1
|
Monsen P, Bommi PV, Grigorescu AA, Lauing KL, Mao Y, Berardi P, Zhai L, Ojo O, Penco-Campillo M, Koch T, Egozi M, Jha S, Dunne SF, Jiang H, Song G, Zhang F, Kregel S, Vaziri-Gohar A, Fanning SW, Sanchez-Gomez P, Allen JM, Yamini B, Lukas RV, Wainwright DA, Schiltz GE. Rational Design and Optimization of a Potent IDO1 Proteolysis Targeting Chimera (PROTAC). J Med Chem 2025; 68:4961-4987. [PMID: 39946350 PMCID: PMC11874035 DOI: 10.1021/acs.jmedchem.5c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/19/2025]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive protein that inhibits antitumor immunity through both tryptophan metabolism and nonenzymatic functions. Drugs targeting IDO1 enzyme activity have failed to improve the overall survival of patients with cancer. Developing new therapeutics that neutralize both enzyme- and nonenzyme-derived immunosuppressive IDO1 effects is therefore of high interest. We previously described a novel proteolysis targeting chimera (PROTAC), NU223612, that degrades IDO1 in cultured human glioblastoma (GBM) cells, as well as in well-established brain tumors, in vivo. In this study, we rationally optimized the structure of our lead series to create NU227326, which degrades IDO1 with a DC50 of 5 nM in human GBM cells. Mechanistic studies showed that IDO1 degradation occurred through the ubiquitin-proteasome system and was sustained for at least 2 days, supporting NU227326 as a highly potent IDO1 PROTAC suitable for further studies in GBM and other human cancers.
Collapse
Affiliation(s)
- Paige
J. Monsen
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Prashant V. Bommi
- Department
of Cancer Biology, Loyola University Chicago
Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Arabela A. Grigorescu
- Department
of Molecular Biosciences, Northwestern University
Weinberg College of Arts and Sciences, Evanston, Illinois 60208, United States
| | - Kristen L. Lauing
- Department
of Cancer Biology, Loyola University Chicago
Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Yingyu Mao
- High-Throughput
Analysis Laboratory, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Payton Berardi
- Department
of Cancer Biology, Loyola University Chicago
Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Lijie Zhai
- Department
of Cancer Biology, Loyola University Chicago
Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Oluwatomilayo Ojo
- Department
of Cancer Biology, Loyola University Chicago
Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Manon Penco-Campillo
- Department
of Cancer Biology, Loyola University Chicago
Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Taylor Koch
- Department
of Cancer Biology, Loyola University Chicago
Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Michael Egozi
- Department
of Cancer Biology, Loyola University Chicago
Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Sonam Jha
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sara F. Dunne
- High-Throughput
Analysis Laboratory, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Hong Jiang
- HD
Biosciences
(China) Co., Ltd., A WuXi AppTec Company, Shanghai 201201, China
| | - Guiqin Song
- HD
Biosciences
(China) Co., Ltd., A WuXi AppTec Company, Shanghai 201201, China
| | - Fang Zhang
- HD
Biosciences
(China) Co., Ltd., A WuXi AppTec Company, Shanghai 201201, China
| | - Steven Kregel
- Department
of Cancer Biology, Loyola University Chicago
Stritch School of Medicine, Maywood, Illinois 60153, United States
- Cardinal
Bernardin Cancer Center, Maywood, Illinois 60153, United States
| | - Ali Vaziri-Gohar
- Department
of Cancer Biology, Loyola University Chicago
Stritch School of Medicine, Maywood, Illinois 60153, United States
- Cardinal
Bernardin Cancer Center, Maywood, Illinois 60153, United States
- Department
of Surgery, Loyola University Chicago Stritch
School of Medicine, Maywood, Illinois 60153, United States
| | - Sean W. Fanning
- Department
of Cancer Biology, Loyola University Chicago
Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Pilar Sanchez-Gomez
- Neuro-Oncology
Unit, Unidad Funcional de Investigación
en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos
III (ISCIII), Madrid 28029, Spain
| | - Jacob M. Allen
- Department
of Health and Kinesiology, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Bakhtiar Yamini
- Department
of Neurological Surgery, University of Chicago
Medicine, Chicago, Illinois 60637, United States
| | - Rimas V. Lukas
- Department
of Neurology, Northwestern University Feinberg
School of Medicine, Chicago, Illinois 60611, United States
| | - Derek A. Wainwright
- Department
of Cancer Biology, Loyola University Chicago
Stritch School of Medicine, Maywood, Illinois 60153, United States
- Cardinal
Bernardin Cancer Center, Maywood, Illinois 60153, United States
- Department
of Neurological Surgery, Loyola University
Medical Center, Maywood, Illinois 60153, United States
| | - Gary E. Schiltz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Department
of Pharmacology, Northwestern University,
Feinberg School of Medicine, Chicago, Illinois 60611 United States
| |
Collapse
|
2
|
Liao J, Duan Y, Xu X, Liu Y, Zhan C, Xiao G. Circadian rhythm related genes signature in glioma for drug resistance prediction: a comprehensive analysis integrating transcriptomics and machine learning. Discov Oncol 2025; 16:119. [PMID: 39909964 PMCID: PMC11799505 DOI: 10.1007/s12672-025-01863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Gliomas, 24% of all primary brain tumors, have diverse histology and poor survival rates, with about 70% recurring due to acquired or de novo resistance. Insomnia in patients is correlated strongly with circadian rhythm disruptions. The correlation between circadian rhythm disorders and drug resistance of some tumors has been proved. However, the precise mechanism underlying the relationship between glioma and circadian rhythm disorders has not been elucidated. METHODS Circadian rhythm-related genes (CRRGs) were identified using the least absolute shrinkage and selection operator (LASSO) regression, and stochastic gradient descent (SGD) was performed to form a circadian rhythm-related score (CRRS) model. The studies of immune cell infiltration, genetic variations, differential gene expression pattern, and single cell analysis were performed for exploring the mechanisms of chemotherapy resistance in glioma. The relationship between CRRGs and chemosensitivity was also confirmed by IC 50 (half maximal inhibitory concentration) analysis. RESULT Signatures of 16 CRRGs were screened out and identified. Based on the CRRS model, an optimal comprehensive nomogram was created, exhibiting a favorable potential for predicting drug resistance in samples. Immune infiltration, cell-cell communication, and single cell analysis all indicated that high CRRS group was closely related to innate immune cells. IC50 analysis showed that CRRG knockdown enhanced the chemosensitivity of glioma. CONCLUSION A significant correlation between CRRGs, drug resistance of glioma, and innate immune cells was found, which might hold a significant role in the drug resistance of glioma.
Collapse
Affiliation(s)
- Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxing Duan
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xiangwang Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaxue Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaohong Zhan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Tan Q, Deng S, Xiong L. Role of Kynurenine and Its Derivatives in Liver Diseases: Recent Advances and Future Clinical Perspectives. Int J Mol Sci 2025; 26:968. [PMID: 39940736 PMCID: PMC11816720 DOI: 10.3390/ijms26030968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Liver health is integral to overall human well-being and the pathogenesis of various diseases. In recent years, kynurenine and its derivatives have gradually been recognized for their involvement in various pathophysiological processes, especially in the regulation of liver diseases, such as acute liver injury, non-alcoholic fatty liver disease, cirrhosis, and liver cancer. Kynurenine and its derivatives are derived from tryptophan, which is broken down by the enzymes indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO), converting the essential amino acid tryptophan into kynurenine (KYN) and other downstream metabolites, such as kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), xanthurenic acid (XA), and quinolinic acid (QA). In liver diseases, kynurenine and its derivatives can promote the activity of the transcription factor aryl hydrocarbon receptor (AhR), suppress T cell activity for immune modulation, inhibit the activation of inflammatory signaling pathways, such as NF-κB for anti-inflammatory effects, and inhibit the activation of hepatic stellate cells to slow down fibrosis progression. Additionally, kynurenine and other downstream metabolites can influence the progression of liver diseases by modulating the gut microbiota. Therefore, in this review, we summarize and explore the mechanisms by which kynurenine and its derivatives regulate liver diseases to help develop new diagnostic or prognostic biomarkers and effective therapies targeting the kynurenine pathway for liver disease treatment.
Collapse
Affiliation(s)
- Qiwen Tan
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Shenghe Deng
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lijuan Xiong
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Department of Nosocomial Infection Management, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Monsen PJ, Bommi PV, Grigorescu AA, Lauing KL, Mao Y, Berardi P, Zhai L, Ojo O, Penco-Campillo M, Koch T, Egozi M, Jha SV, Dunne SF, Jiang H, Song G, Zhang F, Kregel S, Vaziri-Gohar A, Fanning S, Sanchez-Gomez P, Allen JM, Yamini B, Lukas RV, Wainwright DA, Schiltz GE. Rational Design and Optimization of a Potent IDO1 Proteolysis Targeting Chimera (PROTAC). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631731. [PMID: 39829781 PMCID: PMC11741391 DOI: 10.1101/2025.01.07.631731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a potently immunosuppressive protein that inhibits antitumor immunity through both tryptophan metabolism and non-enzymatic functions. Pharmacological therapies targeting IDO1 enzyme activity have generally failed to improve the overall survival of patients with cancer. Developing new therapeutic agents that are capable of neutralizing both enzyme-and non-enzyme-derived immunosuppressive IDO1 effects is therefore of high interest. We previously described the development of a novel Proteolysis Targeting Chimera (PROTAC), NU223612, that degrades IDO1 in cultured human glioblastoma (GBM) cells, as well as in well-established brain tumors, in vivo . In this study, we rationally optimized the composition, rigidity, and linker orientation of the PROTAC structure to create NU227326, which degrades IDO1 with a DC 50 of 5 nM in human GBM cells. Mechanistic studies showed that IDO1 degradation occurred through the ubiquitin-proteasome system and was sustained for at least 2 days, supporting NU227326 as a highly potent IDO1 PROTAC suitable for further studies in GBM and other human cancers.
Collapse
|
5
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2024:S2090-1232(24)00315-1. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Bickerdike MJ, Nafia I, Bessede A, Chen CB, Wangpaichitr M. AT-0174, a novel dual IDO1/TDO2 enzyme inhibitor, synergises with temozolomide to improve survival in an orthotopic mouse model of glioblastoma. BMC Cancer 2024; 24:889. [PMID: 39048947 PMCID: PMC11267968 DOI: 10.1186/s12885-024-12631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Glioblastoma is an aggressive brain cancer, usually of unknown etiology, and with a very poor prognosis. Survival from diagnosis averages only 3 months if left untreated and this only increases to 12-15 months upon treatment. Treatment options are currently limited and typically comprise radiotherapy plus a course of the DNA-alkylating chemotherapeutic temozolomide. Unfortunately, the disease invariably relapses after several months of treatment with temozolomide, due to the development of resistance to the drug. Increased local tryptophan metabolism is a feature of many solid malignant tumours through increased expression of tryptophan metabolising enzymes. Glioblastomas are notable for featuring increased expression of the tryptophan catabolizing enzymes indole-2,3-dioxygenase-1 (IDO1), and especially tryptophan-2,3-dioxygenase-2 (TDO2). Increased IDO1 and TDO2 activity is known to suppress the cytotoxic T cell response to tumour cells, and this has led to the proposal that the IDO1 and TDO2 enzymes represent promising immuno-oncology targets. In addition to immune modulation, however, recent studies have also identified the activity of these enzymes is important in the development of resistance to chemotherapeutic agents. METHODS In the current study, the efficacy of a novel dual inhibitor of IDO1 and TDO2, AT-0174, was assessed in an orthotopic mouse model of glioblastoma. C57BL/6J mice were stereotaxically implanted with GL261(luc2) cells into the striatum and then administered either vehicle control, temozolomide (8 mg/kg IP; five 8-day cycles of treatment every 2 days), AT-0174 (120 mg/kg/day PO) or both temozolomide + AT-0174, all given from day 7 after implantation. RESULTS Temozolomide decreased tumour growth and improved median survival but increased the infiltration of CD4+ Tregs. AT-0174 had no significant effect on tumour growth or survival when given alone, but provided clear synergy in combination with temozolomide, further decreasing tumour growth and significantly improving survival, as well as elevating CD8+ T cell expression and decreasing CD4+ Treg infiltration. CONCLUSION AT-0174 exhibited an ideal profile for adjunct treatment of glioblastomas with the first-line chemotherapeutic drug temozolomide to prevent development of CD4+ Treg-mediated chemoresistance.
Collapse
Affiliation(s)
- Michael J Bickerdike
- Antido Therapeutics (Australia) Pty Ltd, Level 7, 616 St Kilda Road, Melbourne, VIC, 3004, Australia.
