1
|
Marcoccia D, Mollari M, Galli FS, Cuva C, Tassinari V, Mantovani A. Prostate as a target of endocrine disrupting chemicals: Relevance, pathways, assays. Reprod Toxicol 2025; 133:108867. [PMID: 40020791 DOI: 10.1016/j.reprotox.2025.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/03/2025]
Abstract
Prostate, the main accessory gland of the male reproductive system, is a critical but yet overlooked target for Endocrine Disruptors (EDs), affecting the male reproductive system. Prostate is essential for male fertility; indeed, the prostatic fluid is the main component of seminal fluid, which is essential for the activation and capacitation of sperm cells. Furthermore, the prostate is tightly regulated by androgen signaling and is an important site for endocrine-related tumorigenesis. The following systematic review assesses and discusses the available literature evidence regarding the use of the androgen-dependent human prostate cell line LNCaP, in which up- or down-regulation of androgen signaling is assessed by measuring a clinically relevant marker, the Prostate-Specific Antigen (PSA). The data set is still limited: 30 articles, mainly dealing on natural substances and plant extracts, met the eligibility criteria. However, the results support the potential of the PSA assay testing on LNCaP cells in evaluating endocrine-related effects on prostate function as well as to identifying substances that may affect androgen-regulated pathways. Overall, the findings encourage further investigations with a broader range of substances with different modes of action.
Collapse
Affiliation(s)
- Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, Roma 00178, Italy.
| | - Marta Mollari
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, Roma 00178, Italy
| | - Flavia Silvia Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, Roma 00178, Italy
| | - Camilla Cuva
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, Roma 00178, Italy
| | - Valentina Tassinari
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alberto Mantovani
- Study Centre KOS - Sciente Art Society, Piazza Gandhi, 3, Roma 00144, Italy
| |
Collapse
|
2
|
Gorini F, Tonacci A, Sanmartin C, Venturi F. Phthalates and Non-Phthalate Plasticizers and Thyroid Dysfunction: Current Evidence and Novel Strategies to Reduce Their Spread in Food Industry and Environment. TOXICS 2025; 13:222. [PMID: 40137549 PMCID: PMC11945544 DOI: 10.3390/toxics13030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Thyroid hormones (THs) play a crucial role in various biological functions, including metabolism, cell growth, and nervous system development, and any alteration involving the structure of the thyroid gland and TH secretion may result in thyroid disease. Growing evidence suggests that phthalate plasticizers, which are commonly used in a wide range of products (e.g., food packaging materials, children's toys, cosmetics, medical devices), can impact thyroid function, primarily affecting serum levels of THs and TH-related gene expression. Like phthalate compounds, recently introduced alternative plasticizers can leach from their source material into the environment, particularly into foods, although so far only a very limited number of studies have investigated their thyroid toxicity. This review aimed at summarizing the current knowledge on the role of phthalate and non-phthalate plasticizers in thyroid dysfunction and disease, describing the major biological mechanisms underlying this relationship. We will also focus on the food industry as one of the main players for the massive spread of such compounds in the human body, in turn conveyed by edible compounds. Given the increasing worldwide use of plasticizers and the essential role of THs in humans, novel strategies should be envisaged to reduce this burden on the thyroid and, in general, on human health.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.S.); (F.V.)
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.S.); (F.V.)
| |
Collapse
|
3
|
Wade MJ, Bucci K, Rochman CM, Meek MH. Microplastic exposure is associated with epigenomic effects in the model organism Pimephales promelas (fathead minnow). J Hered 2025; 116:113-125. [PMID: 38742563 PMCID: PMC11879203 DOI: 10.1093/jhered/esae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
Microplastics have evolutionary and ecological impacts across species, affecting organisms' development, reproduction, and behavior along with contributing to genotoxicity and stress. As plastic pollution is increasing and ubiquitous, gaining a better understanding of organismal responses to microplastics is necessary. Epigenetic processes such as DNA methylation are heritable forms of molecular regulation influenced by environmental conditions. Therefore, determining such epigenetic responses to microplastics will reveal potential chronic consequences of this environmental pollutant. We performed an experiment across two generations of fathead minnows (Pimephales promelas) to elucidate the transgenerational epigenetic effects of microplastic exposure. We exposed the first generation of fish to four different treatments of microplastics: two concentrations of each of pre-consumer polyethylene (PE) and PE collected from Lake Ontario. We then raised the first filial generation with no microplastic exposure. We used enzymatic methylation sequencing on adult liver tissue and homogenized larvae to evaluate DNA methylation differences among treatments, sexes, and generations. Our findings show the origin of the plastic had a larger effect in female minnows whereas the effect of concentration was stronger in the males. We also observed transgenerational effects, highlighting a mechanism in which parents can pass on the effects of microplastic exposure to their offspring. Many of the genes found within differentially methylated regions in our analyses are known to interact with estrogenic chemicals associated with plastic and are related to metabolism. This study highlights the persistent and potentially serious impacts of microplastic pollution on gene regulation in freshwater systems.
Collapse
Affiliation(s)
- Miranda J Wade
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, United States
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, United States
| | - Kennedy Bucci
- Department of Ecology and Evolutionary Biology, University of Toronto-St. George Campus, Toronto, Ontario M5S 3B2, Canada
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto-St. George Campus, Toronto, Ontario M5S 3B2, Canada
| | - Mariah H Meek
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, United States
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
4
|
Liu YA, Hsu HJ, Pan HC, Sun CY, Chen YT, Lee CC, Su FC, Wei YC, Hsu CK, Chen CY. Community-based insights into the connection between endocrine-disrupting chemicals and depressive symptoms. Curr Res Toxicol 2025; 8:100225. [PMID: 40109874 PMCID: PMC11919602 DOI: 10.1016/j.crtox.2025.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 03/22/2025] Open
Abstract
Background The rising prevalence of depressive disorders has sparked concerns regarding environmental risk factors, particularly exposure to endocrine-disrupting chemicals (EDCs). However, the link between EDC exposure and depressive symptoms remains largely unexplored. Methods The Chang Gung Community Medicine Research Center carried out a cross-sectional study across four regions in northeastern Taiwan. Out of 887 participants, 120 subjects were chosen according to their EDC exposure scores. These participants underwent urinary EDC analysis and were evaluated for depressive symptoms through the standardized Hospital Anxiety and Depression Scale - Depression subscale (HADS-D) questionnaire. Results Participants with HADS-D scores ≥ 8 exhibited significantly higher EDC exposure score compared to those with lower scores. The correlation analyses identified a notible positive association between urinary monobenzyl phthalate (MBzP) levels and HADS-D scores (r = 0.244, p = 0.007). Multiple regression analysis revealed that MBzP was independently linked to increased HADS-D scores in a positive manner (β ± SE: 0.139 ± 0.050, p = 0.006). Multivariable logistic regression indicated that higher MBzP (OR: 1.150, 95 % CI: 1.036-1.278, p = 0.009) and methylparaben (MP) levels (OR: 1.008, 95 % CI: 1.003-1.013, p < 0.001) showed a significant correlation with the likelihood of HADS-D scores ≥ 8. Receiver operating characteristic curve analysis demonstrated that elevated levels of MBzP, MP and the EDCs exposure score were associated with a greater likelihood of depressive symptoms. Conclusion Exposure to EDCs, particularly MBzP and MP, could be associated with a heightened risk of depressive symptoms.
Collapse
Affiliation(s)
- Yun-An Liu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Heng-Jung Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Heng-Chih Pan
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Yih-Ting Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Chin-Chan Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Feng-Chieh Su
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China
| | - Yi-Chia Wei
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China
| | - Cheng-Kai Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Chun-Yu Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| |
Collapse
|
5
|
Zhang L, Dai R, Lou W, Mandhane P, Moraes TJ, Simons E, Thorne PS, To T, Turvey SE, Subbarao P, Brook JR. Pets and related allergens modify the association between early life DEHP exposure and respiratory outcomes in children. ENVIRONMENTAL RESEARCH 2025; 267:120664. [PMID: 39710237 DOI: 10.1016/j.envres.2024.120664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Throughout the perinatal period children are exposed to complex mixtures, including indoor chemicals such as phthalates, and biological agents. However, few studies focus on interactions between early-life co-exposures to shed light on how co-exposures modify their individual effects. Therefore, our study aims to assess whether early-life exposure to pets and related biological agents, namely pet allergens and endotoxin, modifies the association between di-(2-ethylhexyl) phthalate (DEHP) and asthma and wheeze in preschoolers to gain insight into interactions. METHODS Using data from a Canadian birth cohort study (CHILD), we conducted two complementary analyses on respiratory outcomes. First, we combined pet ownership with DEHP measurements from house dust (N = 726). Second, we focused on a subgroup of children with exposure measurements of both DEHP and biological agents in dust (N = 261). We used multivariable logistic regression models to assess whether pets and quantified biological agent levels modify associations between DEHP and asthma at 5 years and recurrent wheeze between 2 and 5 years. Interaction terms were included in the models and stratified analyses were further conducted. RESULTS Associations between DEHP and asthma and wheeze were modified by pet ownership and related biological agents. For persistent/recurrent wheeze, the association with DEHP became larger among children with dogs at home and with higher dog allergens (p-interaction <0.1) and became smaller and insignificant when exposed to cats. Similarly, for asthma, the association with DEHP tended to be larger among children with dogs (also higher dog allergens) and among children without cats (also lower cat allergens) at home, respectively. Endotoxin levels modified the association between DEHP and persistent wheeze (p-interaction <0.1). CONCLUSIONS Early-life exposure to pets and related biological agents may modify the associations between phthalates and asthma and wheeze in children. Heterogeneity in single exposure studies could be a result of differences in co-exposures among studies.
Collapse
Affiliation(s)
| | - Ruixue Dai
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Wendy Lou
- University of Toronto, Toronto, ON, Canada
| | | | - Theo J Moraes
- University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | - Teresa To
- University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Padmaja Subbarao
- University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada
| | - Jeffrey R Brook
- University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
6
|
Huang Z, Chen Y, Zou J, Zhou P, Huang X, Zhuang R, Wang X, Liu L. Plant endophytic bacteria reduce phthalates accumulation in soil-crop-body system: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2025:reveh-2024-0040. [PMID: 39899388 DOI: 10.1515/reveh-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
Phthalate esters (PAEs) represent a class of widely utilized plasticizers, resulting in their pervasive presence in soil and agricultural crops, which poses significant risks to human health. This review examines the current state of PAE pollution, the microbial resources available for PAE degradation, and the associated degradation pathways. It highlights the advantages of endophytic bacteria over environmental microorganisms, including the prolonged survival of inoculated strains, in vivo biodegradation of PAEs, and multifunctional capabilities. Furthermore, the mechanisms by which endophytic bacteria mitigate PAE accumulation across the three defense lines (soil, crops, and the human body) are elucidated. The integrated approach of employing both plants and microbial agents for the remediation of PAEs demonstrates considerable potential for ensuring the safety of agricultural products and safeguarding human health. This work offers new insights into addressing the challenges posed by organic pollutant contamination and reducing PAE accumulation in the human body.
