1
|
Kircheva N, Angelova S, García-Iriepa C, Marazzi M, Dudev T. Thermodynamics of the Ga 3+/ Fe 3+ Competition in a Model of the Heme B-Containing Bacterial Catalase Active Center. Inorg Chem 2025. [PMID: 40329694 DOI: 10.1021/acs.inorgchem.4c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Antibiotic resistance presents an enormous threat to human well-being due to the overconsumption and misuse of these essential drugs in recent years. A novel and intriguing path to overcoming the ever-pressing problem appears in the "Trojan horse" strategy exploiting bacteria's internalization systems and their exceptional capability to scavenge metal ions, iron in particular, from the surrounding media when evading the host organism. A promising candidate in this field is the abiogenic cation gallium─a ferric mimetic species, known to exert diverse effects, with its well-pronounced antibacterial activity attracting the attention of scientists in the past decade. In the study presented herewith, the computational chemistry methods, based on Density Functional Theory (DFT), are utilized in order to differentiate those outer factors contributing to gallium's ability to substitute the native ferric ion in the active site of the enzyme catalase. The characteristics of the surrounding media such as pH and solvent exposure, the composition of the protein shell, the nature of the metal, and different substrate molecules have been taken into account. The obtained results are interpreted in light of the experimentally reported observations and aim to contribute to deciphering this aspect of gallium's mechanism of antibacterial activity.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
- University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Blvd, Sofia 1756, Bulgaria
| | - Cristina García-Iriepa
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Functional Molecular Systems (FuMSys) group, Ctra, Madrid-Barcelona km. 33, 600, Alcalá de Henares, Madrid 28801, Spain
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Ctra, Madrid-Barcelona km. 33, 600, Alcalá de Henares, Madrid 28801, Spain
| | - Marco Marazzi
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Functional Molecular Systems (FuMSys) group, Ctra, Madrid-Barcelona km. 33, 600, Alcalá de Henares, Madrid 28801, Spain
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Ctra, Madrid-Barcelona km. 33, 600, Alcalá de Henares, Madrid 28801, Spain
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", Sofia 1164, Bulgaria
| |
Collapse
|
2
|
Abdul Manan M. Progress in Probiotic Science: Prospects of Functional Probiotic-Based Foods and Beverages. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:5567567. [PMID: 40259922 PMCID: PMC12011469 DOI: 10.1155/ijfo/5567567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
This comprehensive review explores the evolving role of probiotic-based foods and beverages, highlighting their potential as functional and "future foods" that could significantly enhance nutrition, health, and overall well-being. These products are gaining prominence for their benefits in gut health, immune support, and holistic wellness. However, their future success depends on addressing critical safety concerns and navigating administrative complexities. Ensuring that these products "do more good than harm" involves rigorous evaluations of probiotic strains, particularly those sourced from the human gastrointestinal tract. Lactic acid bacteria (LABs) serve as versatile and effective functional starter cultures for the development of probiotic foods and beverages. The review emphasizes the role of LABs as functional starter cultures and the development of precision probiotics in advancing these products. Establishing standardized guidelines and transparent practices is essential, requiring collaboration among regulatory bodies, industry stakeholders, and the scientific community. The review underscores the importance of innovation in developing "friendly bacteria," "super probiotics," precision fermentation, and effective safety assessments. The prospects of functional probiotic-based foods and beverages rely on refining these elements and adapting to emerging scientific advancements. Ultimately, empowering consumers with accurate information, fostering innovation, and maintaining stringent safety standards will shape the future of these products as trusted and beneficial components of a health-conscious society. Probiotic-based foods and beverages, often infused with LABs, a "friendly bacteria," are emerging as "super probiotics" and "future foods" designed to "do more good than harm" for overall health.
Collapse
Affiliation(s)
- Musaalbakri Abdul Manan
- Food Science and Technology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), MARDI Headquarters, Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Thatoi HN, Chattaraj S, Mishra RR, Das Mohapatra PK, Mohapatra S. Contributions of biotechnology industries of India to global bioeconomy: an overview. 3 Biotech 2025; 15:46. [PMID: 39839190 PMCID: PMC11743411 DOI: 10.1007/s13205-025-04215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/04/2025] [Indexed: 01/23/2025] Open
Abstract
Globally, industrial biotechnology addresses diverse challenges, fostering environmental conservation, sustainable development, economic growth, and innovation. Currently, there are approximately 20,922 biotech companies worldwide, including 6,653 in the US, reflecting significant growth. The global biotech market is valued at $727.1 billion and is projected to expand at a compound annual growth rate of 7.4% by 2025. In India, industrial biotechnology holds promise, with about 3% of the global market share. The country has the highest number of FDA-approved manufacturing facilities outside the US, totaling 665 plants. This growth is driven by government support and a skilled workforce, with a focus on advancements in bioenergy, bio-based materials, and healthcare. Recent years have witnessed a surge in international demand for Indian vaccines and biopharmaceuticals, positioning the country as a leading hub for contract manufacturing and clinical trials. The country's bioeconomy, valued at $150 billion by 2023, is forecasted to double to $300 billion by 2030. This growth is supported by the government's BIRAC scheme, which has established 60 successful bio-incubation centers, further promoting innovation and entrepreneurship. India's bioeconomy basically consists of four segments: BioIndustrial ($72.6 billion, 48.09%), BioAgri ($12.44 billion, 8.24%), BioPharma ($53.8 billion, 35.65%), and BioServices ($12.1 billion, 8.02%), with biotech start-ups reaching 8,531 in 2023. This comprehensive review highlights the significant potential of industrial biotechnology in India by focusing on technological advancements, policy impacts, and market trends. It provides an overview of the current landscape, challenges, and future opportunities, and offers insights to guide strategic initiatives aimed at advancing the sector.
Collapse
Affiliation(s)
- H. N. Thatoi
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, Deemed to Be University, Kalinga Nagar, Bhubaneswar, Odisha 751 003 India
| | - S. Chattaraj
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, Deemed to Be University, Kalinga Nagar, Bhubaneswar, Odisha 751 003 India
| | - R. R. Mishra
- Department of Biotechnology, MITS School of Biotechnology, Odisha, 751024 India
| | - P. K. Das Mohapatra
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal 733134 India
| | - S. Mohapatra
- Department of Biological Systems Engineering, University of Wisconsin, Madison, WI 53706 USA
| |
Collapse
|
4
|
Mnyandu N, Jacobs R, Arbuthnot P, Maepa MB. Recent Advances in Designing Adeno-Associated Virus-Based Vaccines Against Viral Infections. Pharmaceutics 2024; 16:1360. [PMID: 39598484 PMCID: PMC11597783 DOI: 10.3390/pharmaceutics16111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Over 80% of the world's deadliest pandemics are caused by viral infections, and vaccination remains the most effective way to prevent these infections from spreading. Since the discovery of the first vaccine over two centuries ago, several vaccine design technologies have been developed. Next-generation vaccines, based on mRNA and viral vector technologies, have recently emerged as alternatives to traditional vaccines. Adenoviral vector-based vaccines against coronavirus disease 2019 have demonstrated a more sustained antibody response as compared to mRNA vaccines. However, this has not been without complications, with a few cases of severe adverse events identified in vaccinated individuals, and the underlying mechanism is the subject of intense investigation. Adeno-associated viral vectors induce a weaker cellular immune response compared to adenoviral vectors, and it is mainly for this reason that there has been a diminished interest in exploring them as a vaccine platform until recently. This review will discuss recent developments and the potential of adeno-associated viral vectors as anti-viral vaccines.
Collapse
Affiliation(s)
| | | | | | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa; (N.M.); (R.J.); (P.A.)
| |
Collapse
|
5
|
Graham CT, Gordon S, Kubes P. A historical perspective of Kupffer cells in the context of infection. Cell Tissue Res 2024:10.1007/s00441-024-03924-4. [PMID: 39392500 DOI: 10.1007/s00441-024-03924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
The Kupffer cell was first discovered by Karl Wilhelm von Kupffer in 1876, labeling them as "Sternzellen." Since their discovery as the primary macrophages of the liver, researchers have gradually gained an in-depth understanding of the identity, functions, and influential role of Kupffer cells, particularly in infection. It is becoming clear that Kupffer cells perform important tissue-specific functions in homeostasis and disease. Stationary in the sinusoids of the liver, Kupffer cells have a high phagocytic capacity and are adept in clearing the bloodstream of foreign material, toxins, and pathogens. Thus, they are indispensable to host defense and prevent the dissemination of bacteria during infections. To highlight the importance of this cell, this review will explore the history of the Kupffer cell in the context of infection beginning with its discovery to the present day.