- BioTarget Consulting Ltd, Auckland, New Zealand.
| | | | | | | | - Medhi Wangpaichitr
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Miami VA Healthcare System, Miami, FL, USA
| |
Collapse
|
7
|
Elguindy M, Young JS, Mondal I, Lu RO, Ho WS. Glioma-Immune Cell Crosstalk in Tumor Progression. Cancers (Basel) 2024; 16:308. [PMID: 38254796 PMCID: PMC10813573 DOI: 10.3390/cancers16020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Glioma progression is a complex process controlled by molecular factors that coordinate the crosstalk between tumor cells and components of the tumor microenvironment (TME). Among these, immune cells play a critical role in cancer survival and progression. The complex interplay between cancer cells and the immune TME influences the outcome of immunotherapy and other anti-cancer therapies. Here, we present an updated view of the pro- and anti-tumor activities of the main myeloid and lymphocyte cell populations in the glioma TME. We review the underlying mechanisms involved in crosstalk between cancer cells and immune cells that enable gliomas to evade the immune system and co-opt these cells for tumor growth. Lastly, we discuss the current and experimental therapeutic options being developed to revert the immunosuppressive activity of the glioma TME. Knowledge of the complex interplay that elapses between tumor and immune cells may help develop new combination treatments able to overcome tumor immune evasion mechanisms and enhance response to immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Winson S. Ho
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Zhao S, Wang Q, Liu Y, Zhang P, Ji W, Xie J, Cheng C. Interaction, immune infiltration characteristics and prognostic modeling of efferocytosis-related subtypes in glioblastoma. BMC Med Genomics 2023; 16:248. [PMID: 37853449 PMCID: PMC10583324 DOI: 10.1186/s12920-023-01688-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Efferocytosis is a biological process in which phagocytes remove apoptotic cells and vesicles from tissues. This process is initiated by the release of inflammatory mediators from apoptotic cells and plays a crucial role in resolving inflammation. The signals associated with efferocytosis have been found to regulate the inflammatory response and the tumor microenvironment (TME), which promotes the immune escape of tumor cells. However, the role of efferocytosis in glioblastoma multiforme (GBM) is not well understood and requires further investigation. METHODS In this study, we conducted a comprehensive analysis of 22 efferocytosis-related genes (ERGs) by searching for studies related to efferocytosis. Using bulk RNA-Seq and single-cell sequencing data, we analyzed the expression and mutational characteristics of these ERGs. By using an unsupervised clustering algorithm, we obtained ERG clusters from 549 GBM patients and evaluated the immune infiltration characteristics of each cluster. We then identified differential genes (DEGs) in the two ERG clusters and classified GBM patients into different gene clusters using univariate cox analysis and unsupervised clustering algorithms. Finally, we utilized the Boruta algorithm to screen for prognostic genes and reduce dimensionality, and the PCA algorithm was applied to create a novel efferocytosis-related scoring system. RESULTS Differential expression of ERGs in glioma cell lines and normal cells was analyzed by rt-PCR. Cell function experiments, on the other hand, validated TIMD4 as a tumor risk factor in GBM. We found that different ERG clusters and gene clusters have distinct prognostic and immune infiltration profiles. The ERG signature we developed provides insight into the tumor microenvironment of GBM. Patients with lower ERG scores have a better survival rate and a higher likelihood of benefiting from immunotherapy. CONCLUSIONS Our novel efferocytosis-related signature has the potential to be used in clinical practice for risk stratification of GBM patients and for selecting individuals who are likely to respond to immunotherapy. This can help clinicians design appropriate targeted therapies before initiating clinical treatment.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuankun Liu
- Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Ji
- Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jiaheng Xie
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China.
| | - Chao Cheng
- Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
| |
Collapse
|
9
|
Liu D, Che X, Wang X, Ma C, Wu G. Tumor Vaccines: Unleashing the Power of the Immune System to Fight Cancer. Pharmaceuticals (Basel) 2023; 16:1384. [PMID: 37895855 PMCID: PMC10610367 DOI: 10.3390/ph16101384] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This comprehensive review delves into the rapidly evolving arena of cancer vaccines. Initially, we examine the intricate constitution of the tumor microenvironment (TME), a dynamic factor that significantly influences tumor heterogeneity. Current research trends focusing on harnessing the TME for effective tumor vaccine treatments are also discussed. We then provide a detailed overview of the current state of research concerning tumor immunity and the mechanisms of tumor vaccines, describing the complex immunological processes involved. Furthermore, we conduct an exhaustive analysis of the contemporary research landscape of tumor vaccines, with a particular focus on peptide vaccines, DNA/RNA-based vaccines, viral-vector-based vaccines, dendritic-cell-based vaccines, and whole-cell-based vaccines. We analyze and summarize these categories of tumor vaccines, highlighting their individual advantages, limitations, and the factors influencing their effectiveness. In our survey of each category, we summarize commonly used tumor vaccines, aiming to provide readers with a more comprehensive understanding of the current state of tumor vaccine research. We then delve into an innovative strategy combining cancer vaccines with other therapies. By studying the effects of combining tumor vaccines with immune checkpoint inhibitors, radiotherapy, chemotherapy, targeted therapy, and oncolytic virotherapy, we establish that this approach can enhance overall treatment efficacy and offset the limitations of single-treatment approaches, offering patients more effective treatment options. Following this, we undertake a meticulous analysis of the entire process of personalized cancer vaccines, elucidating the intricate process from design, through research and production, to clinical application, thus helping readers gain a thorough understanding of its complexities. In conclusion, our exploration of tumor vaccines in this review aims to highlight their promising potential in cancer treatment. As research in this field continues to evolve, it undeniably holds immense promise for improving cancer patient outcomes.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Chuanyu Ma
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| |
Collapse
|
10
|
Canella A, Nazzaro M, Rajendran S, Schmitt C, Haffey A, Nigita G, Thomas D, Lyberger JM, Behbehani GK, Amankulor NM, Mardis ER, Cripe TP, Rajappa P. Genetically modified IL2 bone-marrow-derived myeloid cells reprogram the glioma immunosuppressive tumor microenvironment. Cell Rep 2023; 42:112891. [PMID: 37516967 DOI: 10.1016/j.celrep.2023.112891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Gliomas are one of the leading causes of cancer-related death in the adolescent and young adult (AYA) population. Two-thirds of AYA glioma patients are affected by low-grade gliomas (LGGs), but there are no specific treatments. Malignant progression is supported by the immunosuppressive stromal component of the tumor microenvironment (TME) exacerbated by M2 macrophages and a paucity of cytotoxic T cells. A single intravenous dose of engineered bone-marrow-derived myeloid cells that release interleukin-2 (GEMys-IL2) was used to treat mice with LGGs. Our results demonstrate that GEMys-IL2 crossed the blood-brain barrier, infiltrated the TME, and reprogrammed the immune cell composition and transcriptome. Moreover, GEMys-IL2 extended survival in an LGG immunocompetent mouse model. Here, we report the efficacy of an in vivo approach that demonstrates the potential for a cell-mediated innate immunotherapy designed to enhance the recruitment of activated effector T and natural killer cells within the glioma TME.
Collapse
Affiliation(s)
- Alessandro Canella
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew Nazzaro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sakthi Rajendran
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Claire Schmitt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Abigail Haffey
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Diana Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Justin M Lyberger
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Gregory K Behbehani
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Nduka M Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy P Cripe
- Center for Childhood Cancer, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
11
|
Anu RI, Shiu KK, Khan KH. The immunomodulatory role of IDO1-Kynurenine-NAD + pathway in switching cold tumor microenvironment in PDAC. Front Oncol 2023; 13:1142838. [PMID: 37456260 PMCID: PMC10348419 DOI: 10.3389/fonc.2023.1142838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common exocrine tumor of the pancreas characterized by late diagnosis, adverse overall 5-year survival, a higher propensity for metastatic disease, and lack of efficacy of systemic therapy options. These adverse outcomes can be partly attributed to complex tumor microenvironment (TME). Over the past decade, immunotherapy has revolutionized the management of certain cancers; thus far, the immunologically 'non-inflamed' tumor microenvironment in PDACs has proven to be challenging. Indolamine 2,3-dioxygenase 1 (IDO1) is the rate-limiting enzyme in the catabolic pathway of L-Tryptophan, an essential amino acid, that gives rise to the immunosuppressive metabolite Kynurenine. IDO1, Indolamine 2,3-dioxygenase 2 (IDO2), and Tryptophan 2,3-dioxygenase (TDO) are the key enzymes in the tryptophan catabolic pathway but we focus on the role of the predominant enzyme form IDO1 in this review. Nicotinamide phosphoribosyl transferase (iNAMPT) regulates the intracellular concentration of NAD and is upregulated in the tumor. In light of the potential role of IDO1 as a driver of hostile TME in PDAC and NAD+ as a key coenzyme in anti-tumor immune response, this review urges focus on extensive research and initiation of clinical trials using IDO1 and NAMPT inhibitors in pancreatic cancer in the future.
Collapse
Affiliation(s)
- R. I. Anu
- Department of Cancer Biology and Therapeutics, Precision Oncology and Multi-Omics Clinic, Genetic Counseling Clinic, Department of Clinical Biochemistry, MVR Cancer Centre and Research Institute, Calicut, Kerala, India
| | - Kai-Keen Shiu
- Gastrointestinal Oncology Service, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
- Universtiy College London (UCL) Cancer Institute, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
| | - Khurum Hayat Khan
- Gastrointestinal Oncology Service, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
- Universtiy College London (UCL) Cancer Institute, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
- Whittington Health, National Health Services (NHS), London, United Kingdom
| |
Collapse
|
12
|
Boulhen C, AIT SSI S, Benthami H, Razzouki I, Lakhdar A, Karkouri M, Badou A. TMIGD2 as a potential therapeutic target in glioma patients. Front Immunol 2023; 14:1173518. [PMID: 37261362 PMCID: PMC10227580 DOI: 10.3389/fimmu.2023.1173518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Among all types of central nervous system cancers, glioma remains the most frequent primary brain tumor in adults. Despite significant advances in immunomodulatory therapies, notably immune checkpoint inhibitors, their effectiveness remains constrained due to glioma resistance. The discovery of TMIGD2 (Transmembrane and Immunoglobulin Domain Containing 2) as an immuno-stimulatory receptor, constitutively expressed on naive T cells and most natural killer (NK) cells, has emerged as an attractive immunotherapy target in a variety of cancers. The expression profile of TMIGD2 and its significance in the overall survival of glioma patients remains unknown. Methods In the present study, we first assessed TMIGD2 mRNA expression using the Cancer Genome Atlas (TCGA) glioma transcriptome dataset (667 patients), followed by validation with the Chinese Glioma Genome Atlas (CGGA) cohort (693 patients). Secondly, we examined TMIGD2 protein staining in a series of 25 paraffin-embedded blocks from Moroccan glioma patients. The statistical analysis was performed using GraphPad Prism 8 software. Results TMIGD2 expression was found to be significantly higher in astrocytoma, IDH-1 mutations, low-grade, and young glioma patients. TMIGD2 was expressed on immune cells and, surprisingly, on tumor cells of glioma patients. Interestingly, our study demonstrated that TMIGD2 expression was negatively correlated with angiogenesis, hypoxia, G2/M checkpoint, and epithelial to mesenchymal transition signaling pathways. We also demonstrated that dendritic cells, monocytes, NK cells, gd T cells, and naive CD8 T cell infiltration correlates positively with TMIGD2 expression. On the other hand, Mantel-Cox analysis demonstrated that increased expression of TMIGD2 in human gliomas is associated with good overall survival. Cox multivariable analysis revealed that TMIGD2 is an independent predictor of a good prognosis in glioma patients. Discussion Taken together, our results highlight the tight implication of TMIGD2 in glioma progression and show its promising therapeutic potential as a stimulatory target for immunotherapy.
Collapse
Affiliation(s)
- Chaimae Boulhen
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Saadia AIT SSI
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Hamza Benthami
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtissam Razzouki
- Laboratory of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd, Hassan II University, Casablanca, Morocco
| | - Abdelhakim Lakhdar
- Department of Neurosurgery, Faculty of Medicine and Pharmacy, University of Hassan II, Casablanca, Morocco
| | - Mehdi Karkouri
- Laboratory of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
13
|
Protein Kinase Inhibitors as a New Target for Immune System Modulation and Brain Cancer Management. Int J Mol Sci 2022; 23:ijms232415693. [PMID: 36555334 PMCID: PMC9778944 DOI: 10.3390/ijms232415693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
High-grade brain tumors are malignant tumors with poor survival and remain the most difficult tumors to treat. An important contributing factor to the development and progression of brain tumors is their ability to evade the immune system. Several immunotherapeutic strategies including vaccines and checkpoint inhibitors have been studied to improve the effectiveness of the immune system in destroying cancer cells. Recent studies have shown that kinase inhibitors, capable of inhibiting signal transduction cascades that affect cell proliferation, migration, and angiogenesis, have additional immunological effects. In this review, we explain the beneficial therapeutic effects of novel small-molecule kinase inhibitors and explore how, through different mechanisms, they increase the protective antitumor immune response in high-grade brain tumors.
