1
|
King C, Plakke B. Maternal choline supplementation in neurodevelopmental disorders: mechanistic insights from animal models and future directions. Nutr Neurosci 2025; 28:405-424. [PMID: 39046330 DOI: 10.1080/1028415x.2024.2377084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVES To synthesize evidence from animal models of neurodevelopmental disorders (NDD) using maternal choline supplementation, to characterize current knowledge on the mechanisms of choline's protective effects against NDD, and to identify gaps in knowledge for future study. METHODS A literature review was conducted in PubMed to identify studies using prenatal choline supplementation interventions in rodent models of neurodevelopmental disorders. 24 studies were identified, and behavioral and biological findings were extracted from each. Studies examining both genetic and environmental risk factors were included. RESULTS Maternal choline supplementation during gestation is protective against both genetic and environmental NDD risk factors. Maternal choline supplementation improves both cognitive and affective outcomes throughout the lifespan in NDD models. Prenatal choline improved these outcomes through its participation in processes like neurogenesis, epigenetic regulation, and anti-inflammatory signaling. DISCUSSION Maternal choline supplementation improves behavioral and neurobiological outcomes in animal models of NDD, paralleling findings in humans. Animal models provide a unique opportunity to study the mechanisms by which gestational choline improves neurodevelopmental outcomes. This is especially important since nearly 90% of pregnant people in the United States are deficient in choline intake. However, much is still unknown about the mechanisms through which choline and its derivatives act. Further research into this topic, especially mechanistic studies in animal models, is critical to modernize maternal choline intake guidelines and to develop interventions to increase maternal choline intake in vulnerable populations.
Collapse
Affiliation(s)
- Cole King
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Bethany Plakke
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
2
|
Ferrari L, Buoli M, Borroni E, Nosari G, Ceresa A, Antonangeli LM, Monti P, Matsagani R, Bollati V, Pesatori AC, Carugno M. DNA methylation of core clock genes in patients with major depressive disorder: Association with air pollution exposure and disease severity. Psychiatry Res 2025; 348:116466. [PMID: 40184933 DOI: 10.1016/j.psychres.2025.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Major Depressive Disorder (MDD) is a multifactorial disease which could be influenced by exposure to air pollution through disruption of sleep-wake cycles and other circadian-related behaviors. Our study aimed to investigate the interplay between air pollution exposure, DNA methylation of core clock genes involved in circadian rhythms, and MDD severity. METHODS Four hundred sixteen MDD patients (64 % females) agreed to participate and donated a blood sample to measure DNA methylation of the core clock genes CRY1, PER1, PER2, CLOCK, BMAL1. MDD severity and functioning was assessed using five rating scales. Daily mean estimates of particulate matter with diameter ≤ 2.5 μm (PM2.5) and nitrogen dioxide (NO2) were assigned to study participants based on their residential address, and averaged to estimate different cumulative exposure windows. Multivariate regression models were applied to assess associations between air pollutants and core clock genes methylation and between DNA methylation of those same genes and MDD severity. RESULTS PM2.5 exposure in the six months preceding recruitment was associated with CLOCK hypomethylation (β=-0.11, 95 % confidence interval [CI]:0.20; -0.02) and CRY1 hypermethylation (β=0.32, 95 %CI: 0.06; 0.58). All NO2 exposure windows were associated with CRY1 hypermethylation. Increasing methylation of CLOCK was associated with lower MDD severity considering several scales (e.g., Hamilton Depression Rating Scale: β=-7.21, 95 %CI:3.97; -0.44). CONCLUSIONS Taken together our findings shed some light on the complex mechanism underlying the pathogenesis of MDD, with a potentially relevant role of the environment and of its impact on epigenetic mechanisms altering the expression of core clock genes.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Massimiliano Buoli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Borroni
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Guido Nosari
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Ceresa
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Laura Maria Antonangeli
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Rachele Matsagani
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Cecilia Pesatori
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michele Carugno
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
3
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
4
|
Ellis RJ, Ferland JMN, Rahman T, Landry JL, Callens JE, Pandey G, Lam T, Kanyo J, Nairn AC, Dracheva S, Hurd YL. Machine Learning Analysis of the Orbitofrontal Cortex Transcriptome of Human Opioid Users Identifies Shisa7 as a Translational Target Relevant for Heroin Seeking Leveraging a Male Rat Model. Biol Psychiatry 2024:S0006-3223(24)01815-8. [PMID: 39725299 DOI: 10.1016/j.biopsych.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/12/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Identifying neurobiological targets predictive of the molecular neuropathophysiological signature of human opioid use disorder (OUD) could expedite new treatments. OUD is characterized by dysregulated cognition and goal-directed behavior mediated by the orbitofrontal cortex (OFC), and next-generation sequencing could provide insights regarding novel targets. METHODS Here, we used machine learning to evaluate human postmortem OFC RNA sequencing datasets from heroin users and control participants to identify transcripts that were predictive of heroin use. To determine a causal link to OUD-related behaviors, we examined the effects of overexpressing the top target gene in a translational rat model of heroin seeking and behavioral updating. Additionally, we determined the effects of overexpression on the rat OFC transcriptome compared with that of human heroin users. Co-immunoprecipitation/mass spectrometry (co-IP/MS) from the rat OFC elucidated the protein complex of the novel target. RESULTS Our machine learning approach identified SHISA7 as predictive of human heroin users. Shisa7 is understudied but appears to be an auxiliary protein of GABAA (gamma-aminobutyric acid A) or AMPA receptors. In rats, Shisa7 expression positively correlated with heroin-seeking behavior. Overexpressing Shisa7 in the OFC augmented heroin seeking and impaired behavioral updating for sucrose-based operant contingency. RNA sequencing of rat OFC revealed gene coexpression networks regulated by Shisa7 overexpression similar to human heroin users. Finally, co-IP/MS showed that heroin influenced Shisa7 binding to glutamatergic and GABAergic receptor subunits. Both gene expression signatures and Shisa7 protein complex emphasized perturbations of neurodegenerative and neuroimmune processes. CONCLUSIONS Our findings suggest that OFC Shisa7 is a critical driver of neurobehavioral pathology related to drug-seeking behavior and behavioral updating, thus identifying a potential therapeutic target for OUD.
Collapse
Affiliation(s)
- Randall J Ellis
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Addiction Institute of Mount Sinai, New York, New York
| | - Jacqueline-Marie N Ferland
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Addiction Institute of Mount Sinai, New York, New York
| | - Tanni Rahman
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joseph L Landry
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Addiction Institute of Mount Sinai, New York, New York
| | - James E Callens
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - TuKiet Lam
- Keck Mass Spectrometry and Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, Connecticut; Department of Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Jean Kanyo
- Keck Mass Spectrometry and Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, Connecticut
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Stella Dracheva
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Research and Development, James J. Peters VA Medical Center, Bronx, New York
| | - Yasmin L Hurd
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Addiction Institute of Mount Sinai, New York, New York.
| |
Collapse
|
5
|
Dean B. IUPHAR Review on muscarinic M1 and M4 receptors as drug treatment targets relevant to the molecular pathology of schizophrenia. Pharmacol Res 2024; 210:107510. [PMID: 39566671 DOI: 10.1016/j.phrs.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Cobenfy, a co-formulation of xanomeline and trospium, is the first drug not acting on the dopaminergic system of the CNS approved for the treatment of schizophrenia by the FDA. Xanomeline is a muscarinic M1 and M4 receptor (CHRM1 and CHRM4) agonist whilst trospium is a peripherally active CHRM antagonist that reduces the unwanted peripheral side-effects of xanomeline. Relevant to this exciting development, this review details the human CNS cholinergic systems and how those systems are affected by the molecular pathology of schizophrenia in a way suggesting activating the CHRM1 and 4 would be beneficial in treating the disorder. The CNS distribution of CHRMs is presented along with findings using CHRM knockout mice and mice treated with drugs that activate the CHRM1 and / or M4, these data explain why these CHRMs could be involved in the genesis of the symptoms of schizophrenia. Next, the process leading to the formulation of Cobenfy and the preclinical data on xanomeline are reviewed showing why Cobenfy was expected to be useful in treating schizophrenia. The pipeline of drugs targeting CHRM1 and /or M4 receptors to treat schizophrenia are discussed. Finally, the molecular pathology of two sub-groups within schizophrenia, separated based on the presence or absence of a deficit of cortical CHRM1, are reviewed to show how such approaches could identify new drug targets. In conclusion, the history of the development of Cobenfy highlights how a growing understanding the pathophysiology of schizophrenia will suggest new treatment targets for the disorder and that pharmacologists can synthesise drugs to target these sites.
Collapse
Affiliation(s)
- Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Santos L, Behrens L, Barbosa C, Tiefensee-Ribeiro C, Rosa-Silva H, Somensi N, Brum PO, Silveira AK, Rodrigues MS, de Oliveira J, Gelain DP, Almeida RF, Moreira JCF. Histone 3 Trimethylation Patterns are Associated with Resilience or Stress Susceptibility in a Rat Model of Major Depression Disorder. Mol Neurobiol 2024; 61:5718-5737. [PMID: 38225513 DOI: 10.1007/s12035-024-03912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/23/2023] [Indexed: 01/17/2024]
Abstract
Major Depressive Disorder (MDD) is a severe and multifactorial psychiatric condition. Evidence has shown that environmental factors, such as stress, significantly explain MDD pathophysiology. Studies have hypothesized that changes in histone methylation patterns are involved in impaired glutamatergic signaling. Based on this scenario, this study aims to investigate histone 3 involvement in depression susceptibility or resilience in MDD pathophysiology by investigating cellular and molecular parameters related to i) glutamatergic neurotransmission, ii) astrocytic functioning, and iii) neurogenesis. For this, we subjected male Wistar rats to the Chronic Unpredictable Mild Stress (CUMS) model of depression. We propose that by evaluating the sucrose consumption, open field, and object recognition test performance from animals submitted to CUMS, it is possible to predict with high specificity rats with susceptibility to depressive-like phenotype and resilient to the depressive-like phenotype. We also demonstrated, for the first time, that patterns of H3K4me3, H3K9me3, H3K27me3, and H3K36me3 trimethylation are strictly associated with the resilient or susceptible to depressive-like phenotype in a brain-region-specific manner. Additionally, susceptible animals have reduced DCx and GFAP and resilient animals present increase of AQP-4 immunoreactivity. Together, these results provide evidence that H3 trimethylations are related to the development of the resilient or susceptible to depressive-like phenotype, contributing to further advances in the pathophysiology of MDD and the discovery of mechanisms behind resilience.