Collapse
Affiliation(s)
- Ziyi Huang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Yanli Chen
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Jieying Zou
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Peng Zhou
- Center for New Drug Research and Development, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Xingyu Huang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Ruihao Zhuang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Xinyu Wang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Lihui Liu
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| |
Collapse
|
7
|
Rogers J, Buerger A, Heintz M, Palermo C, Haws L, Lea I. Evaluation of a hypothesized Sertoli cell-based adverse outcome pathway for effects of diisononyl phthalate on the developing testis. Curr Res Toxicol 2025; 8:100219. [PMID: 40123861 PMCID: PMC11930220 DOI: 10.1016/j.crtox.2025.100219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 03/25/2025] Open
Abstract
Exposure of pregnant rats to some phthalates during the masculinization programming window (MPW) can lower fetal testis testosterone production and adversely affect development of the fetal male reproductive tract. Some of the effects in rats are androgen-dependent, while others also occur in mice without lower testosterone production. An adverse outcome pathway (AOP) network has been proposed for these developmental effects that includes both androgen-dependent and androgen-independent pathways, the latter of which includes a short list of putative molecular initiating events (MIEs) including peroxisome proliferator activated receptor (PPAR) activation, and effects on Sertoli cells in the developing testes as early key events (KEs) (PMID 34314370). Data from peer-reviewed literature, publicly cited toxicology reports, and EPA's Toxicity Forecaster (ToxCast) were evaluated in the context of this hypothesized Sertoli cell-based AOP and exposure to diisononyl phthalate (DINP). Each of the fifteen identified studies underwent a risk of bias (RoB) assessment, which revealed a high risk of bias for all but one study endpoint. In vitro evidence in kidney, liver, and fibroblast-like cell lines indicates that the DINP metabolites mono-isononyl phthalate (MINP) and mono-hydroxyisononyl phthalate (MHINP) activate PPARα/γ and that mouse PPARα/γ are more sensitive than human PPARα/γ. However, DINP did not activate PPARα-related genes in rat fetal testes at high maternal dosages (PMID 22112501), and it remains unknown whether PPARs are expressed in fetal Sertoli cells. Overall, there is insufficient evidence to evaluate whether PPAR activation in the developing male reproductive tract is causally linked to the KEs in the hypothesized AOP. Regarding the KEs, no in vivo studies were identified that examined the effects of DINP on Sertoli cell proliferation or cytoskeleton; a single in vitro study found no effect of DINP on Sertoli cell proliferation. There was limited and conflicting evidence for the effects of DINP on tubulogenesis, but strong in vivo evidence for increased multinucleated germ (MNG) cells. No evidence was found concerning germ cell apoptosis. For the adverse outcomes (AOs), there was limited in vivo evidence for testicular dysgenesis following altered tubulogenesis, and impaired spermatogenesis following increased MNGs. There was strong evidence against reduced fertility, but this is not a sensitive endpoint in rats given their robust sperm production and excess capacity. In conclusion, following in utero DINP exposure, while PPAR activation (MIE) is plausible, linkage to effects on Sertoli cells and downstream AOPs is lacking. The sparse evidence currently available is insufficient to support the applicability of the hypothesized Sertoli cell-based AOP to DINP.
Collapse
Affiliation(s)
- J.M. Rogers
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, United States
| | - A.N. Buerger
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, United States
| | - M.M. Heintz
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, United States
| | - C.M. Palermo
- ExxonMobil Biomedical Sciences, Inc., Health and Environmental Sciences Division, Annandale, NJ, United States
| | - L.C. Haws
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, United States
| | - I.A. Lea
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, United States
| |
Collapse
|
8
|
Danilova E, Ezligini F, Stöckel C, Asakawa M, Hetland G. An evaluation of diethylhexyl phthalate free top & bottom in-line blood collection set with a new soft housing filter. Transfus Med 2025; 35:82-90. [PMID: 39243178 PMCID: PMC11833214 DOI: 10.1111/tme.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/29/2024] [Accepted: 08/18/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND AND OBJECTIVES Di (2-ethylhexyl) phthalate (DEHP) plasticizer must be removed from polyvinylchloride (PVC) medical devices due to toxicity. DEHP/PVC blood bags were shown to provide stable quality under blood component production and to create good storage conditions for red blood cells concentrate (RBC). It is important that substitution of the DEHP maintains the RBC quality during storage, which should be achieved with Di (isononyl) cyclohexane-1,2-dicarboxylate (DINCH), although substitution of the plasticizer has been challenging. MATERIALS AND METHODS A DEHP-free Top & Bottom in-line RBC set was validated in a tertiary hospital blood bank facility. Volunteer blood donors were randomly allocated for blood collection into DINCH/PVC or DEHP/PVC set. The groups were additionally divided according to additive solution/filter combination: PAGGS-M + DINCH/PVC filter (only with DINCH/PVC set), and SAG-M + DINCH/PVC filter and SAG-M + DEHP/PVC filter (only with DEHP/PVC set). Processing and storage effects were assessed in all components. RESULTS RBC concentrates, platelet concentrates and plasma that was processed and stored in DEHP-free set fulfilled European requirements for quality. The cells stored in PAGGS-M after filtration through DEHP-free PVC filter showed the same low haemolysis compared with conventional set at 49 days of storage. Platelets stored in DINCH/PVC bag provided a sufficient quality of platelets after 7 days of storage. Plasma maintained the coagulation factors during 12 months of storage. CONCLUSION A new DINCH/PVC set allows production of blood components of satisfactory quality in DEHP-free environment.
Collapse
Affiliation(s)
- Elena Danilova
- Department of ImmunologyOslo University HospitalOsloNorway
| | | | - Connie Stöckel
- Asahi Kasei Medical Europe GmbHAsahi Kasei Medical Co., Ltd.ChiyodaJapan
| | - Masafumi Asakawa
- Marketing & Sales Department, Sepacell DivisionAsahi Kasei Medical Co., Ltd.ChiyodaJapan
| | - Geir Hetland
- Department of ImmunologyOslo University HospitalOsloNorway
- Department of Immunology, Institute of Clinical MedicineUniversity of OsloOsloNorway
| |
Collapse
|
9
|
Merret PE, Sparfel L, Lavau C, Lagadic-Gossmann D, Martin-Chouly C. Extracellular vesicles as a potential source of biomarkers for endocrine disruptors in MASLD: A short review on the case of DEHP. Biochimie 2025; 228:127-137. [PMID: 39307409 DOI: 10.1016/j.biochi.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is a chronic disease with increasing prevalence and for which non-invasive biomarkers are needed. Environmental endocrine disruptors (EDs) are known to be involved in the onset and progression of MASLD and assays to monitor their impact on the liver are being developed. Extracellular vesicles (EVs) mediate cell communication and their content reflects the pathophysiological state of the cells from which they are released. They can thus serve as biomarkers of the pathological state of the liver and of exposure to EDs. In this review, we present the relationships between DEHP (Di(2-ethylhexyl) phthalate) and MASLD and highlight the potential of EVs as biomarkers of DEHP exposure and the resulting progression of MASLD.
Collapse
Affiliation(s)
- Pierre-Etienne Merret
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Catherine Lavau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
10
|
Singh DD. Epigenetic Mechanisms of Endocrine-Disrupting Chemicals in Breast Cancer and Their Impact on Dietary Intake. J Xenobiot 2024; 15:1. [PMID: 39846533 PMCID: PMC11755457 DOI: 10.3390/jox15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Addressing the consequences of exposure to endocrine-disrupting chemicals (EDCs) demands thorough research and elucidation of the mechanism by which EDCs negatively impact women and lead to breast cancer (BC). Endocrine disruptors can affect major pathways through various means, including histone modifications, the erroneous expression of microRNA (miRNA), DNA methylation, and epigenetic modifications. However, it is still uncertain if the epigenetic modifications triggered by EDCs can help predict negative outcomes. Consequently, it is important to understand how different endocrine disrupters or signals interact with epigenetic modifications and regulate signalling mechanisms. This study proposes that the epigenome may be negatively impacted by several EDCs, such as cadmium, arsenic, lead, bisphenol A, phthalates, polychlorinated biphenyls and parabens, organochlorine, and dioxins. Further, this study also examines the impact of EDCs on lifestyle variables. In breast cancer research, it is essential to consider the potential impacts of EDC exposure and comprehend how EDCs function in tissues.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| |
Collapse
|
11
|
Davias A, Lyon-Caen S, Rolland M, Iszatt N, Thomsen C, Sabaredzovic A, Sakhi AK, Monot C, Rayah Y, Ilhan ZE, Philippat C, Eggesbø M, Lepage P, Slama R. Associations between pre- and post-natal exposure to phthalate and DINCH metabolites and gut microbiota in one-year old children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125204. [PMID: 39490662 DOI: 10.1016/j.envpol.2024.125204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The gut microbiota is a collection of symbiotic microorganisms in the gastrointestinal tract. Its sensitivity to chemicals with widespread exposure, such as phthalates, is little known. We aimed to investigate the impact of perinatal exposure to phthalates on the infant gut microbiota at 12 months of age. Within SEPAGES cohort (Suivi de l'Exposition à la Pollution Atmosphérique durant la Grossesse et Effet sur la Santé), we assessed 13 phthalate metabolites and 2 di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) metabolites in repeated urine samples collected in pregnant women and their offspring. We obtained stool samples from 356 children at 12 months of age and sequenced the V3-V4 region of the 16S rRNA gene, allowing gut bacterial profiling. We used single-chemical (linear regressions) and mixture (BKMR, Bayesian Kernel Machine Regression) models to examine associations of phthalates and DINCH metabolites, with gut microbiota indices of α-diversity (specific richness and Shannon diversity) and the relative abundances of the most abundant microbiota phyla and genera. After correction for multiple testing, di(2-ethylhexyl) phthalate (ΣDEHP), diethyl phthalate (DEP) and bis(2-propylheptyl) phthalate (DPHP) metabolites 12-month urinary concentrations were associated with higher Shannon α-diversity of the child gut microbiota in single-chemical models. The multiple-chemical model (BKMR) suggested higher α-diversity with exposure to the phthalate mixture at 12 months, driven by the same phthalates. There were no associations between phthalate and DINCH exposure biomarkers at other time points and α-diversity after correction for multiple testing. ΣDEHP metabolites concentration at 12 months was associated with higher Coprococcus genus. Finally, ΣDEHP exposure at 12 months tended to be associated with higher phylum Firmicutes, an association not maintained after correction for multiple testing. Infancy exposure to phthalate might disrupt children's gut microbiota. The observed associations were cross-sectional, so that reverse causality cannot be excluded.
Collapse
Affiliation(s)
- Aline Davias
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France.
| | - Sarah Lyon-Caen
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Matthieu Rolland
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Azemira Sabaredzovic
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Amrit Kaur Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Celine Monot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Yamina Rayah
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Zehra Esra Ilhan
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Claire Philippat
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Merete Eggesbø
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway; Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Rémy Slama
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France; SMILE, Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France; PARSEC, Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| |
Collapse
|
12
|
Theodoropoulou E, Pierozan P, Marabita F, Höglund A, Karlsson O. Persistent effects of di-n-butyl phthalate on liver transcriptome: Impaired energy and lipid metabolic pathways. CHEMOSPHERE 2024; 368:143605. [PMID: 39442571 DOI: 10.1016/j.chemosphere.2024.143605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The environmental contaminant dibutyl phthalate (DBP) is reported to be hepatotoxic, but the underlying molecular pathways and pathological processes remain unclear. Here we used RNA-sequencing to characterize persistent hepatic transcriptional effects one week after the conclusion of five weeks oral exposure to 10 mg/kg/day or 100 mg/kg/day DBP in adult male mice. The exploratory transcriptome analysis demonstrated five differentially expressed genes (DEGs) in the 10 mg/kg/day group and 13 in the 100 mg/kg/day group. Gene Set Enrichment Analysis (GSEA), which identifies affected biological pathways rather than focusing solely on individual genes, revealed nine significantly enriched Reactome pathways shared by both DBP treatment groups. Additionally, we found 54 upregulated and one downregulated Reactome pathways in the 10 mg/kg/day DBP group, and 29 upregulated and 13 downregulated pathways in the 100 mg/kg/day DBP group. DBP exposure disrupted several key biological processes, including protein translation, protein folding, apoptosis, Hedgehog signaling, degradation of extracellular matrix and alterations in the energy/lipid metabolism. Subsequent liver tissue analysis confirmed that DBP exposure induced tissue disorganization, oxidative stress, lipid accumulation, increased TNF-α, ATP and glucokinase levels, and affected key metabolic proteins, predominantly in a dose-response manner. Overall, the results show that DBP can cause hepatic stress and damage and suggest a potential role for DBP in the development of non-alcoholic fatty liver disease, the most prevalent liver disease worldwide.