Collapse
|
14
|
Bollu L, Bommi PV, Monsen PJ, Zhai L, Lauing KL, Bell A, Kim M, Ladomersky E, Yang X, Platanias LC, Matei DE, Bonini MG, Munshi HG, Hashizume R, Wu JD, Zhang B, James CD, Chen P, Kocherginsky M, Horbinski C, Cameron MD, Grigorescu AA, Yamini B, Lukas RV, Schiltz GE, Wainwright DA. Identification and Characterization of a Novel Indoleamine 2,3-Dioxygenase 1 Protein Degrader for Glioblastoma. J Med Chem 2022; 65:15642-15662. [PMID: 36410047 PMCID: PMC9743093 DOI: 10.1021/acs.jmedchem.2c00771] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/22/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a potent immunosuppressive enzyme that inhibits the antitumor immune response through both tryptophan metabolism and non-enzymatic functions. To date, most IDO1-targeted approaches have focused on inhibiting tryptophan metabolism. However, this class of drugs has failed to improve the overall survival of patients with cancer. Here, we developed and characterized proteolysis targeting chimeras (PROTACs) that degrade the IDO1 protein. IDO1-PROTACs were tested for their effects on IDO1 enzyme and non-enzyme activities. After screening a library of IDO1-PROTAC derivatives, a compound was identified that potently degraded the IDO1 protein through cereblon-mediated proteasomal degradation. The IDO1-PROTAC: (i) inhibited IDO1 enzyme activity and IDO1-mediated NF-κB phosphorylation in cultured human glioblastoma (GBM) cells, (ii) degraded the IDO1 protein within intracranial brain tumors in vivo, and (iii) mediated a survival benefit in mice with well-established brain tumors. This study identified and characterized a new IDO1 protein degrader with therapeutic potential for patients with glioblastoma.
Collapse
Affiliation(s)
- Lakshmi
R. Bollu
- Department
of Neurological Surgery, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Prashant V. Bommi
- Department
of Neurological Surgery, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Paige J. Monsen
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lijie Zhai
- Department
of Neurological Surgery, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Kristen L. Lauing
- Department
of Neurological Surgery, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - April Bell
- Department
of Neurological Surgery, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Miri Kim
- Department
of Neurological Surgery, Loyola University
Medical Center, Maywood, Illinois 60153, United
States
| | - Erik Ladomersky
- Department
of Neurological Surgery, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Xinyu Yang
- WuXi
AppTec, Shanghai 200131, People’s Republic of China
| | - Leonidas C. Platanias
- Department
of Medicine—Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert
H.
Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| | - Daniela E. Matei
- Robert
H.
Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Department
of Obstetrics and Gynecology, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Marcelo G. Bonini
- Department
of Medicine—Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert
H.
Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| | - Hidayatullah G. Munshi
- Department
of Medicine—Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert
H.
Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| | - Rintaro Hashizume
- Robert
H.
Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Department
of Pediatrics − Division of Hematology, Oncology, and Stem
Cell Transplantation, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Jennifer D. Wu
- Robert
H.
Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Department
of Urology, Northwestern University Feinberg
School of Medicine, Chicago, Illinois 60611, United States
- Department
of Microbiology-Immunology, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Bin Zhang
- Department
of Medicine—Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department
of Microbiology-Immunology, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Charles David James
- Department
of Neurological Surgery, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Peiwen Chen
- Department
of Neurological Surgery, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Masha Kocherginsky
- Robert
H.
Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Department
of Obstetrics and Gynecology, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Preventive Medicine, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Craig Horbinski
- Department
of Neurological Surgery, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert
H.
Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Department of Pathology, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Michael D. Cameron
- Department of Molecular Therapeutics, The
Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Arabela A. Grigorescu
- Department of Molecular Biosciences, Northwestern
University Weinberg College of Arts and Sciences, Evanston, Illinois 60208, United States
| | - Bakhtiar Yamini
- Department of Neurological Surgery, Division of the Biological Sciences, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rimas V. Lukas
- Robert
H.
Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Department
of Neurology, Northwestern University Feinberg
School of Medicine, Chicago, Illinois 60611, United States
| | - Gary E. Schiltz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Robert
H.
Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Department of Pharmacology, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Derek A. Wainwright
- Department
of Neurological Surgery, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department
of Medicine—Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert
H.
Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Department
of Microbiology-Immunology, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
15
|
Zhu H, Hu X, Feng S, Gu L, Jian Z, Zou N, Xiong X. Predictive value of PIMREG in the prognosis and response to immune checkpoint blockade of glioma patients. Front Immunol 2022; 13:946692. [PMID: 35928818 PMCID: PMC9344140 DOI: 10.3389/fimmu.2022.946692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common primary brain tumor in the human brain. The present study was designed to explore the expression of PIMREG in glioma and its relevance to the clinicopathological features and prognosis of glioma patients. The correlations of PIMREG with the infiltrating levels of immune cells and its relevance to the response to immunotherapy were also investigated. PIMREG expression in glioma was analyzed based on the GEO, TCGA, and HPA databases. Kaplan–Meier survival analysis was used to examine the predictive value of PIMREG for the prognosis of patients with glioma. The correlation between the infiltrating levels of immune cells in glioma and PIMREG was analyzed using the CIBERSORT algorithm and TIMRE database. The correlation between PIMREG and immune checkpoints and its correlation with the patients’ responses to immunotherapy were analyzed using R software and the GEPIA dataset. Cell experiments were conducted to verify the action of PIMREG in glioma cell migration and invasion. We found that PIMREG expression was upregulated in gliomas and positively associated with WHO grade. High PIMREG expression was correlated with poor prognosis of LGG, prognosis of all WHO grade gliomas, and prognosis of recurrent gliomas. PIMREG was related to the infiltration of several immune cell types, such as M1 and M2 macrophages, monocytes and CD8+ T cells. Moreover, PIMREG was correlated with immune checkpoints in glioma and correlated with patients’ responses to immunotherapy. KEGG pathway enrichment and GO functional analysis illustrated that PIMREG was related to multiple tumor- and immune-related pathways. In conclusion, PIMREG overexpression in gliomas is associated with poor prognosis of patients with glioma and is related to immune cell infiltrates and the responses to immunotherapy.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Xinyao Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi Feng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Zou
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Ning Zou, ; Xiaoxing Xiong,
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- *Correspondence: Ning Zou, ; Xiaoxing Xiong,
| |
Collapse
|
16
|
Influence of periodontal inflammation on tryptophan-kynurenine metabolism: a cross-sectional study. Clin Oral Investig 2022; 26:5721-5732. [PMID: 35588020 DOI: 10.1007/s00784-022-04528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Kynurenine pathway (KP) is the primary way of degrading tryptophan (TRP) and generates several bioactive metabolites (such as kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3OHKYN)) to regulate biological processes that include host-microbiome signaling and immune cell response. This study is aimed to determine the relationship between periodontal inflammation and tryptophan-kynurenine metabolism and identify their association with periodontal clinical parameters. MATERIALS AND METHODS Saliva and serum samples were collected from 20 stage III, grade B generalized periodontitis patients, and 20 periodontally healthy control individuals. Samples were analyzed for IL-6, KYN, TRP, KYN/TRP ratio, KYNA, 3OHKYN, picolinic acid (PA), and quinolinic acid (QA) by liquid chromatography-mass spectrometry. Clinical periodontal parameters (plaque index (PI), probing pocket depth (PPD), gingival recession (GR), clinical attachment loss (CAL), and bleeding on probing (BOP)) were recorded. RESULTS Clinical parameters were significantly higher in the periodontitis group (p < 0.001). Salivary IL-6, TRP, KYN, KYNA, PA, and QA levels were significantly higher and KYN/TRP ratio was significantly lower in periodontitis group than control group (p < 0.05). Serum KYN, KYN/TRP ratio and PA levels were significantly higher in periodontitis group than control group (p < 0.05). PPD, BOP, PI, and CAL had significantly positive correlations with salivary IL-6, TRP, PA, QA, and serum KYN and significantly negative correlations with salivary KYN/TRP ratio. CONCLUSIONS Our results suggest that periodontal inflammation plays a role in local and systemic tryptophan-kynurenine metabolism. CLINICAL RELEVANCE Due to their effects on the immune and inflammatory systems, kynurenines may be potential agents for diagnosis and treatment of periodontal diseases.
Collapse
|
17
|
Uyar R. Glioblastoma microenvironment: The stromal interactions. Pathol Res Pract 2022; 232:153813. [PMID: 35228161 DOI: 10.1016/j.prp.2022.153813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Glioblastomas (GBMs) are the most common primary brain tumors with poor prognosis due to their aggressive growth accompanied by invasive behavior and therapy-resistance. These features promote a high rate of recurrence; therefore, they are largely incurable. One major cause of the incurability is brought about by the intimate relationship of GBM cells with the microenvironment, which supports the tumor growth in various ways by providing a permissive neighborhood. In the tumor microenvironment are glioma stem cells (GSC); endothelial cells (EC) and hypoxic regions; immune cells and immune modulatory cues; astrocytes; neural stem/precursor cells (NPC) and mesenchymal stem cells (MSC). Each cell type contributes to GBM pathology in unique ways; therefore, it is necessary to understand such interactions between GBM cells and the stromal cells in order to establish a through understanding of the GBM pathology. By explaining the contribution of each stromal entity to GBM pathology we aim to draw an interaction map for GBMs and promote awareness of the complexity of the GBM microenvironment.
Collapse
Affiliation(s)
- Ramazan Uyar
- Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.
| |
Collapse
|
18
|
Peng P, Cheng F, Dong Y, Chen Z, Zhang X, Guo D, Yu X, Lu Y, Ke Y, Zhang B, He X, Wan F. High expression of TXNDC11 indicated unfavorable prognosis of glioma. Transl Cancer Res 2022; 10:5040-5051. [PMID: 35116356 PMCID: PMC8799221 DOI: 10.21037/tcr-21-1326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Background Thioredoxin domain containing 11 (TXNDC11) has been implicated in numerous cancers. Nevertheless, the function of TXNDC11 in glioma is not well described. This study aimed to assess clinical significance of TXNDC11 in glioma based on bioinformatics analysis and immunohistochemical (IHC) staining. Methods GEPIA2, The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) databases were employed to detect the levels of TXNDC11 transcript in glioma. Gene expression profiles and data from the methylation chip with clinical details from TCGA and Chinese Glioma Genome Atlas (CGGA) of glioma samples were examined. The methylation of TXNDC11 in glioma was evaluated by 450K methylation chip data analysis. The pathways involved in TXNDC11 expression were screened by gene set enrichment analysis (GSEA). The correlation between TXNDC11 and immune cells was analyzed. Protein level of TXNDC11 was detected by IHC staining in glioma specimens. Results TXNDC11 was highly expressed in glioma, and high TXNDC11 expression was associated with poor overall survival (OS) and worse clinical prognostic variables. The methylation of cg04399632 was statistically different between glioma samples and normal samples, and was negatively correlated with TXNDC11 expression in glioma patients. Survival analysis demonstrated a poorer prognosis in glioma patients with cg04399632 hypomethylation. TXNDC11-high phenotype was associated with certain immune-related pathways and other signaling pathways in glioma. The expression of TXNDC11 was correlated positively with M2 macrophage infiltration and negatively with M0 and M1 macrophage infiltration. IHC staining confirmed that TXNDC11 expression increased in higher-grade glioma. Conclusions High expression of TXNDC11 may predict unfavorable prognosis of glioma patients.
