetes.
Collapse
Affiliation(s)
- Alfred C. Aplin
- Seattle Institute for Biomedical and Clinical Research, and Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Yasaman Aghazadeh
- Institut de Recherches Cliniques de Montreal (IRCM), Department of Medicine, University of Montreal, and Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Olivia G. Mohn
- Seattle Institute for Biomedical and Clinical Research, and Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Rebecca L. Hull-Meichle
- Seattle Institute for Biomedical and Clinical Research, and Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington; and Alberta Diabetes Institute and Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Mercader-Ruiz J, Beitia M, Delgado D, Sánchez P, Porras B, Gimeno I, González S, Benito-Lopez F, Basabe-Desmonts L, Sánchez M. Current Challenges in the Development of Platelet-Rich Plasma-Based Therapies. BIOMED RESEARCH INTERNATIONAL 2024; 2024:6444120. [PMID: 39157212 PMCID: PMC11329313 DOI: 10.1155/2024/6444120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 06/21/2024] [Indexed: 08/20/2024]
Abstract
Nowadays, biological therapies are booming and more of these formulations are coming to the market. Platelet-rich plasma, or PRP, is one of the most widely used biological therapies due to its ease of obtention and autologous character. Most of the techniques to obtain PRP are focusing on new processes and methods of optimization. However, not enough consideration is being given to modify the molecular components of PRP to generate more effective formulations with the aim of improving PRP treatments. Therefore, this review covers different novel PRP-obtaining methods that attempt to modify the molecular composition of the plasma.
Collapse
Affiliation(s)
- Jon Mercader-Ruiz
- Microfluidics Cluster UPV/EHUBIOMICs Microfluidics GroupLascaray Research CenterUniversity of the Basque Country UPV/EHU 01006, Vitoria-Gasteiz, Spain
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Maider Beitia
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Diego Delgado
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
- Arthroscopic Surgery UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Begoña Porras
- Arthroscopic Surgery UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Irene Gimeno
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Sergio González
- Arthroscopic Surgery UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHUAnalytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) GroupAnalytical Chemistry DepartmentUniversity of the Basque Country UPV/EHU 48940, Leioa, Spain
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHUBIOMICs Microfluidics GroupLascaray Research CenterUniversity of the Basque Country UPV/EHU 01006, Vitoria-Gasteiz, Spain
- Basque Foundation of ScienceIKERBASQUE 48009, Bilbao, Spain
| | - Mikel Sánchez
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
- Arthroscopic Surgery UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| |
Collapse
|
7
|
Sun Y, Zhang S, Shen Y, Lu H, Zhao X, Wang X, Wang Y, Wang T, Liu B, Yao L, Wen J. Therapeutic application of mesenchymal stem cell-derived exosomes in skin wound healing. Front Bioeng Biotechnol 2024; 12:1428793. [PMID: 39161350 PMCID: PMC11330766 DOI: 10.3389/fbioe.2024.1428793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Wound healing is a complicated obstacle, especially for chronic wounds. Mesenchymal stem cell-derived exosomes may be a promising cell-free approach for treating skin wound healing. Exosomes can accelerate wound healing by attenuating inflammation, promoting angiogenesis, cell proliferation, extracellular matrix production and remodeling. However, many issues, such as off-target effects and high degradation of exosomes in wound sites need to be addressed before applying into clinical therapy. Therefore, the bioengineering technology has been introduced to modify exosomes with greater stability and specific therapeutic property. To prolong the function time and the local concentration of exosomes in the wound bed, the use of biomaterials to load exosomes emerges as a promising strategy. In this review, we summarize the biogenesis and characteristics of exosomes, the role of exosomes in wound healing, and the therapeutic applications of modified-exosomes in wound healing. The challenges and prospects of exosomes in wound healing are also discussed.
Collapse
Affiliation(s)
- Yunhan Sun
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shun Zhang
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yukai Shen
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haoyang Lu
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xincan Zhao
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xin Wang
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yongkai Wang
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Taiping Wang
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bing Liu
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lan Yao
- Eye Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jie Wen
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
8
|
Mohan CD, Shanmugam MK, Gowda SGS, Chinnathambi A, Rangappa KS, Sethi G. c-MET pathway in human malignancies and its targeting by natural compounds for cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155379. [PMID: 38503157 DOI: 10.1016/j.phymed.2024.155379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND c-MET is a receptor tyrosine kinase which is classically activated by HGF to activate its downstream signaling cascades such as MAPK, PI3K/Akt/mTOR, and STAT3. The c-MET modulates cell proliferation, epithelial-mesenchymal transition (EMT), immune response, morphogenesis, apoptosis, and angiogenesis. The c-MET has been shown to serve a prominent role in embryogenesis and early development. The c-MET pathway is deregulated in a broad range of malignancies, due to overexpression of ligands or receptors, genomic amplification, and MET mutations. The link between the deregulation of c-MET signaling and tumor progression has been well-documented. Overexpression or overactivation of c-MET is associated with dismal clinical outcomes and acquired resistance to targeted therapies. Since c-MET activation results in the triggering of oncogenic pathways, abrogating the c-MET pathway is considered to be a pivotal strategy in cancer therapeutics. Herein, an analysis of role of the c-MET pathway in human cancers and its relevance in bone metastasis and therapeutic resistance has been undertaken. Also, an attempt has been made to summarize the inhibitory activity of selected natural compounds towards c-MET signaling in cancers. METHODS The publications related to c-MET pathway in malignancies and its natural compound modulators were obtained from databases such as PubMed, Scopus, and Google Scholar and summarized based on PRISMA guidelines. Some of the keywords used for extracting relevant literature are c-MET, natural compound inhibitors of c-MET, c-MET in liver cancer, c-MET in breast cancer, c-MET in lung cancer, c-MET in pancreatic cancer, c-MET in head and neck cancer, c-MET in bone metastasis, c-MET in therapeutic resistance, and combination of c-MET inhibitors and chemotherapeutic agents. The chemical structure of natural compounds was verified in PubChem database. RESULTS The search yielded 3935 publications, of which 195 reference publications were used for our analysis. Clinical trials were referenced using ClinicalTrials.gov identifier. The c-MET pathway has been recognized as a prominent target to combat the growth, metastasis, and chemotherapeutic resistance in cancers. The key role of the c-MET in bone metastasis as well as therapeutic resistance has been elaborated. Also, suppressive effect of selected natural compounds on the c-MET pathway in clinical/preclinical studies has been discussed.
Collapse
Affiliation(s)
- Chakrabhavi Dhananjaya Mohan
- FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226 001, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | | | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kanchugarakoppal S Rangappa
- Institution of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
9
|
Luo K, Peters BA, Moon JY, Xue X, Wang Z, Usyk M, Hanna DB, Landay AL, Schneider MF, Gustafson D, Weber KM, French A, Sharma A, Anastos K, Wang T, Brown T, Clish CB, Kaplan RC, Knight R, Burk RD, Qi Q. Metabolic and inflammatory perturbation of diabetes associated gut dysbiosis in people living with and without HIV infection. Genome Med 2024; 16:59. [PMID: 38643166 PMCID: PMC11032597 DOI: 10.1186/s13073-024-01336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Gut dysbiosis has been linked with both HIV infection and diabetes, but its interplay with metabolic and inflammatory responses in diabetes, particularly in the context of HIV infection, remains unclear. METHODS We first conducted a cross-sectional association analysis to characterize the gut microbial, circulating metabolite, and immune/inflammatory protein features associated with diabetes in up to 493 women (~ 146 with prevalent diabetes with 69.9% HIV +) of the Women's Interagency HIV Study. Prospective analyses were then conducted to determine associations of identified metabolites with incident diabetes over 12 years of follow-up in 694 participants (391 women from WIHS and 303 men from the Multicenter AIDS Cohort Study; 166 incident cases were recorded) with and without HIV infection. Mediation analyses were conducted to explore whether gut bacteria-diabetes associations are explained by altered metabolites and proteins. RESULTS Seven gut bacterial genera were identified to be associated with diabetes (FDR-q < 0.1), with positive associations for Shigella, Escherichia, Megasphaera, and Lactobacillus, and inverse associations for Adlercreutzia, Ruminococcus, and Intestinibacter. Importantly, the associations of most species, especially Adlercreutzia and Ruminococcus, were largely independent of antidiabetic medications use. Meanwhile, 18 proteins and 76 metabolites, including 3 microbially derived metabolites (trimethylamine N-oxide, phenylacetylglutamine (PAGln), imidazolepropionic acid (IMP)), 50 lipids (e.g., diradylglycerols (DGs) and triradylglycerols (TGs)) and 23 non-lipid metabolites, were associated with diabetes (FDR-q < 0.1), with the majority showing positive associations and more than half of them (59/76) associated with incident diabetes. In mediation analyses, several proteins, especially interleukin-18 receptor 1 and osteoprotegerin, IMP and PAGln partially mediate the observed bacterial genera-diabetes associations, particularly for those of Adlercreutzia and Escherichia. Many diabetes-associated metabolites and proteins were altered in HIV, but no effect modification on their associations with diabetes was observed by HIV. CONCLUSION Among individuals with and without HIV, multiple gut bacterial genera, blood metabolites, and proinflammatory proteins were associated with diabetes. The observed mediated effects by metabolites and proteins in genera-diabetes associations highlighted the potential involvement of inflammatory and metabolic perturbations in the link between gut dysbiosis and diabetes in the context of HIV infection.
Collapse
Affiliation(s)
- Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mykhaylo Usyk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Michael F Schneider
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Deborah Gustafson
- Department of Neurology, State University of New York-Downstate Medical Center, Brooklyn, NY, USA
| | | | - Audrey French
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Todd Brown
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
10
|
Contreras-Zentella ML, Alatriste-Contreras MG, Suárez-Cuenca JA, Hernández-Muñoz R. Gender effect of glucose, insulin/glucagon ratio, lipids, and nitrogen-metabolites on serum HGF and EGF levels in patients with diabetes type 2. Front Mol Biosci 2024; 11:1362305. [PMID: 38654922 PMCID: PMC11035728 DOI: 10.3389/fmolb.2024.1362305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Hepatocyte growth factor (HGF) exhibits potent growth-inducing properties across various tissues, while epidermal growth factor (EGF) acts as a molecular integration point for diverse stimuli. HGF plays a crucial role in hepatic metabolism, tissue repair, and offers protective effects on epithelial and non-epithelial organs, in addition to its involvement in reducing apoptosis and inflammation, underscoring its anti-inflammatory capabilities. The HGF-Met system is instrumental in hepatic metabolism and enhancing insulin sensitivity in animal diabetes models. Similarly, the EGF and its receptor tyrosine kinase family (EGFR) are critical in regulating cell growth, proliferation, migration, and differentiation in both healthy and diseased states, with EGF also contributing to insulin sensitivity. In this observational study, we aimed to identify correlations between serum levels of HGF and EGF, insulin, glucagon, glucose, and primary serum lipids in patients with type 2 diabetes mellitus (DM), taking into account the impact of gender. We noted differences in the management of glucose, insulin, and glucagon between healthy men and women, potentially due to the distinct influences of sexual hormones on the development of type 2 DM. Additionally, metabolites such as glucose, albumin, direct bilirubin, nitrites, and ammonia might influence serum levels of growth factors and hormones. In summary, our results highlight the regulatory role of insulin and glucagon in serum glucose and lipids, along with variations in HGF and EGF levels, which are affected by gender. This link is especially significant in DM, where impaired cell proliferation or repair mechanisms lead to metabolic changes. The gender-based differences in growth factors point to their involvement in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Martha Lucinda Contreras-Zentella
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Gabriela Alatriste-Contreras
- Departamento de Métodos Cuantitativos, División de Estudios Profesionales, Facultad de Economía, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Juan Antonio Suárez-Cuenca
- Departamento de Medicina Interna, Hospital General “Xoco”, Secretaría de Salud (SS), Mexico City, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
11
|
Öztürk D, Koca AO, Keskin M, Öztürk B, Oğuz EF, Turhan T, Buluş H. Patients who received sleeve gastrectomy have lower plasma osteopontin levels than those who did not. Clinics (Sao Paulo) 2024; 79:100352. [PMID: 38574573 PMCID: PMC10999792 DOI: 10.1016/j.clinsp.2024.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The aim of this study was to compare metabolic parameters, plasma Osteopontin (OPN) and Hepatocyte Growth Factor (HGF) levels between Sleeve Gastrectomy (SG) patients in their 6th post-operation month and healthy control patients. METHODS Height, weight, Body Mass Index (BMI) and laboratory parameters of 58 SG patients aged 18‒65 years (Group 1) and 46 healthy control patients (Group 2) were compared. In addition, preoperative and postoperative sixth-month BMI and laboratory parameters of the patients in Group 1 were compared. RESULTS The mean age and gender distributions of the groups were similar (p > 0.05). Mean BMI was 28.9 kg/m2 in Group 1 and 27 kg/m2 in Group 2 (p < 0.01). While plasma HGF levels were similar between both groups, plasma OPN levels were higher in Group 2 (p < 0.001). Fasting plasma glucose, total cholesterol, triglyceride, fasting plasma insulin and insulin resistance values were higher in Group 1, while alanine aminotransferase and aspartate aminotransferase levels were higher in Group 2 (p < 0.05). There was a strong correlation between plasma HGF and OPN levels in Group 1, but not in Group 2 (Rho = 0.805, p < 0.001). CONCLUSION OPN and HGF are promising biomarkers that can be used to better understand and detect problems related to obesity. The fact that patients in the early post-SG period had lower plasma OPN and similar plasma HGF compared to non-surgical patients of similar age and gender with higher BMI may be another favorable and previously unknown metabolic effect of SG.