Collapse
Affiliation(s)
- Eleftheria Theodoropoulou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden
| | - Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden
| | - Francesco Marabita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden.
| |
Collapse
|
13
|
Trinh TTK, Myung SK, Tran TH, Choi KS. Use of Antiperspirant Products and Risk of Breast Cancer: A Meta-Analysis of Case-Control Studies. Cancer Invest 2024; 42:782-792. [PMID: 39324502 DOI: 10.1080/07357907.2024.2405864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/06/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Although several observational studies have reported a link between the use of underarm cosmetic products and the risk of breast cancer, the findings remain inconsistent. This study aimed to investigate these associations using a meta-analysis of observational studies. In the meta-analysis of seven case-control studies, we found no association between the use of underarm antiperspirants or deodorants and the risk of breast cancer (OR = 0.96, 95%CI 0.78-1.17; I2 = 60.0%). Further prospective cohort studies that provide a higher level of evidence are warranted to confirm our findings.
Collapse
Affiliation(s)
- Thao Thi Kim Trinh
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
| | - Seung-Kwon Myung
- Department of Cancer AI & Digital Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
- Cancer Epidemiology Branch, Division of Cancer Data Science, Research Institute, National Cancer Center, Goyang, South Korea
- Department of Family Medicine, Center for Cancer Prevention and Detection, Hospital, National Cancer Center, Goyang, South Korea
| | - Tien Hoang Tran
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
| | - Kui Son Choi
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
- National Cancer Control Institute, National Cancer Center, Goyang, South Korea
| |
Collapse
|
14
|
Kehinde SA, Ore A, Olajide AT, Ajiboye EO, Papadakis M, Alexiou A, Hadi NR, El-Gazzari AM, Ataya FS. Impaired energy metabolism and altered brain histoarchitecture characterized by inhibition of glycolysis and mitochondrial electron transport-linked enzymes in rats exposed to diisononyl phthalate. Heliyon 2024; 10:e36056. [PMID: 39224312 PMCID: PMC11367486 DOI: 10.1016/j.heliyon.2024.e36056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The brain is an energy demanding organ, constituting about 20 % of the body's resting metabolic rate. An efficient energy metabolism is critical to neuronal functions. Glucose serves as the primary essential energy source for the adult brain and plays a critical role in supporting neural growth and development. Endocrine disrupting chemicals (EDCs) such as phthalates has been shown to have a negative impact on neurological functions. The impact of diisononyl phthalate (DiNP) on neural energy transduction using cellular energy metabolizing enzymes as indicators was examined. Over the course of 14 days, eighteen (18) albino rats divided into three groups (1,2 and 3) of six albino rats were given Tween-80/saline, 20 and 200 mg/kg body weight respectively. In the brain, we assessed histological changes as well as activities of selected enzymes of energy metabolism such as the glycolytic pathway, citric acid cycle and mitochondrial electron transport-linked complexes. Activities of the glycolytic and TCA cycle enzymes assayed were significantly decreased except citrate synthase activity with no statistically significant change following the administration of DiNP. Also, respiratory chain complexes (Complex I-IV) activities were significantly reduced when compared to control. DiNP exposure altered the histological integrity of various brain sections. These include degenerated Purkinje neurons, distortion of the granular layer and Purkinje cell layer. Data from this study indicated impaired brain energy metabolism via down-regulation of enzymes of cellular respiration of the glycolytic and oxidative phosphorylation pathways and altered brain histoarchitecture orchestrated by DiNP exposure.
Collapse
Affiliation(s)
- Samuel Abiodun Kehinde
- Biochemical Toxicology Laboratory, Faculty of Basic Medical Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Ayokanmi Ore
- Redox Biochemistry, Metabolic and Phytotherapy Research Laboratory, Department of Chemical Sciences, Faculty of Natural Science, Ajayi Crowther University, Oyo, Nigeria
| | - Abosede Temitope Olajide
- Cell and Signaling Laboratory, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | | | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- 2AFNP Med, 1030, Wien, Austria
| | - Najah R. Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Iraq
| | - Ahmed M. El-Gazzari
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Farid S. Ataya
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Alnuqaydan AM. The dark side of beauty: an in-depth analysis of the health hazards and toxicological impact of synthetic cosmetics and personal care products. Front Public Health 2024; 12:1439027. [PMID: 39253281 PMCID: PMC11381309 DOI: 10.3389/fpubh.2024.1439027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Over the past three decades, the popularity of cosmetic and personal care products has skyrocketed, largely driven by social media influence and the propagation of unrealistic beauty standards, especially among younger demographics. These products, promising enhanced appearance and self-esteem, have become integral to contemporary society. However, users of synthetic, chemical-based cosmetics are exposed to significantly higher risks than those opting for natural alternatives. The use of synthetic products has been associated with a variety of chronic diseases, including cancer, respiratory conditions, neurological disorders, and endocrine disruption. This review explores the toxicological impact of beauty and personal care products on human health, highlighting the dangers posed by various chemicals, the rise of natural ingredients, the intricate effects of chemical mixtures, the advent of nanotechnology in cosmetics, and the urgent need for robust regulatory measures to ensure safety. The paper emphasizes the necessity for thorough safety assessments, ethical ingredient sourcing, consumer education, and collaboration between governments, regulatory bodies, manufacturers, and consumers. As we delve into the latest discoveries and emerging trends in beauty product regulation and safety, it is clear that the protection of public health and well-being is a critical concern in this ever-evolving field.
Collapse
Affiliation(s)
- Abdullah M Alnuqaydan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
16
|
Ribeiro B, Mariana M, Lorigo M, Oliani D, Ramalhinho AC, Cairrao E. Association between the Exposure to Phthalates and the Risk of Endometriosis: An Updated Review. Biomedicines 2024; 12:1932. [PMID: 39200395 PMCID: PMC11352157 DOI: 10.3390/biomedicines12081932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
Endometriosis is a chronic gynecological disease, primarily associated with pelvic pain and infertility, that affects approximately 10% of the women of reproductive age. Estrogen plays a central role in endometriosis, and there is growing evidence that endocrine disruptors, such as phthalates, may contribute to its development. This review aimed to determine whether there is a causal relationship between phthalate exposure and the development of endometriosis, as well as the possible effects of phthalates on fertility, by analyzing epidemiological data. After a literature search with a combination of specific terms on this topic, we found that although there are limitations to the current studies, there is a clear association between phthalate exposure and endometriosis. Phthalates can interfere with the cellular processes of the endometrium; specifically, they can bind to PPAR and ER-α and activate TGF-β, promoting different signaling cascades that regulate the expression of specific target genes. This may lead to inflammation, invasion, cytokine alteration, increased oxidative stress, and impaired cell viability and proliferation, culminating in endometriosis. Nevertheless, future research is important to curb the progression and development of endometriosis, and strategies for prevention, diagnosis, and treatment are a priority. In this regard, public policies and recommendations to reduce exposure to phthalates and other endocrine disruptors should be promptly implemented.
Collapse
Affiliation(s)
- Bárbara Ribeiro
- Faculty of Health Sciences (FCS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal; (B.R.); (M.L.)
| | - Melissa Mariana
- Health Sciences Research Centre (CICS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal;
- Faculty of Sciences (FC), University of Beira Interior (UBI), 6201-001 Covilhã, Portugal
| | - Margarida Lorigo
- Faculty of Health Sciences (FCS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal; (B.R.); (M.L.)
- Health Sciences Research Centre (CICS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal;
| | - Denise Oliani
- Assisted Reproduction Laboratory, Academic Hospital of Cova da Beira, 6200-251 Covilhã, Portugal;
- São José do Rio Preto School of Medicine, Gynaecology and Obstetrics, São José do Rio Preto 15090-000, Brazil
- Cova da Beira Local Unit of Health, 6200-251 Covilhã, Portugal
| | - Ana Cristina Ramalhinho
- Faculty of Health Sciences (FCS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal; (B.R.); (M.L.)
- Health Sciences Research Centre (CICS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal;
- Cova da Beira Local Unit of Health, 6200-251 Covilhã, Portugal
| | - Elisa Cairrao
- Faculty of Health Sciences (FCS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal; (B.R.); (M.L.)
- Health Sciences Research Centre (CICS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal;
| |
Collapse
|
17
|
Li L, Guo Z, Deng R, Fan T, Dong D, Dai Y, Li C. The concentrations and behavior of classic phthalates and emerging phthalate alternatives in different environmental matrices and their biological health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46790-46805. [PMID: 38977546 DOI: 10.1007/s11356-024-34213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Because of their excellent plasticity, phthalates or phthalic acid esters (PAEs) are widely used in plastic products. However, due to the recognized toxicity of PAEs and legislative requirements, the production and use of emerging PAE alternatives have rapidly grown, such as di-isononyl cyclohexane-1,2-dicarboxylate (DINCH) and di(2-ethylhexyl) terephthalate (DEHTP) which are the primary replacements for classic PAEs. Nowadays, PAEs and emerging PAE alternatives are frequently found in a variety of environmental media, including the atmosphere, sludge, rivers, and seawater/sediment. PAEs and emerging PAE alternatives are involved in endocrine-disrupting effects, and they affect the reproductive physiology of different species of fish and mammals. Therefore, their presence in the environment is of considerable concern due to their potential effects on ecosystem function and public health. Nevertheless, current research on the prevalence, destiny, and conduct of PAEs in the environment has primarily focused on classic PAEs, with little attention given to emerging PAE alternatives. The present article furnishes a synopsis of the physicochemical characteristics, occurrence, transport, fate, and adverse effects of both classic PAEs and emerging PAE alternatives on organisms in the ecosystem. Our analysis reveals that both classic PAEs and emerging PAE alternatives are widely distributed in all environmental media, with emerging PAE alternatives increasingly replacing classic PAEs. Various pathways can transform and degrade both classic PAEs and emerging PAE alternatives, and their own and related metabolites can have toxic effects on organisms. This research offers a more extensive comprehension of the health hazards associated with classic PAEs and emerging PAE alternatives.
Collapse
Affiliation(s)
- Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China.
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China.
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Ting Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Chenxuan Li
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
18
|
Yu Y, Jia Y, Liu Q, Zhao L, Lin H, Liu Z, Fang T, Jiang W, Cui H, Hou S, Guo L. Prenatal phthalate exposure and birth size: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2813-2829. [PMID: 37979196 DOI: 10.1080/09603123.2023.2275645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/22/2023] [Indexed: 11/20/2023]
Abstract
Phthalates are common endocrine disruptors. The placental barrier can be crossed by phthalates and may have a negative impact on the health of the fetus. However, the association between prenatal exposure to phthalates and birth size is still debatable. Here, we performed this meta-analysis to assess the relationship between prenatal phthalates exposure and birth size. Eighteen studies were finally included by searching PubMed, Embase, Scopus, Ovid, and Web of Science databases and standardized regression coefficients and standard errors were used to pool effect size. Our results showed that prenatal exposure to MMP (=-0.04, 95%CI: -0.08, -0.01) and MEP (=-0.01, 95%CI: -0.01, -0.002) was significantly associated with birth weight. However, no significant associations were identified for phthalate exposure with birth length, head circumference and chest circumference. Because the limiting of studies, more high-quality case-control studies or cohort studies are urgently needed to draw the best conclusions.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Fourth Central Hospital, Tianjin, China
| | - Yaning Jia
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Fourth Central Hospital, Tianjin, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Fourth Central Hospital, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Huishu Lin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Fourth Central Hospital, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Fourth Central Hospital, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Tao Fang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Fourth Central Hospital, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Wenbing Jiang
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin, China
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Huanhuan Cui
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Fourth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Fourth Central Hospital, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
19
|
Warner GR, Li Z, Flaws JA, Smith R. Year-to-year variation in phthalate metabolites in the Midlife Women's Health Study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:610-619. [PMID: 38049486 PMCID: PMC11147960 DOI: 10.1038/s41370-023-00614-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Humans are widely exposed to phthalates, which are metabolized in the body and excreted in urine. Phthalate metabolites are excreted within hours of exposure, making urinary phthalate biomarker concentrations highly variable. OBJECTIVE The goal of this study was to characterize the long-term variability in phthalate biomarker concentrations in women across the midlife transition and to identify factors that may be associated with increased variability in those phthalate biomarker concentrations by analyzing longitudinal urinary phthalate metabolite data from the Midlife Women's Health Study (2006-2015). METHODS A total of 741 women were enrolled in the study for a period of up to 4 years, during which they each provided 2-4 urine samples per year over 4 consecutive weeks that were pooled for analysis (1876 total pools). Nine phthalate metabolites were assessed individually and as molar sums representative of common compounds (all phthalates: ƩPhthalates; DEHP: ƩDEHP), exposure sources (plastics: ƩPlastic; personal care products: ƩPCP), and modes of action (anti-androgenic: ƩAA). Phthalate metabolites were analyzed by quartile using generalized linear models. In addition, the impact of explanatory variables (race, annual family income, and type of work) on phthalate quartile was examined using ordinal logistic regression models. IMPACT STATEMENT Phthalate biomarker concentrations are highly variable among midlife women over time, and annual sampling may not be sufficient to fully characterize long-term exposure.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca Smith
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, IL, USA.