Collapse
Affiliation(s)
- Peng Peng
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangling Cheng
- Department of Surgery, Hepatic Surgery Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Dong
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Zirong Chen
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyang Lu
- School of Data Science, Chinese University of Hong Kong, Shenzhen, China
| | - Yuyong Ke
- Department of Neurosurgery, Renmin Hospital of Yangxin County, Huangshi, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wan
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Wu WY, Späth F, Wibom C, Björkblom B, Dahlin AM, Melin B. Pre‐diagnostic levels of sVEGFR2, sTNFR2, sIL‐2Rα and sIL‐6R are associated with glioma risk: A nested case–control study of repeated samples. Cancer Med 2022; 11:1016-1025. [PMID: 35029050 PMCID: PMC8855896 DOI: 10.1002/cam4.4505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/01/2022] Open
Abstract
No strong aetiological factors have been established for glioma aside from genetic mutations and variants, ionising radiation and an inverse relationship with asthmas and allergies. Our aim was to investigate the association between pre‐diagnostic immune protein levels and glioma risk. We conducted a case–control study nested in the Northern Sweden Health and Disease Study cohort. We analysed 133 glioma cases and 133 control subjects matched by age, sex and date of blood donation. ELISA or Luminex bead‐based multiplex assays were used to measure plasma levels of 19 proteins. Conditional logistic regression models were used to estimate the odds ratios and 95% CIs. To further model the protein trajectories over time, the linear mixed‐effects models were conducted. We found that the levels of sVEGFR2, sTNFR2, sIL‐2Rα and sIL‐6R were associated with glioma risk. After adjusting for the time between blood sample collection and glioma diagnosis, the odds ratios were 1.72 (95% CI = 1.01–2.93), 1.48 (95% CI = 1.01–2.16) and 1.90 (95% CI = 1.14–3.17) for sTNFR2, sIL‐2Rα and sIL‐6R, respectively. The trajectory of sVEGFR2 concentrations over time was different between cases and controls (p‐value = 0.031), increasing for cases (0.8% per year) and constant for controls. Our findings suggest these proteins play important roles in gliomagenesis.
Collapse
Affiliation(s)
- Wendy Yi‐Ying Wu
- Department of Radiation Sciences, Oncology Umeå University Umeå Sweden
| | - Florentin Späth
- Department of Radiation Sciences, Oncology Umeå University Umeå Sweden
| | - Carl Wibom
- Department of Radiation Sciences, Oncology Umeå University Umeå Sweden
| | | | - Anna M. Dahlin
- Department of Radiation Sciences, Oncology Umeå University Umeå Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology Umeå University Umeå Sweden
| |
Collapse
|
20
|
Huppert LA, Green MD, Kim L, Chow C, Leyfman Y, Daud AI, Lee JC. Tissue-specific Tregs in cancer metastasis: opportunities for precision immunotherapy. Cell Mol Immunol 2022; 19:33-45. [PMID: 34417572 PMCID: PMC8752797 DOI: 10.1038/s41423-021-00742-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Decades of advancements in immuno-oncology have enabled the development of current immunotherapies, which provide long-term treatment responses in certain metastatic cancer patients. However, cures remain infrequent, and most patients ultimately succumb to treatment-refractory metastatic disease. Recent insights suggest that tumors at certain organ sites exhibit distinctive response patterns to immunotherapy and can even reduce antitumor immunity within anatomically distant tumors, suggesting the activation of tissue-specific immune tolerogenic mechanisms in some cases of therapy resistance. Specialized immune cells known as regulatory T cells (Tregs) are present within all tissues in the body and coordinate the suppression of excessive immune activation to curb autoimmunity and maintain immune homeostasis. Despite the high volume of research on Tregs, the findings have failed to reconcile tissue-specific Treg functions in organs, such as tolerance, tissue repair, and regeneration, with their suppression of local and systemic tumor immunity in the context of immunotherapy resistance. To improve the understanding of how the tissue-specific functions of Tregs impact cancer immunotherapy, we review the specialized role of Tregs in clinically common and challenging organ sites of cancer metastasis, highlight research that describes Treg impacts on tissue-specific and systemic immune regulation in the context of immunotherapy, and summarize ongoing work reporting clinically feasible strategies that combine the specific targeting of Tregs with systemic cancer immunotherapy. Improved knowledge of Tregs in the framework of their tissue-specific biology and clinical sites of organ metastasis will enable more precise targeting of immunotherapy and have profound implications for treating patients with metastatic cancer.
Collapse
Affiliation(s)
- Laura A Huppert
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael D Green
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Luke Kim
- University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Christine Chow
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yan Leyfman
- Penn State College of Medicine, Hershey, PA, USA
| | - Adil I Daud
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - James C Lee
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
21
|
Using chimeric antigen receptor T-cell therapy to fight glioblastoma multiforme: past, present and future developments. J Neurooncol 2021; 156:81-96. [PMID: 34825292 PMCID: PMC8714623 DOI: 10.1007/s11060-021-03902-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022]
Abstract
Introduction Glioblastoma multiforme (GBM) constitutes one of the deadliest tumors to afflict humans, although it is still considered an orphan disease. Despite testing multiple new and innovative therapies in ongoing clinical trials, the median survival for this type of malignancy is less than two years after initial diagnosis, regardless of therapy. One class of promising new therapies are chimeric antigen receptor T cells or CAR-T which have been shown to be very effective at treating refractory liquid tumors such as B-cell malignancies. However, CAR-T effectivity against solid tumors such as GBM has been limited thus far. Methods A Pubmed, Google Scholar, Directory of Open Access Journals, and Web of Science literature search using the terms chimeric antigen receptor or CAR-T, GBM, solid tumor immunotherapy, immunotherapy, and CAR-T combination was performed for publication dates between January 1987 and November 2021. Results In the current review, we present a comprehensive list of CAR-T cells developed to treat GBM, we describe new possible T-cell engineering strategies against GBM while presenting a short introductory history to the reader regarding the origin(s) of this cutting-edge therapy. We have also compiled a unique list of anti-GBM CAR-Ts with their specific protein sequences and their functions as well as an inventory of clinical trials involving CAR-T and GBM. Conclusions The aim of this review is to introduce the reader to the field of T-cell engineering using CAR-Ts to treat GBM and describe the obstacles that may need to be addressed in order to significantly delay the relentless growth of GBM. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03902-8.
Collapse
|
22
|
Zhang X, Ping S, Wang A, Li C, Zhang R, Song Z, Gao C, Wang F. Development and Validation of an Immune-Related Gene Pairs Signature in Grade II/III Glioma. Int J Gen Med 2021; 14:8611-8620. [PMID: 34849006 PMCID: PMC8627264 DOI: 10.2147/ijgm.s335052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Gliomas are prevalent primary intracerebral malignant tumors. Increasing evidence indicates an association between the immune signature and Grade II/III glioma prognosis. Thus, we aimed to develop an immune-related gene pair (IRGP) signature that can be used as a prognostic tool in Grade II/III glioma. METHODS The gene expression levels and clinical information of Grade II/III glioma patients were collected from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. The TCGA data were randomly divided into a training cohort (n = 249) and a validation cohort (n = 162), and a CGGA dataset served as an external validation group (n = 605). IRGPs significantly associated with prognosis were selected by Cox regression. Gene set enrichment analysis and filtration were performed with the IRGPs. RESULTS Within a set of 1991 immune genes, 8 IRGPs including 15 unique genes that significantly affect survival constituted a gene signature. In the validation datasets, the IRGP signature significantly stratified patients with Grade II/III glioma into low- and high-risk groups (P < 0.001), and the IRGP index was found to be an independent prognostic factor through univariate and multivariate analyses (P < 0.05). Additionally, 26 functional pathways were identified through the intersection of Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) enrichment analysis. CONCLUSION The IRGP signature demonstrated good prognostic value for Grade II/III gliomas, which may provide new insights into individual treatment for glioma patients. The IRGPs might function through the identified 26 functional pathways.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Neurosurgery, Baoding No.1 Central Hospital, Baoding, People’s Republic of China
| | - Shuai Ping
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Anni Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Can Li
- Department of Neurosurgery, Chengdu Sixth People’s Hospital, Chengdu, People’s Republic of China
| | - Rui Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Zimu Song
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Caibin Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Feng Wang
- Department of Neurosurgery, People's Hospital of Ningxia Hui Autonomous Region Yinchuan, Yinchuan, People’s Republic of China
| |
Collapse
|
23
|
Himes BT, Geiger PA, Ayasoufi K, Bhargav AG, Brown DA, Parney IF. Immunosuppression in Glioblastoma: Current Understanding and Therapeutic Implications. Front Oncol 2021; 11:770561. [PMID: 34778089 PMCID: PMC8581618 DOI: 10.3389/fonc.2021.770561] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults an carries and carries a terrible prognosis. The current regiment of surgical resection, radiation, and chemotherapy has remained largely unchanged in recent years as new therapeutic approaches have struggled to demonstrate benefit. One of the most challenging hurdles to overcome in developing novel treatments is the profound immune suppression found in many GBM patients. This limits the utility of all manner of immunotherapeutic agents, which have revolutionized the treatment of a number of cancers in recent years, but have failed to show similar benefit in GBM therapy. Understanding the mechanisms of tumor-mediated immune suppression in GBM is critical to the development of effective novel therapies, and reversal of this effect may prove key to effective immunotherapy for GBM. In this review, we discuss the current understanding of tumor-mediated immune suppression in GBM in both the local tumor microenvironment and systemically. We also discuss the effects of current GBM therapy on the immune system. We specifically explore some of the downstream effectors of tumor-driven immune suppression, particularly myeloid-derived suppressor cells (MDSCs) and other immunosuppressive monocytes, and the manner by which GBM induces their formation, with particular attention to the role of GBM-derived extracellular vesicles (EVs). Lastly, we briefly review the current state of immunotherapy for GBM and discuss additional hurdles to overcome identification and implementation of effective therapeutic strategies.
Collapse
Affiliation(s)
- Benjamin T Himes
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Philipp A Geiger
- Department of Neurosurgery, University Hospital Innsbruck, Tirol, Austria
| | | | - Adip G Bhargav
- Department of Neurosurgery, University of Kansas, Kansas City, KS, United States
| | - Desmond A Brown
- Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
24
|
Salemizadeh Parizi M, Salemizadeh Parizi F, Abdolhosseini S, Vanaei S, Manzouri A, Ebrahimzadeh F. Myeloid-derived suppressor cells (MDSCs) in brain cancer: challenges and therapeutic strategies. Inflammopharmacology 2021; 29:1613-1624. [PMID: 34613567 DOI: 10.1007/s10787-021-00878-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
The most fatal malignancy of the central nervous system (CNS) is glioblastoma. Brain cancer is a 'cold' tumor because of fewer immunoregulatory cells and more immunosuppressive cells. Due to the cold nature of brain cancers, conventional treatments which are used to manage glioma patients show little effectiveness. Glioma patients even showed resistance to immune checkpoint blockade (ICB) and no significant efficacy. It has been shown that myeloid-derived suppressor cells (MDSCs) account for approximately 30-50% of the tumor mass in glioma. This study aimed to review MDSC function in brain cancer, as well as possible treatments and related challenges. In brain cancer and glioma, several differences in the context of MDSCs have been reported, including disagreements about the MDSC subtype that has the most inhibitory function in the brain, or inhibitory function of regulatory B cells (Bregs). There are also serious challenges in treating glioma patients. In addition to the cold nature of glioma, there are reports of an increase in MDSCs following conventional chemotherapy treatments. As a result, targeting MDSCs in combination with other therapies, such as ICB, is essential, and recent studies with the combination therapy approach have shown promising therapeutic effects in brain cancer.
Collapse
Affiliation(s)
| | | | | | - Shohreh Vanaei
- Department of Biomedical Engineering, Northeastern University, Boston, MA, USA
| | - Ali Manzouri
- School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Ghouzlani A, Kandoussi S, Tall M, Reddy KP, Rafii S, Badou A. Immune Checkpoint Inhibitors in Human Glioma Microenvironment. Front Immunol 2021; 12:679425. [PMID: 34305910 PMCID: PMC8301219 DOI: 10.3389/fimmu.2021.679425] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Gliomas are the most common primary brain tumors in adults. Despite the fact that they are relatively rare, they cause significant morbidity and mortality. High-grade gliomas or glioblastomas are rapidly progressing tumors with a very poor prognosis. The presence of an intrinsic immune system in the central nervous system is now more accepted. During the last decade, there has been no major progress in glioma therapy. The lack of effective treatment for gliomas can be explained by the strategies that cancer cells use to escape the immune system. This being said, immunotherapy, which involves blockade of immune checkpoint inhibitors, has improved patients' survival in different cancer types. This novel cancer therapy appears to be one of the most promising approaches. In the present study, we will start with a review of the general concept of immune response within the brain and glioma microenvironment. Then, we will try to decipher the role of various immune checkpoint inhibitors within the glioma microenvironment. Finally, we will discuss some promising therapeutic pathways, including immune checkpoint blockade and the body's effective anti-glioma immune response.