Collapse
Affiliation(s)
- Lucas Santos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luiza Behrens
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Barbosa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Tiefensee-Ribeiro
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helen Rosa-Silva
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nauana Somensi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Ozorio Brum
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Alexandre Kleber Silveira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matheus Scarpatto Rodrigues
- Laboratório de Investigação de Desordens Metabólicas e Doenças Neurodegenerativas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Laboratório de Investigação de Desordens Metabólicas e Doenças Neurodegenerativas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto F Almeida
- Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Karaglani M, Agorastos A, Panagopoulou M, Parlapani E, Athanasis P, Bitsios P, Tzitzikou K, Theodosiou T, Iliopoulos I, Bozikas VP, Chatzaki E. A novel blood-based epigenetic biosignature in first-episode schizophrenia patients through automated machine learning. Transl Psychiatry 2024; 14:257. [PMID: 38886359 PMCID: PMC11183091 DOI: 10.1038/s41398-024-02946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Schizophrenia (SCZ) is a chronic, severe, and complex psychiatric disorder that affects all aspects of personal functioning. While SCZ has a very strong biological component, there are still no objective diagnostic tests. Lately, special attention has been given to epigenetic biomarkers in SCZ. In this study, we introduce a three-step, automated machine learning (AutoML)-based, data-driven, biomarker discovery pipeline approach, using genome-wide DNA methylation datasets and laboratory validation, to deliver a highly performing, blood-based epigenetic biosignature of diagnostic clinical value in SCZ. Publicly available blood methylomes from SCZ patients and healthy individuals were analyzed via AutoML, to identify SCZ-specific biomarkers. The methylation of the identified genes was then analyzed by targeted qMSP assays in blood gDNA of 30 first-episode drug-naïve SCZ patients and 30 healthy controls (CTRL). Finally, AutoML was used to produce an optimized disease-specific biosignature based on patient methylation data combined with demographics. AutoML identified a SCZ-specific set of novel gene methylation biomarkers including IGF2BP1, CENPI, and PSME4. Functional analysis investigated correlations with SCZ pathology. Methylation levels of IGF2BP1 and PSME4, but not CENPI were found to differ, IGF2BP1 being higher and PSME4 lower in the SCZ group as compared to the CTRL group. Additional AutoML classification analysis of our experimental patient data led to a five-feature biosignature including all three genes, as well as age and sex, that discriminated SCZ patients from healthy individuals [AUC 0.755 (0.636, 0.862) and average precision 0.758 (0.690, 0.825)]. In conclusion, this three-step pipeline enabled the discovery of three novel genes and an epigenetic biosignature bearing potential value as promising SCZ blood-based diagnostics.
Collapse
Affiliation(s)
- Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece
| | - Agorastos Agorastos
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece
- II. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56430, Thessaloniki, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece
| | - Eleni Parlapani
- Ι. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56429, Thessaloniki, Greece
| | - Panagiotis Athanasis
- II. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56430, Thessaloniki, Greece
| | - Panagiotis Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, GR-71500, Heraklion, Greece
| | - Konstantina Tzitzikou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
| | - Theodosis Theodosiou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
- ABCureD P.C, GR-68131, Alexandroupolis, Greece
| | - Ioannis Iliopoulos
- Division of Basic Sciences, School of Medicine, University of Crete, GR-71003, Heraklion, Greece
| | - Vasilios-Panteleimon Bozikas
- II. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56430, Thessaloniki, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece.
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece.
- ABCureD P.C, GR-68131, Alexandroupolis, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Greece.
| |
Collapse
|
8
|
Zhu L, Tang N, Hang H, Zhou Y, Dong J, Yang Y, Mao L, Qiu Y, Fu X, Cao W. Loss of Claudin-1 incurred by DNMT aberration promotes pancreatic cancer progression. Cancer Lett 2024; 586:216611. [PMID: 38309617 DOI: 10.1016/j.canlet.2024.216611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 02/05/2024]
Abstract
Pancreatic cancer (PC) is one of the most malignant and deadly tumors of digestive system with complex etiology and pathogenesis. Dysregulations of oncogenes and tumor suppressors due to epigenetic modifications causally affect tumorogenesis; however the key tumor suppressors and their regulations in PC are only partially defined. In this study, we found that Claudin-1 (encoded by CLDN1 gene) was significantly suppressed in PC that correlated with a poor clinical prognosis. Claudin-1 knockdown enhanced PC cell proliferation, migration, and stemness. Pancreatic specific Cldn1 knockout in KPC (LSLKrasG12D/Pdx1-Cre/Trp53R172H+) and KC (LSLKrasG12D/Pdx1-Cre) mice reduced mouse survival, promoted acinar-to-ductal metaplasia (ADM) process, and accelerated the development of pancreatic intraepithelial neoplasia (PanIN) and PC. Further investigation revealed that Claudin-1 suppression was mainly caused by aberrant DNA methylatransferase 1 (DNMT1) and DNMT3A elevations and the resultant CLDN1 promoter hypermethylation, as a DNMT specific inhibitor SGI-1027 effectively reversed the Claudin-1 suppression and inhibited PC progression both in vitro and in vivo in a Claudin-1 preservation-dependent manner. Together, our data suggest that Claudin-1 functions as a tumor suppressor in PC and its epigenetic suppression due to DNMT aberrations is a crucial event that promotes PC development and progression.
Collapse
Affiliation(s)
- Linxi Zhu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Neng Tang
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Hexing Hang
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yan Zhou
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jian Dong
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yifei Yang
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Liang Mao
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yudong Qiu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Xu Fu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Wangsen Cao
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, 22 Hankou Road, Nanjing, 210093, China; Yancheng Medical Research Center of Nanjing University Medical School, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, 66 Southern People Road, Yancheng, 224008, China.
| |
Collapse
|
9
|
Williams LM, Carpenter WT, Carretta C, Papanastasiou E, Vaidyanathan U. Precision psychiatry and Research Domain Criteria: Implications for clinical trials and future practice. CNS Spectr 2024; 29:26-39. [PMID: 37675453 DOI: 10.1017/s1092852923002420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Psychiatric disorders are associated with significant social and economic burdens, many of which are related to issues with current diagnosis and treatments. The coronavirus (COVID-19) pandemic is estimated to have increased the prevalence and burden of major depressive and anxiety disorders, indicating an urgent need to strengthen mental health systems globally. To date, current approaches adopted in drug discovery and development for psychiatric disorders have been relatively unsuccessful. Precision psychiatry aims to tailor healthcare more closely to the needs of individual patients and, when informed by neuroscience, can offer the opportunity to improve the accuracy of disease classification, treatment decisions, and prevention efforts. In this review, we highlight the growing global interest in precision psychiatry and the potential for the National Institute of Health-devised Research Domain Criteria (RDoC) to facilitate the implementation of transdiagnostic and improved treatment approaches. The need for current psychiatric nosology to evolve with recent scientific advancements and increase awareness in emerging investigators/clinicians of the value of this approach is essential. Finally, we examine current challenges and future opportunities of adopting the RDoC-associated translational and transdiagnostic approaches in clinical studies, acknowledging that the strength of RDoC is that they form a dynamic framework of guiding principles that is intended to evolve continuously with scientific developments into the future. A collaborative approach that recruits expertise from multiple disciplines, while also considering the patient perspective, is needed to pave the way for precision psychiatry that can improve the prognosis and quality of life of psychiatric patients.
Collapse
Affiliation(s)
- Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - William T Carpenter
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Evangelos Papanastasiou
- Boehringer Ingelheim Pharma GmbH & Co, Ingelheim am Rhein, Rhineland-Palatinate, Germany
- HMNC Holding GmbH, Wilhelm-Wagenfeld-Strasse 20, 80807Munich, Bavaria, Germany
| | | |
Collapse
|
10
|
Baker MR, Lee AS, Rajadhyaksha AM. L-type calcium channels and neuropsychiatric diseases: Insights into genetic risk variant-associated genomic regulation and impact on brain development. Channels (Austin) 2023; 17:2176984. [PMID: 36803254 PMCID: PMC9980663 DOI: 10.1080/19336950.2023.2176984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/01/2023] [Indexed: 02/21/2023] Open
Abstract
Recent human genetic studies have linked a variety of genetic variants in the CACNA1C and CACNA1D genes to neuropsychiatric and neurodevelopmental disorders. This is not surprising given the work from multiple laboratories using cell and animal models that have established that Cav1.2 and Cav1.3 L-type calcium channels (LTCCs), encoded by CACNA1C and CACNA1D, respectively, play a key role in various neuronal processes that are essential for normal brain development, connectivity, and experience-dependent plasticity. Of the multiple genetic aberrations reported, genome-wide association studies (GWASs) have identified multiple single nucleotide polymorphisms (SNPs) in CACNA1C and CACNA1D that are present within introns, in accordance with the growing body of literature establishing that large numbers of SNPs associated with complex diseases, including neuropsychiatric disorders, are present within non-coding regions. How these intronic SNPs affect gene expression has remained a question. Here, we review recent studies that are beginning to shed light on how neuropsychiatric-linked non-coding genetic variants can impact gene expression via regulation at the genomic and chromatin levels. We additionally review recent studies that are uncovering how altered calcium signaling through LTCCs impact some of the neuronal developmental processes, such as neurogenesis, neuron migration, and neuron differentiation. Together, the described changes in genomic regulation and disruptions in neurodevelopment provide possible mechanisms by which genetic variants of LTCC genes contribute to neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Madelyn R. Baker
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, USA
| | - Andrew S. Lee
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Developmental Biology Program, Sloan Kettering Institute, New York, USA
| | - Anjali M. Rajadhyaksha
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, USA
| |
Collapse
|
11
|
Yu Y, Wang S, Wang Z, Gao R, Lee J. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 2023; 18:2211362. [PMID: 37196184 DOI: 10.1080/15592294.2023.2211362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Histones are subjected to extensive covalent modifications that affect inter-nucleosomal interactions as well as alter chromatin structure and DNA accessibility. Through switching the corresponding histone modifications, the level of transcription and diverse downstream biological processes can be regulated. Although animal systems are widely used in studying histone modifications, the signalling processes that occur outside the nucleus prior to histone modifications have not been well understood due to the limitations including non viable mutants, partial lethality, and infertility of survivors. Here, we review the benefits of using Arabidopsis thaliana as the model organism to study histone modifications and their upstream regulations. Similarities among histones and key histone modifiers such as the Polycomb group (PcG) and Trithorax group (TrxG) in Drosophila, Human, and Arabidopsis are examined. Furthermore, prolonged cold-induced vernalization system has been well-studied and revealed the relationship between the controllable environment input (duration of vernalization), its chromatin modifications of FLOWERING LOCUS C (FLC), following gene expression, and the corresponding phenotypes. Such evidence suggests that research on Arabidopsis can bring insights into incomplete signalling pathways outside of the histone box, which can be achieved through viable reverse genetic screenings based on the phenotypes instead of direct monitoring of histone modifications among individual mutants. The potential upstream regulators in Arabidopsis can provide cues or directions for animal research based on the similarities between them.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sihan Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Renwei Gao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
12
|
Michalski C, Wen Z. Leveraging iPSC technology to assess neuro-immune interactions in neurological and psychiatric disorders. Front Psychiatry 2023; 14:1291115. [PMID: 38025464 PMCID: PMC10672983 DOI: 10.3389/fpsyt.2023.1291115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Communication between the immune and the nervous system is essential for human brain development and homeostasis. Disruption of this intricately regulated crosstalk can lead to neurodevelopmental, psychiatric, or neurodegenerative disorders. While animal models have been essential in characterizing the role of neuroimmunity in development and disease, they come with inherent limitations due to species specific differences, particularly with regard to microglia, the major subset of brain resident immune cells. The advent of induced pluripotent stem cell (iPSC) technology now allows the development of clinically relevant models of the central nervous system that adequately reflect human genetic architecture. This article will review recent publications that have leveraged iPSC technology to assess neuro-immune interactions. First, we will discuss the role of environmental stressors such as neurotropic viruses or pro-inflammatory cytokines on neuronal and glial function. Next, we will review how iPSC models can be used to study genetic risk factors in neurological and psychiatric disorders. Lastly, we will evaluate current challenges and future potential for iPSC models in the field of neuroimmunity.