| |
Collapse
|
20
|
Yesildemir O, Celik MN. Association between pre- and postnatal exposure to endocrine-disrupting chemicals and birth and neurodevelopmental outcomes: an extensive review. Clin Exp Pediatr 2024; 67:328-346. [PMID: 37986566 PMCID: PMC11222910 DOI: 10.3345/cep.2023.00941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 11/22/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic chemicals that mimic, block, or interfere with the hormones in the body. The most common and well- studied EDCs are bisphenol A, phthalates, and persistent organic pollutants including polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances, other brominated flame retardants, organochlorine pesticides, dioxins, and furans. Starting in embryonic life, humans are constantly exposed to EDCs through air, diet, skin, and water. Fetuses and newborns undergo crucial developmental processes that allow adaptation to the environment throughout life. As developing organisms, they are extremely sensitive to low doses of EDCs. Many EDCs can cross the placental barrier and reach the developing fetal organs. In addition, newborns can be exposed to EDCs through breastfeeding or formula feeding. Pre- and postnatal exposure to EDCs may increase the risk of childhood diseases by disrupting the hormone-mediated processes critical for growth and development during gestation and infancy. This review discusses evidence of the relationship between pre- and postnatal exposure to several EDCs, childbirth, and neurodevelopmental outcomes. Available evidence suggests that pre- and postnatal exposure to certain EDCs causes fetal growth restriction, preterm birth, low birth weight, and neurodevelopmental problems through various mechanisms of action. Given the adverse effects of EDCs on child development, further studies are required to clarify the overall associations.
Collapse
Affiliation(s)
- Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
21
|
Mu B, Sadowski P, Te'o J, Patel B, Pathiraja N, Dudley K. Identification and characterisation of moderately thermostable diisobutyl phthalate degrading esterase from a Great Artesian Basin Bacillus velezensis NP05. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00840. [PMID: 38645886 PMCID: PMC11033087 DOI: 10.1016/j.btre.2024.e00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Phthalate esters are known to be endocrine disrupting chemicals and are documented to pollute environments. Enzymatic degradation of PAEs is a potential bioremedial strategy to manage contamination. Thermostable bioremedial enzymes have advantages in enzyme manufacturing and storage. In this study, we identified, overexpressed, and characterised a moderately thermostable para-nitrobenzyl esterase from whole genome sequencing of a Bacillus velezensis NP05 from the Great Artesian Basin, capable of sequential 2-step hydrolysis of diisobutyl phthalate. The pnbA enzyme has a molecular weight of 55.14 kDa and pI of 5.31. It preferentially degrades para-nitrophenyl butanoate and has an optimal pH of 7-8. The pnbA esterase has an optimal temperature of 55 °C with a half-life of 4 h. Using HPLC we found that pnbA (0.122 U) can hydrolyse 0.83 mM of DIBP within 25 min. Lastly, pnbA is potentially a more economically viable candidate for enzymatic bioremediation of diisobutyl phthalate as a free enzyme.
Collapse
Affiliation(s)
- Brandon Mu
- Queensland University of Technology (QUT), The School of Biology and Environmental Science (BES), 2 George St Brisbane, QLD 4001, Australia
- Queensland University of Technology (QUT), Central Analytical Research Facility (CARF), 2 George St Brisbane, QLD 4001, Australia
| | - Pawel Sadowski
- Queensland University of Technology (QUT), Central Analytical Research Facility (CARF), 2 George St Brisbane, QLD 4001, Australia
| | - Junior Te'o
- Queensland University of Technology (QUT), The School of Biology and Environmental Science (BES), 2 George St Brisbane, QLD 4001, Australia
| | - Bharat Patel
- Queensland University of Technology (QUT), The School of Biology and Environmental Science (BES), 2 George St Brisbane, QLD 4001, Australia
| | - Nayana Pathiraja
- Queensland University of Technology (QUT), The School of Biology and Environmental Science (BES), 2 George St Brisbane, QLD 4001, Australia
| | - Kevin Dudley
- Queensland University of Technology (QUT), The School of Biology and Environmental Science (BES), 2 George St Brisbane, QLD 4001, Australia
- Queensland University of Technology (QUT), Central Analytical Research Facility (CARF), 2 George St Brisbane, QLD 4001, Australia
| |
Collapse
|
22
|
Aquino AM, Fioretto MN, Alonso-Costa LG, Rocha VA, Souza PV, Magosso N, Barbisan LF, Justulin LA, Flaws JA, Scarano WR. In silico investigation of the role of miRNAs in a possible developmental origin of prostate cancer in F1 and F2 offspring of mothers exposed to a phthalate mixture. ENVIRONMENTAL TOXICOLOGY 2024; 39:3523-3536. [PMID: 38465474 DOI: 10.1002/tox.24181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 03/12/2024]
Abstract
A previous study using miRNA sequencing revealed that exposure to a mixture of phthalates during pregnancy and lactation dysregulated rno-miR-184 and rno-miR-141-3p in the ventral prostate (VP) of offspring. Here, rno-miR-184 and rno-miR-141-3 expressions were obtained by RT-qPCR in the VP of F1 males as well as in F2 offspring, aiming to establish a relationship with possible oncogenic targets through in silico analyses with multigenerational approach. Additionally, some targets were measured by western blots to highlight a possible relationship between the deregulated miRNAs and some of their targets. VP samples from rats exposed to a mixture of phthalates maternally during pregnancy and lactation (GD10 to PND21-F1) and VP from offspring (F2) were examined. The phthalate mixture at both concentrations (20 μg and 200 mg/kg/day) increased the expression of both miRNAs in the F1 (PND22 and 120) and F2 (descendants of F1-treated males) prostate. Target prediction analysis revealed that both microRNAs are responsible for modulating the expression and synthesis of 40 common targets. A phthalate target association analysis and the HPA database showed an interesting relationship among these possible miRNAs modulated targets with prostate adenocarcinoma and other oncogenic processes. Western blots showed alteration in P63, P53, WNT5, and STAT3 expression, which are targeted by the miRNAs, in the VP of F1/F2 males. The data draw attention to the epigenetic modulation in the prostate of descendants exposed to phthalates and adds to one of the few currently found in the literature to point to microRNAs signature as biomarkers of exposure to plasticizers.
Collapse
Affiliation(s)
- A M Aquino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - M N Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - L G Alonso-Costa
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - V A Rocha
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - P V Souza
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - N Magosso
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - L F Barbisan
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - L A Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - J A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - W R Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
23
|
Jin X, Pan J, Zhang C, Cao X, Wang C, Yue L, Li X, Liu Y, Wang Z. Toxic mechanism in Daphnia magna due to phthalic acid esters and CuO nanoparticles co-exposure: The insight of physiological, microbiomic and metabolomic profiles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116338. [PMID: 38640799 DOI: 10.1016/j.ecoenv.2024.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/31/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Various phthalic acid esters (PAEs) such as dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) co-exist with nanopollutants in aquatic environment. In this study, Daphnia magna was exposed to nano-CuO and DBP or BBP at environmental relevant concentrations for 21-days to investigate these combined toxic effects. Acute EC50 values (48 h) of nano-CuO, DBP, and BBP were 12.572 mg/L, 8.978 mg/L, and 4.785 mg/L, respectively. Results showed that co-exposure with nano-CuO (500 μg/L) for 21 days significantly enhanced the toxicity of DBP (100 μg/L) and BBP (100 μg/L) to Daphnia magna by 18.37% and 18.11%, respectively. The activities of superoxide dismutase, catalase, and glutathione S-transferase were enhanced by 10.95% and 14.07%, 25.63% and 25.91%, and 39.93% and 35.01% in nano-CuO+DBP and nano-CuO+BBP treatments as compared to the individual exposure groups, verifying that antioxidative defense responses were activated. Furthermore, the co-exposure of nano-CuO and PAEs decreased the population richness and diversity microbiota, and changed the microbial community composition in Daphnia magna. Metabolomic analysis elucidated that nano-CuO + PAEs exposure induced stronger disturbance on metabolic network and molecular function, including amino acid, nucleotides, and lipid metabolism-related metabolic pathways, as comparison to PAEs single exposure treatments. In summary, the integration of physiological, microflora, and untargeted metabolomics analysis offers a fresh perspective into the potential ecological risk associated with nanopollutants and phthalate pollution in aquatic ecosystems.
Collapse
Affiliation(s)
- Xu Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Junlan Pan
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yinglin Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
24
|
He X, Xue Q, Li D, Zhang S, Wu N, Li S, Yang Y, Dong Y, Li F, Li P, Wen Y, Pan XF. Association between Biomarkers of Phthalate Exposure and Serum Folate Concentrations in Children: A Population-Based Cross-Sectional Study of the NHANES from 2011 to 2016. J Nutr 2024; 154:1596-1603. [PMID: 38484977 DOI: 10.1016/j.tjnut.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Although adverse health effects of phthalates have been reported, very few studies have assessed the associations between biomarkers of phthalate exposure and serum folate concentrations in children. OBJECTIVES We aimed to examine the association between urinary phthalate metabolites, as biomarkers of exposure to phthalates, and total serum folate concentrations in children using national data from the United States. METHODS We conducted cross-sectional analyses of 2100 individuals aged 6-18 y enrolled in the National Health and Nutrition Examination Survey, 2011-2016. Multivariable linear regression was applied to examine the relationship between natural logarithm (ln)-transformed urinary phthalate metabolites and serum folate concentrations. The quantile-based g-computation was used to assess the association of urinary phthalate metabolite mixture with serum folate levels. Subgroup analyses were conducted by sex, age, and race/ethnicity, and the interactions were assessed by adding interaction terms of these stratifying variables and phthalates and modeling through the Wald test. RESULTS In multiple linear regression models, for participants in the highest tertile of MEHHP, MEOHP, DEHP, MCPP, and MCOP, total serum folate concentrations were 1.566 [β: -1.566; 95% confidence interval: -2.935, -0.196], 1.423 (-1.423; -2.689, -0.157), 1.309 (-1.309; -2.573, -0.044), 1.530 (-1.530; -2.918, -0.142), and 1.381 (-1.381; -2.641, -0.122) ng/mL lower than those in the lowest tertile. The inverse associations were consistent in different subgroups by sex, age, and race/ethnicity (P for interaction ≥0.083 for all). In addition, the phthalate mixture showed a strong inverse correlation with serum folate; a quartile increase in the phthalate mixture on the ln scale was associated with 0.888 (-0.888; -1.677, -0.099) ng/mL decrease in the serum folate. CONCLUSIONS Higher concentrations of urinary phthalate metabolites were associated with lower serum folate concentrations in children. Although our findings should be validated through additional population and mechanistic studies, they support a potential adverse effect of phthalate exposure on folate metabolism in children.