Collapse
Affiliation(s)
- Carolyn T Graham
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road Guishan Dist., Taoyuan, Taiwan
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
6
|
Gogoi H, Mani R, Bhatnagar R. Re-inventing traditional aluminum-based adjuvants: Insight into a century of advancements. Int Rev Immunol 2024; 44:58-81. [PMID: 39310923 DOI: 10.1080/08830185.2024.2404095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/01/2023] [Accepted: 08/31/2024] [Indexed: 02/22/2025]
Abstract
Aluminum salt-based adjuvants like alum, alhydrogel and Adju-Phos are by far the most favored clinically approved vaccine adjuvants. They have demonstrated excellent safety profile and currently used in vaccines against diphtheria, tetanus, pertussis, hepatitis B, anthrax etc. These vaccinations cause minimal side effects like local inflammation at the injection site. Aluminum salt-based adjuvants primarily stimulate CD4+ T cells and B cell mediated Th2 immune response leading to generate a robust antibody response. In this review article, we have compiled the role of physio-chemical role of the two commonly used aluminum salt-based adjuvants alhydrogel and Adju-Phos, and the effect of surface properties, buffer composition, and adjuvant dosage on the immune response. After being studied for almost a century, researchers have come up with various mechanism by which these aluminum adjuvants activate the immune system. Firstly, we have covered the initial works of Glenny and his "repository effect" which paved the work for his successors to explore the involvement of cytokines, chemokines, recruitment of innate immune cells, enhanced antigen uptake by antigen presenting cells, and formation of NLRP3 inflammasome complex in mediating the immune response. It has been reported that aluminum adjuvants activate multiple immunological pathways which synergistically activates the immune system. We later discuss the recent developments in nanotechnology-based preparations of next generation aluminum based adjuvants which has enabled precise size control and morphology of the traditional aluminum adjuvants thereby manipulating the immune response as per our desire.
Collapse
Affiliation(s)
- Himanshu Gogoi
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, Faridabad, Haryana, India
| | - Rajesh Mani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Microbiology, Immunology and Molecular Genetics, University Kentucky College of Medicine, Lexington, KY, USA
| | - Rakesh Bhatnagar
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Jambholkar PC, Choudhari SG, Sharma M. Louis Pasteur: A Legacy Unmasked. Cureus 2024; 16:e68080. [PMID: 39347279 PMCID: PMC11438523 DOI: 10.7759/cureus.68080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Louis Pasteur is perhaps the most globally recognized French scientist. His groundbreaking discoveries in molecular chirality and advancements in fermentation greatly benefited brewers and winemakers. Pasteur introduced the process of pasteurization to sterilize wines and significantly contributed to the development of germ theory, which made Joseph Lister's antiseptic surgical techniques possible. Despite initially disproving Antoine Béchamp's theory that silkworm disease was caused by a microbial infection, Pasteur tackled this issue effectively. Building on the work of Henri Toussaint and Pierre Victor Galtier, he developed vaccines for pig erysipelas, chicken cholera, anthrax, and rabies. Pasteur also coined the term "vaccination," which Richard Dunning had used before Edward Jenner expanded upon it. Although Robert Koch criticized Pasteur's vaccination methods as ambiguous, historians have clarified many of the myths surrounding Pasteur. This review explores Pasteur's career, his undeniable achievements, and the realities behind the legendary figure who strove to make a significant impact on science and medicine.
Collapse
Affiliation(s)
- Pankaj C Jambholkar
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sonali G Choudhari
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Mayank Sharma
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
8
|
Madarász B, Fazekas-Pongor V, Szarvas Z, Fekete M, Varga JT, Tarantini S, Csiszar A, Lionetti V, Tabák AG, Ungvari Z, Forrai J. Survival and longevity of European rulers: geographical influences and exploring potential factors, including the Mediterranean diet - a historical analysis from 1354 to the twentieth century. GeroScience 2024; 46:3801-3818. [PMID: 38012365 PMCID: PMC11226567 DOI: 10.1007/s11357-023-00957-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/20/2023] [Indexed: 11/29/2023] Open
Abstract
Significant regional variability in lifespan in Europe is influenced by environmental factors and lifestyle behaviors, including diet. This study investigates the impact of geographical region on the lifespan of European rulers spanning from the fourteenth century to the present day. By analyzing historical records and literature, we aim to identify region-specific dietary patterns and lifestyle factors that may have contributed to longer lifespans among rulers. The hypothesis to be tested is that rulers from Southern European countries, where the traditional Mediterranean diet is consumed by the local people, may exhibit longer lifespans compared to rulers from other regions, due to the well-documented health benefits associated with this dietary pattern. We extracted comprehensive information for each ruler, encompassing their sex, birth and death dates, age, age of enthronement, duration of rulership, country, and cause of death (natural vs. non-natural). To determine their nationality, we coded rulers based on their hypothetical present-day residence (2023). Utilizing the EuroVoc Geographical classification, we categorized the countries into four regions: Northern, Western, Southern, Central and Eastern Europe. While Cox regression models did not find significant differences in survival rates among regions, further analysis stratified by time periods revealed intriguing trends. Contrary to our initial predictions, the Northern region displayed better survival rates compared to the Southern region between 1354 and 1499, whereas survival rates were similar across regions from 1500 to 1749. However, after 1750, all regions, except the Southern region, exhibited significantly improved survival rates, suggesting advancements in healthcare and lifestyle factors. These findings underscore the dynamic influence of both region and time period on health and longevity. Interestingly, despite the prevalence of the Mediterranean diet in the Southern region of Europe, rulers from this region did not demonstrate longer lifespans compared to their counterparts in other regions. This suggests that additional lifestyle factors may have played a more prominent role in their longevity. In conclusion, our study sheds light on the intricate relationship between region, time period, and lifespan among European rulers. Although the Mediterranean diet is often associated with health benefits, our findings indicate that it alone may not account for differences in ruler longevity across regions. Further research is warranted to explore the impact of other lifestyle factors on the health and lifespan of European rulers throughout history.
Collapse
Affiliation(s)
- Bálint Madarász
- Department of Public Health, Faculty of Medicine, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Zsófia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | | | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Adam G Tabák
- Department of Public Health, Faculty of Medicine, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
- Department of Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, WC1E 6BT, UK
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Judit Forrai
- Department of Public Health, Faculty of Medicine, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary.
| |
Collapse
|
9
|
Lepenos T, Sanoudou D, Protogerou A, Laios K, Androutsos G, Karamamou M. Louis Pasteur (1822-1895), Ignaz Semmelweis (1818-1865), Joseph Lister (1827-1912) and the Link Between Their Works Toward the Development of Antisepsis: A Narrative Review. Cureus 2024; 16:e62543. [PMID: 39022474 PMCID: PMC11254094 DOI: 10.7759/cureus.62543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 07/20/2024] Open
Abstract
Infection control remains a significant burden for healthcare systems. The irrational use of antibiotics in the fight against microbial diseases has led to the fast development of antimicrobial resistance. Considering how the latter can adversely influence the effectiveness of modern treatments and the way medicine is practiced, we should revise the events that led to the establishment of the general principles of antisepsis and pay special tribute to the people who contributed to their formation, bearing in mind that they remain unmodified to a great extent until today. Without Semmelweis' conceptualization of the idea of direct transmission of sepsis, Pasteur's emblematic figure that helped promote the idea even further, and Lister's methodology structuring, the scientific community would have significantly delayed winning the battle against germs.
Collapse
Affiliation(s)
- Theocharis Lepenos
- History of Medicine and Medical Ethics, National and Kapodistrian University of Athens School of Medicine, Amfikleia, GRC
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Athens, GRC
| | - Athanase Protogerou
- Clinic & Laboratory of Pathophysiology, National and Kapodistrian University of Athens, Athens, GRC
| | - Konstantinos Laios
- Surgery, Department of History of Medicine and Medical Ethics, National and Kapodistrian University of Athens, Athens, GRC
| | - Georgios Androutsos
- Department of History of Medicine and Medical Ethics, Medical School, National and Kapodistrian University of Athens, Athens, GRC
- Biomedical Research Foundation, Academy of Athens, Athens, GRC
| | - Marianna Karamamou
- History of MEdicine and Medical Ethics, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| |
Collapse
|
10
|
Riccardi D, Baldino L, Reverchon E. Liposomes, transfersomes and niosomes: production methods and their applications in the vaccinal field. J Transl Med 2024; 22:339. [PMID: 38594760 PMCID: PMC11003085 DOI: 10.1186/s12967-024-05160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
One of the most effective strategies to fight viruses and handle health diseases is vaccination. Recent studies and current applications are moving on antigen, DNA and RNA-based vaccines to overcome the limitations related to the conventional vaccination strategies, such as low safety, necessity of multiple injection, and side effects. However, due to the instability of pristine antigen, RNA and DNA molecules, the use of nanocarriers is required. Among the different nanocarriers proposed for vaccinal applications, three types of nanovesicles were selected and analysed in this review: liposomes, transfersomes and niosomes. PubMed, Scopus and Google Scholar databases were used for searching recent papers on the most frequently used conventional and innovative methods of production of these nanovesicles. Weaknesses and limitations of conventional methods (i.e., multiple post-processing, solvent residue, batch-mode processes) can be overcome using innovative methods, in particular, the ones assisted by supercritical carbon dioxide. SuperSomes process emerged as a promising production technique of solvent-free nanovesicles, since it can be easily scaled-up, works in continuous-mode, and does not require further post-processing steps to obtain the desired products. As a result of the literature analysis, supercritical carbon dioxide assisted methods attracted a lot of interest for nanovesicles production in the vaccinal field. However, despite their numerous advantages, supercritical processes require further studies for the production of liposomes, transfersomes and niosomes with the aim of reaching well-defined technologies suitable for industrial applications and mass production of vaccines.