Collapse
Affiliation(s)
- Christina Michalski
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
13
|
Castillo Ordoñez WO, Aristizabal-Pachon AF, Alves LB, Giuliatti S. Epigenetic regulation exerted by Caliphruria subedentata and galantamine: an in vitro and in silico approach for mimic Alzheimer's disease. J Biomol Struct Dyn 2023; 42:11215-11230. [PMID: 37814967 DOI: 10.1080/07391102.2023.2261034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
At the interface between genes and environment, epigenetic mechanisms, including DNA methylation and histone modification, regulate neurogenic processes such as differentiation, proliferation, and maturation of neural stem cells. However, these mechanisms are altered in Alzheimer's disease (AD), a neurodegenerative condition that mainly affects older adults. Since epigenetic mechanisms are known to be reversible, a number of molecules from natural sources are being studied as epigenetic regulators in AD. Recently, in vitro and in silico studies have shown that C. subedentata and its alkaloids modulated neurotoxicity. However, studies exploring the epigenetic activity of these alkaloids are limited. We conducted a set of bioassays to evaluate neuronal differentiation and the sensitivity of undifferentiated SH-SY5 cells against a neurotoxic stimulus. In addition, we analyzed the methylation profiles in genes such as APP, PSI, and BACE1 due to their role in amyloid processing. Docking and molecular dynamic analysis were used to explore the effect exerted by C. subedentata alkaloids on the regulation of histone deacetylases (HDAC2, HDAC3 and HDAC7). The results demonstrated that C. subedentata and galantamine induce neuronal differentiation and protect the undifferentiated SH-SY5Y cells against Aβ(1-42)-induced neurotoxicity. The methylation profiles of the studied genes show no statistically significant differences between C. subedentata, galantamine. However, these findings should be interpreted with caution, since small changes in methylation promoters in the brain could not be easily detected. Results from in silico approaches describe for the first time the potential promissing epigenetic effects of galantamine by regulating HDAC3 and HDAC7 modification.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Willian Orlando Castillo Ordoñez
- Facultad de Ciencias Naturales-Exactas y de la Educación, Departamento de Biología, Universidad del Cauca, Popayán-Cauca, Colombia
- Departamento de Estudios Psicológicos, Universidad Icesi, Cali, Colombia
| | - Andrés F Aristizabal-Pachon
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Levy Bueno Alves
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| |
Collapse
|
14
|
Kadalayil L, Alam MZ, White CH, Ghantous A, Walton E, Gruzieva O, Merid SK, Kumar A, Roy RP, Solomon O, Huen K, Eskenazi B, Rzehak P, Grote V, Langhendries JP, Verduci E, Ferre N, Gruszfeld D, Gao L, Guan W, Zeng X, Schisterman EF, Dou JF, Bakulski KM, Feinberg JI, Soomro MH, Pesce G, Baiz N, Isaevska E, Plusquin M, Vafeiadi M, Roumeliotaki T, Langie SAS, Standaert A, Allard C, Perron P, Bouchard L, van Meel ER, Felix JF, Jaddoe VWV, Yousefi PD, Ramlau-Hansen CH, Relton CL, Tobi EW, Starling AP, Yang IV, Llambrich M, Santorelli G, Lepeule J, Salas LA, Bustamante M, Ewart SL, Zhang H, Karmaus W, Röder S, Zenclussen AC, Jin J, Nystad W, Page CM, Magnus M, Jima DD, Hoyo C, Maguire RL, Kvist T, Czamara D, Räikkönen K, Gong T, Ullemar V, Rifas-Shiman SL, Oken E, Almqvist C, Karlsson R, Lahti J, Murphy SK, Håberg SE, London S, Herberth G, Arshad H, Sunyer J, Grazuleviciene R, Dabelea D, Steegers-Theunissen RPM, Nohr EA, Sørensen TIA, Duijts L, Hivert MF, Nelen V, Popovic M, Kogevinas M, Nawrot TS, Herceg Z, Annesi-Maesano I, Fallin MD, Yeung E, Breton CV, Koletzko B, Holland N, Wiemels JL, Melén E, Sharp GC, et alKadalayil L, Alam MZ, White CH, Ghantous A, Walton E, Gruzieva O, Merid SK, Kumar A, Roy RP, Solomon O, Huen K, Eskenazi B, Rzehak P, Grote V, Langhendries JP, Verduci E, Ferre N, Gruszfeld D, Gao L, Guan W, Zeng X, Schisterman EF, Dou JF, Bakulski KM, Feinberg JI, Soomro MH, Pesce G, Baiz N, Isaevska E, Plusquin M, Vafeiadi M, Roumeliotaki T, Langie SAS, Standaert A, Allard C, Perron P, Bouchard L, van Meel ER, Felix JF, Jaddoe VWV, Yousefi PD, Ramlau-Hansen CH, Relton CL, Tobi EW, Starling AP, Yang IV, Llambrich M, Santorelli G, Lepeule J, Salas LA, Bustamante M, Ewart SL, Zhang H, Karmaus W, Röder S, Zenclussen AC, Jin J, Nystad W, Page CM, Magnus M, Jima DD, Hoyo C, Maguire RL, Kvist T, Czamara D, Räikkönen K, Gong T, Ullemar V, Rifas-Shiman SL, Oken E, Almqvist C, Karlsson R, Lahti J, Murphy SK, Håberg SE, London S, Herberth G, Arshad H, Sunyer J, Grazuleviciene R, Dabelea D, Steegers-Theunissen RPM, Nohr EA, Sørensen TIA, Duijts L, Hivert MF, Nelen V, Popovic M, Kogevinas M, Nawrot TS, Herceg Z, Annesi-Maesano I, Fallin MD, Yeung E, Breton CV, Koletzko B, Holland N, Wiemels JL, Melén E, Sharp GC, Silver MJ, Rezwan FI, Holloway JW. Analysis of DNA methylation at birth and in childhood reveals changes associated with season of birth and latitude. Clin Epigenetics 2023; 15:148. [PMID: 37697338 PMCID: PMC10496224 DOI: 10.1186/s13148-023-01542-5] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N). CONCLUSIONS In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.
Collapse
Affiliation(s)
- Latha Kadalayil
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Md Zahangir Alam
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Cory Haley White
- Merck Exploratory Science Center in Cambridge MA, Merck Research Laboratories, Cambridge, MA, 02141, USA
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Sweden
| | - Simon Kebede Merid
- Centre for Occupational and Environmental Medicine, Region Stockholm, Sweden
| | - Ashish Kumar
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Ritu P Roy
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, CA, 94143, USA
- Computational Biology and Informatics Core, University of California, San Francisco, CA, 94143, USA
| | - Olivia Solomon
- Children's Environmental Health Laboratory, University of California, Berkeley, CA, USA
| | - Karen Huen
- Children's Environmental Health Laboratory, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Children's Environmental Health Laboratory, University of California, Berkeley, CA, USA
| | - Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | | | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children Hospital, University of Milan, Milan, Italy
| | - Natalia Ferre
- Pediatric Nutrition and Human Development Research Unit, Universitat Rovira i Virgili, IISPV, Reus, Spain
| | - Darek Gruszfeld
- Neonatal Department, Children's Memorial Health Institute, Warsaw, Poland
| | - Lu Gao
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, A460 Mayo Building, MMC 303, 420 Delaware St. SE, Minneapolis, MN, 55455, USA
| | | | - Enrique F Schisterman
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities Johns Hopkins University, Baltimore, MD, USA
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Munawar Hussain Soomro
- Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Department, Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris Cedex 12, France
- Department of Community Medicine and Public Health, SMBB Medical University, Larkana, Pakistan
| | - Giancarlo Pesce
- Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Department, Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris Cedex 12, France
| | - Nour Baiz
- Institut Desbrest de Santé Publique (IDESP), INSERM and Montpellier University, Montpellier, France
| | - Elena Isaevska
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, CPO Piemonte, Italy
| | - Michelle Plusquin
- Center for Environmental Sciences, University of Hasselt, 3590, Diepenbeek, Belgium
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Sabine A S Langie
- Unit Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Limburg, The Netherlands
| | - Arnout Standaert
- Unit Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Catherine Allard
- Centre de Recherche du Centre Hospitalier de l'Universite de Sherbrooke, Sherbrooke, Canada
| | - Patrice Perron
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, Canada
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Universite de Sherbrooke, Sherbrooke, Canada
- Clinical Department of Laboratory Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Chicoutimi, Canada
| | - Evelien R van Meel
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paul D Yousefi
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Elmar W Tobi
- Periconceptional Epidemiology, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Anne P Starling
- Life Course Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Maria Llambrich
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Johanna Lepeule
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM, CNRS, Grenoble, France
| | - Lucas A Salas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Center for Molecular Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Lebanon, NH, USA
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Susan L Ewart
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, USA
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jianping Jin
- 2530 Meridian Pkwy, Suite 200, Durham, NC 27713, USA
| | - Wenche Nystad
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Section for Statistics and Data Science, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Maria Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Obstetrics and Gynaecology, Duke University Medical Center, Durham, NC, USA
| | - Tuomas Kvist
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, 80804, Munich, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Tong Gong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, USA
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Susan K Murphy
- Department of Obstetrics and Gynaecology, Duke University Medical Center, Durham, NC, USA
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie London
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, RTP, NC, 27709, USA
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, UK
| | - Jordi Sunyer
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Dana Dabelea
- Life Course Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Régine P M Steegers-Theunissen
- Periconceptional Epidemiology, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Ellen A Nohr
- Department of Clinical Research, Odense Universitetshospital, Odense, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Vera Nelen
- Provincial Institute for Hygiene, Antwerp, Belgium
| | - Maja Popovic
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, CPO Piemonte, Italy
| | | | - Tim S Nawrot
- Center for Environmental Sciences, University of Hasselt, 3590, Diepenbeek, Belgium
- Department of Public Health and Primary Care, Leuven University, Louvain, Belgium
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Isabella Annesi-Maesano
- Institut Desbrest de Santé Publique (IDESP), INSERM and Montpellier University, Montpellier, France
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities Johns Hopkins University, Baltimore, MD, USA
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Edwina Yeung
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, USA
| | - Carrie V Breton
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Nina Holland
- Children's Environmental Health Laboratory, CERCH, Berkeley Public Health, University of California, 2121 Berkeley Way #5216, Berkeley, CA, 94720, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Gemma C Sharp
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Psychology, University of Exeter, Exeter, UK
| | - Matt J Silver
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
15
|
Kaur P, Khan H, Grewal AK, Dua K, Singh TG. Therapeutic potential of NOX inhibitors in neuropsychiatric disorders. Psychopharmacology (Berl) 2023; 240:1825-1840. [PMID: 37507462 DOI: 10.1007/s00213-023-06424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
RATIONALE Neuropsychiatric disorders encompass a broad category of medical conditions that include both neurology as well as psychiatry such as major depressive disorder, autism spectrum disorder, bipolar disorder, schizophrenia as well as psychosis. OBJECTIVE NADPH-oxidase (NOX), which is the free radical generator, plays a substantial part in oxidative stress in neuropsychiatric disorders. It is thought that elevated oxidative stress as well as neuroinflammation plays a part in the emergence of neuropsychiatric disorders. Including two linked with membranes and four with subunits of cytosol, NOX is a complex of multiple subunits. NOX has been linked to a significant source of reactive oxygen species in the brain. NOX has been shown to control memory processing and neural signaling. However, excessive NOX production has been linked to cardiovascular disorders, CNS degeneration, and neurotoxicity. The increase in NOX leads to the progression of neuropsychiatric disorders. RESULT Our review mainly emphasized the characteristics of NOX and its various mechanisms, the modulation of NOX in various neuropsychiatric disorders, and various studies supporting the fact that NOX might be the potential therapeutic target for neuropsychiatric disorders. CONCLUSION Here, we summarizes various pharmacological studies involving NOX inhibitors in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | | |
Collapse
|
16
|
Huang G, Iqbal J, Shen D, Xue YX, Yang M, Jia X. MicroRNA expression profiles of stress susceptibility and resilience in the prelimbic and infralimbic cortex of rats after single prolonged stress. Front Psychiatry 2023; 14:1247714. [PMID: 37692297 PMCID: PMC10488707 DOI: 10.3389/fpsyt.2023.1247714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
The experience of traumatic stress can engender lasting memories associated with the trauma, often resulting in post-traumatic stress disorder (PTSD). However, only a minority of individuals develop PTSD symptoms upon exposure. The neurobiological mechanisms underlying the pathology of PTSD are poorly understood. Utilizing a rat model of PTSD, the Single Prolonged Stress (SPS) paradigm, we were able to differentiate between resilient and susceptible individuals. Fourteen days after the SPS exposure, we conducted the behavioral analyses using Elevated Plus Maze (EPM) and Open Field (OF) tests to identify male rats as trauma resilient or susceptible. We focused on the microRNA (miRNA) profiles of the infralimbic (IL) and prelimbic (PL) cortical regions, known to be crucial in regulating the stress response. Our investigation of stressed rats exposed to the SPS procedure yielded divergent response, and differential expression microRNAs (DEmiRs) analysis indicated significant differences in the IL and PL transcriptional response. In the IL cortex, the GO analysis revealed enriched GO terms in the resilient versus control comparison, specifically related to mitogen-activated protein kinase and MAP kinase signaling pathways for their molecular functions as well as cytosol and nucleoplasm for the biological process. In the susceptible versus resilient comparison, the changes in molecular functions were only manifested in the functions of regulation of transcription involved in the G1/S transition of the mitotic cell cycle and skeletal muscle satellite cell activation. However, no enriched GO terms were found in the susceptible versus control comparison. In the PL cortex, results indicated that the DEmiRs were enriched exclusively in the cellular component level of the endoplasmic reticulum lumen in the comparison between resilient and control rats. Overall, our study utilized an animal model of PTSD to investigate the potential correlation between stress-induced behavioral dysfunction and variations in miRNA expression. The aforementioned discoveries have the potential to pave the way for novel therapeutic approaches for PTSD, which could involve the targeted regulation of transcriptome expression.