Collapse
Affiliation(s)
- Xingchen He
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingping Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Di Li
- Data Science Program, New York University Shanghai, Pudong, Shanghai, China
| | - Shanshan Zhang
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nianwei Wu
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuo Li
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunhaonan Yang
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yidan Dong
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fan Li
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Li
- Department of Pediatrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Wen
- Department of Communicable Disease Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Meng M, Yang Y, Song L, Peng J, Li S, Gao Z, Bu Y, Gao J. Association between urinary phthalates and phthalate metabolites and cancer risk: A systematic review and meta-analysis. Heliyon 2024; 10:e29684. [PMID: 38665549 PMCID: PMC11044039 DOI: 10.1016/j.heliyon.2024.e29684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Phthalates, widely utilized in industrial products, are classified as endocrine-disrupting chemicals (EDCs). Although certain phthalate and their metabolites have been implicated in cancer development, the reported findings have exhibited inconsistencies. Therefore, we conducted the comprehensive literature search to assess the association between phthalate and their metabolites and cancer risk by identifying original studies measuring phthalates or their metabolites and reporting their correlation with cancer until July 4, 2023. The Odds Ratios (ORs) and corresponding 95% confidence intervals (CIs) were extracted and analyzed to estimate the risk. Pooled data from eleven studies, including 3101 cancer patients and 6858 controls, were analyzed using a fixed- or random-effects model based on heterogeneity tests. When comparing extreme categories of different phthalates and their metabolites, we observed a significant association between urinary phthalates and phthalate metabolites (MEHHP, MECPP, DBP and MBzP) and cancer risk. The findings of our meta-analysis reinforce the existing evidence that urinary phthalates and phthalate metabolites is strongly associated with cancer development. Further investigations are warranted to elucidate the underlying mechanisms of this association. These results may offer novel insights into cancer development.
Collapse
Affiliation(s)
- Meng Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yao Yang
- Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Liang Song
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Jian Peng
- Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shenglong Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhengjun Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
26
|
Kabekkodu SP, Gladwell LR, Choudhury M. The mitochondrial link: Phthalate exposure and cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119708. [PMID: 38508420 DOI: 10.1016/j.bbamcr.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
27
|
Tuli A, Suresh G, Halder N, Velpandian T. Analysis and remediation of phthalates in aquatic matrices: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23408-23434. [PMID: 38456985 DOI: 10.1007/s11356-024-32670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.
Collapse
Affiliation(s)
- Anannya Tuli
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gayatri Suresh
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nabanita Halder
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thirumurthy Velpandian
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
28
|
Aagaard KM, Barkin SL, Burant CF, Carnell S, Demerath E, Donovan SM, Eneli I, Francis LA, Gilbert-Diamond D, Hivert MF, LeBourgeois MK, Loos RJF, Lumeng JC, Miller AL, Okely AD, Osganian SK, Ramirez AG, Trasande L, Van Horn LV, Wake M, Wright RJ, Yanovski SZ. Understanding risk and causal mechanisms for developing obesity in infants and young children: A National Institutes of Health workshop. Obes Rev 2024; 25:e13690. [PMID: 38204366 DOI: 10.1111/obr.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 10/02/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024]
Abstract
Obesity in children remains a major public health problem, with the current prevalence in youth ages 2-19 years estimated to be 19.7%. Despite progress in identifying risk factors, current models do not accurately predict development of obesity in early childhood. There is also substantial individual variability in response to a given intervention that is not well understood. On April 29-30, 2021, the National Institutes of Health convened a virtual workshop on "Understanding Risk and Causal Mechanisms for Developing Obesity in Infants and Young Children." The workshop brought together scientists from diverse disciplines to discuss (1) what is known regarding epidemiology and underlying biological and behavioral mechanisms for rapid weight gain and development of obesity and (2) what new approaches can improve risk prediction and gain novel insights into causes of obesity in early life. Participants identified gaps and opportunities for future research to advance understanding of risk and underlying mechanisms for development of obesity in early life. It was emphasized that future studies will require multi-disciplinary efforts across basic, behavioral, and clinical sciences. An exposome framework is needed to elucidate how behavioral, biological, and environmental risk factors interact. Use of novel statistical methods may provide greater insights into causal mechanisms.
Collapse
Affiliation(s)
- Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shari L Barkin
- Department of Pediatrics, Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ellen Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sharon M Donovan
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Illinois, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Ihuoma Eneli
- Center for Healthy Weight and Nutrition, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
- Center of Nutrition, Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Lori A Francis
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Medicine and Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Monique K LeBourgeois
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julie C Lumeng
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alison L Miller
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Anthony D Okely
- School of Health and Society, Faculty of Arts, Social Sciences and Humanities, University of Wollongong, Wollongong, New South Wales, Australia
- llawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
- Department of Sport, Food, and Natural Sciences, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Stavroula K Osganian
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Amelie G Ramirez
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University (NYU) School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University (NYU) School of Medicine, New York, New York, USA
- Department of Population Health, New York University (NYU) School of Medicine, New York, New York, USA
| | - Linda V Van Horn
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois, USA
| | - Melissa Wake
- Population Health, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, New York, USA
| | - Susan Z Yanovski
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Dhumal T, Rai P, Shah D, Murray PW, Kelly KM. Menstrual Products: Attitudes About Taxation and Safety. J Womens Health (Larchmt) 2024; 33:491-498. [PMID: 38407820 DOI: 10.1089/jwh.2023.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Background: This study explored factors associated with the differences between women and men in attitudes, norms, and the support of taxation of menstrual products (MPs) and menstrual-adjacent products. It also investigated the use of these products in women. Methods: Young adults from 18 to 30 years of age were recruited via social media, listserve emails, and flyers placed throughout a university campus. Following cognitive interviewing, a survey investigated attitudes, beliefs, and behaviors associated with MPs. Results: Individuals self-identified as men or women. Women (n = 154) had more positive general attitudes, less positive safety attitudes, and less support for taxation of MPs than men (n = 43). Regression analyses indicated that factors, such as race, age, attitudes, norms, and taxation, were associated with product use. Conclusions: Attitudes about safety and taxation differ for men and women. Tax policies and attitude-shifting interventions need to be tailored to their audience, and our study can inform that effort.
Collapse
Affiliation(s)
- Trupti Dhumal
- Department of Pharmaceutical Systems and Policy, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Pragya Rai
- Department of Pharmaceutical Systems and Policy, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Drishti Shah
- Department of Pharmaceutical Systems and Policy, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Pamela W Murray
- Division of Adolescent/Young Adult Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kimberly M Kelly
- Center for Innovation in Health Equity Research, Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
30
|
Peralta M, Lizcano F. Endocrine Disruptors and Metabolic Changes: Impact on Puberty Control. Endocr Pract 2024; 30:384-397. [PMID: 38185329 DOI: 10.1016/j.eprac.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE This study aims to explore the significant impact of environmental chemicals on disease development, focusing on their role in developing metabolic and endocrine diseases. The objective is to understand how these chemicals contribute to the increasing prevalence of precocious puberty, considering various factors, including epigenetic changes, lifestyle, and emotional disturbances. METHODS The study employs a comprehensive review of descriptive observational studies in both human and animal models to identify a degree of causality between exposure to environmental chemicals and disease development, specifically focusing on endocrine disruption. Due to ethical constraints, direct causation studies in human subjects are not feasible; therefore, the research relies on accumulated observational data. RESULTS Puberty is a crucial life period with marked physiological and psychological changes. The age at which sexual characteristics develop is changing in many regions. The findings indicate a correlation between exposure to endocrine-disrupting chemicals and the early onset of puberty. These chemicals have been shown to interfere with normal hormonal processes, particularly during critical developmental stages such as adolescence. The research also highlights the interaction of these chemical exposures with other factors, including nutritional history, social and lifestyle changes, and emotional stress, which together contribute to the prevalence of precocious puberty. CONCLUSION Environmental chemicals significantly contribute to the development of certain metabolic and endocrine diseases, particularly in the rising incidence of precocious puberty. Although the evidence is mainly observational, it adequately justifies regulatory actions to reduce exposure risks. Furthermore, these findings highlight the urgent need for more research on the epigenetic effects of these chemicals and their wider impact on human health, especially during vital developmental periods.
Collapse
Affiliation(s)
- Marcela Peralta
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia; Department of Endocrinology, Diabetes and Nutrition, Fundación CardioInfantil-Instituto de Cardiología, Bogotá, Colombia.
| |
Collapse
|
31
|
Yu Y, Kumar M, Bolan S, Padhye LP, Bolan N, Li S, Wang L, Hou D, Li Y. Various additive release from microplastics and their toxicity in aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123219. [PMID: 38154772 DOI: 10.1016/j.envpol.2023.123219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Additives may be present in amounts higher than 50% within plastic objects. Additives in plastics can be gradually released from microplastics (MPs) into the aquatic environment during their aging and fragmentation because most of them do not chemically react with the polymers. Some are known to be hazardous substances, which can cause toxicity effects on organisms and pose ecological risks. In this paper, the application of functional additives in MPs and their leaching in the environment are first summarized followed by their release mechanisms including photooxidation, chemical oxidation, biochemical degradation, and physical abrasion. Important factors affecting the additive release from MPs are also reviewed. Generally, smaller particle size, light irradiation, high temperature, dissolved organic matter (DOM) existence and alkaline conditions can promote the release of chemicals from MPs. In addition, the release of additives is also influenced by the polymer's structure, electrolyte types, as well as salinity. These additives may transfer into the organisms after ingestion and disrupt various biological processes, leading to developmental malformations and toxicity in offspring. Nonetheless, challenges on the toxicity of chemicals in MPs remain hindering the risk assessment on human health from MPs in the environment. Future research is suggested to strengthen research on the leaching experiment in the actual environment, develop more techniques and analysis methods to identify leaching products, and evaluate the toxicity effects of additives from MPs based on more model organisms. The work gives a comprehensive overview of current process for MP additive release in natural waters, summarizes their toxicity effects on organisms, and provides recommendations for future research.
Collapse
Affiliation(s)
- Ying Yu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland, 1010, New Zealand
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Sixu Li
- Beijing No.4 High School International Campus, Beijing, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
32
|
Merrill SM, Letourneau N, Giesbrecht GF, Edwards K, MacIsaac JL, Martin JW, MacDonald AM, Kinniburgh DW, Kobor MS, Dewey D, England-Mason G, The APrON Study Team. Sex-Specific Associations between Prenatal Exposure to Di(2-ethylhexyl) Phthalate, Epigenetic Age Acceleration, and Susceptibility to Early Childhood Upper Respiratory Infections. EPIGENOMES 2024; 8:3. [PMID: 38390895 PMCID: PMC10885049 DOI: 10.3390/epigenomes8010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer that can affect immune system development and susceptibility to infection. Aging processes (measured as epigenetic age acceleration (EAA)) may mediate the immune-related effects of prenatal exposure to DEHP. This study's objective was to examine associations between prenatal DEHP exposure, EAA at three months of age, and the number of upper respiratory infections (URIs) from 12 to 18 months of age using a sample of 69 maternal-child pairs from a Canadian pregnancy cohort. Blood DNA methylation data were generated using the Infinium HumanMethylation450 BeadChip; EAA was estimated using Horvath's pan-tissue clock. Robust regressions examined overall and sex-specific associations. Higher prenatal DEHP exposure (B = 6.52, 95% CI = 1.22, 11.81) and increased EAA (B = 2.98, 95% CI = 1.64, 4.32) independently predicted more URIs. In sex-specific analyses, some similar effects were noted for boys, and EAA mediated the association between prenatal DEHP exposure and URIs. In girls, higher prenatal DEHP exposure was associated with decreased EAA, and no mediation was noted. Higher prenatal DEHP exposure may be associated with increased susceptibility to early childhood URIs, particularly in boys, and aging biomarkers such as EAA may be a biological mechanism. Larger cohort studies examining the potential developmental immunotoxicity of phthalates are needed.