Collapse
Affiliation(s)
- Domenico Riccardi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
11
|
Hahn J, Ding S, Im J, Harimoto T, Leong KW, Danino T. Bacterial therapies at the interface of synthetic biology and nanomedicine. NATURE REVIEWS BIOENGINEERING 2024; 2:120-135. [PMID: 38962719 PMCID: PMC11218715 DOI: 10.1038/s44222-023-00119-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 07/05/2024]
Abstract
Bacteria are emerging as living drugs to treat a broad range of disease indications. However, the inherent advantages of these replicating and immunostimulatory therapies also carry the potential for toxicity. Advances in synthetic biology and the integration of nanomedicine can address this challenge through the engineering of controllable systems that regulate spatial and temporal activation for improved safety and efficacy. Here, we review recent progress in nanobiotechnology-driven engineering of bacteria-based therapies, highlighting limitations and opportunities that will facilitate clinical translation.
Collapse
Affiliation(s)
- Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tetsuhiro Harimoto
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
Abstract
The phrase "gain of function" (GOF) has recently acquired a negative connotation in experimental biology by its association with risky science. Whereas much of the discussion on the relative merits of GOF-type experiments has focused on their risk-benefit equation, relatively little has been said about their epistemic value. In this article, we recount how GOF experiments were critical for establishing DNA as the genetic material, the identification of cellular receptors, and the role of oncogenes in cancer research. Today, many of the products of the biomedical revolution such as synthetic insulin, growth factors, and monoclonal antibodies are the result of GOF experiments where cells were given the new function of synthesizing medically important products. GOF experiments and complementary loss of function experiments are epistemically powerful tools for establishing causality in biology.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ferric C. Fang
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Montero DA, Vidal RM, Velasco J, Carreño LJ, Torres JP, Benachi O. MA, Tovar-Rosero YY, Oñate AA, O'Ryan M. Two centuries of vaccination: historical and conceptual approach and future perspectives. Front Public Health 2024; 11:1326154. [PMID: 38264254 PMCID: PMC10803505 DOI: 10.3389/fpubh.2023.1326154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Over the past two centuries, vaccines have been critical for the prevention of infectious diseases and are considered milestones in the medical and public health history. The World Health Organization estimates that vaccination currently prevents approximately 3.5-5 million deaths annually, attributed to diseases such as diphtheria, tetanus, pertussis, influenza, and measles. Vaccination has been instrumental in eradicating important pathogens, including the smallpox virus and wild poliovirus types 2 and 3. This narrative review offers a detailed journey through the history and advancements in vaccinology, tailored for healthcare workers. It traces pivotal milestones, beginning with the variolation practices in the early 17th century, the development of the first smallpox vaccine, and the continuous evolution and innovation in vaccine development up to the present day. We also briefly review immunological principles underlying vaccination, as well as the main vaccine types, with a special mention of the recently introduced mRNA vaccine technology. Additionally, we discuss the broad benefits of vaccines, including their role in reducing morbidity and mortality, and in fostering socioeconomic development in communities. Finally, we address the issue of vaccine hesitancy and discuss effective strategies to promote vaccine acceptance. Research, collaboration, and the widespread acceptance and use of vaccines are imperative for the continued success of vaccination programs in controlling and ultimately eradicating infectious diseases.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan P. Torres
- Departamento de Pediatría y Cirugía Pediátrica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Manuel A. Benachi O.
- Área de Biotecnología, Tecnoacademia Neiva, Servicio Nacional de Aprendizaje, Regional Huila, Neiva, Colombia
| | - Yenifer-Yadira Tovar-Rosero
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán, Colombia
| | - Angel A. Oñate
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Miguel O'Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Moon TS. EBRC: Enhancing bioeconomy through research and communication. N Biotechnol 2023; 78:150-152. [PMID: 37918664 DOI: 10.1016/j.nbt.2023.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
On September 12, 2022, President Biden issued Executive Order 14081 to enable the progress of biomanufacturing and biotechnology. This timely initiative will help overcome many challenging issues, and its potential impacts will be huge. This article discusses eight recommendations to make this US national initiative successful, encourage other nations to consider similar initiatives, and create a better world for the next generations.
Collapse
Affiliation(s)
- Tae Seok Moon
- Moonshot Bio, Inc., 73 Turnpike Street, North Andover, MA 01845, USA.
| |
Collapse
|
15
|
Kodori M, Amani J, Ahmadi A. Unveiling promising immunogenic targets in Coxiella burnetii through in silico analysis: paving the way for novel vaccine strategies. BMC Infect Dis 2023; 23:902. [PMID: 38129801 PMCID: PMC10740251 DOI: 10.1186/s12879-023-08904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Coxiella burnetii, an intracellular pathogen, serves as the causative agent of zoonotic Q fever. This pathogen presents a significant threat due to its potential for airborne transmission, environmental persistence, and pathogenicity. The current whole-cell vaccine (WCV) utilized in Australia to combat Q fever exhibits notable limitations, including severe adverse reactions and limited regulatory approval for human use. This research employed the reverse vaccinology (RV) approach to uncover antigenic proteins and epitopes of C. burnetii, facilitating the development of more potent vaccine candidates. METHODS The potential immunogenic proteins derived from C. burnetii RSA493/Nine Mile phase I (NMI) were extracted through manual, automated RV, and virulence factor database (VFDB) methods. Web tools and bioinformatics were used to evaluate physiochemical attributes, subcellular localization, antigenicity, allergenicity, human homology, B-cell epitopes, MHC I and II binding ratios, functional class scores, adhesion probabilities, protein-protein interactions, and molecular docking. RESULTS Out of the 1850 proteins encoded by RSA493/NMI, a subset of 178 demonstrated the potential for surface or membrane localization. Following a series of analytical iterations, 14 putative immunogenic proteins emerged. This collection included nine proteins (57.1%) intricately involved in cell wall/membrane/envelope biogenesis processes (CBU_0197 (Q83EW1), CBU_0311 (Q83EK8), CBU_0489 (Q83E43), CBU_0939 (Q83D08), CBU_1190 (P39917), CBU_1829 (Q83AQ2), CBU_1412 (Q83BU0), CBU_1414 (Q83BT8), and CBU_1600 (Q83BB2)). The CBU_1627 (Q83B86 ) (7.1%) implicated in intracellular trafficking, secretion, and vesicular transport, and CBU_0092 (Q83F57) (7.1%) contributing to cell division. Additionally, three proteins (21.4%) displayed uncharacterized functions (CBU_0736 (Q83DJ4), CBU_1095 (Q83CL9), and CBU_2079 (Q83A32)). The congruent results obtained from molecular docking and immune response stimulation lend support to the inclusion of all 14 putative proteins as potential vaccine candidates. Notably, seven proteins with well-defined functions stand out among these candidates. CONCLUSIONS The outcomes of this study introduce promising proteins and epitopes for the forthcoming formulation of subunit vaccines against Q fever, with a primary emphasis on cellular processes and the virulence factors of C. burnetii.
Collapse
Affiliation(s)
- Mansoor Kodori
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Non Communicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Han S, Lee P, Choi HJ. Non-Invasive Vaccines: Challenges in Formulation and Vaccine Adjuvants. Pharmaceutics 2023; 15:2114. [PMID: 37631328 PMCID: PMC10458847 DOI: 10.3390/pharmaceutics15082114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Given the limitations of conventional invasive vaccines, such as the requirement for a cold chain system and trained personnel, needle-based injuries, and limited immunogenicity, non-invasive vaccines have gained significant attention. Although numerous approaches for formulating and administrating non-invasive vaccines have emerged, each of them faces its own challenges associated with vaccine bioavailability, toxicity, and other issues. To overcome such limitations, researchers have created novel supplementary materials and delivery systems. The goal of this review article is to provide vaccine formulation researchers with the most up-to-date information on vaccine formulation and the immunological mechanisms available, to identify the technical challenges associated with the commercialization of non-invasive vaccines, and to guide future research and development efforts.
Collapse
Affiliation(s)
| | | | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.H.); (P.L.)
| |
Collapse
|
17
|
Hepp B, Lorieux F, Degaugue A, Oberto J. VAPEX: an interactive web server for the deep exploration of natural virus and phage genomes. Bioinformatics 2023; 39:btad528. [PMID: 37624923 PMCID: PMC10471898 DOI: 10.1093/bioinformatics/btad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
MOTIVATION Studying the genetic makeup of viruses and phages through genome analysis is crucial for comprehending their function in causing diseases, progressing medicine, tracing their evolutionary history, monitoring the environment, and creating innovative biotechnologies. However, accessing the necessary data can be challenging due to a lack of dedicated comparative genomic tools and viral and phage databases, which are often outdated. Moreover, many wet bench experimentalists may not have the computational proficiency required to manipulate large amounts of genomic data. RESULTS We have developed VAPEX (Virus And Phage EXplorer), a web server which is supported by a database and features a user-friendly web interface. This tool enables users to easily perform various genomic analysis queries on all natural viruses and phages that have been fully sequenced and are listed in the NCBI compendium. VAPEX therefore excels in producing visual depictions of fully resolved synteny maps, which is one of its key strengths. VAPEX has the ability to exhibit a vast array of orthologous gene classes simultaneously through the use of symbolic representation. Additionally, VAPEX can fully analyze user-submitted viral and phage genomes, including those that have not yet been annotated. AVAILABILITY AND IMPLEMENTATION VAPEX can be accessed from all current web browsers such as Chrome, Firefox, Edge, Safari, and Opera. VAPEX is freely accessible at https://archaea.i2bc.paris-saclay.fr/vapex/.