Collapse
Affiliation(s)
- Amina Ghouzlani
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mariam Tall
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Konala Priyanka Reddy
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Faculty of Medicine, Medical University of Pleven, Pleven, Bulgaria
| | - Soumaya Rafii
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| |
Collapse
|
26
|
Mohan AA, Tomaszewski WH, Haskell-Mendoza AP, Hotchkiss KM, Singh K, Reedy JL, Fecci PE, Sampson JH, Khasraw M. Targeting Immunometabolism in Glioblastoma. Front Oncol 2021; 11:696402. [PMID: 34222022 PMCID: PMC8242259 DOI: 10.3389/fonc.2021.696402] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
We have only recently begun to understand how cancer metabolism affects antitumor responses and immunotherapy outcomes. Certain immunometabolic targets have been actively pursued in other tumor types, however, glioblastoma research has been slow to exploit the therapeutic vulnerabilities of immunometabolism. In this review, we highlight the pathways that are most relevant to glioblastoma and focus on how these immunometabolic pathways influence tumor growth and immune suppression. We discuss hypoxia, glycolysis, tryptophan metabolism, arginine metabolism, 2-Hydroxyglutarate (2HG) metabolism, adenosine metabolism, and altered phospholipid metabolism, in order to provide an analysis and overview of the field of glioblastoma immunometabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
27
|
New Insights into the Multifaceted Role of Myeloid-Derived Suppressor Cells (MDSCs) in High-Grade Gliomas: From Metabolic Reprograming, Immunosuppression, and Therapeutic Resistance to Current Strategies for Targeting MDSCs. Cells 2021; 10:cells10040893. [PMID: 33919732 PMCID: PMC8070707 DOI: 10.3390/cells10040893] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cells “hijack” host immune cells to promote growth, survival, and metastasis. The immune microenvironment of high-grade gliomas (HGG) is a complex and heterogeneous system, consisting of diverse cell types such as microglia, bone marrow-derived macrophages (BMDMs), myeloid-derived suppressor cells (MDSCs), dendritic cells, natural killer (NK) cells, and T-cells. Of these, MDSCs are one of the major tumor-infiltrating immune cells and are correlated not only with overall worse prognosis but also poor clinical outcomes. Upon entry from the bone marrow into the peripheral blood, spleen, as well as in tumor microenvironment (TME) in HGG patients, MDSCs deploy an array of mechanisms to perform their immune and non-immune suppressive functions. Here, we highlight the origin, function, and characterization of MDSCs and how they are recruited and metabolically reprogrammed in HGG. Furthermore, we discuss the mechanisms by which MDSCs contribute to immunosuppression and resistance to current therapies. Finally, we conclude by summarizing the emerging approaches for targeting MDSCs alone as a monotherapy or in combination with other standard-of-care therapies to improve the current treatment of high-grade glioma patients.
Collapse
|
28
|
Polano M, Fabbiani E, Adreuzzi E, Cintio FD, Bedon L, Gentilini D, Mongiat M, Ius T, Arcicasa M, Skrap M, Dal Bo M, Toffoli G. A New Epigenetic Model to Stratify Glioma Patients According to Their Immunosuppressive State. Cells 2021; 10:cells10030576. [PMID: 33807997 PMCID: PMC8001235 DOI: 10.3390/cells10030576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 01/02/2023] Open
Abstract
Gliomas are the most common primary neoplasm of the central nervous system. A promising frontier in the definition of glioma prognosis and treatment is represented by epigenetics. Furthermore, in this study, we developed a machine learning classification model based on epigenetic data (CpG probes) to separate patients according to their state of immunosuppression. We considered 573 cases of low-grade glioma (LGG) and glioblastoma (GBM) from The Cancer Genome Atlas (TCGA). First, from gene expression data, we derived a novel binary indicator to flag patients with a favorable immune state. Then, based on previous studies, we selected the genes related to the immune state of tumor microenvironment. After, we improved the selection with a data-driven procedure, based on Boruta. Finally, we tuned, trained, and evaluated both random forest and neural network classifiers on the resulting dataset. We found that a multi-layer perceptron network fed by the 338 probes selected by applying both expert choice and Boruta results in the best performance, achieving an out-of-sample accuracy of 82.8%, a Matthews correlation coefficient of 0.657, and an area under the ROC curve of 0.9. Based on the proposed model, we provided a method to stratify glioma patients according to their epigenomic state.
Collapse
Affiliation(s)
- Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
- Correspondence:
| | - Emanuele Fabbiani
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy;
| | - Eva Adreuzzi
- Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Division of Molecular Oncology, 33081 Aviano, Italy; (E.A.); (M.M.)
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Luca Bedon
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Mongiat
- Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Division of Molecular Oncology, 33081 Aviano, Italy; (E.A.); (M.M.)
| | - Tamara Ius
- Neurosurgery Unit, Department of Neuroscience, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Mauro Arcicasa
- Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Department of Radiotherapy, 33081 Aviano, Italy;
| | - Miran Skrap
- Neurosurgery Unit, Department of Neuroscience, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
| |
Collapse
|
29
|
Nguyen HM, Guz-Montgomery K, Lowe DB, Saha D. Pathogenetic Features and Current Management of Glioblastoma. Cancers (Basel) 2021; 13:cancers13040856. [PMID: 33670551 PMCID: PMC7922739 DOI: 10.3390/cancers13040856] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common form of primary malignant brain tumor with a devastatingly poor prognosis. The disease does not discriminate, affecting adults and children of both sexes, and has an average overall survival of 12-15 months, despite advances in diagnosis and rigorous treatment with chemotherapy, radiation therapy, and surgical resection. In addition, most survivors will eventually experience tumor recurrence that only imparts survival of a few months. GBM is highly heterogenous, invasive, vascularized, and almost always inaccessible for treatment. Based on all these outstanding obstacles, there have been tremendous efforts to develop alternative treatment options that allow for more efficient targeting of the tumor including small molecule drugs and immunotherapies. A number of other strategies in development include therapies based on nanoparticles, light, extracellular vesicles, and micro-RNA, and vessel co-option. Advances in these potential approaches shed a promising outlook on the future of GBM treatment. In this review, we briefly discuss the current understanding of adult GBM's pathogenetic features that promote treatment resistance. We also outline novel and promising targeted agents currently under development for GBM patients during the last few years with their current clinical status.
Collapse
|
30
|
Scheffel TB, Grave N, Vargas P, Diz FM, Rockenbach L, Morrone FB. Immunosuppression in Gliomas via PD-1/PD-L1 Axis and Adenosine Pathway. Front Oncol 2021; 10:617385. [PMID: 33659213 PMCID: PMC7919594 DOI: 10.3389/fonc.2020.617385] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is the most malignant and lethal subtype of glioma. Despite progress in therapeutic approaches, issues with the tumor immune landscape persist. Multiple immunosuppression pathways coexist in the tumor microenvironment, which can determine tumor progression and therapy outcomes. Research in immune checkpoints, such as the PD-1/PD-L1 axis, has renewed the interest in immune-based cancer therapies due to their ability to prevent immunosuppression against tumors. However, PD-1/PD-L1 blockage is not completely effective, as some patients remain unresponsive to such treatment. The production of adenosine is a major obstacle for the efficacy of immune therapies and is a key source of innate or adaptive resistance. In general, adenosine promotes the pro-tumor immune response, dictates the profile of suppressive immune cells, modulates the release of anti-inflammatory cytokines, and induces the expression of alternative immune checkpoint molecules, such as PD-1, thus maintaining a loop of immunosuppression. In this context, this review aims to depict the complexity of the immunosuppression in glioma microenvironment. We primarily consider the PD-1/PD-L1 axis and adenosine pathway, which may be critical points of resistance and potential targets for tumor treatment strategies.
Collapse
Affiliation(s)
- Thamiris Becker Scheffel
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Nathália Grave
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Pedro Vargas
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Fernando Mendonça Diz
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Liliana Rockenbach
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Fernanda Bueno Morrone
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
31
|
Fu W, Wang W, Li H, Jiao Y, Weng J, Huo R, Yan Z, Wang J, Xu H, Wang S, Wang J, Chen D, Cao Y, Zhao J. CyTOF Analysis Reveals a Distinct Immunosuppressive Microenvironment in IDH Mutant Anaplastic Gliomas. Front Oncol 2021; 10:560211. [PMID: 33614475 PMCID: PMC7890006 DOI: 10.3389/fonc.2020.560211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
The immune microenvironment is important for the development, progression, and prognosis of anaplastic glioma (AG). This complex milieu has not been fully elucidated, and a high-dimensional analysis is urgently required. Utilizing mass cytometry (CyTOF), we performed an analysis of immune cells from 5 patients with anaplastic astrocytoma, IDH-mutant (AAmut) and 10 patients with anaplastic oligodendroglioma, IDH-mutant and 1p/19q codeletion (AOD) and their paired peripheral blood mononuclear cells (PBMCs). Based on a panel of 33 biomarkers, we demonstrated the tumor-driven immune changes in the AG immune microenvironment. Our study confirmed that mononuclear phagocytes and T cells are the most abundant immunocytes in the AG immune microenvironment. Glioma-associated microglia/macrophages in both AAmut and AOD samples showed highly immunosuppressive characteristics. Compared to those in the PBMCs, the ratios of immune checkpoint-positive exhausted CD4+ T cells and CD8+ T cells were higher at the AG tumor sites. The AAmut immune milieu exhibits more immunosuppressive characteristics than that in AOD.
Collapse
Affiliation(s)
- Weilun Fu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zihan Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
32
|
Pinato DJ, Vallipuram A, Evans JS, Wong C, Zhang H, Brown M, Dina RE, Trivedi P, Akarca AU, Marafioti T, Mauri FA, Sharma R. Programmed Cell Death Ligand Expression Drives Immune Tolerogenesis across the Diverse Subtypes of Neuroendocrine Tumours. Neuroendocrinology 2021; 111:465-474. [PMID: 32097935 DOI: 10.1159/000506745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/21/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION A comprehensive characterization of the tumour microenvironment is lacking in neuroendocrine tumours (NETs), where programmed cell death-1 receptor-ligand (PD-1/PD-L1) inhibitors are undergoing efficacy testing. OBJECTIVE We investigated drivers of cancer-related immunosuppression across NETs of various sites and grades using multi-parameter immunohistochemistry and targeted transcriptomic profiling. METHODS Tissue microarrays (n = 102) were stained for PD-L1 and 2 and indoleamine deoxygenase-1 (IDO-1) and evaluated in relationship to functional characteristics of tumour-infiltrating T-lymphocytes (TILs) and biomarkers of hypoxia/angiogenesis. PD-L1 expression was tested in circulating tumour cells (CTCs, n = 12) to evaluate its relationship with metastatic dissemination. RESULTS PD-L1 expression was highest in lung NETs (n = 30, p = 0.007), whereas PD-L2 was highest in pancreatic NETs (n = 53, p < 0.001) with no correlation with grade or hypoxia/angiogenesis. PD-L1+ NETs (n = 26, 25%) had greater CD4+/FOXP3+ and CD8+/PD1+ TILs (p < 0.001) and necrosis (p = 0.02). CD4+/FOXP3+ infiltrate had the highest PD-L1/IDO-1 co-expressing tumours (p = 0.006). Grade 3 well-differentiated NETs had lower CD4+/FOXP3+ and CD8+/PD1+ TIL density (p < 0.001), and NanoString immune profiling revealed enrichment of macrophage-related transcripts in cases with poorer prognosis. We identified PD-L1(+) CTC subpopulations in 75% of evaluated patients (n = 12). CONCLUSIONS PD-L1 expression correlates with T-cell exhaustion independent of tumour hypoxia and is enhanced in a subpopulation of CTCs, suggesting its relevance to the progression of NETs. These findings support a potential therapeutic role for PD-L1 inhibitors in a subset of NETs.
Collapse
Affiliation(s)
- David J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom,
| | - Anu Vallipuram
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Joanne S Evans
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Clement Wong
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Hua Zhang
- Department of Medical Oncology, LC-4112, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew Brown
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Roberto E Dina
- Department of Histopathology, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Pritesh Trivedi
- Department of Histopathology, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Ayse U Akarca
- Department of Histopathology, Rockefeller Building, University College London Hospital, London, United Kingdom
| | - Teresa Marafioti
- Department of Histopathology, Rockefeller Building, University College London Hospital, London, United Kingdom
| | - Francesco A Mauri
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
33
|
Qi Y, Liu B, Sun Q, Xiong X, Chen Q. Immune Checkpoint Targeted Therapy in Glioma: Status and Hopes. Front Immunol 2020; 11:578877. [PMID: 33329549 PMCID: PMC7729019 DOI: 10.3389/fimmu.2020.578877] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Glioma is the most malignant primary tumor of the central nervous system and is characterized by an extremely low overall survival. Recent breakthroughs in cancer therapy using immune checkpoint blockade have attracted significant attention. However, despite representing the most promising (immunotherapy) treatment for cancer, the clinical application of immune checkpoint blockade in glioma patients remains challenging due to the "cold phenotype" of glioma and multiple factors inducing resistance, both intrinsic and acquired. Therefore, comprehensive understanding of the tumor microenvironment and the unique immunological status of the brain will be critical for the application of glioma immunotherapy. More sensitive biomarkers to monitor the immune response, as well as combining multiple immunotherapy strategies, may accelerate clinical progress and enable development of effective and safe treatments for glioma patients.