Collapse
Affiliation(s)
- Doğan Öztürk
- University of Health Sciences, Ankara Atatürk Sanatoryum Education and Research Hospital, Department of General Surgery, Ankara, Turkey.
| | - Arzu Or Koca
- University of Health Sciences, Dr. Abdurrahman Yurtaslan Ankara Onkoloji Education and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Müge Keskin
- University of Health Sciences, Ankara City Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Bülent Öztürk
- University of Health Sciences, Ankara Atatürk Sanatoryum Education and Research Hospital, Department of General Surgery, Ankara, Turkey
| | - Esra Fırat Oğuz
- University of Health Sciences, Ankara City Hospital, Department of Medical Biochemistry, Ankara, Turkey
| | - Turan Turhan
- University of Health Sciences, Ankara City Hospital, Department of Medical Biochemistry, Ankara, Turkey
| | - Hakan Buluş
- University of Health Sciences, Ankara Atatürk Sanatoryum Education and Research Hospital, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
12
|
Lu Y, Tian H, Peng H, Wang Q, Bunnell BA, Bazan NG, Hong S. Novel lipid mediator 7 S,14 R-docosahexaenoic acid: biogenesis and harnessing mesenchymal stem cells to ameliorate diabetic mellitus and retinal pericyte loss. Front Cell Dev Biol 2024; 12:1380059. [PMID: 38533089 PMCID: PMC10963555 DOI: 10.3389/fcell.2024.1380059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction: Stem cells can be used to treat diabetic mellitus and complications. ω3-docosahexaenoic acid (DHA) derived lipid mediators are inflammation-resolving and protective. This study found novel DHA-derived 7S,14R-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-docosahexaenoic acid (7S,14R-diHDHA), a maresin-1 stereoisomer biosynthesized by leukocytes and related enzymes. Moreover, 7S,14R-diHDHA can enhance mesenchymal stem cell (MSC) functions in the amelioration of diabetic mellitus and retinal pericyte loss in diabetic db/db mice. Methods: MSCs treated with 7S,14R-diHDHA were delivered into db/db mice i.v. every 5 days for 35 days. Results: Blood glucose levels in diabetic mice were lowered by 7S,14R-diHDHA-treated MSCs compared to control and untreated MSC groups, accompanied by improved glucose tolerance and higher blood insulin levels. 7S,14R-diHDHA-treated MSCs increased insulin+ β-cell ratio and decreased glucogan+ α-cell ratio in islets, as well as reduced macrophages in pancreas. 7S,14R-diHDHA induced MSC functions in promoting MIN6 β-cell viability and insulin secretion. 7S,14R-diHDHA induced MSC paracrine functions by increasing the generation of hepatocyte growth factor and vascular endothelial growth factor. Furthermore, 7S,14R-diHDHA enhanced MSC functions to ameliorate diabetes-caused pericyte loss in diabetic retinopathy by increasing their density in retina in db/db mice. Discussion: Our findings provide a novel strategy for improving therapy for diabetes and diabetic retinopathy using 7S,14R-diHDHA-primed MSCs.
Collapse
Affiliation(s)
- Yan Lu
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| | - Haibin Tian
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Tongji University, Shanghai, China
| | - Hongying Peng
- Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Quansheng Wang
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bruce A. Bunnell
- Tulane University School of Medicine, Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA, United States
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| |
Collapse
|
13
|
Mercader Ruiz J, Beitia M, Delgado D, Sánchez P, Sánchez MB, Oraa J, Benito-Lopez F, Basabe-Desmonts L, Sánchez M. Method to obtain a plasma rich in platelet- and plasma-growth factors based on water evaporation. PLoS One 2024; 19:e0297001. [PMID: 38381708 PMCID: PMC10880971 DOI: 10.1371/journal.pone.0297001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024] Open
Abstract
Platelet-Rich Plasma, also known as PRP, is an autologous biologic product used in medicine as a treatment for tissue repair. Nowadays, the majority of PRP obtention methods enrich only platelets, not considering extraplatelet biomolecules, which take part in several cell processes. In the present work, a novel PRP preparation method was developed to obtain a PRP rich in both platelet and plasma extraplatelet molecules. The method is based on the evaporation of the water of the plasma using a rotary evaporator. With this new methodology an increase in plasmatic growth factors and, as a consequence, a better dermal fibroblast cell viability was achieved, compared to a standard PRP formulation. This novel PRP product obtained with this new methodology showed promising results in vitro as an improved PRP treatment in future application.
Collapse
Affiliation(s)
- Jon Mercader Ruiz
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Maider Beitia
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | | | - Jaime Oraa
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Basque Foundation of Science, IKERBASQUE, Bilbao, Spain
| | - Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| |
Collapse
|
14
|
Bull CJ, Hazelwood E, Legge DN, Corbin LJ, Richardson TG, Lee M, Yarmolinsky J, Smith-Byrne K, Hughes DA, Johansson M, Peters U, Berndt SI, Brenner H, Burnett-Hartman A, Cheng I, Kweon SS, Le Marchand L, Li L, Newcomb PA, Pearlman R, McConnachie A, Welsh P, Taylor R, Lean MEJ, Sattar N, Murphy N, Gunter MJ, Timpson NJ, Vincent EE. Impact of weight loss on cancer-related proteins in serum: results from a cluster randomised controlled trial of individuals with type 2 diabetes. EBioMedicine 2024; 100:104977. [PMID: 38290287 PMCID: PMC10844806 DOI: 10.1016/j.ebiom.2024.104977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Type 2 diabetes is associated with higher risk of several cancer types. However, the biological intermediates driving this relationship are not fully understood. As novel interventions for treating and managing type 2 diabetes become increasingly available, whether they also disrupt the pathways leading to increased cancer risk is currently unknown. We investigated the effect of a type 2 diabetes intervention, in the form of intentional weight loss, on circulating proteins associated with cancer risk to gain insight into potential mechanisms linking type 2 diabetes and adiposity with cancer development. METHODS Fasting serum samples from participants with diabetes enrolled in the Diabetes Remission Clinical Trial (DiRECT) receiving the Counterweight-Plus weight-loss programme (intervention, N = 117, mean weight-loss 10 kg, 46% diabetes remission) or best-practice care by guidelines (control, N = 143, mean weight-loss 1 kg, 4% diabetes remission) were subject to proteomic analysis using the Olink Oncology-II platform (48% of participants were female; 52% male). To identify proteins which may be altered by the weight-loss intervention, the difference in protein levels between groups at baseline and 1 year was examined using linear regression. Mendelian randomization (MR) was performed to extend these results to evaluate cancer risk and elucidate possible biological mechanisms linking type 2 diabetes and cancer development. MR analyses were conducted using independent datasets, including large cancer meta-analyses, UK Biobank, and FinnGen, to estimate potential causal relationships between proteins modified during intentional weight loss and the risk of colorectal, breast, endometrial, gallbladder, liver, and pancreatic cancers. FINDINGS Nine proteins were modified by the intervention: glycoprotein Nmb; furin; Wnt inhibitory factor 1; toll-like receptor 3; pancreatic prohormone; erb-b2 receptor tyrosine kinase 2; hepatocyte growth factor; endothelial cell specific molecule 1 and Ret proto-oncogene (Holm corrected P-value <0.05). Mendelian randomization analyses indicated a causal relationship between predicted circulating furin and glycoprotein Nmb on breast cancer risk (odds ratio (OR) = 0.81, 95% confidence interval (CI) = 0.67-0.99, P-value = 0.03; and OR = 0.88, 95% CI = 0.78-0.99, P-value = 0.04 respectively), though these results were not supported in sensitivity analyses examining violations of MR assumptions. INTERPRETATION Intentional weight loss among individuals with recently diagnosed diabetes may modify levels of cancer-related proteins in serum. Further evaluation of the proteins identified in this analysis could reveal molecular pathways that mediate the effect of adiposity and type 2 diabetes on cancer risk. FUNDING The main sources of funding for this work were Diabetes UK, Cancer Research UK, World Cancer Research Fund, and Wellcome.
Collapse
Affiliation(s)
- Caroline J Bull
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK
| | - Emma Hazelwood
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Danny N Legge
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK
| | - Laura J Corbin
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Lee
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, WHO, Lyon, France
| | - James Yarmolinsky
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, UK
| | - David A Hughes
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Mattias Johansson
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, WHO, Lyon, France
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea; Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | | | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; School of Public Health, University of Washington, Seattle, WA, USA
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Alex McConnachie
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Paul Welsh
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Roy Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mike E J Lean
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, WHO, Lyon, France
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, WHO, Lyon, France; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK.
| |
Collapse
|
15
|
Avtanski D, Stojchevski R. Significance of Adipose Tissue as an Endocrine Organ. CONTEMPORARY ENDOCRINOLOGY 2024:1-46. [DOI: 10.1007/978-3-031-72570-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Nakamoto Y, Nakamura T, Nakai R, Azuma T, Omori K. Transplantation of autologous bone marrow-derived mononuclear cells into cerebrospinal fluid in a canine model of spinal cord injury. Regen Ther 2023; 24:574-581. [PMID: 38028937 PMCID: PMC10654139 DOI: 10.1016/j.reth.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Spinal cord injury (SCI) is associated with severe dysfunction of nervous tissue, and repair via the transplantation of bone marrow-derived mononuclear cells (BM-MNCs) into cerebrospinal fluid yields promising results. It is essential to understand the underlying mechanisms; therefore, this study aimed to evaluate the regenerative potential of autologous BM-MNC transplantation in a canine model of acute SCI. Methods Six dogs were included in this study, and SCI was induced using an epidural balloon catheter between L2 and L3, particularly in the area of the anterior longitudinal ligament. BM-MNC transplantation was performed, and T2-weighted magnetic resonance imaging (MRI) was conducted at specific time points (i.e., immediately after inducing SCI and at 1, 2, and 4 weeks after inducing SCI); moreover, the expression of growth-associated protein 43 (GAP-43) was evaluated. Results MRI revealed that the signal intensity reduced over time in both BM-MNC-treated and control groups. However, the BM-MNC-treated group exhibited a significantly faster reduction than the control group during the early stages of SCI induction (BM-MNC-treated group: 4.82 ± 0.135 cm [day 0], 1.71 ± 0.134 cm [1 week], 1.37 ± 0.036 cm [2 weeks], 1.21 cm [4 weeks]; control group: 4.96 ± 0.211 cm [day 0], 2.49 ± 0.570 cm [1 week], 1.56 ± 0.045 cm [2 weeks], 1.32 cm [4 weeks]). During the early stages of treatment, GAP-43 was significantly expressed at the proximal end of the injured spinal cord in the BM-MSC-treated group, whereas it was scarcely expressed in the control group. Conclusions In SCI, transplanted BM-MNCs can activate the expression of GAP-43, which is involved in axonal elongation (an important process in spinal cord regeneration). Thus, cell therapy with BM-MNCs can provide favorable outcomes in terms of better regenerative capabilities compared with other therapies.