Collapse
Affiliation(s)
- Benjamin Hepp
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris‐Saclay, 91198 Gif‐sur‐Yvette cedex, France
| | - Florence Lorieux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris‐Saclay, 91198 Gif‐sur‐Yvette cedex, France
| | - Augustin Degaugue
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris‐Saclay, 91198 Gif‐sur‐Yvette cedex, France
| | - Jacques Oberto
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris‐Saclay, 91198 Gif‐sur‐Yvette cedex, France
| |
Collapse
|
18
|
Gonzalez JM. Special Issue: "New Methods in Microbial Research 2.0": Editorial. Microorganisms 2023; 11:718. [PMID: 36985291 PMCID: PMC10057640 DOI: 10.3390/microorganisms11030718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 03/15/2023] Open
Abstract
Today, it is definitively accepted that microorganisms play a central role in the functioning and maintenance of our planet and the organisms thriving on it [...].
Collapse
Affiliation(s)
- Juan M Gonzalez
- Institute of Natural Resources and Agrobiology of Sevilla (IRNAS-CSIC), E-41012 Sevilla, Spain
| |
Collapse
|
19
|
Săndulescu O, Săndulescu M. Oral biofilms - pivotal role in understanding microbes and their relevance to the human host. Germs 2023; 13:7-9. [PMID: 38023956 PMCID: PMC10659743 DOI: 10.18683/germs.2023.1361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Affiliation(s)
- Oana Săndulescu
- MD, PhD, Professor, Department of Infectious Diseases I, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, National Institute for Infectious Diseases “Prof. Dr. Matei Balş”, No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Mihai Săndulescu
- DDS, PhD, Associate Professor, Department of Implant Prosthetic Therapy, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 17-23 Calea Plevnei, Bucharest 010221, Romania
| |
Collapse
|
20
|
Juhas M. The Dawn of Microbiology. BRIEF LESSONS IN MICROBIOLOGY 2023:17-26. [DOI: 10.1007/978-3-031-29544-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
21
|
Raihofer L, Zarnow M, Gastl M, Hutzler M. A short history of beer brewing: Alcoholic fermentation and yeast technology over time: Alcoholic fermentation and yeast technology over time. EMBO Rep 2022; 23:e56355. [PMID: 36408847 PMCID: PMC9724654 DOI: 10.15252/embr.202256355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
The history of beer: from a staple food to a consumer product with an enormous variety of styles and tastes.
Collapse
Affiliation(s)
- Luis Raihofer
- Research Center Weihenstephan for Brewing and Food QualityTechnische Universität MünchenFreisingGermany
| | - Martin Zarnow
- Research Center Weihenstephan for Brewing and Food QualityTechnische Universität MünchenFreisingGermany
| | - Martina Gastl
- Research Center Weihenstephan for Brewing and Food QualityTechnische Universität MünchenFreisingGermany
| | - Mathias Hutzler
- Research Center Weihenstephan for Brewing and Food QualityTechnische Universität MünchenFreisingGermany
| |
Collapse
|
22
|
Delgado-Coello B, Navarro-Alvarez N, Mas-Oliva J. The Influence of Interdisciplinary Work towards Advancing Knowledge on Human Liver Physiology. Cells 2022; 11:3696. [PMID: 36429123 PMCID: PMC9688355 DOI: 10.3390/cells11223696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022] Open
Abstract
The knowledge accumulated throughout the years about liver regeneration has allowed a better understanding of normal liver physiology, by reconstructing the sequence of steps that this organ follows when it must rebuild itself after being injured. The scientific community has used several interdisciplinary approaches searching to improve liver regeneration and, therefore, human health. Here, we provide a brief history of the milestones that have advanced liver surgery, and review some of the new insights offered by the interdisciplinary work using animals, in vitro models, tissue engineering, or mathematical models to help advance the knowledge on liver regeneration. We also present several of the main approaches currently available aiming at providing liver support and overcoming organ shortage and we conclude with some of the challenges found in clinical practice and the ethical issues that have concomitantly emerged with the use of those approaches.
Collapse
Affiliation(s)
- Blanca Delgado-Coello
- Department of Structural Biology and Biochemistry, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Nalu Navarro-Alvarez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Departament of Molecular Biology, Universidad Panamericana School of Medicine, Mexico City 03920, Mexico
- Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA
| | - Jaime Mas-Oliva
- Department of Structural Biology and Biochemistry, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
23
|
Cavaillon JM. From Bacterial Poisons to Toxins: The Early Works of Pasteurians. Toxins (Basel) 2022; 14:759. [PMID: 36356009 PMCID: PMC9693068 DOI: 10.3390/toxins14110759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
We review some of the precursor works of the Pasteurians in the field of bacterial toxins. The word "toxin" was coined in 1888 by Ludwig Brieger to qualify different types of poison released by bacteria. Pasteur had identified the bacteria as the cause of putrefaction but never used the word toxin. In 1888, Émile Roux and Alexandre Yersin were the first to demonstrate that the bacteria causing diphtheria was releasing a deadly toxin. In 1923, Gaston Ramon treated that toxin with formalin and heat, resulting in the concept of "anatoxin" as a mean of vaccination. A similar approach was performed to obtain the tetanus anatoxin by Pierre Descombey, Christian Zoeller and G. Ramon. On his side, Elie Metchnikoff also studied the tetanus toxin and investigated the cholera toxin. His colleague from Odessa, Nikolaï GamaleÏa who was expected to join Institut Pasteur, wrote the first book on bacterial poisons while other Pasteurians such as Etienne Burnet, Maurice Nicolle, Emile Césari, and Constant Jouan wrote books on toxins. Concerning the endotoxins, Alexandre Besredka obtained the first immune antiserum against lipopolysaccharide, and André Boivin characterized the biochemical nature of the endotoxins in a work initiated with Lydia Mesrobeanu in Bucharest.
Collapse
|
24
|
Kostarev S, Komyagina O, Fayzrakhmanov R, Kurushin D, Tatarnikova N, Novikova (Kochetova) O, Sereda T. Impact of the New Coronavirus Infection on the Immune System of Children and Adolescents in the Region of the Russian Federation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13669. [PMID: 36294250 PMCID: PMC9603771 DOI: 10.3390/ijerph192013669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The emergence of COVID-19 (SARS-CoV-2) has presented public health professionals with new challenges in the diagnosis of the disease and treatment of patients. Nowadays, the epidemiology, clinical features, prevention and treatment of the disease are studied poorly due to continuous mutation of the pathogen. One of the consequences of the new coronavirus infection could be changes in the immune system of the human population. A detailed analysis of the immunological status of different racial groups under the influence of the new coronavirus infection is currently studied insufficiently, making this work of particular relevance. There is also a reluctance among some Russian residents to be vaccinated, including the population of Perm Krai, due to a lack of research on possible deviations in cellular immunity due to SARS-CoV-2 vaccination. At the start of the third wave caused by the new coronavirus infection, only 40% of the Russian population had been vaccinated, which was insufficient to acquire collective immunity. In the autumn of 2021, a QR code measure was introduced for vaccinated residents, which resulted in exceeding the necessary barrier for acquiring collective immunity. Due to the high growth and severity of the disease, we analysed the immunograms of children and adolescents, aged from 5 months to 17 years, in Perm Krai during the pandemic years 2020-2021. The patients' immunological status results were divided into three categories. Laboratory diagnosis of the human immune system was carried out using serological and flow cytophotometric analyses. A total of 247 samples were analysed. The aim of this work was to investigate changes in the immune system of children and adolescents during the pandemic caused by the new coronavirus infection. The methodology was based on the analysis of immunograms, including biochemical studies, immune status and flow cytophotometric analysis. The immunograms were pre-sorted by IgA, IgM, IgG immunoglobulin status into four categories: absence of disease-k1 in which IgA, IgM, IgG immunoglobulin values were within the reference interval, active disease stage-k2 in which IgA, IgM immunoglobulins had gone beyond the reference interval, passive disease stage-k3 characterised by IgG and IgM immunoglobulin status, and patient recovery process-k4. In the immunograms, three immune status indicators were selected for further investigation: phagocytosis absolute value, phagocytic number and phagocytic index and five flow cytometry indices: leukocytes, lymphocytes, NK cells (CD16+CD56+), T helpers (CD3+CD4+) and CD4+/CD8+ immunoregulation index. A quantitative analysis of the deviations of these indicators from the reference intervals was performed in the three studied age groups of children and adolescents living in Perm Krai of the Russian Federation during the pandemic of 2020-2021.