Collapse
Affiliation(s)
- Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Manini I, Caponnetto F, Dalla E, Ius T, Pepa GMD, Pegolo E, Bartolini A, Rocca GL, Menna G, Loreto CD, Olivi A, Skrap M, Sabatino G, Cesselli D. Heterogeneity Matters: Different Regions of Glioblastoma Are Characterized by Distinctive Tumor-Supporting Pathways. Cancers (Basel) 2020; 12:cancers12102960. [PMID: 33066172 PMCID: PMC7601979 DOI: 10.3390/cancers12102960] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary 5-ALA Fluorescence Guided Surgery aims at extending the boundaries of glioblastoma (GBM) resection. It is based on the use of a fluorescent dye, 5-aminolevulinic acid (5-ALA). Depending on the fluorescence levels, it is possible to distinguish the core of the tumor, the infiltrating borders and the healthy tissue. Since GBM progression is supported by tumor cells and their interaction with the surrounding microenvironment, we hypothesized that 5-ALA intensity could identify microenvironments with different tumor supporting properties. Taking advantage of glioma-associated stem cells; a human in vitro model of the glioma microenvironment, we demonstrate that all regions of the tumor support the tumor growth, but through different pathways. This study highlights the importance of understanding the TME to obtain key information on GBM biology and develop new therapeutic approaches. Abstract The glioblastoma microenvironment plays a substantial role in glioma biology. However, few studies have investigated its spatial heterogeneity. Exploiting 5-ALA Fluorescence Guided Surgery (FGS), we were able to distinguish between the tumor core (ALA+), infiltrating area (ALA-PALE) and healthy tissue (ALA−) of the glioblastoma, based on the level of accumulated fluorescence. The aim of this study was to investigate the properties of the microenvironments associated with these regions. For this purpose, we isolated glioma-associated stem cells (GASC), resident in the glioma microenvironment, from ALA+, ALA-PALE and ALA− samples and compared them in terms of growth kinetic, phenotype and for the expression of 84 genes associated with cancer inflammation and immunity. Differentially expressed genes were correlated with transcriptomic datasets from TCGA/GTEX. Our results show that GASC derived from the three distinct regions, despite a similar phenotype, were characterized by different transcriptomic profiles. Moreover, we identified a GASC-based genetic signature predictive of overall survival and disease-free survival. This signature, highly expressed in ALA+ GASC, was also well represented in ALA PALE GASC. 5-ALA FGS allowed to underline the heterogeneity of the glioma microenvironments. Deepening knowledge of these differences can contribute to develop new adjuvant therapies targeting the crosstalk between tumor and its supporting microenvironment.
Collapse
Affiliation(s)
- Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
- Correspondence:
| | - Federica Caponnetto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| | - Emiliano Dalla
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Giuseppe Maria Della Pepa
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
| | - Enrico Pegolo
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
| | - Anna Bartolini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
| | - Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Grazia Menna
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
| | - Carla Di Loreto
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| | - Alessandro Olivi
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Daniela Cesselli
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| |
Collapse
|
35
|
Hawkins CC, Ali T, Ramanadham S, Hjelmeland AB. Sphingolipid Metabolism in Glioblastoma and Metastatic Brain Tumors: A Review of Sphingomyelinases and Sphingosine-1-Phosphate. Biomolecules 2020; 10:E1357. [PMID: 32977496 PMCID: PMC7598277 DOI: 10.3390/biom10101357] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is a primary malignant brain tumor with a dismal prognosis, partially due to our inability to completely remove and kill all GBM cells. Rapid tumor recurrence contributes to a median survival of only 15 months with the current standard of care which includes maximal surgical resection, radiation, and temozolomide (TMZ), a blood-brain barrier (BBB) penetrant chemotherapy. Radiation and TMZ cause sphingomyelinases (SMase) to hydrolyze sphingomyelins to generate ceramides, which induce apoptosis. However, cells can evade apoptosis by converting ceramides to sphingosine-1-phosphate (S1P). S1P has been implicated in a wide range of cancers including GBM. Upregulation of S1P has been linked to the proliferation and invasion of GBM and other cancers that display a propensity for brain metastasis. To mediate their biological effects, SMases and S1P modulate signaling via phospholipase C (PLC) and phospholipase D (PLD). In addition, both SMase and S1P may alter the integrity of the BBB leading to infiltration of tumor-promoting immune populations. SMase activity has been associated with tumor evasion of the immune system, while S1P creates a gradient for trafficking of innate and adaptive immune cells. This review will explore the role of sphingolipid metabolism and pharmacological interventions in GBM and metastatic brain tumors with a focus on SMase and S1P.
Collapse
Affiliation(s)
- Cyntanna C. Hawkins
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
| | - Tomader Ali
- Research Department, Imperial College London Diabetes Centre, Abu Dhabi P.O. Box 48338, UAE;
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
- Comprehensive Diabetes Center, University of Birmingham at Alabama, Birmingham, AL 35294, USA
| | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
| |
Collapse
|
36
|
Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. J Clin Med 2020; 9:E2967. [PMID: 32937961 PMCID: PMC7564553 DOI: 10.3390/jcm9092967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the understanding of immune function and the interactions with tumour cells have led to the development of various cancer immunotherapies and strategies for specific cancer types. However, despite some stunning successes with some malignancies such as melanomas and lung cancer, most patients receive little or no benefit from immunotherapy, which has been attributed to the tumour microenvironment and immune evasion. Although the US Food and Drug Administration have approved immunotherapies for some cancers, to date, only the anti-angiogenic antibody bevacizumab is approved for the treatment of epithelial ovarian cancer. Immunotherapeutic strategies for ovarian cancer are still under development and being tested in numerous clinical trials. A detailed understanding of the interactions between cancer and the immune system is vital for optimisation of immunotherapies either alone or when combined with chemotherapy and other therapies. This article, in two main parts, provides an overview of: (1) components of the normal immune system and current knowledge regarding tumour immunology, biology and their interactions; (2) strategies, and targets, together with challenges and potential innovative approaches for cancer immunotherapy, with attention given to epithelial ovarian cancer.
Collapse
Affiliation(s)
- Anne M. Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Simon C. Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia;
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
37
|
Richardson LG, Nieman LT, Stemmer-Rachamimov AO, Zheng XS, Stafford K, Nagashima H, Miller JJ, Kiyokawa J, Ting DT, Wakimoto H, Cahill DP, Choi BD, Curry WT. IDH-mutant gliomas harbor fewer regulatory T cells in humans and mice. Oncoimmunology 2020; 9:1806662. [PMID: 32923170 PMCID: PMC7458656 DOI: 10.1080/2162402x.2020.1806662] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The metabolic gene isocitrate dehydrogenase 1 (IDH1) is commonly mutated in lower grade glioma (LGG) and secondary glioblastoma (GBM). Regulatory T cells (Tregs) play a significant role in the suppression of antitumor immunity in human glioma. Given the importance of Tregs in the overall framework of designing immune-based therapies, a better understanding on their association with IDH mutational status remains of critical clinical importance. Using multispectral imaging analysis, we compared the incidence of Tregs in IDH-mutant and IDH wild-type glioma from patient tumor samples of LGG. An orthotopic IDH-mutant murine model was generated to evaluate the role of mutant IDH on Treg infiltration by immunohistochemistry. When compared to IDH wild-type controls, Tregs are disproportionally underrepresented in mutant disease, even when taken as a proportion of all infiltrating T cells. Our findings suggest that therapeutic agents targeting Tregs may be more appropriate in modulating the immune response to wild-type disease.
Collapse
Affiliation(s)
- Leland G Richardson
- Translational Brain Tumor Immunology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda T Nieman
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Xijin S Zheng
- Translational Brain Tumor Immunology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Khalifa Stafford
- Translational Brain Tumor Immunology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hiroaki Nagashima
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie J Miller
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Juri Kiyokawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David T Ting
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bryan D Choi
- Translational Brain Tumor Immunology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William T Curry
- Translational Brain Tumor Immunology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Pi Castro D, José-López R, Fernández Flores F, Rabanal Prados RM, Mandara MT, Arús C, Pumarola Batlle M. Expression of FOXP3 in Canine Gliomas: Immunohistochemical Study of Tumor-Infiltrating Regulatory Lymphocytes. J Neuropathol Exp Neurol 2020; 79:184-193. [PMID: 31846038 DOI: 10.1093/jnen/nlz120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/15/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
Dogs develop gliomas with similar histopathological features to human gliomas and share with them the limited success of current therapeutic regimens such as surgery and radiation. The tumor microenvironment in gliomas is influenced by immune cell infiltrates. The present study aims to immunohistochemically characterize the tumor-infiltrating lymphocyte (TIL) population of naturally occurring canine gliomas, focusing on the expression of Forkhead box P3-positive (FOXP3+) regulatory T-cells (Tregs). Forty-three canine gliomas were evaluated immunohistochemically for the presence of CD3+, FOXP3+, and CD20+ TILs. In low-grade gliomas, CD3+ TILs were found exclusively within the tumor tissue. In high-grade gliomas, they were present in significantly higher numbers throughout the tumor and in the brain-tumor junction. CD20+ TILs were rarely found in comparison to CD3+ TILs. FOXP3+ TILs shared a similar distribution with CD3+ TILs. The accumulation of FOXP3+ Tregs within the tumor was more pronounced in astrocytic gliomas than in tumors of oligodendroglial lineage and the difference in expression was significant when comparing low-grade oligodendrogliomas and high-grade astrocytomas. Only high-grade astrocytomas presented FOXP3+ cells with tumoral morphology. In spontaneous canine gliomas, TILs display similar characteristics (density and distribution) as described for human gliomas, supporting the use of the dog as an animal model for translational immunotherapeutic studies.
Collapse
Affiliation(s)
- Dolors Pi Castro
- From the Unit of Murine and Comparative Pathology (UPMiC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autónoma de Barcelona, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roberto José-López
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Francisco Fernández Flores
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, UK
| | - Rosa M Rabanal Prados
- From the Unit of Murine and Comparative Pathology (UPMiC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | - Carles Arús
- From the Unit of Murine and Comparative Pathology (UPMiC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autónoma de Barcelona, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Martí Pumarola Batlle
- From the Unit of Murine and Comparative Pathology (UPMiC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autónoma de Barcelona, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Liu Z, Wu H, Deng J, Wang H, Wang Z, Yang A, Liang B, Luo J, Li J, Xu Y, Tang X, Fu F, Deng L. Molecular classification and immunologic characteristics of immunoreactive high‐grade serous ovarian cancer. J Cell Mol Med 2020. [PMCID: PMC7348149 DOI: 10.1111/jcmm.15441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
High‐grade serous ovarian cancer (HGS‐OvCa) is one of the most lethal gynaecological malignancies. Molecular classification identified an immunoreactive subtype of HGS‐OvCa; however, the immunologic characteristics of immunoreactive HGS‐OvcA remain unclear. In this study, 121 immunoreactive HGS‐OvCa samples were identified from a meta‐analysis of 5 large transcriptome profiling data sets using a cross‐platform immunoreactive HGS‐OvCa subgroup‐specific classifier. By comparing the gene expression profiles of immunoreactive HGS‐OvCa samples and normal tissues, 653 differentially expressed genes (DEGs) were identified. KEGG pathway analysis revealed that the leukocyte transendothelial migration pathways were significantly enriched in the immunoreactive HGS‐OvCa. Protein‐protein interaction analysis identified a module that showed strong involvement of the immune‐related chemokine signalling pathway. Moreover, the GSEA enrichment analysis showed a T‐cell subgroup and M1 macrophages were significantly enriched in immunoreactive OvCa compared with normal samples. Macrophage infiltration levels were significantly elevated in immunoreactive HGS‐OvCa compared with other OvCa subtypes. In addition, expression of immune checkpoint molecules VTCN1 and IDO1 was significantly increased in immunoreactive HGS‐OvCa. In summary, our results suggest that the immunoreactive HGS‐OvCa has unique molecular characteristics and a tumour‐associated immune microenvironment featured by increased infiltration of macrophages, rather than lymphocytes. VTCN1 could be potential targets for the treatment of immunoreactive HGS‐OvCa.