Collapse
Affiliation(s)
- Yuya Nakamoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Neuro Vets Animal Neurology Clinic, Kyoto, Japan
- Laboratory of Veterinary Surgery, Department of Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Veterinary Medical Center, Osaka Prefecture University, Osaka, Japan
| | - Tatsuo Nakamura
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryusuke Nakai
- Institute for the Future of Human Society, Kyoto University, Kyoto, Japan
| | - Takashi Azuma
- Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Zhou X, Xu Z, You Y, Yang W, Feng B, Yang Y, Li F, Chen J, Gao H. Subcutaneous device-free islet transplantation. Front Immunol 2023; 14:1287182. [PMID: 37965322 PMCID: PMC10642112 DOI: 10.3389/fimmu.2023.1287182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disease, characterized by high blood sugar levels; it affects more than 500 million individuals worldwide. Type 1 diabetes mellitus (T1DM) is results from insufficient insulin secretion by islets; its treatment requires lifelong use of insulin injections, which leads to a large economic burden on patients. Islet transplantation may be a promising effective treatment for T1DM. Clinically, this process currently involves directly infusing islet cells into the hepatic portal vein; however, transplantation at this site often elicits immediate blood-mediated inflammatory and acute immune responses. Subcutaneous islet transplantation is an attractive alternative to islet transplantation because it is simpler, demonstrates lower surgical complication risks, and enables graft monitoring and removal. In this article, we review the current methods of subcutaneous device-free islet transplantation. Recent subcutaneous islet transplantation techniques with high success rate have involved the use of bioengineering technology and biomaterial cotransplantation-including cell and cell growth factor co-transplantation and hydrogel- or simulated extracellular matrix-wrapped subcutaneous co-transplantation. In general, current subcutaneous device-free islet transplantation modalities can simplify the surgical process and improve the posttransplantation graft survival rate, thus aiding effective T1DM management.
Collapse
Affiliation(s)
| | - Zhiran Xu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yanqiu You
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Wangrong Yang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - BingZheng Feng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yuwei Yang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Fujun Li
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Jibing Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Hongjun Gao
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
18
|
Mercader Ruiz J, Beitia M, Delgado D, Sánchez P, Arnaiz MJ, López de Dicastillo L, Benito-Lopez F, Basabe-Desmonts L, Sánchez M. New Formulation of Platelet-Rich Plasma Enriched in Platelet and Extraplatelet Biomolecules Using Hydrogels. Int J Mol Sci 2023; 24:13811. [PMID: 37762114 PMCID: PMC10530784 DOI: 10.3390/ijms241813811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Platelet-rich plasma (PRP) is an autologous biologic product used in several fields of medicine for tissue repair due to the regenerative capacity of the biomolecules of its formulation. PRP consists of a plasma with a platelet concentration higher than basal levels but with basal levels of any biomolecules present out of the platelets. Plasma contains extraplatelet biomolecules known to enhance its regenerative properties. Therefore, a PRP containing not only a higher concentration of platelets but also a higher concentration of extraplatelet biomolecules that could have a stronger regenerative performance than a standard PRP. Considering this, the aim of this work is to develop a new method to obtain PRP enriched in both platelet and extraplatelet molecules. The method is based on the absorption of the water of the plasma using hydroxyethyl acrylamide (HEAA)-based hydrogels. A plasma fraction obtained from blood, containing the basal levels of platelets and proteins, was placed in contact with the HEAA hydrogel powder to absorb half the volume of the water. The resulting plasma was characterized, and its bioactivity was analyzed in vitro. The novel PRP (nPRP) showed a platelet concentration and platelet derived growth factor (PDGF) levels similar to the standard PRP (sPRP), but the concentration of the extraplatelet growth factors IGF-1 (p < 0.0001) and HGF (p < 0.001) were significantly increased. Additionally, the cells exposed to the nPRP showed increased cell viability than those exposed to a sPRP in human dermal fibroblasts (p < 0.001) and primary chondrocytes (p < 0.01). In conclusion, this novel absorption-based method produces a PRP with novel characteristics compared to the standard PRPs, with promising in vitro results that could potentially trigger improved tissue regeneration capacity.
Collapse
Affiliation(s)
- Jon Mercader Ruiz
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (J.M.R.); (P.S.); (M.J.A.); (L.L.d.D.)
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Maider Beitia
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (M.B.); (D.D.)
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (M.B.); (D.D.)
| | - Pello Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (J.M.R.); (P.S.); (M.J.A.); (L.L.d.D.)
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (M.B.); (D.D.)
| | - María Jesús Arnaiz
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (J.M.R.); (P.S.); (M.J.A.); (L.L.d.D.)
| | - Leonor López de Dicastillo
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (J.M.R.); (P.S.); (M.J.A.); (L.L.d.D.)
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Basque Foundation of Science, IKERBASQUE, 48009 Bilbao, Spain
| | - Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (J.M.R.); (P.S.); (M.J.A.); (L.L.d.D.)
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (M.B.); (D.D.)
| |
Collapse
|
19
|
Yadav SS, Roham PH, Roy S, Sharma S. Connecting islet-specific hub genes and pathways in type 2 diabetes mellitus through the bioinformatics lens. HUMAN GENE 2023; 37:201207. [DOI: 10.1016/j.humgen.2023.201207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Ajie M, van Heck JIP, Janssen AWM, Meijer RI, Tack CJ, Stienstra R. Disease Duration and Chronic Complications Associate With Immune Activation in Individuals With Longstanding Type 1 Diabetes. J Clin Endocrinol Metab 2023; 108:1909-1920. [PMID: 36800223 PMCID: PMC10348469 DOI: 10.1210/clinem/dgad087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/02/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
CONTEXT Type 1 diabetes (T1D) is associated with alterations of the immune response which persist even after the autoimmunity aspect is resolved. Clinical factors that cause dysregulation, however, are not fully understood. OBJECTIVE To identify clinical factors that affect immune dysregulation in people with longstanding T1D. DESIGN In this cross-sectional study, 243 participants with longstanding T1D were recruited between February 2016 and June 2017 at the Radboudumc, the Netherlands. Blood was drawn to determine immune cell phenotype and functionality, as well as circulating inflammatory proteome. Multivariate linear regression was used to determine the association between glycated hemoglobin (HbA1c) levels, duration of diabetes, insulin need, and diabetes complications with inflammation. RESULTS HbA1c level is positively associated with circulating inflammatory markers (P < .05), but not with immune cell number and phenotype. Diabetes duration is associated with increased number of circulating immune cells (P < .05), inflammatory proteome (P < .05), and negatively associated with adaptive immune response against Mycobacterium tuberculosis and Rhizopus oryzae (P < .05). Diabetes nephropathy is associated with increased circulating immune cells (P < .05) and inflammatory markers (P < .05). CONCLUSION Disease duration and chronic complications associate with persistent alterations in the immune response of individuals with long standing T1D.
Collapse
Affiliation(s)
- Mandala Ajie
- Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Julia I P van Heck
- Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Anna W M Janssen
- Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Rick I Meijer
- Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Rinke Stienstra
- Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
21
|
Zheng SC, Huang ZY, Zhai K, Shi HZ, Shao MM. Hepatocyte growth factor combined with adenosine deaminase as biomarker for diagnosis of tuberculous pleural effusion. Front Microbiol 2023; 14:1181912. [PMID: 37485530 PMCID: PMC10359098 DOI: 10.3389/fmicb.2023.1181912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Background The simple, rapid, and accurate diagnosis of tuberculous pleural effusion (TPE) remains difficult. This study aimed to determine the accuracy of hepatocyte growth factor (HGF) in the diagnosis of TPE. Methods We quantified the expression of HGF, adenosine deaminase (ADA), and interferon gamma (IFN-γ) in pleural effusion (PE) in 97 TPE subjects and 116 non-TPE subjects using an enzyme-linked immunosorbent assay (ELISA) or a fully automatic biochemical analyzer. The diagnostic performance of these three biomarkers was evaluated using a receiver operating characteristic (ROC) curve of subjects by age and gender. Results We discovered that the TPE group had much higher levels of HGF than the non-TPE group, regardless of age or gender, and that there was no statistically significant difference between the two groups' levels of HGF expression in peripheral plasma. In female TPE patients aged ≤65 years, the AUCs of TPE and non-TPE diagnosed by HGF, ADA or IFN-γ were 0.988, 0.964, and 0.827, respectively. HGF plus ADA had the highest diagnostic efficacy in female TPE patients aged ≤65 years. With HGF plus ADA having a cut-off value of 0.219 for distinguishing TPE from non-TPE, the area under the curve (AUC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and negative predictive value (NPV) were, respectively, 0.998 (95% confidence interval [CI], 0.993-1.000), 100 (95% CI, 89.997-100.000), 96.667 (95% CI, 82.783-99.916), 97.222 (95% CI, 83.594-99.586), and 100. Conclusion This study confirmed that HGF plus ADA has high diagnostic efficacy in younger female TPE patients and has the potential to be an excellent biomarker.
Collapse
Affiliation(s)
- Sheng-Cai Zheng
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pleural Diseases, Capital Medical University, Beijing, China
| | - Zhong-Yin Huang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pleural Diseases, Capital Medical University, Beijing, China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pleural Diseases, Capital Medical University, Beijing, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pleural Diseases, Capital Medical University, Beijing, China
| | - Ming-Ming Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pleural Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Zarini S, Zemski Berry KA, Kahn DE, Garfield A, Perreault L, Kerege A, Bergman BC. Deoxysphingolipids: Atypical Skeletal Muscle Lipids Related to Insulin Resistance in Humans That Decrease Insulin Sensitivity In Vitro. Diabetes 2023; 72:884-897. [PMID: 37186949 PMCID: PMC10281238 DOI: 10.2337/db22-1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Sphingolipids are thought to promote skeletal muscle insulin resistance. Deoxysphingolipids (dSLs) are atypical sphingolipids that are increased in the plasma of individuals with type 2 diabetes and cause β-cell dysfunction in vitro. However, their role in human skeletal muscle is unknown. We found that dSL species are significantly elevated in muscle of individuals with obesity and type 2 diabetes compared with athletes and lean individuals and are inversely related to insulin sensitivity. Furthermore, we observed a significant reduction in muscle dSL content in individuals with obesity who completed a combined weight loss and exercise intervention. Increased dSL content in primary human myotubes caused a decrease in insulin sensitivity associated with increased inflammation, decreased AMPK phosphorylation, and altered insulin signaling. Our findings reveal a central role for dSL in human muscle insulin resistance and suggest dSLs as therapeutic targets for the treatment and prevention of type 2 diabetes. ARTICLE HIGHLIGHTS Deoxysphingolipids (dSLs) are atypical sphingolipids elevated in the plasma of individuals with type 2 diabetes, and their role in muscle insulin resistance has not been investigated. We evaluated dSL in vivo in skeletal muscle from cross-sectional and longitudinal insulin-sensitizing intervention studies and in vitro in myotubes manipulated to synthesize higher dSLs. dSLs were increased in the muscle of people with insulin resistance, inversely correlated to insulin sensitivity, and significantly decreased after an insulin-sensitizing intervention; increased intracellular dSL concentrations cause myotubes to become more insulin resistant. Reduction of muscle dSL levels is a potential novel therapeutic target to prevent/treat skeletal muscle insulin resistance.