Collapse
Affiliation(s)
- Sergey Kostarev
- Perm National Research Polytechnic University, 29, Komsomolski Avenue, Perm 614990, Russia
- Perm State Agro-Technological University Named after Academician D N Pryanishnikov, 23, Petropavlovskaja St., Perm 614990, Russia
- Perm Institute of the FPS of Russia, 125, Karpinskogo St., Perm 614012, Russia
| | - Oksana Komyagina
- Medical Institution “Philosophy of Beauty and Health”, 64, KIM St., Perm 614990, Russia
| | - Rustam Fayzrakhmanov
- Perm National Research Polytechnic University, 29, Komsomolski Avenue, Perm 614990, Russia
| | - Daniel Kurushin
- Perm National Research Polytechnic University, 29, Komsomolski Avenue, Perm 614990, Russia
| | - Natalya Tatarnikova
- Perm State Agro-Technological University Named after Academician D N Pryanishnikov, 23, Petropavlovskaja St., Perm 614990, Russia
| | - Oksana Novikova (Kochetova)
- Perm State Agro-Technological University Named after Academician D N Pryanishnikov, 23, Petropavlovskaja St., Perm 614990, Russia
- Perm Institute of the FPS of Russia, 125, Karpinskogo St., Perm 614012, Russia
| | - Tatyana Sereda
- Perm State Agro-Technological University Named after Academician D N Pryanishnikov, 23, Petropavlovskaja St., Perm 614990, Russia
| |
Collapse
|
25
|
Poczai P, Karvalics LZ. The little-known history of cleanliness and the forgotten pioneers of handwashing. Front Public Health 2022; 10:979464. [PMID: 36339162 PMCID: PMC9632745 DOI: 10.3389/fpubh.2022.979464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023] Open
Abstract
Handwashing is a simple method for preventing the spread of pathogens. It is now common practice, but this was not always the case. Advocating for it often costed a doctor his career in the 1840s. Hospitals in the early 1800s had little idea of the significance of hygiene; thus, they were often mocked as disease-producing incubators or as "houses of death." Many of the ill and dying were kept on wards with no ventilation or access to clean water; hospitals were found to offer only the most basic care. The mortality rate for patients admitted to hospital was three to five times greater than that for individuals cared for at home. Doctors did not routinely wash their hands until the mid-1800s, and they would proceed straight from dissecting a corpse to delivering a baby, providing the basis for the spread of puerperal fever. Despite advances in modern medicine, healthcare providers still face the issue of infection outbreaks caused by patient care. While the body of scientific data supporting hand hygiene as the key strategy to prevent the spread of pathogens is substantial, we highlight that achieving this crucial, long-awaited breakthrough was a hard task through history.
Collapse
Affiliation(s)
- Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Museomics Research Group, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Institute of Advanced Studies Kőszeg, Kőszeg, Hungary
| | - László Z. Karvalics
- Institute of Advanced Studies Kőszeg, Kőszeg, Hungary
- Department of Cultural Heritage and Human Information Sciences, University of Szeged, Szeged, Hungary
| |
Collapse
|
26
|
Gupta S, Sharma N, Naorem LD, Jain S, Raghava GP. Collection, compilation and analysis of bacterial vaccines. Comput Biol Med 2022; 149:106030. [DOI: 10.1016/j.compbiomed.2022.106030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
|
27
|
Ponce-Regalado MD, Pérez-Sánchez G, Rojas-Espinosa O, Arce-Paredes P, Girón-Peréz MI, Pavón-Romero L, Becerril-Villanueva E. NeuroImmunoEndocrinology: A brief historic narrative. J Leukoc Biol 2022; 112:97-114. [PMID: 35098580 DOI: 10.1002/jlb.5mr1221-287r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although no precise moment or unique event marks its birth, neuroimmunoendocrinology arguably shares a great deal of history with other medical and biologic disciplines. It originated from empirical observations and suppositions that failed to prevail upon the existing axioms. Despite the widespread resistance to embracing novel ideas, the seeming defeats inspired visionary researchers. Those pioneers managed to systematize the emerging knowledge and were able to contribute to science with real foundations. In consequence, new concepts and ideas arose in physiology, anatomy, endocrinology and early immunology. Together, they gave rise to a budding approach on the integration between the nervous, immune and endocrine systems. Then, neuroimmunoendocrinology emerged as a discipline integrating an intricate system with multidirectional functions and interactions that allow for responding to internal and external threats. Such response is mediated by cytokines, hormones and neurotransmitters, involved in different physiologic mechanisms of the organism homeostasis. Neuroimmunoendocrinology is no longer an area of scientific skepticism; on the contrary, it has cemented its position as a biomedical discipline worldwide for the past 70 years. Now, it offers a better understanding of pathologic processes.
Collapse
Affiliation(s)
- María Dolores Ponce-Regalado
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara Centro Universitario de los Altos Av, Tepatitlán de Morelos, Jalisco, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratory of Psychoimmunology, National Institute of Psychiatry "Ramón de la Fuente", Mexico City, Mexico
| | - Oscar Rojas-Espinosa
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Patricia Arce-Paredes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M Iván Girón-Peréz
- Laboratorio de Inmunotoxicología, Secretaría de Investigación y Posgrado Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Lenin Pavón-Romero
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara Centro Universitario de los Altos Av, Tepatitlán de Morelos, Jalisco, Mexico
| | - Enrique Becerril-Villanueva
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara Centro Universitario de los Altos Av, Tepatitlán de Morelos, Jalisco, Mexico
| |
Collapse
|
28
|
Abstract
Louis Pasteur is the most internationally known French scientist. He discovered molecular chirality, and he contributed to the understanding of the process of fermentation, helping brewers and winemakers to improve their beverages. He proposed a process, known as pasteurization, for the sterilization of wines. He established the germ theory of infectious diseases that allowed Joseph Lister to develop his antiseptic practice in surgery. He solved the problem of silkworm disease, although he had refuted the idea of Antoine Béchamp, who first considered it was a microbial infection. He created four vaccines (fowl cholera, anthrax, pig erysipelas, and rabies) in the paths of his precursors, Henri Toussaint (anthrax vaccine) and Pierre Victor Galtier (rabies vaccine). He generalized the word "vaccination" coined by Richard Dunning, Edward Jenner's friend. Robert Koch, his most famous opponent, pointed out the great ambiguity of Pasteur's approach to preparing his vaccines. Analysis of his laboratory notebooks has allowed historians to discern the differences between the legend built by his hagiographers and reality. In this review, we revisit his career, his undeniable achievements, and tell the truth about a hero who made every effort to build his own fame.
Collapse
Affiliation(s)
| | - Sandra Legout
- Centre de Ressources en Information Scientifique, Institut Pasteur, 75015 Paris, France;
| |
Collapse
|
29
|
Preventive Measures against Pandemics from the Beginning of Civilization to Nowadays—How Everything Has Remained the Same over the Millennia. J Clin Med 2022; 11:jcm11071960. [PMID: 35407571 PMCID: PMC8999828 DOI: 10.3390/jcm11071960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
As of 27 March 2022, the β-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 487 million individuals worldwide, causing more than 6.14 million deaths. SARS-CoV-2 spreads through close contact, causing the coronavirus disease 2019 (COVID-19); thus, emergency lockdowns have been implemented worldwide to avoid its spread. COVID-19 is not the first infectious disease that humankind has had to face during its history. Indeed, humans have recurrently been threatened by several emerging pathogens that killed a substantial fraction of the population. Historical sources document that as early as between the 10th and the 6th centuries BCE, the authorities prescribed physical–social isolation, physical distancing, and quarantine of the infected subjects until the end of the disease, measures that strongly resemble containment measures taken nowadays. In this review, we show a historical and literary overview of different epidemic diseases and how the recommendations in the pre-vaccine era were, and still are, effective in containing the contagion.
Collapse
|
30
|
Abstract
The Tabula Gallus is a proposed project that aims to create a map of every cell type in the chicken body and chick embryos. Chickens (Gallus gallus) are one of the most recognized model animals that recapitulate the development and physiology of mammals. The Tabula Gallus will generate a compendium of single-cell transcriptome data from Gallus gallus, characterize each cell type, and provide tools for the study of the biology of this species, similar to other ongoing cell atlas projects (Tabula Muris and Tabula Sapiens/Human Cell Atlas for mice and humans, respectively). The Tabula Gallus will potentially become an international collaboration between many researchers. This project will be useful for the basic scientific study of Gallus gallus and other birds (e.g., cell biology, molecular biology, developmental biology, neuroscience, physiology, oncology, virology, behavior, ecology, and evolution). It will eventually be beneficial for a better understanding of human health and diseases.
Collapse
|
31
|
Chiarot E, Pizza M. Animal models in vaccinology: state of the art and future perspectives for an animal-free approach. Curr Opin Microbiol 2021; 66:46-55. [PMID: 34953265 DOI: 10.1016/j.mib.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Vaccine discovery and development is mainly driven by studies on immunogenicity and safety based on the appropriate animal models. In this review we will describe the importance of animal models in vaccinology, from research and development to pre-licensure and post-licensure commitments with particular emphasis on the advantages and limitations of each animal species. Finally, we will describe the most modern technologies, the new in vitro and ex vivo models and the new advances in the field which may drive into a new era of 'animal free' vaccinology.