Collapse
Affiliation(s)
- Zheran Liu
- The Second Affiliated Hospital of Nanchang University Nanchang China
- Department of Biotherapy Cancer Center West China Hospital Sichuan University Chengdu China
| | - Haifang Wu
- The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Jiachen Deng
- The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Haoqing Wang
- School of Information Engineering Nanchang University Nanchang China
| | - Zixuan Wang
- The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Ailin Yang
- The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Bowen Liang
- Jiangxi Provincial Key Laboratory of Preventive Medicine School of Public Health Nanchang University Nanchang China
| | - Ji Luo
- The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Jianyong Li
- School of Basic Medical Science Nanchang University Nanchang China
| | - Yanmei Xu
- The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Xiaoli Tang
- School of Basic Medical Science Nanchang University Nanchang China
| | - Fen Fu
- The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Libin Deng
- Jiangxi Provincial Key Laboratory of Preventive Medicine School of Public Health Nanchang University Nanchang China
- School of Basic Medical Science Nanchang University Nanchang China
| |
Collapse
|
40
|
Mi Y, Guo N, Luan J, Cheng J, Hu Z, Jiang P, Jin W, Gao X. The Emerging Role of Myeloid-Derived Suppressor Cells in the Glioma Immune Suppressive Microenvironment. Front Immunol 2020; 11:737. [PMID: 32391020 PMCID: PMC7193311 DOI: 10.3389/fimmu.2020.00737] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid progenitor and precursor cells at different stages of differentiation, which play an important role in tumor immunosuppression. Glioma is the most common and deadliest primary malignant tumor of the brain, and ample evidence supports key contributions of MDSCs to the immunosuppressive tumor microenvironment, which is a key factor stimulating glioma progression. In this review, we summarize the source and characterization of MDSCs, discuss their immunosuppressive functions, and current approaches that target MDSCs for tumor control. Overall, the review provides insights into the roles of MDSC immunosuppression in the glioma microenvironment and suggests that MDSC control is a powerful cellular therapeutic target for currently incurable glioma tumors.
Collapse
Affiliation(s)
- Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Na Guo
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Jianghong Cheng
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Zhifang Hu
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Weilin Jin
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,Key Lab for Thin Film and Microfabrication Technology, Department of Instrument Science and Engineering, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xingchun Gao
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,Key Lab for Thin Film and Microfabrication Technology, Department of Instrument Science and Engineering, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
41
|
Hoshi M, Osawa Y, Nakamoto K, Morita N, Yamamoto Y, Ando T, Tashita C, Nabeshima T, Saito K. Kynurenine produced by indoleamine 2,3-dioxygenase 2 exacerbates acute liver injury by carbon tetrachloride in mice. Toxicology 2020; 438:152458. [PMID: 32289347 DOI: 10.1016/j.tox.2020.152458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 12/27/2022]
Abstract
Kynurenine (Kyn) plays an important role as an immune check-point molecule and regulates various immune responses through its aryl hydrocarbon receptor (Ahr). Kyn is synthesized by indoleamine 2,3-dioxygenase (Ido) and tryptophan 2,3-dioxygenase (Tdo). Ido contributes approximately 90% of tryptophan catabolism. Although Kyn is increased in various liver disorders, the roles of Kyn in liver injury are complicated because Ido1, Ido2, and Tdo are activated in different cell types. In this study, the roles of Ido2 in carbon tetrachloride (CCl4; 1 ml/kg, i.p.)-induced acute liver injury were examined using Ido2 knockout mice and Ido2 inhibitor. After CCl4 treatment, the ratio of Kyn to tryptophan and levels of Kyn in the liver were increased, accompanied by activation of Ahr-mediated signaling, as revealed by increased nuclear Ahr and Cyp1a1 mRNA. Knockout of Ido2 (Ido2-/-) and treatment with Ido2 inhibitor 1-methyl-D-tryptophan (D-1MT; 100 mg/kg, i.p.) attenuated CCl4-induced liver injury, with decreased induction of Ahr-mediated signaling. Administration of D-Kyn (100 mg/kg, i.p.) to Ido2-/- mice canceled the effect of Ido2 deficiency and exacerbated acute liver damage by CCl4 treatment. In addition, liver fibrosis induced by repeated CCl4 administration was suppressed in Ido2-/- mice. In conclusion, the action of Ido2 and Kyn in the liver may prevent severe hepatocellular damage and liver fibrosis.
Collapse
Affiliation(s)
- Masato Hoshi
- Department of Biochemical and Analytical Sciences, Aichi, 470-1192, Japan.
| | - Yosuke Osawa
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Kentaro Nakamoto
- Department of Disease Control and Prevention, Aichi, 470-1192, Japan
| | - Nanaka Morita
- Department of Disease Control and Prevention, Aichi, 470-1192, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Aichi, 470-1192, Japan
| | - Tatsuya Ando
- Research Promotion and Support Headquarters Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Chieko Tashita
- Department of Disease Control and Prevention, Aichi, 470-1192, Japan; Department of Medical Technology, Gifu University of Medical Science, Gifu, 501-3892, Japan
| | | | - Kuniaki Saito
- Department of Disease Control and Prevention, Aichi, 470-1192, Japan; Advanced Diagnostic System Research Laboratory, Aichi, 470-1192, Japan
| |
Collapse
|
42
|
George JA, Park SO, Choi JY, Uyangaa E, Eo SK. Double-faced implication of CD4 + Foxp3 + regulatory T cells expanded by acute dengue infection via TLR2/MyD88 pathway. Eur J Immunol 2020; 50:1000-1018. [PMID: 32125695 DOI: 10.1002/eji.201948420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/29/2020] [Accepted: 02/27/2020] [Indexed: 01/03/2023]
Abstract
Dengue infection causes dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). CD4+ Foxp3+ Tregs are expanded in patients during dengue infection, and appear to be associated with clinical severity. However, molecular pathways involved in Treg proliferation and the reason for their insufficient control of severe diseases are poorly understood. Here, dengue infection induced the proliferation of functional CD4+ Foxp3+ Tregs via TLR2/MyD88 pathway. Surface TLR2 on Tregs was responsible for their proliferation, and dengue-expanded Tregs subverted in vivo differentiation of effector CD8+ T cells. An additional interesting finding was that dengue-infected hosts displayed changed levels of susceptibility to other diseases in TLR2-dependent manner. This change included enhanced susceptibility to tumors and bacterial infection, but highly enhanced resistance to viral infection. Further, the transfer of dengue-proliferated Tregs protected the recipients from dengue-induced DHF/DSS and LPS-induced sepsis. In contrast, dengue-infected hosts were more susceptible to sepsis, an effect attributable to early TLR2-dependent production of proinflammatory cytokines. These facts may explain the reason why in some patients, dengue-proliferated Tregs is insufficient to control DF and DHF/DSS. Also, our observations lead to new insights into Treg responses activated by dengue infection in a TLR2-dependent manner, which could differentially act on subsequent exposure to other disease-producing situations.
Collapse
Affiliation(s)
- Junu A George
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| |
Collapse
|
43
|
Beneficial and Detrimental Effects of Regulatory T Cells in Neurotropic Virus Infections. Int J Mol Sci 2020; 21:ijms21051705. [PMID: 32131483 PMCID: PMC7084400 DOI: 10.3390/ijms21051705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Neurotropic viruses infect the central nervous system (CNS) and cause acute or chronic neurologic disabilities. Regulatory T cells (Treg) play a critical role for immune homeostasis, but may inhibit pathogen-specific immunity in infectious disorders. The present review summarizes the current knowledge about Treg in human CNS infections and their animal models. Besides dampening pathogen-induced immunopathology, Treg have the ability to facilitate protective responses by supporting effector T cell trafficking to the infection site and the development of resident memory T cells. Moreover, Treg can reduce virus replication by inducing apoptosis of infected macrophages and attenuate neurotoxic astrogliosis and pro-inflammatory microglial responses. By contrast, detrimental effects of Treg are caused by suppression of antiviral immunity, allowing for virus persistence and latency. Opposing disease outcomes following Treg manipulation in different models might be attributed to differences in technique and timing of intervention, infection route, genetic background, and the host’s age. In addition, mouse models of virus-induced demyelination revealed that Treg are able to reduce autoimmunity and immune-mediated CNS damage in a disease phase-dependent manner. Understanding the unique properties of Treg and their complex interplay with effector cells represents a prerequisite for the development of new therapeutic approaches in neurotropic virus infections.
Collapse
|
44
|
Fu W, Wang W, Li H, Jiao Y, Weng J, Huo R, Yan Z, Wang J, Xu H, Wang S, Wang J, Chen D, Cao Y, Zhao J. High Dimensional Mass Cytometry Analysis Reveals Characteristics of the Immunosuppressive Microenvironment in Diffuse Astrocytomas. Front Oncol 2020; 10:78. [PMID: 32117733 PMCID: PMC7010913 DOI: 10.3389/fonc.2020.00078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/16/2020] [Indexed: 01/01/2023] Open
Abstract
The tumor immune microenvironment (TIME) plays a pivotal role in tumor development, progression, and prognosis. However, the characteristics of the TIME in diffuse astrocytoma (DA) are still unclear. Leveraging mass cytometry with a panel of 33 markers, we analyzed the infiltrating immune cells from 10 DA and 4 oligodendroglioma (OG) tissues and provided a single cell-resolution landscape of the intricate immune microenvironment. Our study profiled the composition of the TIME in DA and confirmed the presence of immune cells, such as glioma-associated microglia/macrophages (GAMs), CD8+ T cells, CD4+ T cells, regulatory T cells (Tregs), and natural killer cells. Increased percentages of PD-1+ CD8+ T cells, TIM-3+ CD4+ T cell subpopulations, Tregs and pro-tumor phenotype GAMs substantially contribute to the local immunosuppressive microenvironment in DA. DAs and OGs share similar compositions in terms of immune cells, while GAMs in DA exhibit more inhibitory characteristics than those in OG.
Collapse
Affiliation(s)
- Weilun Fu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenjing Wang
- Institute of Hepatology, Capital Medical University Affiliated Beijing You'an Hospital, Beijing, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zihan Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dexi Chen
- Institute of Hepatology, Capital Medical University Affiliated Beijing You'an Hospital, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
45
|
Du B, Waxman DJ. Medium dose intermittent cyclophosphamide induces immunogenic cell death and cancer cell autonomous type I interferon production in glioma models. Cancer Lett 2019; 470:170-180. [PMID: 31765733 DOI: 10.1016/j.canlet.2019.11.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
Cyclophosphamide treatment on a medium-dose, intermittent chemotherapy (MEDIC) schedule activates both innate and adaptive immunity leading to major regression of implanted gliomas. Here, we show that this MEDIC treatment regimen induces tumor cell autonomous type-I interferon signaling, followed by release of soluble factors that activate interferon-stimulated genes in both tumor cells and tumor-infiltrating immune cells. In cultured GL261 and CT-2A glioma cells, activated cyclophosphamide stimulated production and release of type-I interferons, leading to robust activation of downstream gene targets. Antibody against the type-I interferon receptor IFNAR1 blocked the cyclophosphamide-stimulated induction of these genes in both cultured glioma cells and implanted gliomas. Furthermore, IFNAR1 antibody strongly inhibited the MEDIC cyclophosphamide-stimulated increases in tumor cell infiltration of macrophages, dendritic cells, B-cells, as well as natural killer cells and cytotoxic T-cells and their cytotoxic effectors. Finally, cyclophosphamide-treated dying glioma cells producing type-I interferons were an effective vaccine against drug-naïve glioma cells implanted in vivo. Thus, cyclophosphamide induces local, tumor cell-centric increases in type-I interferon signaling, which activates immunogenic cell death and is essential for the striking antitumor immune responses that MEDIC cyclophosphamide treatment elicits in these glioma models.
Collapse
Affiliation(s)
- Bin Du
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
46
|
Luzzi S, Crovace AM, Del Maestro M, Giotta Lucifero A, Elbabaa SK, Cinque B, Palumbo P, Lombardi F, Cimini A, Cifone MG, Crovace A, Galzio R. The cell-based approach in neurosurgery: ongoing trends and future perspectives. Heliyon 2019; 5:e02818. [PMID: 31844735 PMCID: PMC6889232 DOI: 10.1016/j.heliyon.2019.e02818] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/11/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Examination of the current trends and future perspectives of the cell-based therapies in neurosurgery. METHODS A PubMed/MEDLINE-based systematic review has been performed combining the main Medical Subject Headings (MeSH) regarding the cell- and tissue-based therapies with the "Brain", "Spinal Cord", "Spine" and "Skull" MeSH terms. Only articles in English published in the last 10 years and pertinent to neurosurgery have been selected. RESULTS A total of 1,173 relevant articles have been chosen. Somatic cells and gene-modification technologies have undergone the greatest development. Immunotherapies and gene therapies have been tested for the cure of glioblastoma, stem cells mainly for brain and spinal cord traumatic injuries. Stem cells have also found a rationale in the treatment of the cranial and spinal bony defects, and of the intervertebral disc degeneration, as well.Most of the completed or ongoing trials concerning the cell-based therapies in neurosurgery are on phase 2. Future perspectives involve the need to overcome issues related to immunogenicity, oncogenicity and routes for administration. Refinement and improvement of vector design and delivery are required within the gene therapies. CONCLUSION The last decade has been characterised by a progressive evolution of neurosurgery from a purely mechanical phase to a new biological one. This trend has followed the rapid and parallel development of translational medicine and nanotechnologies.The introduction of new technologies, the optimisation of the already existing ones, and the reduction of costs are among the main challenges of the foreseeable future.