Collapse
Affiliation(s)
- Simona Zarini
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Karin A. Zemski Berry
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Darcy E. Kahn
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Amanda Garfield
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Leigh Perreault
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Anna Kerege
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Bryan C. Bergman
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
23
|
Chaudhary PK, Kim S, Kim S. Shedding Light on the Cell Biology of Platelet-Derived Extracellular Vesicles and Their Biomedical Applications. Life (Basel) 2023; 13:1403. [PMID: 37374185 DOI: 10.3390/life13061403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
EVs are membranous subcellular structures originating from various cells, including platelets which consist of biomolecules that can modify the target cell's pathophysiological functions including inflammation, cell communication, coagulation, and metastasis. EVs, which are known to allow the transmission of a wide range of molecules between cells, are gaining popularity in the fields of subcellular treatment, regenerative medicine, and drug delivery. PEVs are the most abundant EVs in circulation, being produced by platelet activation, and are considered to have a significant role in coagulation. PEV cargo is extremely diverse, containing lipids, proteins, nucleic acids, and organelles depending on the condition that induced their release and can regulate a wide range of biological activities. PEVs, unlike platelets, can overcome tissue barriers, allowing platelet-derived contents to be transferred to target cells and organs that platelets cannot reach. Their isolation, characterization, and therapeutic efficacy, on the other hand, are poorly understood. This review summarizes the technical elements of PEV isolation and characterization methods as well as the pathophysiological role of PEVs, including therapeutic potential and translational possibility in diverse disciplines.
Collapse
Affiliation(s)
- Preeti Kumari Chaudhary
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sanggu Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
24
|
Sani F, Sani M, Moayedfard Z, Darayee M, Tayebi L, Azarpira N. Potential advantages of genetically modified mesenchymal stem cells in the treatment of acute and chronic liver diseases. Stem Cell Res Ther 2023; 14:138. [PMID: 37226279 DOI: 10.1186/s13287-023-03364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Liver damage caused by toxicity can lead to various severe conditions, such as acute liver failure (ALF), fibrogenesis, and cirrhosis. Among these, liver cirrhosis (LC) is recognized as the leading cause of liver-related deaths globally. Unfortunately, patients with progressive cirrhosis are often on a waiting list, with limited donor organs, postoperative complications, immune system side effects, and high financial costs being some of the factors restricting transplantation. Although the liver has some capacity for self-renewal due to the presence of stem cells, it is usually insufficient to prevent the progression of LC and ALF. One potential therapeutic approach to improving liver function is the transplantation of gene-engineered stem cells. Several types of mesenchymal stem cells from various sources have been suggested for stem cell therapy for liver disease. Genetic engineering is an effective strategy that enhances the regenerative potential of stem cells by releasing growth factors and cytokines. In this review, we primarily focus on the genetic engineering of stem cells to improve their ability to treat damaged liver function. We also recommend further research into accurate treatment methods that involve safe gene modification and long-term follow-up of patients to increase the effectiveness and reliability of these therapeutic strategies.
Collapse
Affiliation(s)
- Farnaz Sani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darayee
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Street, P.O. Box: 7193711351, Shiraz, Iran.
| |
Collapse
|
25
|
Baldassarro VA, Perut F, Cescatti M, Pinto V, Fazio N, Alastra G, Parziale V, Bassotti A, Fernandez M, Giardino L, Baldini N, Calzà L. Intra-individual variability in the neuroprotective and promyelinating properties of conditioned culture medium obtained from human adipose mesenchymal stromal cells. Stem Cell Res Ther 2023; 14:128. [PMID: 37170115 PMCID: PMC10173531 DOI: 10.1186/s13287-023-03344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Greater knowledge of mesenchymal stromal cell (MSC)-based therapies is driving the research into their secretome, identified as the main element responsible for their therapeutic effects. The aim of this study is to characterize the individual variability of the secretome of adipose tissue-derived MSCs (adMSCs) with regard to potential therapeutical applications in neurology. METHODS adMSCs were isolated from the intact adipose tissue of ten subjects undergoing abdominal plastic surgery or reduction mammoplasty. Two commercial lines were also included. We analyzed the expansion rate, production, and secretion of growth factors of interest for neurological applications (VEGF-A, BDNF, PDGF-AA and AA/BB, HGF, NGF, FGF-21, GDNF, IGF-I, IGF-II, EGF and FGF-2). To correlate these characteristics with the biological effects on the cellular targets, we used individual media conditioned with adMSCs from the various donors on primary cultures of neurons/astrocytes and oligodendrocyte precursor cells (OPCs) exposed to noxious stimuli (oxygen-glucose deprivation, OGD) to evaluate their protective and promyelinating properties, using MSC medium as a control group. RESULTS The MSC secretome showed significant individual variability within the considered population with regard to PDGF-AA, PDGF-AB/BB, VEGF-A and BDNF. None of the MSC-derived supernatants affected neuron viability in normoxia, while substantial protection by high BDNF-containing conditioned MSC medium was observed in neuronal cultures exposed to OGD conditions. In OPC cultures, the MSC-derived supernatants protected cells from OGD-induced cell death, also increasing the differentiation in mature oligodendrocytes. Neuroprotection showed a positive correlation with VEGF-A, BDNF and PDGF-AA concentrations in the culture supernatants, and an inverse correlation with HGF, while OPC differentiation following OGD was positively correlated to PDGF-AA concentration. CONCLUSIONS Despite the limited number of adMSC donors, this study showed significant individual variability in the biological properties of interest for neurological applications for adMSC secretome, an under-researched aspect which may represent an important step in the translation of MSC-derived acellular products to clinical practice. We also showed the potential protection capability of MSC conditioned medium on neuronal and oligodendroglial lineages exposed to oxygen-glucose deprivation. These effects are directly correlated to the concentration of specific growth factors, and indicate that the remyelination should be included as a primary target in MSC-based therapies.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Maura Cescatti
- IRET Foundation, Via Tolara Di Sopra 41/E, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Valentina Pinto
- Division of Plastic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Nicola Fazio
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Giuseppe Alastra
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Valentina Parziale
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Alessandra Bassotti
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Mercedes Fernandez
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Laura Calzà
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy.
- Pharmacology and Biotecnology Department (FaBiT), University of Bologna, Via San Donato, 15, 40127, Bologna, Italy.
- Monetecatone Rehabilitation Institute (MRI), Via Montecatone, 37, 40026, Imola, Bologna, Italy.
| |
Collapse
|
26
|
Yadav SS, Roham PH, Roy S, Sharma S. Connecting islet-specific hub genes and pathways in type 2 diabetes mellitus through the bioinformatics lens. HUMAN GENE 2023; 36:201177. [DOI: 10.1016/j.humgen.2023.201177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Park YK, Jang BC. The Receptor Tyrosine Kinase c-Met Promotes Lipid Accumulation in 3T3-L1 Adipocytes. Int J Mol Sci 2023; 24:ijms24098086. [PMID: 37175792 PMCID: PMC10179087 DOI: 10.3390/ijms24098086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The receptor tyrosine kinase c-Met is elaborated in embryogenesis, morphogenesis, metabolism, cell growth, and differentiation. JNJ38877605 (JNJ) is an inhibitor of c-Met with anti-tumor activity. The c-Met expression and its role in adipocyte differentiation are unknown. Here, we investigated the c-Met expression and phosphorylation, knockdown (KD) effects, and pharmacological inhibition of c-Met by JNJ on fat accumulation in murine preadipocyte 3T3-L1 cells. During 3T3-L1 preadipocyte differentiation, strikingly, c-Met expression at the protein and mRNA levels and the protein phosphorylation on Y1234/1235 and Y1349 is crucial for inducing its kinase catalytic activity and activating a docking site for signal transducers were increased in a time-dependent manner. Of note, JNJ treatment at 20 μM that strongly inhibits c-Met phosphorylation without altering its total expression resulted in less lipid accumulation and triglyceride (TG) content with no cytotoxicity. JNJ further reduced the expression of adipogenic regulators, including CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and perilipin A. Moreover, JNJ treatment increased cAMP-activated protein kinase (AMPK) and liver kinase B-1 (LKB-1) phosphorylation but decreased ATP levels. Significantly, KD of c-Met suppressed fat accumulation and triglyceride (TG) quantity and reduced the expression of C/EBP-α, PPAR-γ, FAS, ACC, and perilipin A. Collectively, the present results demonstrate that c-Met is a novel, highly conserved mediator of adipogenesis regulating lipid accumulation in murine adipocytes.
Collapse
Affiliation(s)
- Yu-Kyoung Park
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
- Department of Physiology, Senotherapy-Based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170, Hyeonchung-ro, Nam-gu, Daegu 42415, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| |
Collapse
|
28
|
Lodato M, Plaisance V, Pawlowski V, Kwapich M, Barras A, Buissart E, Dalle S, Szunerits S, Vicogne J, Boukherroub R, Abderrahmani A. Venom Peptides, Polyphenols and Alkaloids: Are They the Next Antidiabetics That Will Preserve β-Cell Mass and Function in Type 2 Diabetes? Cells 2023; 12:cells12060940. [PMID: 36980281 PMCID: PMC10047094 DOI: 10.3390/cells12060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Improvement of insulin secretion by pancreatic β-cells and preservation of their mass are the current challenges that future antidiabetic drugs should meet for achieving efficient and long-term glycemic control in patients with type 2 diabetes (T2D). The successful development of glucagon-like peptide 1 (GLP-1) analogues, derived from the saliva of a lizard from the Helodermatidae family, has provided the proof of concept that antidiabetic drugs directly targeting pancreatic β-cells can emerge from venomous animals. The literature reporting on the antidiabetic effects of medicinal plants suggests that they contain some promising active substances such as polyphenols and alkaloids, which could be active as insulin secretagogues and β-cell protectors. In this review, we discuss the potential of several polyphenols, alkaloids and venom peptides from snake, frogs, scorpions and cone snails. These molecules could contribute to the development of new efficient antidiabetic medicines targeting β-cells, which would tackle the progression of the disease.
Collapse
Affiliation(s)
- Michele Lodato
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Maxime Kwapich
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Service de Diabétologie et d’Endocrinologie, CH Dunkerque, 59385 Dunkirk, France
| | - Alexandre Barras
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Emeline Buissart
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Sabine Szunerits
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Jérôme Vicogne
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rabah Boukherroub
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Correspondence: ; Tel.: +33-362531704
| |
Collapse
|
29
|
AICAR Ameliorates Non-Alcoholic Fatty Liver Disease via Modulation of the HGF/NF-κB/SNARK Signaling Pathway and Restores Mitochondrial and Endoplasmic Reticular Impairments in High-Fat Diet-Fed Rats. Int J Mol Sci 2023; 24:ijms24043367. [PMID: 36834782 PMCID: PMC9959470 DOI: 10.3390/ijms24043367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global health problem characterized by altered lipid and redox homeostasis, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. The AMP-dependent kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) has been shown to improve the outcome of NAFLD in the context of AMPK activation, yet the underlying molecular mechanism remains obscure. This study investigated the potential mechanism(s) of AICAR to attenuate NAFLD by exploring AICAR's effects on the HGF/NF-κB/SNARK axis and downstream effectors as well as mitochondrial and ER derangements. High-fat diet (HFD)-fed male Wistar rats were given intraperitoneal AICAR at 0.7 mg/g body weight or left untreated for 8 weeks. In vitro steatosis was also examined. ELISA, Western blotting, immunohistochemistry and RT-PCR were used to explore AICAR's effects. NAFLD was confirmed by steatosis score, dyslipidemia, altered glycemic, and redox status. HGF/NF-κB/SNARK was downregulated in HFD-fed rats receiving AICAR with improved hepatic steatosis and reduced inflammatory cytokines and oxidative stress. Aside from AMPK dominance, AICAR improved hepatic fatty acid oxidation and alleviated the ER stress response. In addition, it restored mitochondrial homeostasis by modulating Sirtuin 2 and mitochondrial quality gene expression. Our results provide a new mechanistic insight into the prophylactic role of AICAR in the prevention of NAFLD and its complications.