Collapse
Affiliation(s)
- Gengdi Huang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Javed Iqbal
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Dan Shen
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yan-xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
- Clinical College of Mental Health, ShenZhen University Health Science Center, Shenzhen, China
- School of Mental Health, Jining Medical University, Jining, China
- School of Mental Health, Anhui Medical University, Hefei, China
| | - Xiaojian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
- Clinical College of Mental Health, ShenZhen University Health Science Center, Shenzhen, China
| |
Collapse
|
17
|
Kuehner JN, Walia NR, Seong R, Li Y, Martinez-Feduchi P, Yao B. Social defeat stress induces genome-wide 5mC and 5hmC alterations in the mouse brain. G3 (BETHESDA, MD.) 2023; 13:jkad114. [PMID: 37228107 PMCID: PMC10411578 DOI: 10.1093/g3journal/jkad114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Stress is adverse experience that require constant adaptation to reduce the emotional and physiological burden, or "allostatic load", of an individual. Despite their everyday occurrence, a subpopulation of individuals is more susceptible to stressors, while others remain resilient with unknown molecular signatures. In this study, we investigated the contribution of the DNA modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), underlying the individual differences in stress susceptibility and resilience. Genome-wide 5mC and 5hmC profiles from 3- and 6-month adult male mice that underwent various durations of social defeat were generated. In 3-month animals, 5mC and 5hmC work in parallel and do not distinguish between stress-susceptible and resilient phenotypes, while in 6-month animals, 5mC and 5hmC show distinct enrichment patterns. Acute stress responses may epigenetically "prime" the animals to either increase or decrease their predisposition to depression susceptibility. In support of this, re-exposure studies reveal that the enduring effects of social defeat affect differential biological processes between susceptible and resilient animals. Finally, the stress-induced 5mC and 5hmC fluctuations across the acute-chronic-longitudinal time course demonstrate that the negative outcomes of chronic stress do not discriminate between susceptible and resilient animals. However, resilience is more associated with neuroprotective processes while susceptibility is linked to neurodegenerative processes. Furthermore, 5mC appears to be responsible for acute stress response, whereas 5hmC may function as a persistent and stable modification in response to stress. Our study broadens the scope of previous research offering a comprehensive analysis of the role of DNA modifications in stress-induced depression.
Collapse
Affiliation(s)
- Janise N Kuehner
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Nevin R Walia
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Rachel Seong
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Paula Martinez-Feduchi
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Brandon AA, Almeida D, Powder KE. Neural crest cells as a source of microevolutionary variation. Semin Cell Dev Biol 2023; 145:42-51. [PMID: 35718684 PMCID: PMC10482117 DOI: 10.1016/j.semcdb.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Vertebrates have some of the most complex and diverse features in animals, from varied craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All of these traits have their developmental origins in a multipotent embryonic lineage of neural crest cells. This "fourth germ layer" is a vertebrate innovation and the source of a wide range of adult cell types. While others have discussed the role of neural crest cells in human disease and animal domestication, less is known about their role in contributing to adaptive changes in wild populations. Here, we review how variation in the development of neural crest cells and their derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of traits under natural and sexual selection whose variation may originate in the neural crest, with emphasis on behavioral factors such as intraspecies communication that are often overlooked. In all, we encourage the integration of evolutionary ecology with developmental biology and molecular genetics to gain a more complete understanding of the role of this single cell type in trait covariation, evolutionary trajectories, and vertebrate diversity.
Collapse
Affiliation(s)
- A Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniela Almeida
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
19
|
Zakaria WNA, Sasongko TH, Al-Rahbi B, Al-Sowayan N, Ahmad AH, Zakaria R, Ahmi A, Othman Z. Gene and schizophrenia in the pregenome and postgenome-wide association studies era: a bibliometric analysis and network visualization. Psychiatr Genet 2023; 33:37-49. [PMID: 36825838 DOI: 10.1097/ypg.0000000000000336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
This study aimed to perform a bibliometric analysis on genetic studies in schizophrenia in the pregenome-wide association studies (GWAS) and post-GWAS era. We searched the literature on genes and schizophrenia using the Scopus database. The documents increased with time, especially after the human genome project and International HapMap Project, with the highest citation in 2008. The top occurrence author keywords were discovered to be different in the pre-GWAS and post-GWAS eras, reflecting the progress of genetic studies connected to schizophrenia. Emerging keywords highlighted a trend towards an application of precision medicine, showing an interplay of environmental exposures as well as genetic factors in schizophrenia pathogenesis, progression, and response to therapy. In conclusion, the gene and schizophrenia literature has grown rapidly after the human genome project, and the temporal variation in the author keywords pattern reflects the trend of genetic studies related to schizophrenia in the pre-GWAS and post-GWAS era.
Collapse
Affiliation(s)
- Wan Nur Amalina Zakaria
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kota Bharu, Kelantan, Malaysia
| | - Teguh Haryo Sasongko
- Department of Physiology, School of Medicine, and Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | | | - Noorah Al-Sowayan
- Department of Biology, College of Science, Qassim University, Saudi Arabia
| | - Asma Hayati Ahmad
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Aidi Ahmi
- Tunku Puteri Intan Safinaz School of Accountancy, Universiti Utara Malaysia 06010 UUM Sintok, Kedah
| | - Zahiruddin Othman
- Department of Psychiatry, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
20
|
Liu MY, Wei LL, Zhu XH, Ding HC, Liu XH, Li H, Li YY, Han Z, Li LD, Du ZW, Zhou YP, Zhang J, Meng F, Tang YL, Liu X, Wang C, Zhou QG. Prenatal stress modulates HPA axis homeostasis of offspring through dentate TERT independently of glucocorticoids receptor. Mol Psychiatry 2023; 28:1383-1395. [PMID: 36481932 PMCID: PMC10005958 DOI: 10.1038/s41380-022-01898-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/18/2022] [Indexed: 12/13/2022]
Abstract
In response to stressful events, the hypothalamic-pituitary-adrenal (HPA) axis is activated, and consequently glucocorticoids are released by the adrenal gland into the blood circulation. A large body of research has illustrated that excessive glucocorticoids in the hippocampus exerts negative feedback regulation of the HPA axis through glucocorticoid receptor (GR), which is critical for the homeostasis of the HPA axis. Maternal prenatal stress causes dysfunction of the HPA axis feedback mechanism in their offspring in adulthood. Here we report that telomerase reverse transcriptase (TERT) gene knockout causes hyperactivity of the HPA axis without hippocampal GR deficiency. We found that the level of TERT in the dentate gyrus (DG) of the hippocampus during the developmental stage determines the responses of the HPA axis to stressful events in adulthood through modulating the excitability of the dentate granular cells (DGCs) rather than the expression of GR. Our study also suggests that the prenatal high level of glucocorticoids exposure-induced hypomethylation at Chr13:73764526 in the first exon of mouse Tert gene accounted for TERT deficiency in the DG and HPA axis abnormality in the adult offspring. This study reveals a novel GR-independent mechanism underlying prenatal stress-associated HPA axis impairment, providing a new angle for understanding the mechanisms for maintaining HPA axis homeostasis.
Collapse
Affiliation(s)
- Meng-Ying Liu
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Department of Pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lu-Lu Wei
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xian-Hui Zhu
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Department of Clinical Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hua-Chen Ding
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang-Hu Liu
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Huan Li
- School of Applied Science, Temasek Polytechnic, Singapore, Singapore.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan-Yuan Li
- Department of Clinical Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Zhou Han
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Department of Pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lian-Di Li
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zi-Wei Du
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ya-Ping Zhou
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Fan Meng
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yu-Lin Tang
- Department of Clinical Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Chun Wang
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Qi-Gang Zhou
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China. .,Department of Clinical Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China. .,Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China. .,The Key Center of Gene Technology Drugs of Jiangsu Province, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Soliva-Estruch M, Tamashiro KL, Daskalakis NP. Genetics and epigenetics of stress: New avenues for an old concept. Neurobiol Stress 2023; 23:100525. [PMID: 36873728 PMCID: PMC9975307 DOI: 10.1016/j.ynstr.2023.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Affiliation(s)
- Marina Soliva-Estruch
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Kellie L. Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nikolaos P. Daskalakis
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
22
|
Potential of Circulating miRNAs as Molecular Markers in Mood Disorders and Associated Suicidal Behavior. Int J Mol Sci 2023; 24:ijms24054664. [PMID: 36902096 PMCID: PMC10003208 DOI: 10.3390/ijms24054664] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
Mood disorders are the most prevalent psychiatric disorders associated with significant disability, morbidity, and mortality. The risk of suicide is associated with severe or mixed depressive episodes in patients with mood disorders. However, the risk of suicide increases with the severity of depressive episodes and is often presented with higher incidences in bipolar disorder (BD) patients than in patients with major depression (MDD). Biomarker study in neuropsychiatric disorders is critical for developing better treatment plans by facilitating more accurate diagnosis. At the same time, biomarker discovery also provides more objectivity to develop state-of-the-art personalized medicine with increased accuracy through clinical interventions. Recently, colinear changes in miRNA expression between brain and systemic circulation have added great interest in examining their potential as molecular markers in mental disorders, including MDD, BD, and suicidality. A present understanding of circulating miRNAs in body fluids implicates their role in managing neuropsychiatric conditions. Most notably, their use as prognostic and diagnostic markers and their potential role in treatment response have significantly advanced our knowledge base. The present review discusses circulatory miRNAs and their underlying possibilities to be used as a screening tool for assessing major psychiatric conditions, including MDD, BD, and suicidal behavior.