Collapse
Affiliation(s)
- Sarah M Merrill
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Nicole Letourneau
- Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychology, Faculty of Arts, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Karlie Edwards
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Michael S Kobor
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - The APrON Study Team
- University of Calgary, Calgary, AB T2N 1N4, Canada
- University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
33
|
Tao HW, Han WW, Liu YJ, Du HZ, Li ZN, Qin LQ, Chen GC, Chen JS. Association of phthalate exposure with all-cause mortality across renal function status: The U.S. National Health and Nutrition Examination Survey, 2005-2018. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115881. [PMID: 38147775 DOI: 10.1016/j.ecoenv.2023.115881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Wide phthalate exposure has been associated with both declines in renal function and an elevated risk of mortality. Whether phthalate-associated risk of premature mortality differs by renal function status remains unclear. METHODS This study included 9605 adults from the U.S. National Health and Nutrition Examination Survey. Urinary concentrations of 11 phthalate metabolites were assessed using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. According to estimated glomerular filtration rate (eGFR), participants were grouped as having normal or modestly declined renal functions, or chronic kidney disease (CKD). Multivariable Cox regression models estimated all-cause mortality associated with phthalate exposure, overall and by renal function status. RESULTS Overall, Mono-n-butyl phthalate (MnBP), Mono-benzyl phthalate (MBzP), Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and Mono-(2-ethyl-5-carbox-ypentyl) phthalate (MECPP) were associated with an elevated risk of mortality (P-trend across tertile <0.05). Moreover, significant interactions were observed between eGFR and MEHHP, MEOHP, MECPP, DEHP in the whole population (P for interactions <0.05). After stratification by renal function, total Di (2-ethylhexyl) phthalate (DEHP) was additionally found to be associated with mortality risk in the CKD group (HR = 1.12; 95% CI: 1.01, 1.25). Co-exposure to the 11 phthalate metabolites was associated with a higher risk of all-cause mortality in the CKD (HR = 1.47; 95% CI: 1.18, 1.84) and modestly declined renal function group (HR = 1.25; 95% CI: 1.09, 1.44). CONCLUSIONS The associations between phthalate exposure and risk of all-cause mortality were primarily observed in CKD patients, reinforcing the need for monitoring phthalate exposure in this patient population.
Collapse
Affiliation(s)
- Hao-Wei Tao
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wen-Wen Han
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yu-Jie Liu
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hong-Zhen Du
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China
| | - Zeng-Ning Li
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China; Hospital of Stomatology of Hebei Medical University Shijiazhuang, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jing-Si Chen
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
34
|
Liu J, Song J, Gao D, Li Y, Guo T, Yuan W, Chen M, Chen L, Zhang Y, Ma Q, Cui M, Song X, Wang R, Jiang J, Zou Z, Dong Y, Ma J. Exploring the associations between phthalate exposure and cardiometabolic risk factors clustering among children: The potential mediating role of insulin-resistant-related genes DNA methylation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132578. [PMID: 37741207 DOI: 10.1016/j.jhazmat.2023.132578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
The relationship between childhood phthalates (PAEs) exposure, DNA methylation, and cardiometabolic risk (CMR) factors is not well understood. Children were included from a longitudinal cohort 2018-2020 in Xiamen, China. A nest case-control study was additionally conducted, and methylation in lysyl oxidase-like 3 (LOXL3) and solute Carrier Family 6 Member 19 (SLC6A19) were measured. Generalized linear models were used to estimate the associations between PAEs exposure and CMR factors, and mediation analyses of DNA methylation were conducted. The longitudinal study included 835 children aged 7-11 years, and the nest case-control study included 120 cases and 120 controls. Exposure to higher PAEs was correlated with increased CMR scores at baseline (β = 0.299, 95 %CI = 0.114, 0.485) and the final visit (β = 0.202, 95 %CI = 0.008, 0.397). In nest case-control study, higher mono-n-butyl phthalate (MnBP) exposure was related with elevated triglycerides (TG) (β = 0.283, 95 %CI = 0.025, 0.540). A decrement of methylation of CpG 33.34 of LOXL3 was found in response to MnBP exposure (β = -0.014, 95 %CI = -0.027, -0.001). Furthermore, increased methylation of LOXL3_CpG 33.34 and SLC6A19_CpG 11.12 was related to reduced TG. De-methylation of LOXL3_CpG 33.34 and SLC6A19_CpG 11.12 could mediate MnBP-TG pathways. Childhood exposure to PAEs was associated with increased CMR scores, and mediation of PAE exposure on childhood cardiometabolic health by LOXL3 and SLC6A19 de-methylation was observed.
Collapse
Affiliation(s)
- Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jieyun Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Di Gao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yanhui Li
- School of Nursing, Peking University, Beijing, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Mengjie Cui
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Xinli Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Ruolin Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| |
Collapse
|
35
|
Su HY, Lai CS, Lee KH, Chiang YW, Chen CC, Hsu PC. Prenatal exposure to low-dose di-(2-ethylhexyl) phthalate (DEHP) induces potentially hepatic lipid accumulation and fibrotic changes in rat offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115776. [PMID: 38056127 DOI: 10.1016/j.ecoenv.2023.115776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is widely used to enhance the flexibility and durability of various products. As an endocrine disruptor, DEHP can interfere with normal hormonal functions, posing substantial health risks to organisms. Given the critical role of the liver in DEHP metabolism, we investigated potential liver damage in offspring induced by prenatal exposure to low doses of DEHP in Sprague Dawley rats. Pregnant rats were divided into three groups and administered 20 or 200 μg/kg/day of DEHP or corn oil vehicle control via oral gavage from gestation days 0-20. Male rat offspring were euthanized on postnatal day 84, and blood and liver specimens were collected for analysis. We observed fibrotic changes in the livers of the exposed groups, accompanied by the proliferation and activation of hepatic stellate cells and upregulated expression of TGF-B and collagen 1A1. Additionally, an inflammatory response, characterized by increased macrophage infiltration and elevated levels of pro-inflammatory cytokines, was evident. Third, hepatic and serum triglyceride and serum cholesterol were notably increased, along with upregulated expression of lipid metabolism-related proteins, such as sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase, fatty acid synthase, and diacylglycerol O-acyltransferase 1, particularly in the low-dose group. These results suggest that prenatal exposure to DEHP can disrupt lipid metabolism, resulting in hepatic lipid accumulation in the offspring. This exposure may also induce an inflammatory response that contributes to the development of liver fibrosis. Thus, even at relatively low doses, such exposure can precipitate latent liver damage in offspring.
Collapse
Affiliation(s)
- Hung-Yuan Su
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 824, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Kuo-Hsin Lee
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| | - Yu-Wei Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chia-Chi Chen
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 824, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; Department of Physical Therapy, I-Shou University, Kaohsiung 824, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
36
|
Baneshi M, Tonney-Gagne J, Halilu F, Pilavangan K, Sabu Abraham B, Prosser A, Kanchanadevi Marimuthu N, Kaliaperumal R, Britten AJ, Mkandawire M. Unpacking Phthalates from Obscurity in the Environment. Molecules 2023; 29:106. [PMID: 38202689 PMCID: PMC10780137 DOI: 10.3390/molecules29010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Phthalates (PAEs) are a group of synthetic esters of phthalic acid compounds mostly used as plasticizers in plastic materials but are widely applied in most industries and products. As plasticizers in plastic materials, they are not chemically bound to the polymeric matrix and easily leach out. Logically, PAEs should be prevalent in the environment, but their prevalence, transport, fate, and effects have been largely unknown until recently. This has been attributed, inter alia, to a lack of standardized analytical procedures for identifying them in complex matrices. Nevertheless, current advancements in analytical techniques facilitate the understanding of PAEs in the environment. It is now known that they can potentially impact ecological and human health adversely, leading to their categorization as endocrine-disrupting chemicals, carcinogenic, and liver- and kidney-failure-causing agents, which has landed them among contaminants of emerging concern (CECs). Thus, this review article reports and discusses the developments and advancements in PAEs' standard analytical methods, facilitating their emergence from obscurity. It further explores the opportunities, challenges, and limits of their advancements.
Collapse
Affiliation(s)
- Marzieh Baneshi
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Jamey Tonney-Gagne
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Fatima Halilu
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Kavya Pilavangan
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Ben Sabu Abraham
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
- Engineering Co-op Intern, Dalhousie University, 1334 Barrington Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| | - Ava Prosser
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Nikaran Kanchanadevi Marimuthu
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
- MITACS Globalink Intern, Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore 14, Tamil Nadu 641 014, India
| | - Rajendran Kaliaperumal
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Allen J. Britten
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Martin Mkandawire
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| |
Collapse
|
37
|
Dutta S, Goodrich JM, Dolinoy DC, Ruden DM. Biological Aging Acceleration Due to Environmental Exposures: An Exciting New Direction in Toxicogenomics Research. Genes (Basel) 2023; 15:16. [PMID: 38275598 PMCID: PMC10815440 DOI: 10.3390/genes15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Biological clock technologies are designed to assess the acceleration of biological age (B-age) in diverse cell types, offering a distinctive opportunity in toxicogenomic research to explore the impact of environmental stressors, social challenges, and unhealthy lifestyles on health impairment. These clocks also play a role in identifying factors that can hinder aging and promote a healthy lifestyle. Over the past decade, researchers in epigenetics have developed testing methods that predict the chronological and biological age of organisms. These methods rely on assessing DNA methylation (DNAm) levels at specific CpG sites, RNA levels, and various biomolecules across multiple cell types, tissues, and entire organisms. Commonly known as 'biological clocks' (B-clocks), these estimators hold promise for gaining deeper insights into the pathways contributing to the development of age-related disorders. They also provide a foundation for devising biomedical or social interventions to prevent, reverse, or mitigate these disorders. This review article provides a concise overview of various epigenetic clocks and explores their susceptibility to environmental stressors.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Douglas M. Ruden
- C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
38
|
Crépin A, Thiroux A, Alafaci A, Boukerb AM, Dufour I, Chrysanthou E, Bertaux J, Tahrioui A, Bazire A, Rodrigues S, Taupin L, Feuilloley M, Dufour A, Caillon J, Lesouhaitier O, Chevalier S, Berjeaud JM, Verdon J. Sensitivity of Legionella pneumophila to phthalates and their substitutes. Sci Rep 2023; 13:22145. [PMID: 38092873 PMCID: PMC10719263 DOI: 10.1038/s41598-023-49426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Phthalates constitute a family of anthropogenic chemicals developed to be used in the manufacture of plastics, solvents, and personal care products. Their dispersion and accumulation in many environments can occur at all stages of their use (from synthesis to recycling). However, many phthalates together with other accumulated engineered chemicals have been shown to interfere with hormone activities. These compounds are also in close contact with microorganisms that are free-living, in biofilms or in microbiota, within multicellular organisms. Herein, the activity of several phthalates and their substitutes were investigated on the opportunistic pathogen Legionella pneumophila, an aquatic microbe that can infect humans. Beside showing the toxicity of some phthalates, data suggested that Acetyl tributyl citrate (ATBC) and DBP (Di-n-butyl phthalate) at environmental doses (i.e. 10-6 M and 10-8 M) can modulate Legionella behavior in terms of motility, biofilm formation and response to antibiotics. A dose of 10-6 M mostly induced adverse effects for the bacteria, in contrast to a dose of 10-8 M. No perturbation of virulence towards Acanthamoeba castellanii was recorded. These behavioral alterations suggest that L. pneumophila is able to sense ATBC and DBP, in a cross-talk that either mimics the response to a native ligand, or dysregulates its physiology.
Collapse
Affiliation(s)
- Alexandre Crépin
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Audrey Thiroux
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Aurélien Alafaci
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Amine M Boukerb
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Izelenn Dufour
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Eirini Chrysanthou
- Department of Life Sciences and Systems Biology, University of Turin, 10100, Turin, Italy
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - Joanne Bertaux
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Ali Tahrioui
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Marc Feuilloley
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Jocelyne Caillon
- Faculté de Médecine, EA3826 Thérapeutiques Cliniques et Expérimentales des Infections, Université de Nantes, Nantes, France
| | - Olivier Lesouhaitier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Sylvie Chevalier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Jean-Marc Berjeaud
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
39
|
Devi T, Saleh NM, Kamarudin NHN, Roslan NJ, Jalil R, Hamid HA. Efficient adsorption of organic pollutants phthalates and bisphenol A (BPA) utilizing magnetite functionalized covalent organic frameworks (MCOFs): A promising future material for industrial applications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115706. [PMID: 37992639 DOI: 10.1016/j.ecoenv.2023.115706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The utilization of phthalates and bisphenol A (BPA) as the major component in plastic and its derivative industry has raised concerns among the public due to the harmful effects caused by these organic pollutants. These pollutants are found to exhibit unique physicochemical properties that allow the pollutants to have prolonged existence in the environment, thus causing damage to the environment. Since phthalates and bisphenol A are used in a variety of industrial applications, the industry must recover these compounds from its water before releasing the pollutants into the environment. As a result, these materials have a promising future in industrial applications. Therefore, the discovery of new quick and reliable abatement technologies is important to ensure that these organic pollutants can be detected and removed from the water sources. This review highlights the use of the adsorption method to remove phthalates and BPA from water sources by employing novel modified adsorbent magnetite functionalized covalent organic frameworks (MCOFs). MCOFs is a new class of porous materials that have demonstrated promising features in a variety of applications due to their adaptable structures, significant surface areas, configurable porosity, and customizable chemistry. The structural attributes, functional design strategies, and specialized for environmental applications before offering some closing thoughts and suggestions for further research were discussed in this paper in addition to developing an innovative solution for the industry to the accessibility for clean water.