Collapse
|
30
|
Palestino-Domínguez M, Escobedo-Calvario A, Salas-Silva S, Vergara-Mendoza M, Souza-Arroyo V, Lazzarini R, Miranda-Labra R, Bucio-Ortiz L, Gutiérrez-Ruiz MC, Gomez-Quiroz LE. Erk1/2 signaling mediates the HGF-induced protection against ethanol and acetaldehyde-induced toxicity in the pancreatic RINm5F cell line. J Biochem Mol Toxicol 2023; 37:e23302. [PMID: 36636782 DOI: 10.1002/jbt.23302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/03/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
Alcohol-induced pancreas damage remains as one of the main risk factors for pancreatitis development. This disorder is poorly understood, particularly the effect of acetaldehyde, the primary alcohol metabolite, in the endocrine pancreas. Hepatocyte growth factor (HGF) is a protective protein in many tissues, displaying antioxidant, antiapoptotic, and proliferative responses. In the present work, we were focused on characterizing the response induced by HGF and its protective mechanism in the RINm5F pancreatic cell line treated with ethanol and acetaldehyde. RINm5F cells were treated with ethanol or acetaldehyde for 12 h in the presence or not of HGF (50 ng/ml). Cells under HGF treatment decreased the content of reactive oxygen species and lipid peroxidation induced by both toxics, improving cell viability. This effect was correlated to an improvement in insulin expression impaired by ethanol and acetaldehyde. Using a specific inhibitor of Erk1/2 abrogated the effects elicited by the growth factor. In conclusion, the work provides mechanistic evidence of the HGF-induced-protective response to the alcohol-induced damage in the main cellular component of the endocrine pancreas.
Collapse
Affiliation(s)
- Mayrel Palestino-Domínguez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Soraya Salas-Silva
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Moises Vergara-Mendoza
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Veronica Souza-Arroyo
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Roberto Lazzarini
- Departamento de Biología de la Repducción, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Roxana Miranda-Labra
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Leticia Bucio-Ortiz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Luis E Gomez-Quiroz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| |
Collapse
|
31
|
Hoda A, Lika Çekani M, Kolaneci V. Identification of deleterious nsSNPs in human HGF gene: in silico approach. J Biomol Struct Dyn 2023; 41:11889-11903. [PMID: 36598356 DOI: 10.1080/07391102.2022.2164060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
HGF is a protein that binds to the hepatocyte growth factor receptor to regulate cell growth, cell motility and morphogenesis in different cells and tissues. Several bioinformatics tools and in silico methods were used to identify most deleterious nsSNPs that might change the structure and function of HGF protein. The in silico tools such as SIFT, SNP&GO and PolyPhen2 were used to distinguish deleterious nsSNPs from neutral ones. Protein stability is analysed by I-Mutant, MUpro and iStable. The functional and structural effects are predicted by other tools like MutPred2, Maestro, DUET etc. Analysis of structure was performed by HOPE and Mutation3D. SWISS-MODEL. server, was used for wild type and mutant proteins 3-D Modelling. Gene-gene and protein-protein interaction were predicted by GeneMANIA and STRING, respectively. The wildtype HGF protein and these three variants were independently docked with their close interactor protein MET by the use of ClusPro. Our study suggested that out of 392 missense nsSNPs of the HGF gene, five nsSNPs (D358G, G648R, I550N, N175S and R220Q), are the most deleterious in HGF gene. Gene-gene interactions showed relation of HGF with other genes depicting its importance in several pathways and co-expressions. The protein-protein interacting network is composed of 11 nodes. Analysis of protein stability by different tools indicated that the five nsSNPS decreased the stability of the protein. Anyway these nsSNPs need a confirmation analysis by experimental investigation and GWAS studiesCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anila Hoda
- Agricultural University of Tirana, Kodër Kamëz, Tirana, Albania
| | | | | |
Collapse
|
32
|
Khazaei M, Khazaei F, Niromand E, Ghanbari E. Tissue engineering approaches and generation of insulin-producing cells to treat type 1 diabetes. J Drug Target 2023; 31:14-31. [PMID: 35896313 DOI: 10.1080/1061186x.2022.2107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tissue engineering (TE) has become a new effective solution to a variety of medical problems, including diabetes. Mesenchymal stem cells (MSCs), which have the ability to differentiate into endodermal and mesodermal cells, appear to be appropriate for this function. The purpose of this review was to evaluate the outcomes of various researches on the insulin-producing cells (IPCs) generation from MSCs with TE approaches to increase efficacy of type 1 diabetes treatments. The search was performed in PubMed/Medline, Scopus and Embase databases until 2021. Studies revealed that MSCs could also differentiate into IPCs under certain conditions. Therefore, a wide range of protocols have been used for this differentiation, but their effectiveness is very different. Scaffolds can provide a microenvironment that enhances the MSCs to IPCs differentiation, improves their metabolic activity and up-regulate pancreatic-specific transcription factors. They also preserve IPCs architecture and enhance insulin production as well as protect against cell death. This systematic review offers a framework for prospective research based on data. In vitro and in vivo evidence suggests that scaffold-based TE can improve the viability and function of IPCs.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khazaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Niromand
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
33
|
Bayaraa O, Inman CK, Thomas SA, Al Jallaf F, Alshaikh M, Idaghdour Y, Ashall L. Hyperglycemic conditions induce rapid cell dysfunction-promoting transcriptional alterations in human aortic endothelial cells. Sci Rep 2022; 12:20912. [PMID: 36463298 PMCID: PMC9719474 DOI: 10.1038/s41598-022-24999-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022] Open
Abstract
Hyperglycemia is a major risk factor in the development of diabetic complications and promotes vascular complications through dysregulation of endothelial cell function. Various mechanisms have been proposed for endothelial cell dysregulation but the early transcriptomic alterations of endothelial cells under hyperglycemic conditions are not well documented. Here we use deep time-series RNA-seq profiling of human aortic endothelial cells (HAECs) following exposure to normal (NG) and high glucose (HG) conditions over a time course from baseline to 24 h to identify the early and transient transcriptomic changes, alteration of molecular networks, and their temporal dynamics. The analysis revealed that the most significant pathway activation/inhibition events take place in the 1- to 4-h transition and identified distinct clusters of genes that underlie a cascade of coordinated transcriptional events unique to HG conditions. Temporal co-expression and causal network analysis implicate the activation of type 2 diabetes (T2D) and growth factor signalling pathways including STAT3 and NF-κB. These results document HAEC transcriptional changes induced by hyperglycemic conditions and provide basic insight into the rapid molecular alterations that promote endothelial cell dysfunction.
Collapse
Affiliation(s)
- Odmaa Bayaraa
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Claire K Inman
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sneha A Thomas
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Fatima Al Jallaf
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Manar Alshaikh
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Youssef Idaghdour
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Louise Ashall
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
34
|
Cao T, Xiao D, Ji P, Zhang Z, Cai WX, Han C, Li W, Tao K. [Effects of exosomes from hepatocyte growth factor-modified human adipose mesenchymal stem cells on full-thickness skin defect in diabetic mice]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:1004-1013. [PMID: 36418257 DOI: 10.3760/cma.j.cn501225-20220731-00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Objective: To investigate the effects and mechanism of exosomes from hepatocyte growth factor (HGF)-modified human adipose mesenchymal stem cells (ADSCs) on full-thickness skin defect wounds in diabetic mice. Methods: The experimental study method was adopted. Discarded adipose tissue of 3 healthy females (10-25 years old) who underwent abdominal surgery in the Department of Plastic Surgery of First Affiliated Hospital of Air Force Medical University from February to May 2021 was collected, and primary ADSCs were obtained by collagenase digestion method and cultured for 7 days. Cell morphology was observed by inverted phase contrast microscope. The ADSCs of third passage were transfected with HGF lentivirus and cultured for 5 days, and then the fluorescence of cells was observed by imaging system and the transfection rate was calculated. The exosomes of ADSCs of the third to sixth passages and the HGF transfected ADSCs of the third to sixth passages were extracted by density gradient centrifugation, respectively, and named, ADSC exosomes and HGF-ADSC exosomes. The microscopic morphology of exosomes was observed by transmission electron microscopy, and the positive expressions of CD9, CD63, and CD81 of exosomes were detected by flow cytometry, respectively. Twenty-four 6-week-old male Kunming mice were selected to make the diabetic models, and full-thickness skin defect wounds were made on the backs of mice. According to the random number table method, the mice were divided into phosphate buffer solution (PBS) group, HGF alone group, ADSC exosome alone group, and HGF-ADSC exosome group, with 6 mice in each group, and treated accordingly. On post injury day (PID) 3, 7, 10, and 14, the wounds were observed and the wound healing rate was calculated; the blood flow intensity of wound base was detected by Doppler flowmeter and the ratio of relative blood flow intensity on PID 10 was calculated. On PID 10, the number of Ki67 positive cells in wounds was detected by immunofluorescence method, and the number of new-vascularity of CD31 positive staining and tubular neovascularization in the wounds was detected by immunohistochemistry method; the protein expressions of protein endothelial nitric oxide synthase (eNOS), phosphatidylinositol 3-kinase (PI3K), phosphorylated PI3K (p-PI3K), protein kinase B (Akt) and phosphorylated Akt (p-Akt) in wounds were detected by Western blotting, and the ratios of p-PI3K to PI3K and p-Akt to Akt were calculated. On PID 14, the defect length and collagen regeneration of wound skin tissue were detected by hematoxylin and eosin staining and Masson staining, respectively, and the collagen volume fraction (CVF) was calculated. The number of samples is 3 in all cases. Data were statistically analyzed with repeated measurement analysis of variance, one-way analysis of variance, and Tukey test. Results: After 7 days of culture, the primary ADSCs were spindle shaped and arranged in vortex shape after dense growth. After 5 days of culture, HGF transfected ADSCs of the third passage carried green fluorescence, and the transfection rate was 85%. The ADSC exosomes and HGF-ADSC exosomes were similar in microscopic morphology, showing vesicular structures with an average particle size of 103 nm and 98 nm respectively, and both were CD9, CD63, and CD81 positive. On PID 3, the wounds of mice in the 4 groups were all red and swollen, with a small amount of exudate. On PID 7, the wounds of HGF-ADSC exosome group were gradually reduced, while the wounds of the other three groups were not significantly reduced. On PID 10, the wounds in the 4 groups were all reduced and scabbed. On PID 14, the wounds in HGF-ADSC exosome group were basically healed, while the residual wounds were found in the other three groups. On PID 3, the healing rates of wounds in the four groups were similar (P>0.05); On PID 7 and 10, the wound healing rates in HGF-ADSC exosome group were significantly higher than those in PBS group, HGF alone group, and ADSC exosome alone group, respectively (with q values of 13.11, 13.11, 11.89, 12.85, 11.28, and 7.74, respectively, all P<0.01); on PID 14, the wound healing rate in HGF-ADSC exosome group was significantly higher than that in PBS group, HGF alone group, and ADSC exosome alone group (with q values of 15.50, 11.64, and 6.36, respectively, all P<0.01). On PID 3, there was no obvious blood supply in wound base of mice in the 4 groups. On PID 7, microvessels began to form in the wound base of HGF-ADSC exosome group, while the wound base of the other three groups was only congested at the wound edge. On PID 10, microvessel formation in wound base was observed in the other 3 groups except in PBS group, which had no obvious blood supply. On PID 14, the blood flow intensity of wound base in HGF-ADSC exosome group was stronger than that in the other 3 groups, and the distribution was uniform. On PID 10, the ratio of wound base relative blood flow intensity in HGF-ADSC exosome group was significantly higher than that in PBS group, HGF alone group, and ADSC exosome alone group (with q values of 23.73, 19.32, and 9.48, respectively, all P<0.01); The numbers of Ki67-positive cells and new-vascularity of wounds in HGF-ADSC exosome group were significantly higher than those in PBS group, HGF alone group, and ADSC exosome alone group, respectively (with q values of 19.58, 18.20, 11.04, 20.68, 13.79, and 8.12, respectively, P<0.01). On PID 10, the protein expression level of eNOS of wounds in HGF-ADSC exosome group was higher than that in PBS group, HGF alone group, and ADSC exosome alone group (with q values of 53.23, 42.54, and 26.54, respectively, all P<0.01); the ratio of p-PI3K to PI3K and the ratio of p-Akt to Akt of wounds in HGF-ADSC exosome group were significantly higher than those in PBS group, HGF alone group, and ADSC exosome alone group, respectively (with q values of 16.11, 11.78, 6.08, 65.54, 31.63, and 37.86, respectively, P<0.01). On PID 14, the length of skin tissue defect in the wounds of HGF-ADSC exosome group was shorter than that in PBS group, HGF alone group, and ADSC exosome alone group (with q values of 20.51, 18.50, and 11.99, respectively, all P<0.01); the CVF of wounds in HGF-ADSC exosome group was significantly higher than that in PBS group, HGF alone group and ADSC exosome alone group (with q values of 31.31, 28.52, and 12.35, respectively, all P<0.01). Conclusions: Human HGF-ADSC exosomes can significantly promote wound healing in diabetic mice by increasing neovascularization in wound tissue, and the mechanism may be related to the increased expression of eNOS in wounds by activating PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- T Cao