Collapse
|
32
|
Beiranvand S, Doosti A, Mirzaei SA. Putative novel B-cell vaccine candidates identified by reverse vaccinology and genomics approaches to control Acinetobacter baumannii serotypes. INFECTION GENETICS AND EVOLUTION 2021; 96:105138. [PMID: 34793968 DOI: 10.1016/j.meegid.2021.105138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 11/26/2022]
Abstract
In the last decade, Multi-drug resistance (MDR)-associated infections of Acinetobacter baumannii have grown worldwide. A cost-effective preventative strategy against this bacterium is vaccination. This study has presented five novel vaccine candidates against A. baumannii produced using the reverse vaccinology method. BLASTn was done to identify the most conserved antigens. PSORTb 3.0.2 was run to predict the subcellular localization of the proteins. The initial screening and antigenicity evaluation were performed using Vaxign. The ccSOL omics was also employed to predict protein solubility. The cross-membrane localization of the protein was predicted using PRED-TMBB. B cell epitope prediction was made for immunogenicity using the IEDB and BepiPred-2.0 database. Eventually, BLASTp was done to verify the extent of similarity to the human proteome to exclude the possibility of autoimmunity. Proteins failing to comply with the set parameters were filtered at each step. In silico, potential vaccines against 21 A. baumannii strains were identified using reverse vaccinology and subtractive genomic techniques. Based on the above criteria, out of the initial 15 A. baumannii proteins selected for screening, nine exposed/secreted/membrane proteins, i.e., Pfsr, LptE, OmpH, CarO, CsuB, CdiB, MlaA, FhuE, and were the most promising candidates. Their solubility and antigenicity were also examined and found to be more than 0.45 and 0.6, respectively. Based on the results, LptE was selected with the highest average antigenic score of 1.043 as the best protein, followed by FimF and Pfsr with scores of 1.022 and 1.014, respectively. In the end, five proteins were verified as promising candidates. Overall, the targets identified herein may be utilized in future strategies to control A. baumannii worldwide.
Collapse
Affiliation(s)
- Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Seyed Abbas Mirzaei
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
33
|
McPherson S. War of conscience: antivaccination and the battle for medical freedom during World War I. MEDICAL HUMANITIES 2021; 47:e7. [PMID: 34031185 DOI: 10.1136/medhum-2020-012069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The nineteenth century British antivaccination movement attracted popular and parliamentary support and ultimately saw the 1853 law which had made smallpox vaccination compulsory nullified by the 1898 'conscientious objector' clause. In keeping with popular public health discourse of the time, the movement had employed rhetoric associated with sanitary science and liberalism. In the early twentieth century new discoveries in bacteriology were fuelling advances in vaccination and the medical establishment was increasingly pushing for public health to move towards more interventionist medical approaches. With the onset of war in 1914, the medical establishment hoped to persuade the government to introduce compulsory typhoid inoculation for soldiers. This article analyses antivaccination literature, mainstream newspapers and medical press along with parliamentary debates to examine how the British antivaccination movement engaged with this new threat of compulsion by expanding the rhetoric of 'conscience' and emphasising medical freedom while also asserting scientific critique concerning the effectiveness of vaccines and the new laboratory based diagnostic practices. In spite of 'conscience' fitting well with an emerging public health discourse of individual subjectivity, the mainstream press ridiculed the idea of working-class soldiers having a conscience, coalescing around the idea that 'conscientious objection' be reserved for spiritual, philosophical and educated men who objected to military service. Moreover, in spite of engaging in reasoned scientific critique, parliament and press consorted in the demarcation of scientific knowledge as exclusive to medical scientists, reflecting a growing allegiance between the state and the medical establishment during the war. Any scientific arguments critical of medical orthodoxy were subjugated, labelled as 'crank' or 'faddist' as well as unpatriotic. The antivaccination narratives around conscience contributed to or were part of an evolving discourse on consent and ethics in medicine. Potential parallels are drawn with current and likely future debates around vaccination and counterhegemonic scientific approaches.
Collapse
Affiliation(s)
- Susan McPherson
- School of Health and Social Care, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
34
|
de Carvalho Lima EN, Diaz RS, Justo JF, Castilho Piqueira JR. Advances and Perspectives in the Use of Carbon Nanotubes in Vaccine Development. Int J Nanomedicine 2021; 16:5411-5435. [PMID: 34408416 PMCID: PMC8367085 DOI: 10.2147/ijn.s314308] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Advances in nanobiotechnology have allowed the utilization of nanotechnology through nanovaccines. Nanovaccines are powerful tools for enhancing the immunogenicity of a specific antigen and exhibit advantages over other adjuvant approaches, with features such as expanded stability, prolonged release, decreased immunotoxicity, and immunogenic selectivity. We introduce recent advances in carbon nanotubes (CNTs) to induce either a carrier effect as a nanoplatform or an immunostimulatory effect. Several studies of CNT-based nanovaccines revealed that due to the ability of CNTs to carry immunogenic molecules, they can act as nonclassical vaccines, a quality not possessed by vaccines with traditional formulations. Therefore, adapting and modifying the physicochemical properties of CNTs for use in vaccines may additionally enhance their efficacy in inducing a T cell-based immune response. Accordingly, the purpose of this study is to renew and awaken interest in and knowledge of the safe use of CNTs as adjuvants and carriers in vaccines.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Rodríguez-Martín D, Louloudes-Lázaro A, Avia M, Martín V, Rojas JM, Sevilla N. The Interplay between Bluetongue Virus Infections and Adaptive Immunity. Viruses 2021; 13:1511. [PMID: 34452376 PMCID: PMC8402766 DOI: 10.3390/v13081511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Viral infections have long provided a platform to understand the workings of immunity. For instance, great strides towards defining basic immunology concepts, such as MHC restriction of antigen presentation or T-cell memory development and maintenance, have been achieved thanks to the study of lymphocytic choriomeningitis virus (LCMV) infections. These studies have also shaped our understanding of antiviral immunity, and in particular T-cell responses. In the present review, we discuss how bluetongue virus (BTV), an economically important arbovirus from the Reoviridae family that affects ruminants, affects adaptive immunity in the natural hosts. During the initial stages of infection, BTV triggers leucopenia in the hosts. The host then mounts an adaptive immune response that controls the disease. In this work, we discuss how BTV triggers CD8+ T-cell expansion and neutralizing antibody responses, yet in some individuals viremia remains detectable after these adaptive immune mechanisms are active. We present some unpublished data showing that BTV infection also affects other T cell populations such as CD4+ T-cells or γδ T-cells, as well as B-cell numbers in the periphery. This review also discusses how BTV evades these adaptive immune mechanisms so that it can be transmitted back to the arthropod host. Understanding the interaction of BTV with immunity could ultimately define the correlates of protection with immune mechanisms that would improve our knowledge of ruminant immunology.
Collapse
Affiliation(s)
| | | | | | | | | | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (D.R.-M.); (A.L.-L.); (M.A.); (V.M.); (J.M.R.)
| |
Collapse
|
36
|
Ghezzi P. Redox regulation of immunity and the role of small molecular weight thiols. Redox Biol 2021; 44:102001. [PMID: 33994345 PMCID: PMC8212150 DOI: 10.1016/j.redox.2021.102001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/31/2021] [Accepted: 05/02/2021] [Indexed: 01/07/2023] Open
Abstract
It is thought that excessive production of reactive oxygen species (ROS) can be a causal component in many diseases, some of which have an inflammatory component. This led to an oversimplification whereby ROS are seen as inflammatory and antioxidants anti-inflammatory. This paper aims at reviewing some of the literature on thiols in host defense. The review will first summarize the mechanisms by which we survive infections by pathogens. Then we will consider how the redox field evolved from the concept of oxidative stress to that of redox regulation and how it intersects the field of innate immunity. A third section will analyze how an oversimplified oxidative stress theory of disease led to a hypothesis on the role of ROS and glutathione (GSH) in immunity, respectively as pro- and anti-inflammatory mediators. Finally, we will discuss some recent research and how to think out of the box of that oversimplification and link the role of thiols in redox regulation to the mechanisms by which we survive an infection outlined in the first section.
Collapse
Affiliation(s)
- Pietro Ghezzi
- Brighton and Sussex Medical School, Brighton, Great Britain, BN1 9RY, UK.
| |
Collapse
|
37
|
Luo R, Delaunay‐Moisan A, Timmis K, Danchin A. SARS-CoV-2 biology and variants: anticipation of viral evolution and what needs to be done. Environ Microbiol 2021; 23:2339-2363. [PMID: 33769683 PMCID: PMC8251359 DOI: 10.1111/1462-2920.15487] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The global propagation of SARS-CoV-2 and the detection of a large number of variants, some of which have replaced the original clade to become dominant, underscores the fact that the virus is actively exploring its evolutionary space. The longer high levels of viral multiplication occur - permitted by high levels of transmission -, the more the virus can adapt to the human host and find ways to success. The third wave of the COVID-19 pandemic is starting in different parts of the world, emphasizing that transmission containment measures that are being imposed are not adequate. Part of the consideration in determining containment measures is the rationale that vaccination will soon stop transmission and allow a return to normality. However, vaccines themselves represent a selection pressure for evolution of vaccine-resistant variants, so the coupling of a policy of permitting high levels of transmission/virus multiplication during vaccine roll-out with the expectation that vaccines will deal with the pandemic, is unrealistic. In the absence of effective antivirals, it is not improbable that SARS-CoV-2 infection prophylaxis will involve an annual vaccination campaign against 'dominant' viral variants, similar to influenza prophylaxis. Living with COVID-19 will be an issue of SARS-CoV-2 variants and evolution. It is therefore crucial to understand how SARS-CoV-2 evolves and what constrains its evolution, in order to anticipate the variants that will emerge. Thus far, the focus has been on the receptor-binding spike protein, but the virus is complex, encoding 26 proteins which interact with a large number of host factors, so the possibilities for evolution are manifold and not predictable a priori. However, if we are to mount the best defence against COVID-19, we must mount it against the variants, and to do this, we must have knowledge about the evolutionary possibilities of the virus. In addition to the generic cellular interactions of the virus, there are extensive polymorphisms in humans (e.g. Lewis, HLA, etc.), some distributed within most or all populations, some restricted to specific ethnic populations and these variations pose additional opportunities for/constraints on viral evolution. We now have the wherewithal - viral genome sequencing, protein structure determination/modelling, protein interaction analysis - to functionally characterize viral variants, but access to comprehensive genome data is extremely uneven. Yet, to develop an understanding of the impacts of such evolution on transmission and disease, we must link it to transmission (viral epidemiology) and disease data (patient clinical data), and the population granularities of these. In this editorial, we explore key facets of viral biology and the influence of relevant aspects of human polymorphisms, human behaviour, geography and climate and, based on this, derive a series of recommendations to monitor viral evolution and predict the types of variants that are likely to arise.
