1
|
Pena Calderin E, Zheng JJ, Boyd NL, Lynch W, Sansbury B, Spite M, Hill BG, Hellmann J. Exercise-Stimulated Resolvin Biosynthesis in the Adipose Tissue Is Abrogated by High-Fat Diet-Induced Adrenergic Deficiency. Arterioscler Thromb Vasc Biol 2025. [PMID: 40336478 DOI: 10.1161/atvbaha.124.322234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Diet-induced white adipose tissue inflammation is associated with insulin resistance and metabolic perturbations. Conversely, exercise protects against the development of diet-induced chronic inflammation and insulin resistance independent of weight loss; however, the mechanisms remain largely unknown. We have recently shown that through adrenergic stimulation of macrophages, exercise promotes resolution of acute peritoneal inflammation by enhancing the biosynthesis of specialized proresolving lipid mediators. In this study, we sought to determine whether exercise stimulates proresolving pathways in adipose tissue and whether this response is modified by diet. Specifically, we hypothesized that exercise stimulates proresolving pathways by adrenergic signaling, which is inhibited by high-fat diet, priming the development of chronic inflammation in the adipose tissue. METHODS To explore the dietary dependence of the proresolving effects of exercise, mice were fed either a control or high-fat diet for 2 weeks before, and throughout, a 4-week period of daily treadmill running. Glucose handling, body weight and composition, lipemia, and exercise performance were evaluated at the end of the feeding and exercise interventions. Likewise, changes in catecholamines and their biosynthetic enzymes were measured along with adipose tissue specialized proresolving lipid mediator levels and macrophage phenotype and abundance. RESULTS When compared with sedentary controls, macrophages isolated from mice exposed to 4 weeks of exercise display elevated expression of the specialized proresolving lipid mediator biosynthetic enzyme Alox15, while adipose tissue specialized proresolving lipid mediator levels and anti-inflammatory CD301+ M2 macrophages increased. These changes were dependent upon diet as 6 weeks of feeding with high-fat diet abrogated the proresolving effect of exercise when compared with control diet-fed animals. Interestingly, exercise-induced epinephrine production was inhibited by high-fat diet, which diminished the expression of the epinephrine biosynthetic enzyme PNMT (phenylethanolamine N-methyltransferase) in adrenal glands. CONCLUSIONS Taken together, these results suggest that a diet high in fat diminishes the proresolving effects of exercise in the adipose tissue via decreasing the biosynthesis of catecholamines.
Collapse
Affiliation(s)
- Ernesto Pena Calderin
- Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, KY. (E.P.C., J.-J.Z., N.L.B., W.L., B.S., B.G.H., J.H.)
- Department of Physiology, University of Louisville School of Medicine, KY. (E.P.C.)
| | - Jing-Juan Zheng
- Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, KY. (E.P.C., J.-J.Z., N.L.B., W.L., B.S., B.G.H., J.H.)
| | - Nolan L Boyd
- Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, KY. (E.P.C., J.-J.Z., N.L.B., W.L., B.S., B.G.H., J.H.)
| | - Will Lynch
- Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, KY. (E.P.C., J.-J.Z., N.L.B., W.L., B.S., B.G.H., J.H.)
| | - Brian Sansbury
- Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, KY. (E.P.C., J.-J.Z., N.L.B., W.L., B.S., B.G.H., J.H.)
| | - Matthew Spite
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (M.S.)
| | - Bradford G Hill
- Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, KY. (E.P.C., J.-J.Z., N.L.B., W.L., B.S., B.G.H., J.H.)
| | - Jason Hellmann
- Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, KY. (E.P.C., J.-J.Z., N.L.B., W.L., B.S., B.G.H., J.H.)