Collapse
|
23
|
Wang L, Wang B, Wu C, Wang J, Sun M. Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. Int J Mol Sci 2023; 24:ijms24031819. [PMID: 36768153 PMCID: PMC9915249 DOI: 10.3390/ijms24031819] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous, behaviorally defined neurodevelopmental disorder. Over the past two decades, the prevalence of autism spectrum disorders has progressively increased, however, no clear diagnostic markers and specifically targeted medications for autism have emerged. As a result, neurobehavioral abnormalities, neurobiological alterations in ASD, and the development of novel ASD pharmacological therapy necessitate multidisciplinary collaboration. In this review, we discuss the development of multiple animal models of ASD to contribute to the disease mechanisms of ASD, as well as new studies from multiple disciplines to assess the behavioral pathology of ASD. In addition, we summarize and highlight the mechanistic advances regarding gene transcription, RNA and non-coding RNA translation, abnormal synaptic signaling pathways, epigenetic post-translational modifications, brain-gut axis, immune inflammation and neural loop abnormalities in autism to provide a theoretical basis for the next step of precision therapy. Furthermore, we review existing autism therapy tactics and limits and present challenges and opportunities for translating multidisciplinary knowledge of ASD into clinical practice.
Collapse
|
24
|
Singh M, Agarwal V, Jindal D, Pancham P, Agarwal S, Mani S, Tiwari RK, Das K, Alghamdi BS, Abujamel TS, Ashraf GM, Jha SK. Recent Updates on Corticosteroid-Induced Neuropsychiatric Disorders and Theranostic Advancements through Gene Editing Tools. Diagnostics (Basel) 2023; 13:diagnostics13030337. [PMID: 36766442 PMCID: PMC9914305 DOI: 10.3390/diagnostics13030337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 01/19/2023] Open
Abstract
The vast use of corticosteroids (CCSs) globally has led to an increase in CCS-induced neuropsychiatric disorders (NPDs), a very common manifestation in patients after CCS consumption. These neuropsychiatric disorders range from depression, insomnia, and bipolar disorders to panic attacks, overt psychosis, and many other cognitive changes in such subjects. Though their therapeutic importance in treating and improving many clinical symptoms overrides the complications that arise after their consumption, still, there has been an alarming rise in NPD cases in recent years, and they are seen as the greatest public health challenge globally; therefore, these potential side effects cannot be ignored. It has also been observed that many of the neuronal functional activities are regulated and controlled by genomic variants with epigenetic factors (DNA methylation, non-coding RNA, and histone modeling, etc.), and any alterations in these regulatory mechanisms affect normal cerebral development and functioning. This study explores a general overview of emerging concerns of CCS-induced NPDs, the effective molecular biology approaches that can revitalize NPD therapy in an extremely specialized, reliable, and effective manner, and the possible gene-editing-based therapeutic strategies to either prevent or cure NPDs in the future.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
- Correspondence: (M.S.); (S.K.J.)
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Raj Kumar Tiwari
- School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, India
| | - Koushik Das
- School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tukri S. Abujamel
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Correspondence: (M.S.); (S.K.J.)
| |
Collapse
|
25
|
Lee CC, Ye R, Tubbs JD, Baum L, Zhong Y, Leung SYJ, Chan SC, Wu KYK, Cheng PKJ, Chow LP, Leung PWL, Sham PC. Third-generation genome sequencing implicates medium-sized structural variants in chronic schizophrenia. Front Neurosci 2023; 16:1058359. [PMID: 36711134 PMCID: PMC9874699 DOI: 10.3389/fnins.2022.1058359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Background Schizophrenia (SCZ) is a heterogeneous psychiatric disorder, with significant contribution from genetic factors particularly for chronic cases with negative symptoms and cognitive deficits. To date, Genome Wide Association Studies (GWAS) and exome sequencing have associated SCZ with a number of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs), but there is still missing heritability. Medium-sized structural variants (SVs) are difficult to detect using SNP arrays or second generation sequencing, and may account for part of the missing heritability of SCZ. Aims and objectives To identify SVs associated with severe chronic SCZ across the whole genome. Study design 10 multiplex families with probands suffering from chronic SCZ with negative symptoms and cognitive deficits were recruited, with all their affected members demonstrating uni-lineal inheritance. Control subjects comprised one affected member from the affected lineage, and unaffected members from each paternal and maternal lineage. Methods Third generation sequencing was applied to peripheral blood samples from 10 probands and 5 unaffected controls. Bioinformatic tools were used to identify SVs from the long sequencing reads, with confirmation of findings in probands by short-read Illumina sequencing, Sanger sequencing and visual manual validation with Integrated Genome Browser. Results In the 10 probands, we identified and validated 88 SVs (mostly in introns and medium-sized), within 79 genes, which were absent in the 5 unaffected control subjects. These 79 genes were enriched in 20 biological pathways which were related to brain development, neuronal migration, neurogenesis, neuronal/synaptic function, learning/memory, and hearing. These identified SVs also showed evidence for enrichment of genes that are highly expressed in the adolescent striatum. Conclusion A substantial part of the missing heritability in SCZ may be explained by medium-sized SVs detectable only by third generation sequencing. We have identified a number of such SVs potentially conferring risk for SCZ, which implicate multiple brain-related genes and pathways. In addition to previously-identified pathways involved in SCZ such as neurodevelopment and neuronal/synaptic functioning, we also found novel evidence for enrichment in hearing-related pathways and genes expressed in the adolescent striatum.
Collapse
Affiliation(s)
- Chi Chiu Lee
- Department of Psychiatry, Kwai Chung Hospital, Hong Kong, Hong Kong SAR, China,*Correspondence: Chi Chiu Lee,
| | - Rui Ye
- Department of Psychiatry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Justin D. Tubbs
- Department of Psychiatry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Larry Baum
- Department of Psychiatry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yuanxin Zhong
- Department of Psychiatry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shuk Yan Joey Leung
- Department of Psychiatry, Kwai Chung Hospital, Hong Kong, Hong Kong SAR, China
| | - Sheung Chun Chan
- Department of Psychiatry, Tai Po Hospital, Hong Kong, Hong Kong SAR, China
| | - Kit Ying Kitty Wu
- Kowloon West Cluster, Hospital Authority, Hong Kong, Hong Kong SAR, China
| | - Po Kwan Jamie Cheng
- Department of Clinical Psychology, Yan Chai Hospital, Hong Kong, Hong Kong SAR, China
| | - Lai Ping Chow
- Department of Psychiatry, Kwai Chung Hospital, Hong Kong, Hong Kong SAR, China
| | - Patrick W. L. Leung
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Pak Chung Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China,Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China,Pak Chung Sham,
| |
Collapse
|
26
|
Dwivedi Y, Shelton RC. Genomics in Treatment Development. ADVANCES IN NEUROBIOLOGY 2023; 30:363-385. [PMID: 36928858 DOI: 10.1007/978-3-031-21054-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The Human Genome Project mapped the 3 billion base pairs in the human genome, which ushered in a new generation of genomically focused treatment development. While this has been very successful in other areas, neuroscience has been largely devoid of such developments. This is in large part because there are very few neurological or mental health conditions that are related to single-gene variants. While developments in pharmacogenomics have been somewhat successful, the use of genetic information in practice has to do with drug metabolism and adverse reactions. Studies of drug metabolism related to genetic variations are an important part of drug development. However, outside of cancer biology, the actual translation of genomic information into novel therapies has been limited. Epigenetics, which relates in part to the effects of the environment on DNA, is a promising newer area of relevance to CNS disorders. The environment can induce chemical modifications of DNA (e.g., cytosine methylation), which can be induced by the environment and may represent either shorter- or longer-term changes. Given the importance of environmental influences on CNS disorders, epigenetics may identify important treatment targets in the future.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard C Shelton
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
27
|
Shahcheraghi SH, Ayatollahi J, Lotfi M, Aljabali AAA, Al-Zoubi MS, Panda PK, Mishra V, Satija S, Charbe NB, Serrano-Aroca Á, Bahar B, Takayama K, Goyal R, Bhatia A, Almutary AG, Alnuqaydan AM, Mishra Y, Negi P, Courtney A, McCarron PA, Bakshi HA, Tambuwala MM. Gene Therapy for Neuropsychiatric Disorders: Potential Targets and Tools. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:51-65. [PMID: 35249508 DOI: 10.2174/1871527321666220304153719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 01/01/2023]
Abstract
Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mazhar S Al-Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Kazuo Takayama
- Center for IPS Cell Research and Application, Kyoto University, Kyoto, 606-8397, Japan
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No. 9, Solan, Himachal Pradesh 173212, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab 151001, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Yachana Mishra
- Shri Shakti Degree College, Sankhahari, Ghatampur 209206, India
| | - Poonam Negi
- Shoolini University of Biotechnology and Management Sciences, Solan 173 212, India
| | - Aaron Courtney
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
28
|
Lim M, Carollo A, Neoh MJY, Esposito G. Mapping miRNA Research in Schizophrenia: A Scientometric Review. Int J Mol Sci 2022; 24:ijms24010436. [PMID: 36613876 PMCID: PMC9820708 DOI: 10.3390/ijms24010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Micro RNA (miRNA) research has great implications in uncovering the aetiology of neuropsychiatric conditions due to the role of miRNA in brain development and function. Schizophrenia, a complex yet devastating neuropsychiatric disorder, is one such condition that had been extensively studied in the realm of miRNA. Although a relatively new field of research, this area of study has progressed sufficiently to warrant dozens of reviews summarising findings from past to present. However, as a majority of reviews cannot encapsulate the full body of research, there is still a need to synthesise the diversity of publications made in this area in a systematic but easy-to-understand manner. Therefore, this study adopted bibliometrics and scientometrics, specifically document co-citation analysis (DCA), to review the literature on miRNAs in the context of schizophrenia over the course of history. From a literature search on Scopus, 992 papers were found and analysed with CiteSpace. DCA analysis generated a network of 13 major clusters with different thematic focuses within the subject area. Finally, these clusters are qualitatively discussed. miRNA research has branched into schizophrenia, among other medical and psychiatric conditions, due to previous findings in other forms of non-coding RNA. With the rise of big data, bioinformatics analyses are increasingly common in this field of research. The future of research is projected to rely more heavily on interdisciplinary collaboration. Additionally, it can be expected that there will be more translational studies focusing on the application of these findings to the development of effective treatments.