Collapse
Affiliation(s)
- Tanusha Devi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
| | - Noorashikin Md Saleh
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia.
| | - Nur Hidayatul Nazirah Kamarudin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
| | - Nursyafiqah Jori Roslan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
| | - Rafidah Jalil
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Husna Abdul Hamid
- Unison Nutraceuticals Sdn. Bhd., No.13, Jln. TU 52, Tasek Utama Industrial Estate, Ayer Keroh, 75450 Melaka, Malaysia
| |
Collapse
|
40
|
Rabotnick MH, Ehlinger J, Haidari A, Goodrich JM. Prenatal exposures to endocrine disrupting chemicals: The role of multi-omics in understanding toxicity. Mol Cell Endocrinol 2023; 578:112046. [PMID: 37598796 PMCID: PMC10592024 DOI: 10.1016/j.mce.2023.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a diverse group of toxicants detected in populations globally. Prenatal EDC exposures impact birth and childhood outcomes. EDCs work through persistent changes at the molecular, cellular, and organ level. Molecular and biochemical signals or 'omics' can be measured at various functional levels - including the epigenome, transcriptome, proteome, metabolome, and the microbiome. In this narrative review, we introduce each omics and give examples of associations with prenatal EDC exposures. There is substantial research on epigenomic modifications in offspring exposed to EDCs during gestation, and a growing number of studies evaluating the transcriptome, proteome, metabolome, or microbiome in response to these exposures. Multi-omics, integrating data across omics layers, may improve understanding of disrupted function pathways related to early life exposures. We highlight several data integration methods to consider in multi-omics studies. Information from multi-omics can improve understanding of the biological processes and mechanisms underlying prenatal EDC toxicity.
Collapse
Affiliation(s)
- Margaret H Rabotnick
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jessa Ehlinger
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Ariana Haidari
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
41
|
Mervish N, Valle C, Teitelbaum SL. Epidemiologic Advances Generated by the Human Health Exposure Analysis Resource Program. CURR EPIDEMIOL REP 2023; 10:148-157. [PMID: 38318392 PMCID: PMC10840994 DOI: 10.1007/s40471-023-00323-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 02/07/2024]
Affiliation(s)
- Nancy Mervish
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | |
Collapse
|
42
|
Khodasevich D, Holland N, Hubbard A, Harley K, Deardorff J, Eskenazi B, Cardenas A. Associations between prenatal phthalate exposure and childhood epigenetic age acceleration. ENVIRONMENTAL RESEARCH 2023; 231:116067. [PMID: 37149020 PMCID: PMC10330458 DOI: 10.1016/j.envres.2023.116067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/06/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Phthalates, a group of pervasive endocrine-disrupting chemicals found in plastics and personal care products, have been associated with a wide range of developmental and health outcomes. However, their impact on biomarkers of aging has not been characterized. We tested associations between prenatal exposure to 11 phthalate metabolites on epigenetic aging in children at birth, 7, 9, and 14 years of age. We hypothesized that prenatal phthalate exposure will be associated with epigenetic age acceleration measures at birth and in early childhood, with patterns dependent on sex and timing of DNAm measurement. METHODS Among 385 mother-child pairs from the CHAMACOS cohort, we measured DNAm at birth, 7, 9, and 14 years of age, and utilized adjusted linear regression to assess the association between prenatal phthalate exposure and Bohlin's Gestational Age Acceleration (GAA) at birth and Intrinsic Epigenetic Age Acceleration (IEAA) throughout childhood. Additionally, quantile g-computation was utilized to assess the effect of the phthalate mixture on GAA at birth and IEAA throughout childhood. RESULTS We found a negative association between prenatal di (2-ethylhexyl) phthalate (DEHP) exposure and IEAA among males at age 7 (-0.62 years; 95% CI:-1.06 to -0.18), and a marginal negative association between the whole phthalate mixture and GAA among males at birth (-1.54 days, 95% CI: -2.79 to -0.28), while most other associations were nonsignificant. CONCLUSIONS Our results suggest that prenatal exposure to certain phthalates is associated with epigenetic aging in children. Additionally, our findings suggest that the influence of prenatal exposures on epigenetic age may only manifest during specific periods of child development, and studies relying on DNAm measurements solely from cord blood or single time points may overlook potential relationships.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Alan Hubbard
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Kim Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Julianna Deardorff
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
43
|
Arrigo F, Impellitteri F, Piccione G, Faggio C. Phthalates and their effects on human health: Focus on erythrocytes and the reproductive system. Comp Biochem Physiol C Toxicol Pharmacol 2023; 270:109645. [PMID: 37149015 DOI: 10.1016/j.cbpc.2023.109645] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Plastics, long-chain artificial polymers, are used worldwide with a global production of 350 million tonnes per year. Various degradation processes transform plastics into smaller fragments divided into micro, meso and macroplastics. In various industries, such as construction, certain plastic additives are used to improve flexibility and enhance performance. Plastic additives include phthalates (PAE), dibutyl phthalate (DPB) and diethyl phthalate (DEP). Due to the use of plastics and plastic additives, these small fragments of different shapes and colours are present in all environmental compartments. For their characteristics, PAEs can be introduced particularly by ingestion, inhalation and dermal absorption. They can accumulate in the human body, where they have already been identified in blood, amniotic fluid and urine. The purpose of this review is to gather the effects that these plastic additives have on various systems in the human body. Being endocrine disruptors, the effects they have on erythrocytes and how they can be considered targets for xenobiotics have been analysed. The influence on the reproductive system was also examined. Phthalates are therefore often overused. Due to their properties, they can reach human tissues and have a negative impact on health. The aim of this review is to give an overview of the presence of phthalates and their hazards. Therefore, the use of these plastic additives should be reduced, replaced and their disposal improved.
Collapse
Affiliation(s)
- Federica Arrigo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Federica Impellitteri
- Department of Veterinary Sciences, Viale Giovanni Palatucci snc, University of Messina, 98168 Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, Viale Giovanni Palatucci snc, University of Messina, 98168 Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
44
|
Yi H, Wu H, Zhu W, Lin Q, Zhao X, Lin R, Luo Y, Wu L, Lin D. Phthalate exposure and risk of ovarian dysfunction in endometriosis: human and animal data. Front Cell Dev Biol 2023; 11:1154923. [PMID: 37560165 PMCID: PMC10407402 DOI: 10.3389/fcell.2023.1154923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Objective: We aimed to explore the correlations between and possible mechanisms of common environmental endocrine disruptors, phthalates, and ovarian dysfunction in endometriosis. Methods: Subjects were included in the case group (n = 107) who were diagnosed with endometriosis by postoperative pathology in Fujian Maternal and Child Hospital from February 2018 to February 2021, and the women who were excluded from endometriosis by surgery were as the control group (n = 70). The demographic information of the subjects were evaluated by questionnaire, and the clinical characteristics were evaluated by medical records and 3-year follow-up results. Gas chromatography‒mass spectrometry was used to quantify 10 metabolites of phthalates, including dimethyl ortho-phthalate (DMP), mono-n-methyl phthalate (MMP), dioctyl ortho-phthalate (DEP), mono-ethyl phthalate (MEP), di-n-butyl ortho-phthalate (DBP), mono-butyl phthalate (MBP), benzylbutyl phthalate (BBzP), mono-benzyl; phthalate (MBzP), diethylhexyl phthalate (DEHP) and mono-ethylhexyl phthalate (MEHP), in the urine samples of the subjects. Furthermore, a total of 54 SD rats were exposed to DEHP 0, 5, 50, 100, 250, 500, 1,000, 2000, and 3,000 mg/kg/day for 2 weeks. The SD rats' body weight, oestrus cycle changes, and serum anti-mullerian hormone (AMH) levels were evaluated. After sacrifice, the mass index of the rat uterus and bilateral ovaries were calculated. Finally, bioinformatics analysis of rat ovarian tissues was performed to explore the possible mechanism. SPSS 24.0 (IBM, United States) was used for data analysis. p-value <0.05 was considered statistically significant. Results: The human urinary levels of DMP (p < 0.001), MMP (p = 0.001), DEP (p = 0.003), MEP (p = 0.002), DBP (p = 0.041), MBP (p < 0.001), BBzP (p = 0.009), DEHP (p < 0.001), and MEHP (p < 0.001) were significantly higher in women with endometriosis than in controls. Notably, DEHP was a significant risk factor for endometriosis (OR: 11.0, 95% CI: 5.4-22.6). The area under the ROC curve increased when multiple phthalates were diagnosed jointly, reaching 0.974 as the highest value, which was helpful for the diagnosis of endometriosis. In vivo experiments showed that after DEHP exposure in rats, the mass index of the ovary and uterus decreased in a dose-dependent manner; the oestrus cycle of SD rats was irregularly prolonged and disordered; and the serum AMH level was negatively correlated with the DEHP exposure dose (Rho = -0.8, p < 0.001). Bioinformatics analysis of rat ovarian tissues showed that seven genes involved in the steroid biosynthesis pathway were upregulated and may play a negative role in ovarian function. Conclusion: Exposure to phthalates, especially DEHP, is associated with the occurrence of endometriosis and affects women's reproductive prognosis and ovarian function. The steroid biosynthesis pathway may be related to ovarian dysfunction. The detection of phthalate in urine may become a new biological target for the diagnosis of endometriosis.
Collapse
Affiliation(s)
- Huan Yi
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Huamin Wu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Fuzhou, Fuzhou, Fujian, China
| | - Wenbin Zhu
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qi Lin
- Fujian Health College, Health Management Department, Fuzhou, Fujian, China
| | - Xiaoyan Zhao
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Rong Lin
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Luo
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Fuzhou, Fuzhou, Fujian, China
| | - Lixiang Wu
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Danmei Lin
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Fuzhou, Fuzhou, Fujian, China
| |
Collapse
|
45
|
Su PH, Huang JY, Wang SLJ, Chang HP. Phthalates exposure and pubertal development in a 15-year follow-up birth cohort study in Taiwan. Front Endocrinol (Lausanne) 2023; 14:1065918. [PMID: 37288299 PMCID: PMC10242106 DOI: 10.3389/fendo.2023.1065918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Purpose Phthalates are ubiquitous endocrine disruptors that can affect pubertal development in children. The association of fetal and childhood levels of phthalates with pubertal development were explored. Methods We conduct a population-based birth cohort study to investigate the association between prenatal and childhood exposure to phthalates and pubertal development. Initially, a total of 445 children were recruited from 2000 to 2001, of which 90 children were followed for 15 years which measurements of urine and development assessed at 2, 5, 8, 11, and 14 years. We defined higher Tanner stage as the 14-year-old Tanner stage ≥ 4 and 5 for boys and girls, respectively. A logistic regression analysis was conducted to estimate the crude and adjusted odds ratio of a higher Tanner stage at 14 years old. The Pearson correlation coefficient and multiple linear regression were used to estimate the association of testicular volume, uterine volume, ovarian volume, and blood hormones at 14 years of age with the log-transformed concentration of phthalates at 2, 5, 8, 11, and 14 years. Results In boys, a significantly different geometric mean of mono-benzyl phthalate (MBzP) was observed in 11-year-olds; 6.82 and 2.96 in the lower Tanner stage group and higher Tanner stage group. In girls, a significant difference in the geometric mean of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) in 11-year-olds and mono-ethyl phthalate (MEP) in 2-year-olds was observed; MEHHP was 32.97 and 18.13 in the lower Tanner stage group and higher Tanner stage group, and MEP was 26.54 and 65.74 in the lower Tanner stage group and higher Tanner stage group, respectively. Uterine volume at 14 years old was negatively associated with several phthalate metabolites (MEHP at 8 years old, MnBP at 8 years old, MBzP at 14 years old, MMP prenatally, MMP at 8 years old, and MEP at 8 years old) after adjusting for covariates. However, no significant correlations were found between phthalate metabolites and ovarian or testicular volume. Conclusion Phthalate exposure at certain time points may influence the reproductive development of children during puberty; however, further studies should be conducted to determine the causal nature of this association.