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - D Xiao
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - P Ji
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - Z Zhang
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - W X Cai
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - C Han
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - W Li
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - K Tao
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
35
|
Mokgalaboni K, Phoswa W. Cross-link between type 2 diabetes mellitus and iron deficiency anemia. A mini-review. CLINICAL NUTRITION OPEN SCIENCE 2022. [DOI: 10.1016/j.nutos.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
唐 胡, 母 炜, 向 渝, 安 永. Effect of hepatocyte growth factor on mice with hypoxic pulmonary arterial hypertension: a preliminary study. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:936-941. [PMID: 36036134 PMCID: PMC9425866 DOI: 10.7499/j.issn.1008-8830.2203127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/21/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To study the association between hepatocyte growth factor (HGF) and treatment response in mice with hypoxic pulmonary arterial hypertension (HPAH) and the possibility of HGF as a new targeted drug for HPAH. METHODS After successful modeling, the HPAH model mice were randomly divided into two groups: HPAH group and HGF treatment group (tail vein injection of recombinant mouse HGF 1 mg/kg), with 10 mice in each group. Ten normal mice were used as the control group. After 5 weeks, echocardiography was used to measure tricuspid peak velocity, right ventricular systolic pressure, right ventricular hypertrophy index, and right ventricular/body weight ratio; the Griess method was used to measure the content of nitric oxide in serum; ELISA was used to measure the serum level of endothelin-1; transmission electron microscopy was used to observe changes in the ultrastructure of pulmonary artery. RESULTS Compared with the HGF treatment and normal control groups, the HPAH group had significantly higher tricuspid peak velocity, right ventricular systolic pressure, right ventricular hypertrophy index, and right ventricular/body weight ratio (P<0.05). The transmission electron microscopy showed that the HPAH group had massive destruction of vascular endothelial cells and disordered arrangement of the elastic membrane of arteriolar intima with rupture and loss. The structure of vascular endothelial cells was almost complete and the structure of arterial intima elastic membrane was almost normal in the HGF treatment group. Compared with the normal control and HGF treatment groups, the HPAH group had significantly higher serum levels of nitric oxide and endothelin-1 (P<0.05). CONCLUSIONS Increasing serum HGF level can alleviate the impact of HPAH on the cardiovascular system of mice, possibly by repairing endothelial cell injury, improving vascular remodeling, and restoring the normal vasomotor function of pulmonary vessels.
Collapse
|
37
|
de Prado-Bert P, Warembourg C, Dedele A, Heude B, Borràs E, Sabidó E, Aasvang GM, Lepeule J, Wright J, Urquiza J, Gützkow KB, Maitre L, Chatzi L, Casas M, Vafeiadi M, Nieuwenhuijsen MJ, de Castro M, Grazuleviciene R, McEachan RRC, Basagaña X, Vrijheid M, Sunyer J, Bustamante M. Short- and medium-term air pollution exposure, plasmatic protein levels and blood pressure in children. ENVIRONMENTAL RESEARCH 2022; 211:113109. [PMID: 35292243 DOI: 10.1016/j.envres.2022.113109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 05/26/2023]
Abstract
Exposure to air pollution influences children's health, however, the biological mechanisms underlying these effects are not completely elucidated. We investigated the association between short- and medium-term outdoor air pollution exposure with protein profiles and their link with blood pressure in 1170 HELIX children aged 6-11 years. Different air pollutants (NO2, PM10, PM2.5, and PM2.5abs) were estimated based on residential and school addresses at three different windows of exposure (1-day, 1-week, and 1-year before clinical and molecular assessment). Thirty-six proteins, including adipokines, cytokines, or apolipoproteins, were measured in children's plasma using Luminex. Systolic and diastolic blood pressure (SBP and DBP) were measured following a standardized protocol. We performed an association study for each air pollutant at each location and time window and each outcome, adjusting for potential confounders. After correcting for multiple-testing, hepatocyte growth factor (HGF) and interleukin 8 (IL8) levels were positively associated with 1-week home exposure to some of the pollutants (NO2, PM10, or PM2.5). NO2 1-week home exposure was also related to higher SBP. The mediation study suggested that HGF could explain 19% of the short-term effect of NO2 on blood pressure, but other study designs are needed to prove the causal directionality between HGF and blood pressure.
Collapse
Affiliation(s)
- Paula de Prado-Bert
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Audrius Dedele
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004 Paris, France
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Gunn Marit Aasvang
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, 38000, Grenoble, France
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford Royal, UK
| | - Jose Urquiza
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kristine B Gützkow
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Léa Maitre
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USA; Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Maribel Casas
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Mark J Nieuwenhuijsen
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford Royal, UK
| | - Xavier Basagaña
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
38
|
Novelli M, Masini M, Vecoli C, Moscato S, Funel N, Pippa A, Mattii L, Ippolito C, Campani D, Neglia D, Masiello P. Dysregulated insulin secretion is associated with pancreatic β-cell hyperplasia and direct acinar-β-cell trans-differentiation in partially eNOS-deficient mice. Physiol Rep 2022; 10:e15425. [PMID: 35986504 PMCID: PMC9391603 DOI: 10.14814/phy2.15425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023] Open
Abstract
eNOS-deficient mice were previously shown to develop hypertension and metabolic alterations associated with insulin resistance either in standard dietary conditions (eNOS-/- homozygotes) or upon high-fat diet (HFD) (eNOS+/- heterozygotes). In the latter heterozygote model, the present study investigated the pancreatic morphological changes underlying the abnormal glycometabolic phenotype. C57BL6 wild type (WT) and eNOS+/- mice were fed with either chow or HFD for 16 weeks. After being longitudinally monitored for their metabolic state after 8 and 16 weeks of diet, mice were euthanized and fragments of pancreas were processed for histological, immuno-histochemical and ultrastructural analyses. HFD-fed WT and eNOS+/- mice developed progressive glucose intolerance and insulin resistance. Differently from WT animals, eNOS+/- mice showed a blunted insulin response to a glucose load, regardless of the diet regimen. Such dysregulation of insulin secretion was associated with pancreatic β-cell hyperplasia, as shown by larger islet fractional area and β-cell mass, and higher number of extra-islet β-cell clusters than in chow-fed WT animals. In addition, only in the pancreas of HFD-fed eNOS+/- mice, there was ultrastructural evidence of a number of hybrid acinar-β-cells, simultaneously containing zymogen and insulin granules, suggesting the occurrence of a direct exocrine-endocrine transdifferentiation process, plausibly triggered by metabolic stress associated to deficient endothelial NO production. As suggested by confocal immunofluorescence analysis of pancreatic histological sections, inhibition of Notch-1 signaling, likely due to a reduced NO availability, is proposed as a novel mechanism that could favor both β-cell hyperplasia and acinar-β-cell transdifferentiation in eNOS-deficient mice with impaired insulin response to a glucose load.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Matilde Masini
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Cecilia Vecoli
- Institute of Clinical PhysiologyNational Research Council (CNR)PisaItaly
| | - Stefania Moscato
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Interdepartmental Research Centre "Nutraceuticals and Food for Health"University of PisaPisaItaly
| | - Niccola Funel
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Anna Pippa
- Institute of Clinical PhysiologyNational Research Council (CNR)PisaItaly
| | - Letizia Mattii
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Interdepartmental Research Centre "Nutraceuticals and Food for Health"University of PisaPisaItaly
| | - Chiara Ippolito
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Daniela Campani
- Department of Surgical, Medical and Molecular Pathology, and Critical Care MedicineUniversity of PisaPisaItaly
| | - Danilo Neglia
- Cardiovascular DepartmentFondazione Toscana Gabriele Monasterio per la Ricerca Medica e di Sanità PubblicaPisaItaly
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| |
Collapse
|
39
|
Salamun V, Rizzo M, Lovrecic L, Hocevar K, Papler Burnik T, Janez A, Jensterle M, Vrtacnik Bokal E, Peterlin B, Maver A. The Endometrial Transcriptome of Metabolic and Inflammatory Pathways During the Window of Implantation Is Deranged in Infertile Obese Polycystic Ovarian Syndrome Women. Metab Syndr Relat Disord 2022; 20:384-394. [PMID: 35834645 DOI: 10.1089/met.2021.0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction and Aim: Obese women with polycystic ovarian syndrome (PCOS) have a reduced rate of spontaneous conception even when their cycles are ovulatory. Endometrial receptivity is an important factor for poor implantation and increased miscarriage rates. Mechanisms in which both pathologies modify the endometrium are not fully clarified. The aim of our study was to compare the endometrial transcriptomic profiles between infertile obese PCOS (O-PCOS) women and infertile normal weight subjects during the window of implantation in ovulatory menstrual cycles. Methods: We conducted a prospective transcriptomic analysis of the endometrium using RNA sequencing. In this way, potential endometrial mechanisms leading to the poor reproductive outcome in O-PCOS patients could be characterized. Endometrial samples during days 21-23 of the menstrual cycle were collected from infertile O-PCOS women (n = 11) and normal weight controls (n = 10). Subgroups were defined according to the ovulatory/anovulatory status in the natural cycles, and O-PCOS women were grouped into the O-PCOS ovulatory (O-PCOS-ovul) subgroup. RNA isolation, sequencing with library reparation, and subsequent RNAseq data analysis were performed. Results: Infertile O-PCOS patients had 610 differentially expressed genes (DEGs), after adjustment for multiple comparisons with normal weight infertile controls, related to obesity (MXRA5 and ECM1), PCOS (ADAMTS19 and SLC18A2), and metabolism (VNN1 and PC). In the ovulatory subgroup, no DEGs were found, but significant differences in canonical pathways and the upstream regulator were revealed. According to functional and upstream analyses of ovulatory subgroup comparisons, the most important biological processes were related to inflammation (TNFR1 signaling), insulin signaling (insulin receptor signaling and PI3/AKT), fatty acid metabolism (stearate biosynthesis I and palmitate biosynthesis I), and lipotoxicity (unfolded protein response pathway). Conclusions: We demonstrated that endometrial transcription in ovulatory O-PCOS patients is deranged in comparison with the control ovulatory endometrium. The most important pathways of differentiation include metabolism and inflammation. These processes could also represent potential mechanisms for poor embryo implantation, which prevent the development of a successful pregnancy. ClinicalTrials.gov ID: NCT03353948.