Collapse
Affiliation(s)
- Ruibang Luo
- Department of Computer ScienceThe University of Hong KongBonham RoadPokfulamHong Kong
| | - Agnès Delaunay‐Moisan
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | - Antoine Danchin
- Kodikos Labs, Institut Cochin, 24 rue du Faubourg Saint‐JacquesParis75014France
- School of Biomedical Sciences, Li Kashing Faculty of MedicineUniversity of Hong Kong21 Sassoon RoadHong Kong
| |
Collapse
|
38
|
Giménez-Roig J, Núñez-Manchón E, Alemany R, Villanueva E, Fillat C. Codon Usage and Adenovirus Fitness: Implications for Vaccine Development. Front Microbiol 2021; 12:633946. [PMID: 33643266 PMCID: PMC7902882 DOI: 10.3389/fmicb.2021.633946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/20/2021] [Indexed: 02/03/2023] Open
Abstract
Vaccination is the most effective method to date to prevent viral diseases. It intends to mimic a naturally occurring infection while avoiding the disease, exposing our bodies to viral antigens to trigger an immune response that will protect us from future infections. Among different strategies for vaccine development, recombinant vaccines are one of the most efficient ones. Recombinant vaccines use safe viral vectors as vehicles and incorporate a transgenic antigen of the pathogen against which we intend to generate an immune response. These vaccines can be based on replication-deficient viruses or replication-competent viruses. While the most effective strategy involves replication-competent viruses, they must be attenuated to prevent any health hazard while guaranteeing a strong humoral and cellular immune response. Several attenuation strategies for adenoviral-based vaccine development have been contemplated over time. In this paper, we will review them and discuss novel approaches based on the principle that protein synthesis from individual genes can be modulated by codon usage bias manipulation. We will summarize vaccine approaches that consider recoding of viral proteins to produce adenoviral attenuation and recoding of the transgene antigens for both viral attenuation and efficient viral epitope expression.
Collapse
Affiliation(s)
- Judit Giménez-Roig
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Estela Núñez-Manchón
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ramon Alemany
- Procure Program, Institut Català d’Oncologia- Oncobell Program, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
39
|
Vacchelli E, Martins I, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide vaccines in cancer therapy. Oncoimmunology 2021; 1:1557-1576. [PMID: 23264902 PMCID: PMC3525611 DOI: 10.4161/onci.22428] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prophylactic vaccination constitutes one of the most prominent medical achievements of history. This concept was first demonstrated by the pioneer work of Edward Jenner, dating back to the late 1790s, after which an array of preparations that confer life-long protective immunity against several infectious agents has been developed. The ensuing implementation of nation-wide vaccination programs has de facto abated the incidence of dreadful diseases including rabies, typhoid, cholera and many others. Among all, the most impressive result of vaccination campaigns is surely represented by the eradication of natural smallpox infection, which was definitively certified by the WHO in 1980. The idea of employing vaccines as anticancer interventions was first theorized in the 1890s by Paul Ehrlich and William Coley. However, it soon became clear that while vaccination could be efficiently employed as a preventive measure against infectious agents, anticancer vaccines would have to (1) operate as therapeutic, rather than preventive, interventions (at least in the vast majority of settings), and (2) circumvent the fact that tumor cells often fail to elicit immune responses. During the past 30 y, along with the recognition that the immune system is not irresponsive to tumors (as it was initially thought) and that malignant cells express tumor-associated antigens whereby they can be discriminated from normal cells, considerable efforts have been dedicated to the development of anticancer vaccines. Some of these approaches, encompassing cell-based, DNA-based and purified component-based preparations, have already been shown to exert conspicuous anticancer effects in cohorts of patients affected by both hematological and solid malignancies. In this Trial Watch, we will summarize the results of recent clinical trials that have evaluated/are evaluating purified peptides or full-length proteins as therapeutic interventions against cancer.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
In this opening chapter, we outline the basics of vaccine delivery and subsequent immune reactivity. Vaccine delivery is an augmentation to immunization more generally in that a delivery reagent is harnessed to improve administration of the key ingredient (i.e., the antigen) needed to provoke an immune response. In this chapter, we discuss the evolution of vaccine design and how such efforts evolved into targeted administration/delivery of key antigens. We then provide overview descriptions of vaccine immune responses and methods for assessment. More generally, the chapter sets the tone for the remainder of this book, which will focus upon each step of the vaccine process with a special emphasis on how vaccine delivery contributes to overall health outcomes.
Collapse
Affiliation(s)
- Andrew Hill
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Marie Beitelshees
- Department of Chemical and Biological Engineering, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
41
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
42
|
Abstract
The chicken model organism has advanced the areas of developmental biology, virology, immunology, oncology, epigenetic regulation of gene expression, conservation biology, and genomics of domestication. Further, the chicken model organism has aided in our understanding of human disease. Through the recent advances in high-throughput sequencing and bioinformatic tools, researchers have successfully identified sequences in the chicken genome that have human orthologs, improving mammalian genome annotation. In this review, we highlight the importance of chicken as an animal model in basic and pre-clinical research. We will present the importance of chicken in poultry epigenetics and in genomic studies that trace back to their ancestor, the last link between human and chicken in the tree of life. There are still many genes of unknown function in the chicken genome yet to be characterized. By taking advantage of recent sequencing technologies, it is possible to gain further insight into the chicken epigenome.
Collapse
Affiliation(s)
- Tasnim H Beacon
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
43
|
Arjunan P. Eye on the Enigmatic Link: Dysbiotic Oral Pathogens in Ocular Diseases; The Flip Side. Int Rev Immunol 2020; 40:409-432. [PMID: 33179994 DOI: 10.1080/08830185.2020.1845330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouth and associated structures were regarded as separate entities from the rest of the body. However, there is a paradigm shift in this conception and oral health is now considered as a fundamental part of overall well-being. In recent years, the subject of oral-foci of infection has attained a resurgence in terms of systemic morbidities while limited observations denote the implication of chronic oral inflammation in the pathogenesis of eye diseases. Hitherto, there is a paucity for mechanistic insights underlying the reported link between periodontal disease (PD) and ocular comorbidities. In light of prevailing scientific evidence, this review article will focus on the understudied theme, that is, the impact of oral dysbiosis in the induction and/or progression of inflammatory eye diseases like diabetic retinopathy, scleritis, uveitis, glaucoma, age-related macular degeneration (AMD). Furthermore, the plausible mechanisms by which periodontal microbiota may trigger immune dysfunction in the Oro-optic-network and promote the development of PD-associated AMD have been discussed.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| |
Collapse
|
44
|
Manish M, Verma S, Kandari D, Kulshreshtha P, Singh S, Bhatnagar R. Anthrax prevention through vaccine and post-exposure therapy. Expert Opin Biol Ther 2020; 20:1405-1425. [DOI: 10.1080/14712598.2020.1801626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Manish Manish
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shashikala Verma
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Parul Kulshreshtha
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India
| | - Samer Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
45
|
Horve PF, Lloyd S, Mhuireach GA, Dietz L, Fretz M, MacCrone G, Van Den Wymelenberg K, Ishaq SL. Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:219-235. [PMID: 31308484 PMCID: PMC7100162 DOI: 10.1038/s41370-019-0157-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/23/2019] [Accepted: 06/30/2019] [Indexed: 05/06/2023]
Abstract
In the constructed habitat in which we spend up to 90% of our time, architectural design influences occupants' behavioral patterns, interactions with objects, surfaces, rituals, the outside environment, and each other. Within this built environment, human behavior and building design contribute to the accrual and dispersal of microorganisms; it is a collection of fomites that transfer microorganisms; reservoirs that collect biomass; structures that induce human or air movement patterns; and space types that encourage proximity or isolation between humans whose personal microbial clouds disperse cells into buildings. There have been recent calls to incorporate building microbiology into occupant health and exposure research and standards, yet the built environment is largely viewed as a repository for microorganisms which are to be eliminated, instead of a habitat which is inexorably linked to the microbial influences of building inhabitants. Health sectors have re-evaluated the role of microorganisms in health, incorporating microorganisms into prevention and treatment protocols, yet no paradigm shift has occurred with respect to microbiology of the built environment, despite calls to do so. Technological and logistical constraints often preclude our ability to link health outcomes to indoor microbiology, yet sufficient study exists to inform the theory and implementation of the next era of research and intervention in the built environment. This review presents built environment characteristics in relation to human health and disease, explores some of the current experimental strategies and interventions which explore health in the built environment, and discusses an emerging model for fostering indoor microbiology rather than fearing it.