Collapse
Affiliation(s)
- Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jing-Yang Huang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Li Julie Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Hua-Pin Chang
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
46
|
Grossklaus R, Liesenkötter KP, Doubek K, Völzke H, Gaertner R. Iodine Deficiency, Maternal Hypothyroxinemia and Endocrine Disrupters Affecting Fetal Brain Development: A Scoping Review. Nutrients 2023; 15:2249. [PMID: 37242131 PMCID: PMC10223865 DOI: 10.3390/nu15102249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
This scoping review critically discusses the publications of the last 30 years on the impact of mild to moderate iodine deficiency and the additional impact of endocrine disrupters during pregnancy on embryonal/fetal brain development. An asymptomatic mild to moderate iodine deficiency and/or isolated maternal hypothyroxinemia might affect the development of the embryonal/fetal brain. There is sufficient evidence underlining the importance of an adequate iodine supply for all women of childbearing age in order to prevent negative mental and social consequences for their children. An additional threat to the thyroid hormone system is the ubiquitous exposure to endocrine disrupters, which might exacerbate the effects of iodine deficiency in pregnant women on the neurocognitive development of their offspring. Ensuring adequate iodine intake is therefore essential not only for healthy fetal and neonatal development in general, but it might also extenuate the effects of endocrine disruptors. Individual iodine supplementation of women of childbearing age living in areas with mild to moderate iodine deficiency is mandatory as long as worldwide universal salt iodization does not guarantee an adequate iodine supply. There is an urgent need for detailed strategies to identify and reduce exposure to endocrine disrupters according to the "precautional principle".
Collapse
Affiliation(s)
- Rolf Grossklaus
- Department of Food Safety, Federal Institute for Risk Assessment, D-10589 Berlin, Germany;
| | | | - Klaus Doubek
- Professional Association of Gynecologists, D-80337 Munich, Germany
| | - Henry Völzke
- Study of Health in Pomerania/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany;
| | - Roland Gaertner
- Medical Clinic IV, University of Munich, D-80336 Munich, Germany
| |
Collapse
|
47
|
Yang AM, Lai TS, Lin YL, Wang C, Lin CY. Urinary di-(2-ethylhexyl) phthalate metabolites are independently related to serum neurofilament light chain, a biomarker of neurological diseases, in adults: results from NHANES 2013-2014. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66417-66425. [PMID: 37097562 DOI: 10.1007/s11356-023-26943-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a chemical commonly used in the manufacturing of plastics and can pose human health risks, including endocrine disruption, reproductive toxicity, and potential carcinogenic effects. Children may be particularly vulnerable to the harmful effects of DEHP. Early exposure to DEHP has been linked to potential behavioral and learning problems. However, there are no reports to date on whether DEHP exposure in adulthood has neurotoxic effects. Serum neurofilament light chain (NfL), a protein released into the blood after neuroaxonal damage, has been shown to be a reliable biomarker for many neurological diseases. To date, no study has examined the relationship between DEHP exposure and NfL. For the present study, we selected 619 adults (aged ≥ 20 years) from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) to examine the association between urinary DEHP metabolites and serum NfL. We reported higher urinary levels of ln-mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), ln-mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), and ln-mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), and ln-ΣDEHP levels were associated with higher serum levels of ln-NfL (ΣDEHP: β-coefficient = 0. 075; S.E. = 0.026; P = 0.011). When we divided ΣDEHP into quartiles, mean NfL concentrations increased with quartiles of MEHHP (P for trend = 0.023). The association was more pronounced in males, non-Hispanic white race, higher income, and BMI < 25. In conclusion, higher DEHP exposure was positively associated with higher serum NfL in adults from NHANES 2013-2014. If this finding is causal, it is possible that DEHP exposure in adulthood may also induce neurological damage. Although the causality of this observation and the clinical significance are uncertain, our findings suggest that additional research is needed on DEHP exposure, serum NfL, and neurological disease in adults.
Collapse
Affiliation(s)
- An-Ming Yang
- Department of Internal Medicine, En Chu Kong Hospital, No. 399, Fuxing Rd., Sanxia Dist., New Taipei City, 237, Taiwan
- Department of Healthcare Management, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Tai-Shuan Lai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yu-Ling Lin
- Department of Healthcare Management, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
- Department of Nephrology, Hsinchu Cathay General Hospital, Hsinchu, 300, Taiwan
| | - ChiKang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, No. 399, Fuxing Rd., Sanxia Dist., New Taipei City, 237, Taiwan.
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan.
- School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| |
Collapse
|
48
|
Lee J, Kim J, Zinia SS, Park J, Won S, Kim WJ. Prenatal phthalate exposure and cord blood DNA methylation. Sci Rep 2023; 13:7046. [PMID: 37120575 PMCID: PMC10148847 DOI: 10.1038/s41598-023-33002-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/05/2023] [Indexed: 05/01/2023] Open
Abstract
Exposure to phthalates has been shown to impede the human endocrine system, resulting in deleterious effects on pregnant women and their children. Phthalates modify DNA methylation patterns in infant cord blood. We examined the association between prenatal phthalate exposure and DNA methylation patterns in cord blood in a Korean birth cohort. Phthalate levels were measured in 274 maternal urine samples obtained during late pregnancy and 102 neonatal urine samples obtained at birth, and DNA methylation levels were measured in cord blood samples. For each infant in the cohort, associations between CpG methylation and both maternal and neonate phthalate levels were analyzed using linear mixed models. The results were combined with those from a meta-analysis of the levels of phthalates in maternal and neonatal urine samples, which were also analyzed for MEOHP, MEHHP, MnBP, and DEHP. This meta-analysis revealed significant associations between the methylation levels of CpG sites near the CHN2 and CUL3 genes, which were also associated with MEOHP and MnBP in neonatal urine. When the data were stratified by the sex of the infant, MnBP concentration was found to be associated with one CpG site near the OR2A2 and MEGF11 genes in female infants. In contrast, the concentrations of the three maternal phthalates showed no significant association with CpG site methylation. Furthermore, the data identified distinct differentially methylated regions in maternal and neonatal urine samples following exposure to phthalates. The CpGs with methylation levels that were positively associated with phthalate levels (particularly MEOHP and MnBP) were found to be enriched genes and related pathways. These results indicate that prenatal phthalate exposure is significantly associated with DNA methylation at multiple CpG sites. These alterations in DNA methylation may serve as biomarkers of maternal exposure to phthalates in infants and are potential candidates for investigating the mechanisms by which phthalates impact maternal and neonatal health.
Collapse
Affiliation(s)
- Jooah Lee
- Department of Public Health Sciences, Seoul National University, Seoul, South Korea
| | - Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Sabrina Shafi Zinia
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jaehyun Park
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sungho Won
- Department of Public Health Sciences, Seoul National University, Seoul, South Korea.
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea.
- Institute of Health and Environment, Seoul National University, Seoul, South Korea.
- RexSoft Corp, Seoul, South Korea.
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
49
|
Kouakou F, Denizot AL, L'Hostis A, Colet J, Jacques S, Sallem A, Ziyyat A, Vaiman D, Wolf JP. Plastic used in in vitro fertilization procedures induces massive placental gene expression alterations. EBioMedicine 2023; 91:104572. [PMID: 37094466 PMCID: PMC10149224 DOI: 10.1016/j.ebiom.2023.104572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The exposure to plastic derivatives during human life is deleterious. Infants conceived using ART (IVF or ICSI) have twice as many risks of major birth defects compared to naturally conceived infants. Could plastic ware used during ART trigger defects in the fetal development? METHODS Three groups of blastocysts were transferred to pseudopregnant mice. One was obtained after IVF and embryo development in plastic ware, the second in glass ware. The third, was obtained in vivo by natural mating. On day 16.5 of pregnancy, females were sacrificed and fetal organs collected for gene expression analysis. Fetal sex was determined by RT-PCR. RNA was extracted from a pool of five placental or brain samples coming from at least two litters from the same group and analyzed by hybridisation onto the mouse Affymetrix 430.2.0 GeneChips, confirmed by RT-qPCR for 22 genes. FINDINGS This study highlights a major impact of plastic ware on placental gene expression (1121 significantly deregulated genes), while glassware was much closer to in vivo offspring (only 200 significantly deregulated genes). Gene Ontology indicated that the modified placental genes were mostly involved in stress, inflammation and detoxification. A sex specific analysis revealed in addition a more drastic effect on female than male placentas. In the brains, whatever the comparison, less than 50 genes were found deregulated. INTERPRETATION Embryos incubated in plastic ware resulted in pregnancy with massive alterations of placental gene expression profile in concerted biological functions. There were no obvious effects on the brains. Besides other effects, this suggests that plastic ware in ART could be a cause of the increased level of pregnancy disorders observed recurrently in ART pregnancies. FUNDING This study was funded by two grants from the Agence de la Biomedecine in 2017 and 2019.
Collapse
Affiliation(s)
- Franck Kouakou
- Team "From Gametes To Birth", Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 22 rue Mechain, 75014, Paris, France
| | - Anne-Lyse Denizot
- Team "From Gametes To Birth", Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 22 rue Mechain, 75014, Paris, France
| | - Audrey L'Hostis
- Team "From Gametes To Birth", Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 22 rue Mechain, 75014, Paris, France
| | - Julie Colet
- Team "From Gametes To Birth", Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 22 rue Mechain, 75014, Paris, France
| | - Sébastien Jacques
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 22 rue Mechain, 75014, Paris, France
| | - Amira Sallem
- Team "From Gametes To Birth", Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 22 rue Mechain, 75014, Paris, France; Laboratoire d'Histologie-Embryologie et Cytogénétique (LR 18 ES 40), Faculté de Médecine de Monastir, Université de Monastir, Tunisia
| | - Ahmed Ziyyat
- Team "From Gametes To Birth", Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 22 rue Mechain, 75014, Paris, France
| | - Daniel Vaiman
- Team "From Gametes To Birth", Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 22 rue Mechain, 75014, Paris, France
| | - Jean-Philippe Wolf
- Team "From Gametes To Birth", Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 22 rue Mechain, 75014, Paris, France; Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 22 rue Mechain, 75014, Paris, France; Laboratoire de Biologie de la Reproduction, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, France.
| |
Collapse
|
50
|
Lemay AC, Sontarp EJ, Martinez D, Maruri P, Mohammed R, Neapole R, Wiese M, Willemsen JAR, Bourg IC. Molecular Dynamics Simulation Prediction of the Partitioning Constants ( KH, Kiw, Kia) of 82 Legacy and Emerging Organic Contaminants at the Water-Air Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6296-6308. [PMID: 37014786 DOI: 10.1021/acs.est.3c00267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The tendency of organic contaminants (OCs) to partition between different phases is a key set of properties that underlie their human and ecological health impacts and the success of remediation efforts. A significant challenge associated with these efforts is the need for accurate partitioning data for an ever-expanding list of OCs and breakdown products. All-atom molecular dynamics (MD) simulations have the potential to help generate these data, but existing studies have applied these techniques only to a limited variety of OCs. Here, we use established MD simulation approaches to examine the partitioning of 82 OCs, including many compounds of critical concern, at the water-air interface. Our predictions of the Henry's law constant (KH) and interfacial adsorption coefficients (Kiw, Kia) correlate strongly with experimental results, indicating that MD simulations can be used to predict KH, Kiw, and Kia values with mean absolute deviations of 1.1, 0.3, and 0.3 logarithmic units after correcting for systematic bias, respectively. A library of MD simulation input files for the examined OCs is provided to facilitate future investigations of the partitioning of these compounds in the presence of other phases.
Collapse
Affiliation(s)
- Amélie C Lemay
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ethan J Sontarp
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniela Martinez
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Philip Maruri
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Raneem Mohammed
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ryan Neapole
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Morgan Wiese
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Jennifer A R Willemsen
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C Bourg
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|