Collapse
Affiliation(s)
- Vesna Salamun
- Division of Obstetrics and Gynecology, Department of Human Reproduction, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Manfredi Rizzo
- Division of Endocrinology, Diabetes, and Metabolism, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,Department of Laboratory Medicine, DIBIMIS, University of Palermo, Italy
| | - Luca Lovrecic
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Keli Hocevar
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tanja Papler Burnik
- Division of Obstetrics and Gynecology, Department of Human Reproduction, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Janez
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mojca Jensterle
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Eda Vrtacnik Bokal
- Division of Obstetrics and Gynecology, Department of Human Reproduction, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Ales Maver
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
40
|
Abderrahmani A, Jacovetti C, Regazzi R. Lessons from neonatal β-cell epigenomic for diabetes prevention and treatment. Trends Endocrinol Metab 2022; 33:378-389. [PMID: 35382967 DOI: 10.1016/j.tem.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/30/2022]
Abstract
Pancreatic β-cell expansion and functional maturation during the birth-to-weaning period plays an essential role in the adaptation of plasma insulin levels to metabolic needs. These events are driven by epigenetic programs triggered by growth factors, hormones, and nutrients. These mechanisms operating in the neonatal period can be at least in part reactivated in adult life to increase the functional β-cell mass and face conditions of increased insulin demand such as obesity or pregnancy. In this review, we will highlight the importance of studying these signaling pathways and epigenetic programs to understand the causes of different forms of diabetes and to permit the design of novel therapeutic strategies to prevent and treat this metabolic disorder affecting hundreds of millions of people worldwide.
Collapse
Affiliation(s)
- Amar Abderrahmani
- Universitéde Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Cécile Jacovetti
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland; Department of Biomedical Science, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
41
|
Gao L, Zhang Y, Liu J, Li X, Sang Y, Zhou G, Xue J, Jing L, Shi Z, Wei J, Lu X, Zhou X. Fat mass and obesity-associated gene (FTO) hypermethylation induced by decabromodiphenyl ethane causing cardiac dysfunction via glucolipid metabolism disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113534. [PMID: 35462195 DOI: 10.1016/j.ecoenv.2022.113534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) is a major alternative to BDE-209 owing to its lower toxicity. However, the mass production and increased consumption of DBDPE in recent years have raised concerns related to its adverse health effects. However, the effect and mechanism of DBDPE on cardiotoxicity have rarely been studied. In the present study, we investigated the impacts of DBDPE on the cardiovascular system in male SD rats and then explored the underlying mechanisms to explain the cardiotoxicity of DBDPE using AC16 cells. Under in vivo conditions, male rats were administered with an oral dosage of DBDPE at 0, 5, 50, and 500 mg/kg/day for 28 days, respectively. Histopathological analysis demonstrated that DBDPE induced cardiomyocyte injury and fibrosis, and ultrastructural observation revealed that DBDPE could induce mitochondria damage and dissolution. DBDPE could thus decrease the level of MYH6 and increase the level of SERCA2, which are the two key proteins involved in the maintenance of homeostasis during myocardial contractile and diastolic processes. Furthermore, DBDPE could increase the serum levels of glucose and low-density lipoprotein but decrease the content of high-density lipoprotein. In addition, DBDPE could activate the PI3K/AKT/GLUT2 and PPARγ/RXRα signaling pathways in AC16 cells. In addition, DBDPE decreased the UCP2 level and ATP synthesis in mitochondria both under in vitro and in vivo conditions, consequently leading to apoptosis via the Cytochrome C/Caspase-9/Caspase-3 pathway. Bisulfite sequencing PCR (BSP) identified the hypermethylation status of fat mass and obesity-associated gene (FTO). 5-aza exerted the opposite effects on the PI3K/AKT/GLUT2, PPARγ/RXRα, and Cytochrome C/Caspase-9/Caspase-3 signaling pathways induced by DBDPE in AC16 cells. In addition, the DBDPE-treated altered levels of UCP2, ATP, and apoptosis were also found to be significantly reversed by 5-aza in AC16 cells. These results suggested that FTO hypermethylation played a regulative role in the pathological process of DBDPE-induced glycolipid metabolism disorder, thereby contributing to the dysfunction of myocardial contraction and relaxation through cardiomyocytes fibrosis and apoptosis via the mitochondrial-mediated apoptotic pathway resulting from mitochondrial dysfunction.
Collapse
Affiliation(s)
- Leqiang Gao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yue Zhang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jianhui Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Xiangyang Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yujian Sang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Guiqing Zhou
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jinglong Xue
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Li Jing
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhixiong Shi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jialiu Wei
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xianqing Zhou
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
42
|
Chaudhary PK, Kim S, Kim S. An Insight into Recent Advances on Platelet Function in Health and Disease. Int J Mol Sci 2022; 23:ijms23116022. [PMID: 35682700 PMCID: PMC9181192 DOI: 10.3390/ijms23116022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Platelets play a variety of roles in vascular biology and are best recognized as primary hemostasis and thrombosis mediators. Platelets have a large number of receptors and secretory molecules that are required for platelet functionality. Upon activation, platelets release multiple substances that have the ability to influence both physiological and pathophysiological processes including inflammation, tissue regeneration and repair, cancer progression, and spreading. The involvement of platelets in the progression and seriousness of a variety of disorders other than thrombosis is still being discovered, especially in the areas of inflammation and the immunological response. This review represents an integrated summary of recent advances on the function of platelets in pathophysiology that connects hemostasis, inflammation, and immunological response in health and disease and suggests that antiplatelet treatment might be used for more than only thrombosis.
Collapse
|
43
|
Castells-Sánchez A, Roig-Coll F, Dacosta-Aguayo R, Lamonja-Vicente N, Torán-Monserrat P, Pera G, García-Molina A, Tormos JM, Montero-Alía P, Heras-Tébar A, Soriano-Raya JJ, Cáceres C, Domènech S, Via M, Erickson KI, Mataró M. Molecular and Brain Volume Changes Following Aerobic Exercise, Cognitive and Combined Training in Physically Inactive Healthy Late-Middle-Aged Adults: The Projecte Moviment Randomized Controlled Trial. Front Hum Neurosci 2022; 16:854175. [PMID: 35529777 PMCID: PMC9067321 DOI: 10.3389/fnhum.2022.854175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Behavioral interventions have shown promising neuroprotective effects, but the cascade of molecular, brain and behavioral changes involved in these benefits remains poorly understood. Projecte Moviment is a 12-week (5 days per week—45 min per day) multi-domain, single-blind, proof-of-concept randomized controlled trial examining the cognitive effect and underlying mechanisms of an aerobic exercise (AE), computerized cognitive training (CCT) and a combined (COMB) groups compared to a waitlist control group. Adherence was > 80% for 82/109 participants recruited (62% female; age = 58.38 ± 5.47). In this study we report intervention-related changes in plasma biomarkers (BDNF, TNF-α, HGF, ICAM-1, SDF1-α) and structural-MRI (brain volume) and how they related to changes in physical activity and individual variables (age and sex) and their potential role as mediators in the cognitive changes. Our results show that although there were no significant changes in molecular biomarker concentrations in any intervention group, changes in ICAM-1 and SDF1-α were negatively associated with changes in physical activity outcomes in AE and COMB groups. Brain volume changes were found in the CCT showing a significant increase in precuneus volume. Sex moderated the brain volume change in the AE and COMB groups, suggesting that men may benefit more than women. Changes in molecular biomarkers and brain volumes did not significantly mediate the cognitive-related benefits found previously for any group. This study shows crucial initial molecular and brain volume changes related to lifestyle interventions at early stages and highlights the value of examining activity parameters, individual difference characteristics and using a multi-level analysis approach to address these questions.
Collapse
Affiliation(s)
- Alba Castells-Sánchez
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Francesca Roig-Coll
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Rosalía Dacosta-Aguayo
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- *Correspondence: Rosalía Dacosta-Aguayo,
| | - Noemí Lamonja-Vicente
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Pere Torán-Monserrat
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| | - Guillem Pera
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Alberto García-Molina
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José Maria Tormos
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Pilar Montero-Alía
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Antonio Heras-Tébar
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Juan José Soriano-Raya
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Cynthia Cáceres
- Department of Neurosciences, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Sira Domènech
- Institut de Diagnòstic per la Imatge, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Marc Via
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Maria Mataró
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
44
|
Rada P, Lamballe F, Carceller-López E, Hitos AB, Sequera C, Maina F, Valverde ÁM. Enhanced Wild-Type MET Receptor Levels in Mouse Hepatocytes Attenuates Insulin-Mediated Signaling. Cells 2022; 11:cells11050793. [PMID: 35269415 PMCID: PMC8909847 DOI: 10.3390/cells11050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Compelling evidence points to the MET receptor tyrosine kinase as a key player during liver development and regeneration. Recently, a role of MET in the pathophysiology of insulin resistance and obesity is emerging. Herein, we aimed to determine whether MET regulates hepatic insulin sensitivity. To achieve this, mice in which the expression of wild-type MET in hepatocytes is slightly enhanced above endogenous levels (Alb-R26Met mice) were analyzed to document glucose homeostasis, energy balance, and insulin signaling in hepatocytes. We found that Alb-R26Met mice exhibited higher body weight and food intake when compared to R26stopMet control mice. Metabolic analyses revealed that Alb-R26Met mice presented age-related glucose and pyruvate intolerance in comparison to R26stopMet controls. Additionally, in Alb-R26Met mice, high MET levels decreased insulin-induced insulin receptor (IR) and AKT phosphorylation compared to control mice. These results were corroborated in vitro by analyzing IR and AKT phosphorylation in primary mouse hepatocytes from Alb-R26Met and R26stopMet mice upon insulin stimulation. Moreover, co-immunoprecipitation assays revealed MET-IR interaction under both basal and insulin stimulation conditions; this effect was enhanced in Alb-R26Met hepatocytes. Altogether, our results indicate that enhanced MET levels alter hepatic glucose homeostasis, which can be an early event for subsequent liver pathologies.
Collapse
Affiliation(s)
- Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain; (E.C.-L.); (A.B.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (P.R.); (F.M.); (Á.M.V.)
| | - Fabienne Lamballe
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, 13009 Marseille, France; (F.L.); (C.S.)
| | - Elena Carceller-López
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain; (E.C.-L.); (A.B.H.)
| | - Ana B. Hitos
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain; (E.C.-L.); (A.B.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Celia Sequera
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, 13009 Marseille, France; (F.L.); (C.S.)
| | - Flavio Maina
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, 13009 Marseille, France; (F.L.); (C.S.)
- Correspondence: (P.R.); (F.M.); (Á.M.V.)