Collapse
Affiliation(s)
- Mengyu Lim
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore
| | - Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Michelle Jin Yee Neoh
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
- Correspondence:
| |
Collapse
|
29
|
Upadhya S, Gingerich D, Lutz MW, Chiba-Falek O. Differential Gene Expression and DNA Methylation in the Risk of Depression in LOAD Patients. Biomolecules 2022; 12:1679. [PMID: 36421693 PMCID: PMC9687527 DOI: 10.3390/biom12111679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/28/2024] Open
Abstract
Depression is common among late-onset Alzheimer's Disease (LOAD) patients. Only a few studies investigated the genetic variability underlying the comorbidity of depression in LOAD. Moreover, the epigenetic and transcriptomic factors that may contribute to comorbid depression in LOAD have yet to be studied. Using transcriptomic and DNA-methylomic datasets from the ROSMAP cohorts, we investigated differential gene expression and DNA-methylation in LOAD patients with and without comorbid depression. Differential expression analysis did not reveal significant association between differences in gene expression and the risk of depression in LOAD. Upon sex-stratification, we identified 25 differential expressed genes (DEG) in males, of which CHI3L2 showed the strongest upregulation, and only 3 DEGs in females. Additionally, testing differences in DNA-methylation found significant hypomethylation of CpG (cg20442550) on chromosome 17 (log2FC = -0.500, p = 0.004). Sex-stratified differential DNA-methylation analysis did not identify any significant CpG probes. Integrating the transcriptomic and DNA-methylomic datasets did not discover relationships underlying the comorbidity of depression and LOAD. Overall, our study is the first multi-omics genome-wide exploration of the role of gene expression and epigenome alterations in the risk of comorbid depression in LOAD patients. Furthermore, we discovered sex-specific differences in gene expression underlying the risk of depression symptoms in LOAD.
Collapse
Affiliation(s)
| | | | | | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
30
|
Alsaqati M, Davis BA, Wood J, Jones MM, Jones L, Westwood A, Petter O, Isles AR, Linden D, Van den Bree M, Owen M, Hall J, Harwood AJ. NRSF/REST lies at the intersection between epigenetic regulation, miRNA-mediated gene control and neurodevelopmental pathways associated with Intellectual disability (ID) and Schizophrenia. Transl Psychiatry 2022; 12:438. [PMID: 36216811 PMCID: PMC9551101 DOI: 10.1038/s41398-022-02199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic evidence indicates disrupted epigenetic regulation as a major risk factor for psychiatric disorders, but the molecular mechanisms that drive this association remain to be determined. EHMT1 is an epigenetic repressor that is causal for Kleefstra Syndrome (KS), a genetic disorder linked with neurodevelopmental disorders and associated with schizophrenia. Here, we show that reduced EHMT1 activity decreases NRSF/REST protein leading to abnormal neuronal gene expression and progression of neurodevelopment in human iPSC. We further show that EHMT1 regulates NRSF/REST indirectly via repression of miRNA and leads to aberrant neuronal gene regulation and neurodevelopment timing. Expression of a NRSF/REST mRNA that lacks the miRNA-binding sites restores neuronal gene regulation to EHMT1 deficient cells. Significantly, the EHMT1-regulated miRNA gene set not only controls NRSF/REST but is enriched for association for Intellectual Disability (ID) and schizophrenia. This reveals a broad molecular interaction between H3K9 demethylation, NSRF/REST regulation and risk for ID and Schizophrenia.
Collapse
Affiliation(s)
- Mouhamed Alsaqati
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK.,School of Pharmacy, KGVI Building, Newcastle University, Newcastle Upon Tyne, NE1 4LF, UK
| | - Brittany A Davis
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,Lieber Institute for Brain Development, Johns Hopkins Medical Campus & Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jamie Wood
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Megan M Jones
- School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Lora Jones
- School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Aishah Westwood
- School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Olena Petter
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - Anthony R Isles
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - David Linden
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Marianne Van den Bree
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Michael Owen
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Adrian J Harwood
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK. .,School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK.
| |
Collapse
|
31
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
32
|
Alshaya DS. Genetic and epigenetic factors associated with depression: An updated overview. Saudi J Biol Sci 2022; 29:103311. [PMID: 35762011 PMCID: PMC9232544 DOI: 10.1016/j.sjbs.2022.103311] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022] Open
Abstract
Depression is a complex psychiatric disturbance involving many environmental, genetic, and epigenetic factors. Until now, genetic, and non-genetic studies are still on the way to understanding the complex mechanism of this disease, and there are still many questions that have not yet been answered. Depression includes a large spectrum of heterogeneous symptoms correlated to the deficit of a range of psychological, cognitive, and emotional processes, and it affects various age groups. It is classified into several types according to the severity of symptoms, time of occurrence, and time. Following the World Health Organization (WHO), depression attacks near 350 million persons globally. Several factors overlap in causing depression, including genetic and epigenetic factors, environmental conditions, various stresses, lack of some nutrients to which people are exposed, and excessive stress and abuse in childhood. This study included conducting surveys on depression and new treatment trends based on epigenetic factors associated with the occurrence of the disease. Epigenetic factors provide a completely novel dimension to therapeutic approaches as most diseases are not monogenic, and it is likely that the environment has a significant contribution. Epigenetic inheritance is included in many mental and psychiatric disorders such as depression. In general, epigenetic modifications could be summarized in 3 major points: DNA methylation, histone modification, and non-mediated regulation of RNA (ncRNA). This study also describes some genes associated with one of the depressive disorders using bioinformatics tools and gene bank and had the genes: SLC6A4, COMT, TPH2, FKBP5, MDD1, HTR2A, and MDD2. As in this study, the awareness of Saudi society about depression and its genetic and non-genetic causes was estimated. The results showed that an encouraging percentage of more than half of the research sample possessed correct information about this disorder.
Collapse
Key Words
- COMT, Catechol-O-methyltransferase
- Depression
- Epigenetic factors
- FKBP5, FKBP Prolyl Isomerase 5
- Genetic factors
- HTR2A, hydroxy tryptamine receptor 2A
- MBCT, Mindfulness-based cognitive therapy
- MDD1, Major Depressive Disorder 1
- MDD2, Major Depressive Disorder 2
- NICE, National Institute for Health and Care Excellence
- NIMH, National Institute of Mental Health
- SAD, Seasonal Affective Disorder
- SLC6A4, Solute Carrier Family 6 Member 4
- Symptoms
- TPH2, Tryptophan hydroxylase 2
- Treatment
Collapse
Affiliation(s)
- Dalal S. Alshaya
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
33
|
Schell G, Roy B, Prall K, Dwivedi Y. miR-218: A Stress-Responsive Epigenetic Modifier. Noncoding RNA 2022; 8:ncrna8040055. [PMID: 35893238 PMCID: PMC9326663 DOI: 10.3390/ncrna8040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding the epigenetic role of microRNAs (miRNAs) has been a critical development in the field of neuropsychiatry and in understanding their underlying pathophysiology. Abnormalities in miRNA expression are often seen as key to the pathogenesis of many stress-associated mental disorders, including major depressive disorder (MDD). Recent advances in omics biology have further contributed to this understanding and expanded the role of miRNAs in networking a diverse array of molecular pathways, which are essentially related to the stress adaptivity of a healthy brain. Studies have highlighted the role of many such miRNAs in causing maladaptive changes in the brain's stress axis. One such miRNA is miR-218, which is debated as a critical candidate for increased stress susceptibility. miR-218 is expressed throughout the brain, notably in the hippocampus and prefrontal cortex (PFC). It is expressed at various levels through life stages, as seen by adolescent and adult animal models. Until now, a minimal number of studies have been conducted on human subjects to understand its role in stress-related abnormalities in brain circuits. However, several studies, including animal and cell-culture models, have been used to understand the impact of miR-218 on stress response and hypothalamic-pituitary-adrenal (HPA) axis function. So far, expression changes in this miRNA have been found to regulate signaling pathways such as glucocorticoid signaling, serotonergic signaling, and glutamatergic signaling. Recently, the developmental role of miR-218 has generated interest, given its increasing expression from adolescence to adulthood and targeting the Netrin-1/DCC signaling pathway. Since miR-218 expression affects neuronal development and plasticity, it is expected that a change in miR-218 expression levels over the course of development may negatively impact the process and make individuals stress-susceptible in adulthood. In this review, we describe the role of miR-218 in stress-induced neuropsychiatric conditions with an emphasis on stress-related disorders.
Collapse
|
34
|
Zhang C, Qin F, Li X, Du X, Li T. Identification of novel proteins for lacunar stroke by integrating genome-wide association data and human brain proteomes. BMC Med 2022; 20:211. [PMID: 35733147 PMCID: PMC9219149 DOI: 10.1186/s12916-022-02408-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/17/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Previous genome-wide association studies (GWAS) have identified numerous risk genes for lacunar stroke, but it is challenging to decipher how they confer risk for the disease. We employed an integrative analytical pipeline to efficiently transform genetic associations to identify novel proteins for lacunar stroke. METHODS We systematically integrated lacunar stroke genome-wide association study (GWAS) (N=7338) with human brain proteomes (N=376) to perform proteome-wide association studies (PWAS), Mendelian randomization (MR), and Bayesian colocalization. We also used an independent human brain proteomic dataset (N=152) to annotate the new genes. RESULTS We found that the protein abundance of seven genes (ICA1L, CAND2, ALDH2, MADD, MRVI1, CSPG4, and PTPN11) in the brain was associated with lacunar stroke. These seven genes were mainly expressed on the surface of glutamatergic neurons, GABAergic neurons, and astrocytes. Three genes (ICA1L, CAND2, ALDH2) were causal in lacunar stroke (P < 0.05/proteins identified for PWAS; posterior probability of hypothesis 4 ≥ 75 % for Bayesian colocalization), and they were linked with lacunar stroke in confirmatory PWAS and independent MR. We also found that ICA1L is related to lacunar stroke at the brain transcriptome level. CONCLUSIONS Our present proteomic findings have identified ICA1L, CAND2, and ALDH2 as compelling genes that may give key hints for future functional research and possible therapeutic targets for lacunar stroke.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fengqin Qin
- Department of Neurology, the 3rd Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaojing Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiangdong Du
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, Hangzhou, China.
| |
Collapse
|
35
|
MeCP2 and transcriptional control of eukaryotic gene expression. Eur J Cell Biol 2022; 101:151237. [DOI: 10.1016/j.ejcb.2022.151237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
|
36
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
37
|
Cheon S, Culver AM, Bagnell AM, Ritchie FD, Vacharasin JM, McCord MM, Papendorp CM, Chukwurah E, Smith AJ, Cowen MH, Moreland TA, Ghate PS, Davis SW, Liu JS, Lizarraga SB. Counteracting epigenetic mechanisms regulate the structural development of neuronal circuitry in human neurons. Mol Psychiatry 2022; 27:2291-2303. [PMID: 35210569 PMCID: PMC9133078 DOI: 10.1038/s41380-022-01474-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/02/2022] [Indexed: 01/23/2023]
Abstract
Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for ASD. ASH1L methylates Histone H3 on Lysine 36, which is proposed to result primarily in transcriptional activation. However, how mutations in ASH1L lead to deficits in neuronal connectivity associated with ASD pathogenesis is not known. We report that ASH1L regulates neuronal morphogenesis by counteracting the catalytic activity of Polycomb Repressive complex 2 group (PRC2) in stem cell-derived human neurons. Depletion of ASH1L decreases neurite outgrowth and decreases expression of the gene encoding the neurotrophin receptor TrkB whose signaling pathway is linked to neuronal morphogenesis. The neuronal morphogenesis defect is overcome by inhibition of PRC2 activity, indicating that a balance between the Trithorax group protein ASH1L and PRC2 activity determines neuronal morphology. Thus, our work suggests that ASH1L may epigenetically regulate neuronal morphogenesis by modulating pathways like the BDNF-TrkB signaling pathway. Defects in neuronal morphogenesis could potentially impair the establishment of neuronal connections which could contribute to the neurodevelopmental pathogenesis associated with ASD in patients with ASH1L mutations.