Collapse
Affiliation(s)
- Patrick F Horve
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Savanna Lloyd
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Gwynne A Mhuireach
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Leslie Dietz
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Mark Fretz
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
| | - Georgia MacCrone
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Kevin Van Den Wymelenberg
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
| | - Suzanne L Ishaq
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
46
|
Dos Santos JC, Vilela Teodoro Silva M, Ribeiro-Dias F, Joosten LAB. Non-specific effects of BCG in protozoal infections: tegumentary leishmaniasis and malaria. Clin Microbiol Infect 2019; 25:1479-1483. [PMID: 31212075 DOI: 10.1016/j.cmi.2019.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Leishmaniasis and malaria are major causes of illness in the poorest countries. In the absence of efficient strategies to prevent infections and to control the transmission of the parasites by insect vectors, treatment relies on drug therapy. Vaccine development continues on several fronts; however none of the candidates developed has so far been shown to provide long-lasting protection at a population level. Because the bacillus Calmette-Guérin (BCG) vaccine can induce heterologous protective effects, we hypothesize that BCG has beneficial effects in the control of tegumentary leishmaniasis (TL) and malaria. AIMS In this review we describe evidence for the protective efficacy of BCG against tegumentary leishmaniasis and malaria in humans. SOURCES Relevant data from peer-reviewed scientific literature published on Pubmed up to January 2019 were examined. CONTENT From experimental animal and various human studies with BCG and one recent randomized malaria trial there is evidence that BCG has beneficial effects in Leishmania spp. and Plasmodium falciparum infections. Although the precise mechanisms remain unknown, BCG can activate innate immune responses, and an increasing body of evidence demonstrates that the induction of trained innate immunity could explain its non-specific protective effects. IMPLICATIONS Despite many years of research to prevent and treat TL and malaria, these diseases remain a public health problem in tropical countries. Future studies are required to examine if BCG vaccination could be used as an effective treatment option.
Collapse
Affiliation(s)
- J C Dos Santos
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - M Vilela Teodoro Silva
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - F Ribeiro-Dias
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - L A B Joosten
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
47
|
Li L, Wang G. Enzymatic origin and various curvatures of metabolic scaling in microbes. Sci Rep 2019; 9:4082. [PMID: 30858543 PMCID: PMC6411939 DOI: 10.1038/s41598-019-40712-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/22/2019] [Indexed: 11/11/2022] Open
Abstract
The famous and controversial power law is a basal metabolic scaling model mainly derived from the “surface rule” or a fractal transport network. However, this law neglects biological mechanisms in the important active state. Here, we hypothesized that the relative metabolic rate and growth rate of actively growing microbes are driven by the changeable rate of their rate-limiting enzymes and concluded that natural logarithmic microbial metabolism (lnλ) and growth (or biomass) (lnM) are both dependent on limiting resources, and then developed novel models with interdependence between lnλ and lnM. We tested the models using the data obtained from the literature. We explain how and why the scaling is usually curved with the difference between microbial metabolic and growth (or biomass’s) half-saturation constants (KM, Kλ) in the active state and agree that the linear relationship of the power law is a particular case under the given condition: KM = Kλ, which means that the enzyme dynamics may drive active and basal metabolic scaling relationships. Our interdependent model is more general than the power law, which is important for integrating the ecology and biochemical processes.
Collapse
Affiliation(s)
- Liyan Li
- College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Genxuan Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
48
|
Abdel-Hakeem MS. Viruses Teaching Immunology: Role of LCMV Model and Human Viral Infections in Immunological Discoveries. Viruses 2019; 11:E106. [PMID: 30691215 PMCID: PMC6410308 DOI: 10.3390/v11020106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Virology has played an essential role in deciphering many immunological phenomena, thus shaping our current understanding of the immune system. Animal models of viral infection and human viral infections were both important tools for immunological discoveries. This review discusses two immunological breakthroughs originally identified with the help of the lymphocytic choriomeningitis virus (LCMV) model; immunological restriction by major histocompatibility complex and immunotherapy using checkpoint blockade. In addition, we discuss related discoveries such as development of tetramers, viral escape mutation, and the phenomenon of T-cell exhaustion.
Collapse
Affiliation(s)
- Mohamed S Abdel-Hakeem
- Penn Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| |
Collapse
|
49
|
Sánchez-Ramón S, Conejero L, Netea MG, Sancho D, Palomares Ó, Subiza JL. Trained Immunity-Based Vaccines: A New Paradigm for the Development of Broad-Spectrum Anti-infectious Formulations. Front Immunol 2018; 9:2936. [PMID: 30619296 PMCID: PMC6304371 DOI: 10.3389/fimmu.2018.02936] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Challenge with specific microbial stimuli induces long lasting epigenetic changes in innate immune cells that result in their enhanced response to a second challenge by the same or unrelated microbial insult, a process referred to as trained immunity. This opens a new avenue in vaccinology to develop Trained Immunity-based Vaccines (TIbV), defined as vaccine formulations that induce training in innate immune cells. Unlike conventional vaccines, which are aimed to elicit only specific responses to vaccine-related antigens, TIbV aim to stimulate broader responses. As trained immunity is generally triggered by pattern recognition receptors (PRRs), TIbV should be formulated with microbial structures containing suitable PRR-ligands. The TIbV concept we describe here may be used for the development of vaccines focused to promote host resistance against a wide spectrum of pathogens. Under the umbrella of trained immunity, a broad protection can be achieved by: (i) increasing the nonspecific effector response of innate immune cells (e.g., monocyte/macrophages) to pathogens, (ii) harnessing the activation state of dendritic cells to enhance adaptive T cell responses to both specific and nonrelated (bystander) antigens. This capacity of TIbV to promote responses beyond their nominal antigens may be particularly useful when conventional vaccines are not available or when multiple coinfections and/or recurrent infections arise in susceptible individuals. As the set of PRR-ligands chosen is essential not only for stimulating trained immunity but also to drive adaptive immunity, the precise design of TIbV will improve with the knowledge on the functional relationship among the different PRRs. While the TIbV concept is emerging, a number of the current anti-infectious vaccines, immunostimulants, and even vaccine adjuvants may already fall in the TIbV category. This may apply to increase immunogenicity of novel vaccine design approaches based on small molecules, like those achieved by reverse vaccinology.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, ENT and Ophthalmology, Complutense University School of Medicine, Madrid, Spain
| | | | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Óscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | | |
Collapse
|
50
|
Astawa INM, Agustini NLP, Masa Tenaya IW, Aryawiguna IPGW. Protective antibody response of Balb/c mice to Bali rabies virus isolate propagated in BHK-21 cells. J Vet Med Sci 2018; 80:1596-1603. [PMID: 30210066 PMCID: PMC6207530 DOI: 10.1292/jvms.17-0385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The protective antibody response of Balb/c mice to Bali rabies virus (RABV) in BHK-21
cells was studied. The virus was isolated from a rabid dog and was adapted to replicate in
BHK-21 cell culture for seven passages. The BHK-21-adapted Bali RABV (BHK-Bali RABV) was
inactivated with binary ethylenimine and 24 mice were immunized twice at 21-days intervals
with the inactivated virus and Rabisin® vaccine. Virus replication was detected using
indirect immunofluorescence, immunocytochemistry, and western blotting assays.
Enzyme-linked immunosorbent assay examination 2 weeks after the first immunization
revealed RABV antibody titers that were mostly below the minimum protective level (<0.5
equivalent unit, EU). Antibody titers increased sharply after the second immunization.
Antibody titers in serum of mice induced by inactivated BHK-Bali RABV one week after the
second immunization were slightly lower (0.8–3.8 EU) than those induced by Rabisin vaccine
(0.9–6.3 EU). RABV antibody titers were stable for at least 6 weeks after the second
immunization. Both Rabisin vaccine and inactivated BHK-Bali RABV induced neutralizing
antibodies with neutralization titers (50% protective dose per ml) of
29.84 for 0.1 ml Rabisin, 211.41 for 0.2
ml Rabisin, 27.41 for 0.1 ml BHK-Bali RABV,
and 28.25 for 0.2 ml BHK-Bali RABV. Thus, inactivated BHK-Bali
RABV induces a protective immune response in Balb/c mice, but at lower levels compared to
induction by Rabisin vaccine.
Collapse
Affiliation(s)
- I Nyoman Mantik Astawa
- Laboratory of Veterinary Virology, Faculty of Veterinary Medicine, Udayana University, Jln. PB Sudirman, Denpasar, Bali, Indonesia
| | - Ni Luh Putu Agustini
- Biotechnology Laboratory, Animal Disease Investigation Center, Regional IV. Denpasar Bali, Indonesia
| | - I Wayan Masa Tenaya
- Biotechnology Laboratory, Animal Disease Investigation Center, Regional IV. Denpasar Bali, Indonesia
| | - I Putu Gede Widnyana Aryawiguna
- Undergraduate Student at the Faculty of Veterinary Medicine, Udayana University, Jln. PB Sudirman, Denpasar, Bali, Indonesia
| |
Collapse
|