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain; (E.C.-L.); (A.B.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (P.R.); (F.M.); (Á.M.V.)
| |
Collapse
|
45
|
Chen CL, Kao CC, Yang MH, Fan GY, Cherng JH, Tsao CW, Wu ST, Cha TL, Meng E. A Novel Intravesical Dextrose Injection Improves Lower Urinary Tract Symptoms on Interstitial Cystitis/Bladder Pain Syndrome. Front Pharmacol 2022; 12:755615. [PMID: 34975473 PMCID: PMC8715092 DOI: 10.3389/fphar.2021.755615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a painful recurrent condition characterized by the discomfort of the bladder, and current treatment options have limited effectiveness. Prolotherapy is a well-known treatment that involves the injection of non-biologic solutions to reduce pain and/or promote proliferation of soft tissue, and dextrose is the most common injectate. This study investigated the effects of dextrose prolotherapy in a rat model of IC/BPS and patients with IC/BPS. We used cyclophosphamide to induce IC/BPS in rats, and intravesical instillation of 10% dextrose solution was performed. After 1 week, we conducted a urodynamic test, bladder staining, and ECM-related gene expression analysis to examine the treatment’s efficacy. We found that dextrose treatment could recover the instability of the bladder, reduce frequent urination, and improve the glycosaminoglycan layer regeneration and the bladder wall thickness along with a significant intense expression of CD44 receptors. Furthermore, we enrolled 29 IC/BPS patients with previous hyaluronic acid/Botox treatment for more than 6 months with remained unchanged condition. In this study, they received intravesical injections of 10% dextrose solution followed by assessments for up to 12 weeks. Patient characteristics and a 3-day voiding diary before treatment were recorded. Patient responses were examined using IC/BPS-related questionnaires. Moreover, expressions of growth factors and cytokines were analyzed. The results demonstrated that dextrose prolotherapy in patients with IC/BPS reduced the frequency of treatment over time, with the mean number of treatments being 3.03 ± 1.52, and significantly reduced the incidence of nocturia and questionnaire scores associated with symptoms. Dextrose prolotherapy significantly enhanced EGF level and, in contrast, reduced the level of HGF, PIGF-1, and VEGF-D after several weeks following treatment. The cytokine analysis showed that the expressions of IL-12p70 and IL-10 were significantly up-regulated after dextrose prolotherapy in IC/BPS patients. The levels of most growth factors and cytokines in IC/BPS patients had no significant difference and showed a similar tendency as time progressed when compared to healthy controls. Overall, the alteration of growth factors and cytokines exhibited safe treatment and potential stimulation of tissue remodeling. In summary, our study demonstrated that dextrose prolotherapy is a promising treatment strategy for IC/BPS disease management.
Collapse
Affiliation(s)
- Chin-Li Chen
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Chang Kao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Hsin Yang
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Gang-Yi Fan
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Juin-Hong Cherng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Wei Tsao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Lung Cha
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - En Meng
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
46
|
Abdulkhalikova D, Sustarsic A, Vrtačnik Bokal E, Jancar N, Jensterle M, Burnik Papler T. The Lifestyle Modifications and Endometrial Proteome Changes of Women With Polycystic Ovary Syndrome and Obesity. Front Endocrinol (Lausanne) 2022; 13:888460. [PMID: 35813634 PMCID: PMC9258031 DOI: 10.3389/fendo.2022.888460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Polycystic ovary syndrome (PCOS) is a polyendocrine disorder and the most common endocrinopathy in women of reproductive age. Affected women have an elevated prevalence of being overweight and obese. Our study sought to determine how weight loss associated with lifestyle changes affects the endometrium specific proteome, endocrine-metabolic characteristics, and motor capabilities of obese women with PCOS and infertility. A group of 12 infertile women under the age of 38 with PCOS and BMI ≥30 kg/m2 were included in the study. An evaluation was performed by a gynecologist and an endocrinologist. The weight-loss program lasted 8 weeks under the guidance of a professional trainer. Endometrial sampling during a period of implantation window for proteome determination was performed before and after weight loss. In endometrial samples at the end of the study increased protein abundance was recorded for Legumain, Insulin-like growth factor-binding protein 7, Hepatocyte growth factor receptor, Keratin, type II cytoskeletal 7, and Cystatin-B, while the B-lymphocyte antigen CD20 protein abundance decreased. Our results also indicate significantly lowered fasting blood glucose level and free testosterone concentration and significant improvements in body composition and physical capacity. This study may open up the venues for investigating important biomarkers that may affect endometrial receptivity. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04989244?term=NCT04989244&draw=2&rank=1, identifier: NCT04989244.
Collapse
Affiliation(s)
- D. Abdulkhalikova
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - A. Sustarsic
- Faculty of Sports, University of Ljubljana, Ljubljana, Slovenia
| | - Eda Vrtačnik Bokal
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - N. Jancar
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - M. Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - T. Burnik Papler
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- *Correspondence: T. Burnik Papler,
| |
Collapse
|
47
|
Zhang X, Xiao H, Fu S, Yu J, Cheng Y, Jiang Y. Investigate the genetic mechanisms of diabetic kidney disease complicated with inflammatory bowel disease through data mining and bioinformatic analysis. Front Endocrinol (Lausanne) 2022; 13:1081747. [PMID: 36726458 PMCID: PMC9884696 DOI: 10.3389/fendo.2022.1081747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Patients with diabetic kidney disease (DKD) often have gastrointestinal dysfunction such as inflammatory bowel disease (IBD). This study aims to investigate the genetic mechanism leading to IBD in DKD patients through data mining and bioinformatics analysis. METHODS The disease-related genes of DKD and IBD were searched from the five databases of OMIM, GeneCards, PharmGkb, TTD, and DrugBank, and the intersection part of the two diseases were taken to obtain the risk genes of DKD complicated with IBD. A protein-protein interaction (PPI) network analysis was performed on risk genes, and three topological parameters of degree, betweenness, and closeness of nodes in the network were used to identify key risk genes. Finally, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on the risk genes to explore the related mechanism of DKD merging IBD. RESULTS This study identified 495 risk genes for DKD complicated with IBD. After constructing a protein-protein interaction network and screening for three times, six key risk genes were obtained, including matrix metalloproteinase 2 (MMP2), hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF2), interleukin (IL)-18, IL-13, and C-C motif chemokine ligand 5 (CCL5). Based on GO enrichment analysis, we found that DKD genes complicated with IBD were associated with 3,646 biological processes such as inflammatory response regulation, 121 cellular components such as cytoplasmic vesicles, and 276 molecular functions such as G-protein-coupled receptor binding. Based on KEGG enrichment analysis, we found that the risk genes of DKD combined with IBD were associated with 181 pathways, such as the PI3K-Akt signaling pathway, advanced glycation end product-receptor for AGE (AGE-RAGE) signaling pathway and hypoxia-inducible factor (HIF)-1 signaling pathway. CONCLUSION There is a genetic mechanism for the complication of IBD in patients with CKD. Oxidative stress, chronic inflammatory response, and immune dysfunction were possible mechanisms for DKD complicated with IBD.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaojie Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Jinyu Yu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yanli Cheng, ; Yang Jiang,
| | - Yang Jiang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yanli Cheng, ; Yang Jiang,
| |
Collapse
|
48
|
Zhang ZH, Li J, Li J, Ma Z, Huang XJ. Veratrilla baillonii Franch Ameliorates Diabetic Liver Injury by Alleviating Insulin Resistance in Rats. Front Pharmacol 2021; 12:775563. [PMID: 34899339 PMCID: PMC8662784 DOI: 10.3389/fphar.2021.775563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex and polygenic disorder with diverse complications. Veratrilla baillonii Franch (V. baillonii) has been applied in the intervention and treatment a diverse range of diseases, including diabetes. In this study, we revealed that water extracts of V. baillonii (WVBF) can ameliorate liver injury and insulin resistance in T2DM rat model. To elucidate the anti-diabetic mechanisms of WVBF, we performed liver transcriptome analysis that displayed WVBF treatment significantly suppressed many gene expressions involved in insulin resistance. Furthermore, functional experiments showed that WVBF treatment reduced the pathological damages of liver and pancreas, which may be regulated by Foxo1, Sirt1, G6pc, c-Met, Irs1, Akt1, Pik3r1. These results indicated that WVBF improves diabetic liver injury and insulin resistance in diabetic rats. Therefore, this study demonstrated WVBF could be used as a promising therapeutic agent for intervention and treatment of diabetes.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xian-Ju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
49
|
Ates KM, Estes AJ, Liu Y. Potential underlying genetic associations between keratoconus and diabetes mellitus. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2021; 1:100005. [PMID: 34746916 PMCID: PMC8570550 DOI: 10.1016/j.aopr.2021.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022]
Abstract
Background Keratoconus (KC) is the most common ectatic corneal disease, characterized by significantly localized thinning of the corneal stroma. Genetic, environmental, hormonal, and metabolic factors contribute to the pathogenesis of KC. Additionally, multiple comorbidities, such as diabetes mellitus, may affect the risk of KC. Main Body Patients with diabetes mellitus (DM) have been reported to have lower risk of developing KC by way of increased endogenous collagen crosslinking in response to chronic hyperglycemia. However, this remains a debated topic as other studies have suggested either a positive association or no association between DM and KC. To gain further insight into the underlying genetic components of these two diseases, we reviewed candidate genes associated with KC and central corneal thickness in the literature. We then explored how these genes may be regulated similarly or differentially under hyperglycemic conditions and the role they play in the systemic complications associated with DM. Conclusion Our comprehensive review of potential genetic factors underlying KC and DM provides a direction for future studies to further determine the genetic etiology of KC and how it is influenced by systemic diseases such as diabetes.
Collapse
Affiliation(s)
- Kristin M. Ates
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Amy J. Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
50
|
Correlations between Salivary Immuno-Biochemical Markers and HbA1c in Type 2 Diabetes Subjects before and after Dental Extraction. Antioxidants (Basel) 2021; 10:antiox10111741. [PMID: 34829612 PMCID: PMC8615044 DOI: 10.3390/antiox10111741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/02/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Dental extraction can trigger certain sequences of complex processes that involve both hard (alveolar bone) and soft tissue (periodontal ligament, gingiva) remodeling. Type 2 diabetes is a serious risk factor for many oral pathologies, both in terms of progression and severity, but also regarding subsequent rehabilitation possibilities. The aim of this study was to establish whether certain molecules: osteoprotegerin (OPG), kappa B nuclear factor receptor activator ligand (RANKL), hepatocyte growth factor (HGF), tumor necrosis factor-α (TNF-α), interleukin 18 (IL-18), matrix metalloproteinase 9 (MMP-9) and oxidative stress markers-total oxidant status (TOS), total antioxidant capacity (TAC)-evaluated in saliva are modified post-extraction in type 2 diabetes mellitus subjects and whether there is a correlation with HbA1c levels. The aforementioned markers plus HbA1c were investigated in a group of systemically healthy subjects (n = 45) and in a type 2 diabetes mellitus group (n = 41) before and three months after a tooth extraction. Diabetes patients' recorded increased levels of OPG, RANKL, TNF-α, MMP-9, IL-18 and TOS compared to controls both pre- and post-extraction. In both study groups, the average OPG, HGF and TAC level recorded an upward trend three months post-extraction. TNF-α registered a statistically significant decrease only in the diabetes group after dental extraction, together with a decrement of mean HbA1c levels in the diabetes group. By plotting the ROC (receiver operating characteristic) curve, at baseline RANKL, TNF-α, IL-18, MMP-9, TOS and OPG were good predictors of HbA1c levels. Post-extraction, there was a significant correlation between HbA1c and oxidative status biomarkers, however the linear regression model indicated the influence of all studied salivary markers in HbA1c determinism, in a considerable proportion. In conclusion, our study demonstrated that several oxidative status markers and proinflammatory biomarkers are modified in the saliva of diabetic patients and they correlate to HbA1c levels, thus being potential indicators of the post-extraction healing status in the oral cavity.
Collapse
|