Collapse
Affiliation(s)
- Seonhye Cheon
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Allison M Culver
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Anna M Bagnell
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Foster D Ritchie
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Janay M Vacharasin
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Mikayla M McCord
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Carin M Papendorp
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Austin J Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Mara H Cowen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Trevor A Moreland
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Pankaj S Ghate
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Judy S Liu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
- Department of Neurology, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sofia B Lizarraga
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
38
|
Tan T, Xu Z, Gao C, Shen T, Li L, Chen Z, Chen L, Xu M, Chen B, Liu J, Zhang Z, Yuan Y. Influence and interaction of resting state functional magnetic resonance and tryptophan hydroxylase-2 methylation on short-term antidepressant drug response. BMC Psychiatry 2022; 22:218. [PMID: 35337298 PMCID: PMC8957120 DOI: 10.1186/s12888-022-03860-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most antidepressants have been developed on the basis of the monoamine deficiency hypothesis of depression, in which neuronal serotonin (5-HT) plays a key role. 5-HT biosynthesis is regulated by the rate-limiting enzyme tryptophan hydroxylase-2 (TPH2). TPH2 methylation is correlated with antidepressant effects. Resting-state functional MRI (rs-fMRI) is applied for detecting abnormal brain functional activity in patients with different antidepressant effects. We will investigate the effect of the interaction between rs-fMRI and TPH2 DNA methylation on the early antidepressant effects. METHODS A total of 300 patients with major depressive disorder (MDD) and 100 healthy controls (HCs) were enrolled, of which 60 patients with MDD were subjected to rs-fMRI. Antidepressant responses was assessed by a 50% reduction in 17-item Hamilton Rating Scale for Depression (HAMD-17) scores at baseline and after two weeks of medication. The RESTPlus software in MATLAB was used to analyze the rs-fMRI data. The amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), fractional ALFF (fALFF), and functional connectivity (FC) were used, and the above results were used as regions of interest (ROIs) to extract the average value of brain ROIs regions in the RESTPlus software. Generalized linear model analysis was performed to analyze the association between abnormal activity found in rs-fMRI and the effect of TPH2 DNA methylation on antidepressant responses. RESULTS Two hundred ninety-one patients with MDD and 100 HCs were included in the methylation statistical analysis, of which 57 patients were included in the further rs-fMRI analysis (3 patients were excluded due to excessive head movement). 57 patients were divided into the responder group (n = 36) and the non-responder group (n = 21). Rs-fMRI results showed that the ALFF of the left inferior frontal gyrus (IFG) was significantly different between the two groups. The results showed that TPH2-1-43 methylation interacted with ALFF of left IFG to affect the antidepressant responses (p = 0.041, false discovery rate (FDR) corrected p = 0.149). CONCLUSIONS Our study demonstrated that the differences in the ALFF of left IFG between the two groups and its association with TPH2 methylation affect short-term antidepressant drug responses.
Collapse
Affiliation(s)
- Tingting Tan
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China. .,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Chenjie Gao
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Tian Shen
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.89957.3a0000 0000 9255 8984Department of Psychiatric Rehabilitation, Wuxi Mental Health Center, Nanjing Medical University, WuXi, 214123 People’s Republic of China
| | - Lei Li
- grid.263826.b0000 0004 1761 0489School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Zimu Chen
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Lei Chen
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,Department of Psychology and Psychiatry, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, 210018 People’s Republic of China
| | - Min Xu
- grid.263826.b0000 0004 1761 0489Department of Anatomy, Medical School, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Bingwei Chen
- grid.263826.b0000 0004 1761 0489Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Jiacheng Liu
- grid.452290.80000 0004 1760 6316Department of Nuclear Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Zhijun Zhang
- grid.452290.80000 0004 1760 6316Department of Neurology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Yonggui Yuan
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
39
|
The Transcriptome and Methylome of the Developing and Aging Brain and Their Relations to Gliomas and Psychological Disorders. Cells 2022; 11:cells11030362. [PMID: 35159171 PMCID: PMC8834030 DOI: 10.3390/cells11030362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mutually linked expression and methylation dynamics in the brain govern genome regulation over the whole lifetime with an impact on cognition, psychological disorders, and cancer. We performed a joint study of gene expression and DNA methylation of brain tissue originating from the human prefrontal cortex of individuals across the lifespan to describe changes in cellular programs and their regulation by epigenetic mechanisms. The analysis considers previous knowledge in terms of functional gene signatures and chromatin states derived from independent studies, aging profiles of a battery of chromatin modifying enzymes, and data of gliomas and neuropsychological disorders for a holistic view on the development and aging of the brain. Expression and methylation changes from babies to elderly adults decompose into different modes associated with the serial activation of (brain) developmental, learning, metabolic and inflammatory functions, where methylation in gene promoters mostly represses transcription. Expression of genes encoding methylome modifying enzymes is very diverse reflecting complex regulations during lifetime which also associates with the marked remodeling of chromatin between permissive and restrictive states. Data of brain cancer and psychotic disorders reveal footprints of pathophysiologies related to brain development and aging. Comparison of aging brains with gliomas supports the view that glioblastoma-like and astrocytoma-like tumors exhibit higher cellular plasticity activated in the developing healthy brain while oligodendrogliomas have a more stable differentiation hierarchy more resembling the aged brain. The balance and specific shifts between volatile and stable and between more irreversible and more plastic epigenomic networks govern the development and aging of healthy and diseased brain.
Collapse
|
40
|
Onitsuka T, Hirano Y, Nemoto K, Hashimoto N, Kushima I, Koshiyama D, Koeda M, Takahashi T, Noda Y, Matsumoto J, Miura K, Nakazawa T, Hikida T, Kasai K, Ozaki N, Hashimoto R. Trends in big data analyses by multicenter collaborative translational research in psychiatry. Psychiatry Clin Neurosci 2022; 76:1-14. [PMID: 34716732 PMCID: PMC9306748 DOI: 10.1111/pcn.13311] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 12/01/2022]
Abstract
The underlying pathologies of psychiatric disorders, which cause substantial personal and social losses, remain unknown, and their elucidation is an urgent issue. To clarify the core pathological mechanisms underlying psychiatric disorders, in addition to laboratory-based research that incorporates the latest findings, it is necessary to conduct large-sample-size research and verify reproducibility. For this purpose, it is critical to conduct multicenter collaborative research across various fields, such as psychiatry, neuroscience, molecular biology, genomics, neuroimaging, cognitive science, neurophysiology, psychology, and pharmacology. Moreover, collaborative research plays an important role in the development of young researchers. In this respect, the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium and Cognitive Genetics Collaborative Research Organization (COCORO) have played important roles. In this review, we first overview the importance of multicenter collaborative research and our target psychiatric disorders. Then, we introduce research findings on the pathophysiology of psychiatric disorders from neurocognitive, neurophysiological, neuroimaging, genetic, and basic neuroscience perspectives, focusing mainly on the findings obtained by COCORO. It is our hope that multicenter collaborative research will contribute to the elucidation of the pathological basis of psychiatric disorders.
Collapse
Affiliation(s)
- Toshiaki Onitsuka
- Department of Neuroimaging Psychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michihiko Koeda
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Neuropsychiatry, Nippon Medical School, Tama Nagayama Hospital, Tokyo, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
41
|
Niinep K, Anier K, Eteläinen T, Piepponen P, Kalda A. Repeated Ethanol Exposure Alters DNA Methylation Status and Dynorphin/Kappa-Opioid Receptor Expression in Nucleus Accumbens of Alcohol-Preferring AA Rats. Front Genet 2021; 12:750142. [PMID: 34899839 PMCID: PMC8652212 DOI: 10.3389/fgene.2021.750142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Growing evidence suggests that epigenetic mechanisms, such as DNA methylation and demethylation, and histone modifications, are involved in the development of alcohol and drug addiction. However, studies of alcohol use disorder (AUD) that are focused on epigenetic DNA modifications and gene expression changes remain conflicting. Our aim was to study the effect of repeated ethanol consumption on epigenetic regulatory enzymes such as DNA methyltransferase and demethylase enzymes and whether those changes affected dynorphin/kappa-opioid receptor system in the Nucleus Accumbens (NAc). Two groups of male alcohol-preferring Alko Alcohol (AA) rats, rats which are selectively bred for high voluntary alcohol consumption and one group of male Wistar rats were used. The first group of AA rats had access to alcohol (10% ethanol solution) for 90 min on Mondays, Wednesdays and Fridays over a period of 3 weeks to establish a stable baseline of ethanol intake (AA-ethanol). The second group of AA rats (AA-water) and the Wistar rats (Wistar-water) were provided with water. Using qPCR, we found that voluntary alcohol drinking increased Dnmt1, -3a, and -3b mRNA levels and did not affect Tet family transcripts in the AA-ethanol group when compared with AA- and Wistar-water rats. DNMT and TET enzymatic activity measurements showed similar results to qPCR, where DNMT activity was increased in AA-ethanol group compared with AA-water and Wistar-water groups, with no statistically significant difference between groups in TET enzyme activity. In line with previous data, we found an increased percentage of global DNA methylation and hydroxymethylation in the AA-ethanol group compared with control rats. Finally, we investigated changes of selected candidate genes from dynorphin/kappa-opioid receptor system (Pdyn, Kor) and Dnmt3a genes that might be important in AUD-related behaviour. Our gene expression and promoter methylation analysis revealed a significant increase in the mRNA levels of Pdyn, Kor, and Dnmt3a in the AA-ethanol group, however, these changes can only be partially associate with the aberrant DNA methylation in promoter areas of the selected candidate genes. Thus, our findings suggest that the aberrant DNA methylation is rather one of the several mechanisms involved in gene expression regulation in AA rat model.
Collapse
Affiliation(s)
- Kerly Niinep
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Kaili Anier
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Tony Eteläinen
- Department of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Petteri Piepponen
- Department of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Anti Kalda
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
42
|
Davarinejad O, Najafi S, Zhaleh H, Golmohammadi F, Radmehr F, Alikhani M, Moghadam RH, Rahmati Y. MiR-574-5P, miR-1827, and miR-4429 as Potential Biomarkers for Schizophrenia. J Mol Neurosci 2021; 72:226-238. [PMID: 34811713 DOI: 10.1007/s12031-021-01945-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/06/2021] [Indexed: 01/02/2023]
Abstract
Schizophrenia is a severe chronic debilitating disorder with millions of affected individuals. Diagnosis is based on clinical presentations, which are made when the progressive disease has appeared. Early diagnosis may help improve the clinical outcomes and response to treatments. Lack of a reliable molecular diagnostic invokes the identification of novel biomarkers. To elucidate the molecular basis of the disease, in this study we used two mRNA expression arrays, including GSE93987 and GSE38485, and one miRNA array, GSE54914, and meta-analysis was conducted for evaluation of mRNA expression arrays via metaDE package. Using WGCNA package, we performed network analysis for both mRNA expression arrays separately. Then, we constructed protein-protein interaction network for significant modules. Limma package was employed to analyze the miRNA array for identification of dysregulated miRNAs (DEMs). Using genes of significant modules and DEMs, a mRNA-miRNA network was constructed and hub genes and miRNAs were identified. To confirm the dysregulated genes, expression values were evaluated through available datasets including GSE62333, GSE93987, and GSE38485. The ability of the detected hub miRNAs to discriminate schizophrenia from healthy controls was evaluated by assessing the receiver-operating curve. Finally, the expression levels of genes and miRNAs were evaluated in 40 schizophrenia patients compared with healthy controls via Real-Time PCR. The results confirmed dysregulation of hsa-miR-574-5P, hsa-miR-1827, hsa-miR-4429, CREBRF, ARPP19, TGFBR2, and YWHAZ in blood samples of schizophrenia patients. In conclusion, three miRNAs including hsa-miR-574-5P, hsa-miR-1827, and hsa-miR-4429 are suggested as potential biomarkers for diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Omran Davarinejad
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Zhaleh
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farzaneh Golmohammadi
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farnaz Radmehr
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mostafa Alikhani
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Heidari Moghadam
- Cardiovascular Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yazdan Rahmati
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
43
|
Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021; 22:12499. [PMID: 34830381 PMCID: PMC8617801 DOI: 10.3390/ijms222212499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.