Collapse
Affiliation(s)
- Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
| | - Alberto Maria Crovace
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza G. Cesare, 11 – Policlinico di Bari, Bari, 70124, Italy
| | - Mattia Del Maestro
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
- PhD School in Experimental Medicine, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
| | - Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
| | - Samer K. Elbabaa
- Pediatric Neurosurgery, Pediatric Neuroscience Center of Excellence, Arnold Palmer Hospital for Children, 1222 S. Orange Avenue, 2nd Floor, MP 154, Orlando, FL, 32806, USA
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Annamaria Cimini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Antonio Crovace
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza G. Cesare, 11 – Policlinico di Bari, Bari, 70124, Italy
| | - Renato Galzio
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
| |
Collapse
|
47
|
Zhou Y, Li Y, Lu J, Hong X, Xu L. MicroRNA‑30a controls the instability of inducible CD4+ Tregs through SOCS1. Mol Med Rep 2019; 20:4303-4314. [PMID: 31545427 DOI: 10.3892/mmr.2019.10666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/31/2019] [Indexed: 11/05/2022] Open
Abstract
Inducible regulatory T cells (iTregs) are an important subset of Tregs and play a role in the maintenance of peripheral tolerance, and the occurrence of a number of diseases, including tumors and autoimmune diseases. However, the instability of iTregs is a major obstacle for their potential application in clinical trials. The underlying mechanism of iTreg instability remains largely unknown. In the present study, the expression level of microRNA (miRNA/miR)‑30a in murine iTregs was evaluated using reverse transcription‑quantitative PCR. miR‑30a mimics and a miR‑negative control (NC) were transiently transfected into iTregs using Nucleofector technology. The effects of miR‑30a on the suppressive function of murine iTregs in vitro and in vivo were investigated using MTT, adoptive cell transfer (ACT) and flow cytometry assays, as well as a murine model of lung cancer. In the present study, it was identified that the expression level of miR‑30a was lower in murine iTregs in vitro compared with natural (n)Tregs. Furthermore, compared with miR‑NC, miR‑30a mimics impaired the suppressive function of murine iTregs on murine CD4+ T cell proliferation in vitro, which was accompanied by the altered expression of cytotoxic T lymphocyte‑associated antigen 4 and glucocorticoid induced tumor necrosis factor receptor, as well as transforming growth factor‑β and interleukin‑10. It was also observed that, compared with miR‑NC, miR‑30a mimics abrogated the suppressive effects of murine iTregs on murine CD8+ T cell function in vivo, producing an effective antitumor effect in mice bearing 3LL lung cancer cells in the ACT assay. From a mechanistic point, the expression level of suppressor of cytokine signaling 1, a putative target of miR‑30a, was elevated, altering the activation of the Akt and STAT1 pathway in the miR‑30a mimic transfected group compared with the miR‑NC group, reducing the suppressive function of murine iTregs. The present study identified a role for miR‑30a in the instability of iTregs and provided a novel insight into the development of therapeutic strategies for promoting T‑cell immunity via the regulation of iTreg instability by targeting specific miRNAs.
Collapse
Affiliation(s)
- Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yongju Li
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou 563000, P.R. China
| | - Jia Lu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou 563000, P.R. China
| | - Xiaowu Hong
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
48
|
Rad Pour S, Morikawa H, Kiani NA, Yang M, Azimi A, Shafi G, Shang M, Baumgartner R, Ketelhuth DFJ, Kamleh MA, Wheelock CE, Lundqvist A, Hansson J, Tegnér J. Exhaustion of CD4+ T-cells mediated by the Kynurenine Pathway in Melanoma. Sci Rep 2019; 9:12150. [PMID: 31434983 PMCID: PMC6704156 DOI: 10.1038/s41598-019-48635-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Kynurenine pathway (KP) activation by the enzymatic activity of indoleamine 2,3-dioxygenase1 (IDO1) and kynurenine (KYN) production represents an attractive target for reducing tumour progression and improving anti-tumour immunity in multiple cancers. However, immunomodulatory properties of other KP metabolites such as 3-hydroxy kynurenine (3-HK) and kynurenic acid (KYNA) are poorly understood. The association of the kynurenine metabolic pathway with T-cell status in the tumour microenvironment were characterized, using gene expression data of 368 cutaneous skin melanoma (SKCM) patients from the TCGA cohort. Based on the identified correlations, we characterized the production of KYN, 3-HK, and KYNA in vitro using melanoma-derived cell lines and primary CD4+ CD25- T-cells. Activation of the CD4+ T-cells produced IFNγ, which yielded increased levels of KYN and KYNA. Concurrently, kynurenine 3-monooxygenase (KMO) expression and proliferation of CD4+ T-cells were reduced, whereas exhaustion markers such as PD-L1, AHR, FOXP3, and CTLA4 were increased. Additionally, an analysis of the correlation network reconstructed using TCGA-SKCM emphasized KMO and KYNU with high variability among BRAF wild-type compared with V600E, which underscored their role in distinct CD4+ T-cell behavior in tumour immunity. Our results suggest that, in addition to IDO1, there is an alternative immune regulatory mechanism associated with the lower KMO expression and the higher KYNA production, which contributes to dysfunctional effector CD4+ T-cell response.
Collapse
Affiliation(s)
- Soudabeh Rad Pour
- Unit of Computational Medicine, Department of Medicine, Centre for Molecular Medicine, Karolinska Institute, SE-171 76, Stockholm, Sweden.
| | - Hiromasa Morikawa
- Biological and Environmental Sciences and Engineering Division (BESE), Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Narsis A Kiani
- Unit of Computational Medicine, Department of Medicine, Centre for Molecular Medicine, Karolinska Institute, SE-171 76, Stockholm, Sweden
- Algorithmic Dynamics Lab, Unit of Computational Medicine, Department of Medicine Solna, Centre for Molecular Medicine, Karolinska Institute and SciLifeLab, SE-171 77, Stockholm, Sweden
| | - Muyi Yang
- Department of Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Alireza Azimi
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gowhar Shafi
- Department of Genomics and Bioinformatics, Positive Bioscience, Mumbai, -400 002, India
| | - Mingmei Shang
- Unit of Computational Medicine, Department of Medicine, Centre for Molecular Medicine, Karolinska Institute, SE-171 76, Stockholm, Sweden
| | - Roland Baumgartner
- Experimental Cardiovascular Research Group, Cardiovascular Medicine Unit, Centre for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Experimental Cardiovascular Research Group, Cardiovascular Medicine Unit, Centre for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Muhammad Anas Kamleh
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Tegnér
- Unit of Computational Medicine, Department of Medicine, Centre for Molecular Medicine, Karolinska Institute, SE-171 76, Stockholm, Sweden
- Biological and Environmental Sciences and Engineering Division (BESE), Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
49
|
Hassanpour Golakani M, Mohammad MG, Li H, Gamble J, Breit SN, Ruitenberg MJ, Brown DA. MIC-1/GDF15 Overexpression Is Associated with Increased Functional Recovery in Traumatic Spinal Cord Injury. J Neurotrauma 2019; 36:3410-3421. [PMID: 31232176 DOI: 10.1089/neu.2019.6421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) has devastating consequences, with limited therapeutic options; therefore, improving its functional outcome is a major goal. The outcome of SCI is contributed to by neuroinflammation, which may be a target for improved recovery and quality of life after injury. Macrophage inhibitory cytokine-1/growth differentiation factor 15 (MIC-1/GDF15) has been identified as a potential novel therapy for central nervous system (CNS) injury because it is an immune regulatory cytokine with neurotrophic properties. Here we used MIC-1/GDF15 knockout (KO) and overexpressing/transgenic (Tg) and wild type (WT) animals to explore its putative therapeutic benefits in a mouse model of contusive SCI. MIC-1/GDF15 Tg mice had superior locomotor recovery and reduced secondary tissue loss at 28 days compared with their KO and WT counterparts. Overexpression of MIC-1/GDF15 coincided with increased expression of monocyte chemoattractant protein-1 (MCP-1)/C-C Motif Chemokine Ligand 2 (CCL2) at the lesion site (28 days post-SCI) and enhanced recruitment of inflammatory cells to the injured spinal cord. This inflammatory cellular infiltrate included an increased frequency of macrophages and dendritic cells (DCs) that mostly preceded recruitment of cluster of differentiation (CD)4+ and CD8+ T cells. Collectively, our findings suggest hat MIC-1/GDF15 is associated with beneficial changes in the clinical course of SCI that are characterized by altered post-injury inflammation and improved functional outcome. Further investigation of MIC-1/GDF15 as a novel therapeutic target for traumatic SCI appears warranted.
Collapse
Affiliation(s)
- Masoud Hassanpour Golakani
- St. Vincent's Centre for Applied Medical Research (AMR), St Vincent's Hospital and University of New South Wales (UNSW), Sydney, New South Wales, Australia.,The Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Mohammad G Mohammad
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates. Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Hui Li
- St. Vincent's Centre for Applied Medical Research (AMR), St Vincent's Hospital and University of New South Wales (UNSW), Sydney, New South Wales, Australia.,The Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Joanne Gamble
- The Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Samuel N Breit
- St. Vincent's Centre for Applied Medical Research (AMR), St Vincent's Hospital and University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - David A Brown
- St. Vincent's Centre for Applied Medical Research (AMR), St Vincent's Hospital and University of New South Wales (UNSW), Sydney, New South Wales, Australia.,The Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia.,Department of Immunopathology, Institute for Clinical Pathology and Medical Research-New South Wales Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
50
|
Tian CQ, Chen L, Chen HD, Huan XJ, Hu JP, Shen JK, Xiong B, Wang YQ, Miao ZH. Inhibition of the BET family reduces its new target gene IDO1 expression and the production of L-kynurenine. Cell Death Dis 2019; 10:557. [PMID: 31324754 PMCID: PMC6642217 DOI: 10.1038/s41419-019-1793-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022]
Abstract
The bromodomain and extra terminal domain (BET) family members, including BRD2, BRD3, and BRD4, act as epigenetic readers to regulate gene expression. Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme that participates in tumor immune escape primarily by catalyzing tryptophan to L-kynurenine. Here, we report that IDO1 is a new target gene of the BET family. RNA profiling showed that compound 9, a new BET inhibitor, reduced IDO1 mRNA up to seven times in Ty-82 cells. IDO1 differentially expressed in tumor cells and its expression could be induced with interferon gamma (IFN-γ). BET inhibitors (ABBV-075, JQ1, and OTX015) inhibited both constitutive and IFN-γ-inducible expression of IDO1. Similarly, reduction of BRD2, BRD3, or BRD4 decreased IDO1 expression. All these BET family members bound to the IDO1 promoter via the acetylated histone H3. JQ1 led to their release and reduced enrichment of RNA polymerase II (Pol II) on the promoter. IFN-γ increased the binding of BRD2, BRD3, BRD4, and Pol II on the IDO1 promoter by increasing the acetylation of histone H3, which could be prevented by JQ1 partially or even completely. Furthermore, both JQ1 and OTX015 decreased the production of L-kynurenine. The combination of BET inhibitors with the IDO1 inhibitor further reduced L-kynurenine, though only marginally. Importantly, the BET inhibitor ABBV-075 significantly inhibited the growth of human Ty-82 xenografts in nude mice and reduced both protein and mRNA levels of IDO1 in the xenografts. This finding lays a basis for the potential combination of BET inhibitors and IDO1 inhibitors for the treatment of IDO1-expressing cancers.
Collapse
MESH Headings
- A549 Cells
- Acetylation
- Animals
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Female
- Gene Expression/drug effects
- HL-60 Cells
- HeLa Cells
- Histones/metabolism
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Kynurenine/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Promoter Regions, Genetic
- Pyridones/pharmacology
- RNA, Messenger/genetics
- Sulfonamides/pharmacology
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transfection
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chang-Qing Tian
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Lin Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Hua-Dong Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Xia-Juan Huan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jian-Ping Hu
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jing-Kang Shen
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Bing Xiong
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Ying-Qing Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.
| | - Ze-Hong Miao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.
- Open Studio for Drugability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266237, Shandong, China.
| |
Collapse
|