Collapse
Affiliation(s)
- Chaebin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Inyoung Chang
- Department of Biology, Boston University, Boston, MA 02215, USA;
| | - Junghee Lee
- Boston University Alzheimer’s Disease Research Center, Boston University, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| |
Collapse
|
44
|
Magwai T, Shangase KB, Oginga FO, Chiliza B, Mpofana T, Xulu KR. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021; 10:2890. [PMID: 34831111 PMCID: PMC8616184 DOI: 10.3390/cells10112890] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by dissociation of thoughts, idea, identity, and emotions. It has no central pathophysiological mechanism and precise diagnostic markers. Despite its high heritability, there are also environmental factors implicated in the development of schizophrenia. Epigenetic factors are thought to mediate the effects of environmental factors in the development of the disorder. Epigenetic modifications like DNA methylation are a risk factor for schizophrenia. Targeted gene approach studies attempted to find candidate gene methylation, but the results are contradictory. Genome-wide methylation studies are insufficient in literature and the available data do not cover different populations like the African populations. The current genome-wide studies have limitations related to the sample and methods used. Studies are required to control for these limitations. Integration of DNA methylation, gene expression, and their effects are important in the understanding of the development of schizophrenia and search for biomarkers. There are currently no precise and functional biomarkers for the disorder. Several epigenetic markers have been reported to be common in functional and peripheral tissue. This makes the peripheral tissue epigenetic changes a surrogate of functional tissue, suggesting common epigenetic alteration can be used as biomarkers of schizophrenia in peripheral tissue.
Collapse
Affiliation(s)
- Thabo Magwai
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
- National Health Laboratory Service, Department of Chemical Pathology, University of Kwa-Zulu Natal, Durban 4085, South Africa
| | - Khanyiso Bright Shangase
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwa-Zulu Natal, Durban 4001, South Africa;
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Khethelo Richman Xulu
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| |
Collapse
|
45
|
Rajendran R, Menon KN, Nair SC. Nanotechnology Approaches for Enhanced CNS Drug Delivery in the Management of Schizophrenia. Adv Pharm Bull 2021; 12:490-508. [PMID: 35935056 PMCID: PMC9348538 DOI: 10.34172/apb.2022.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder mainly affecting the central nervous system, presented with auditory and visual hallucinations, delusion and withdrawal from society. Abnormal dopamine levels mainly characterise the disease; various theories of neurotransmitters explain the pathophysiology of the disease. The current therapeutic approach deals with the systemic administration of drugs other than the enteral route, altering the neurotransmitter levels within the brain and providing symptomatic relief. Fluid biomarkers help in the early detection of the disease, which would improve the therapeutic efficacy. However, the major challenge faced in CNS drug delivery is the blood-brain barrier. Nanotherapeutic approaches may overcome these limitations, which will improve safety, efficacy, and targeted drug delivery. This review article addresses the main challenges faced in CNS drug delivery and the significance of current therapeutic strategies and nanotherapeutic approaches for a better understanding and enhanced drug delivery to the brain, which improve the quality of life of schizophrenia patients.
Collapse
Affiliation(s)
| | - Krishnakumar Neelakandha Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | | |
Collapse
|
46
|
Spatial Learning Is Associated with Antagonist Outcomes for DNA Methylation and DNA Hydroxymethylation in the Transcriptional Regulation of the Ryanodine Receptor 3. Neural Plast 2021; 2021:9930962. [PMID: 34434232 PMCID: PMC8380497 DOI: 10.1155/2021/9930962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/29/2021] [Accepted: 07/24/2021] [Indexed: 11/18/2022] Open
Abstract
Increasing attention has been drawn to the role that intracellular calcium stores play in neuronal function. Ryr3 is an intracellular calcium channel that contributes to hippocampal long-term potentiation, dendritic spine function, and higher cognitive processes. Interestingly, stimuli that increase neuronal activity upregulate the transcriptional activity of Ryr3 and augment DNA methylation in its proximal promoter. However, if these observations are valid for complex behavioral tasks such as learning and memory remains being evaluated. Relative expression analysis revealed that spatial learning increased the hippocampal levels of Ryr3, whereas mice trained using a visible platform that resulted in no spatial association showed reduced expression. Interestingly, we also observed that specific DNA modifications accompanied these opposite transcriptional changes. Increased DNA methylation was observed in hippocampal samples from spatially trained mice, and increased DNA hydroxymethylation was found in samples from mice trained using a visible platform. Both DNA modifications were not altered in control regions, suggesting that these changes are not generalized, but rather specific modifications associated with this calcium channel's transcriptional regulation. Our two experimental groups underwent the same physical task differing only in the spatial learning component, highlighting the tight relationship between DNA modifications and transcriptional activity in a relevant context such as behavioral training. Our results complement previous observations and suggest that DNA modifications are a reliable signal for the transcriptional activity of Ryr3 and can be useful to understand how conditions such as aging and neuropathological diseases determine altered Ryr3 expression.
Collapse
|
47
|
Gunasekara CJ, Hannon E, MacKay H, Coarfa C, McQuillin A, Clair DS, Mill J, Waterland RA. A machine learning case-control classifier for schizophrenia based on DNA methylation in blood. Transl Psychiatry 2021; 11:412. [PMID: 34341337 PMCID: PMC8329061 DOI: 10.1038/s41398-021-01496-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Epigenetic dysregulation is thought to contribute to the etiology of schizophrenia (SZ), but the cell type-specificity of DNA methylation makes population-based epigenetic studies of SZ challenging. To train an SZ case-control classifier based on DNA methylation in blood, therefore, we focused on human genomic regions of systemic interindividual epigenetic variation (CoRSIVs), a subset of which are represented on the Illumina Human Methylation 450K (HM450) array. HM450 DNA methylation data on whole blood of 414 SZ cases and 433 non-psychiatric controls were used as training data for a classification algorithm with built-in feature selection, sparse partial least squares discriminate analysis (SPLS-DA); application of SPLS-DA to HM450 data has not been previously reported. Using the first two SPLS-DA dimensions we calculated a "risk distance" to identify individuals with the highest probability of SZ. The model was then evaluated on an independent HM450 data set on 353 SZ cases and 322 non-psychiatric controls. Our CoRSIV-based model classified 303 individuals as cases with a positive predictive value (PPV) of 80%, far surpassing the performance of a model based on polygenic risk score (PRS). Importantly, risk distance (based on CoRSIV methylation) was not associated with medication use, arguing against reverse causality. Risk distance and PRS were positively correlated (Pearson r = 0.28, P = 1.28 × 10-12), and mediational analysis suggested that genetic effects on SZ are partially mediated by altered methylation at CoRSIVs. Our results indicate two innate dimensions of SZ risk: one based on genetic, and the other on systemic epigenetic variants.
Collapse
Affiliation(s)
- Chathura J. Gunasekara
- grid.39382.330000 0001 2160 926XUSDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Eilis Hannon
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Harry MacKay
- grid.39382.330000 0001 2160 926XUSDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Cristian Coarfa
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Andrew McQuillin
- grid.83440.3b0000000121901201Division of Psychiatry, Faculty of Brain Sciences, University College London, London, UK
| | - David St. Clair
- grid.7107.10000 0004 1936 7291The Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jonathan Mill
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Robert A. Waterland
- grid.39382.330000 0001 2160 926XUSDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
48
|
Brocato E, Wolstenholme JT. Neuroepigenetic consequences of adolescent ethanol exposure. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:45-84. [PMID: 34696879 DOI: 10.1016/bs.irn.2021.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adolescence is a critical developmental period characterized by ongoing brain maturation processes including myelination and synaptic pruning. Adolescents experience heightened reward sensitivity, sensation seeking, impulsivity, and diminished inhibitory self-control, which contribute to increased participation in risky behaviors, including the initiation of alcohol use. Ethanol exposure in adolescence alters memory and cognition, anxiety-like behavior, and ethanol sensitivity as well as brain myelination and dendritic spine morphology, with effects lasting into adulthood. Emerging evidence suggests that epigenetic modifications may explain these lasting effects. Focusing on the amygdala, prefrontal cortex and hippocampus, we review studies investigating the epigenetic consequences of adolescent ethanol exposure. Ethanol metabolism globally increases donor substrates for histone acetylation and histone and DNA methylation, and this chapter discusses how this can further impact epigenetic programming of the adolescent brain. Elucidation of the mechanisms through which ethanol can alter the epigenetic code at specific transcripts may provide therapeutic targets for intervention.
Collapse
Affiliation(s)
- Emily Brocato
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
49
|
Vaziri A, Dus M. Brain on food: The neuroepigenetics of nutrition. Neurochem Int 2021; 149:105099. [PMID: 34133954 DOI: 10.1016/j.neuint.2021.105099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/29/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Abstract
Humans have known for millennia that nutrition has a profound influence on health and disease, but it is only recently that we have begun mapping the mechanisms via which the dietary environment impacts brain physiology and behavior. Here we review recent evidence on the effects of energy-dense and methionine diets on neural epigenetic marks, gene expression, and behavior in invertebrate and vertebrate model organisms. We also discuss limitations, open questions, and future directions in the emerging field of the neuroepigenetics of nutrition.
Collapse
Affiliation(s)
- Anoumid Vaziri
- Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, USA; Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, USA
| | - Monica Dus
- Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, USA; Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, USA.
| |
Collapse
|
50
|
Zervas A, Chrousos G, Livadas S. Snow White and the Seven Dwarfs: a fairytale for endocrinologists. Endocr Connect 2021; 10:R189-R199. [PMID: 33878729 PMCID: PMC8183629 DOI: 10.1530/ec-20-0615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
'Snow White and the Seven Dwarfs', a fairytale that is widely known across the Western world, was originally written by the Brothers Grimm, and published in 1812 as 'Snow White'. Though each dwarf was first given an individual name in the 1912 Broadway play, in Walt Disney's 1937 film 'Snow White and the Seven Dwarfs', they were renamed, and the dwarfs have become household names. It is well known that myths, fables, and fairytales, though appearing to be merely children's tales about fictional magical beings and places, have, more often than not, originated from real facts. Therefore, the presence of the seven brothers with short stature in the story is, from an endocrinological point of view, highly intriguing, in fact, thrilling. The diversity of the phenotypes among the seven dwarfs is also stimulating, although puzzling. We undertook a differential diagnosis of their common underlying disorder based on the original Disney production's drawings and the unique characteristics of these little gentlemen, while we additionally evaluated several causes of short stature and, focusing on endocrine disorders that could lead to these clinical features among siblings, we have, we believe, been able to reveal the underlying disease depicted in this archetypal tale.
Collapse
Affiliation(s)
| | - George Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Athens, Greece
- National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, Athens, Greece
| | - Sarantis Livadas
- Endocrine Unit, Athens Medical Centre, Athens, Greece
- Correspondence should be addressed to S Livadas:
| |
Collapse
|