| |
Collapse
|
2
|
Szewczyk A, Baczyńska D, Choromańska A, Łapińska Z, Chwiłkowska A, Saczko J, Kulbacka J. Advancing cancer therapy: Mechanisms, efficacy, and limitations of calcium electroporation. Biochim Biophys Acta Rev Cancer 2025; 1880:189319. [PMID: 40222421 DOI: 10.1016/j.bbcan.2025.189319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Calcium electroporation, an innovative technique, uses high-voltage pulses to introduce calcium ions into cells, leading to cell death and tumor growth inhibition. This review explores the potential of calcium electroporation as a promising therapeutic approach in cancer treatment. We provide an in-depth analysis of the underlying mechanisms by which calcium ions function within cells and how their introduction through electroporation can effectively induce cell death in cancer cells. Furthermore, we present a comprehensive overview of the current literature, covering both preclinical and clinical studies, to highlight the safety and efficacy of calcium electroporation in various cancer types, including melanoma, head and neck cancer, and breast cancer. We also discuss the distinct advantages of calcium electroporation over traditional cancer therapies, such as its specific targeting of cancer cells while sparing healthy cells. However, we also address the challenges and limitations associated with this technique, underscoring the need for further research. By providing a comprehensive examination of calcium electroporation, this review aims to contribute to understanding this emerging field and encourage further investigation into its potential as a novel cancer treatment strategy.
Collapse
Affiliation(s)
- Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| |
Collapse
|
3
|
Durán-Rodriguez AT, Almeida MPO, Ferreira FB, Lozano-Trujillo LA, Gomes AO, Cariaco Y, Silva NM. Macrophage Migration Inhibitory Factor Contributes to Adverse Outcomes of Experimental Gestational Malaria across Pregnancy Stages. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00105-1. [PMID: 40204186 DOI: 10.1016/j.ajpath.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025]
Abstract
Malaria infection during pregnancy, particularly caused by Plasmodium falciparum, poses significant risks, such as maternal anemia, low birth weight, preterm delivery, and increased infant mortality. This study investigated the role of macrophage migration inhibitory factor (MIF) in modulating pregnancy outcomes in a mouse model of gestational malaria. Herein, Mif-deficient (Mif-/-) and Mif-sufficient (wild-type) mice were used to evaluate the impact of MIF on maternal-fetal immune interactions during Plasmodium infection in three different stages of pregnancy. Mif-/- mice exhibited lower embryo resorption rates, preserved decidualization, and improved spiral artery remodeling compared with wild-type counterparts. Notably, although Mif deficiency was associated with increased parasitemia levels in late gestation, a shift toward a more anti-inflammatory phenotype in the uteroplacental tissues of infected mice contributed to better pregnancy outcomes. These results highlight the complex interplay between immune regulation and pregnancy in the context of malaria, indicating that targeting Mif may offer a therapeutic strategy to mitigate adverse pregnancy effects in infected individuals.
Collapse
Affiliation(s)
| | - Marcos Paulo O Almeida
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Flávia Batista Ferreira
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Angelica Oliveira Gomes
- Laboratory of Cell Interactions, Institute of Natural and Biological Sciences, Federal University of the Triângulo Mineiro, Uberaba, Brazil
| | - Yusmaris Cariaco
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil.
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
4
|
Marchisio L, Gaudillat Q, Muller J, Zedet A, Tissot M, Harakat D, Sénéjoux F, Rolin G, Cardey B, Girard C, Pudlo M. Synthesis and evaluation of piceatannol derivatives as novel arginase inhibitors with radical scavenging activity and their potential for collagen reduction in dermal fibroblasts. Eur J Med Chem 2025; 287:117376. [PMID: 39952100 DOI: 10.1016/j.ejmech.2025.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
High arginase activity is associated with several pathological conditions, including TGF-β-induced fibrosis, by increasing levels of the proline precursor l-ornithine, thereby promoting collagen biosynthesis and increasing oxidative stress due to nitric oxide synthase (NOS) uncoupling. The natural piceatannol has been shown to have beneficial effects on collagen deposition, fibrosis and oxidative stress. In this study, we present an in-depth structure-activity relationship study on arginase I, which resulted in the thioamide derivative 12a with dual catechol rings that displays potent inhibitory activity with IC₅₀ values of 9 μM and 55 μM for bovine and human arginase I, respectively. Quantum chemical modelling suggested that the sulphur atom in the thioamide group plays a crucial role in binding affinity by forming a stable hydrogen bond within the active site of the enzyme. In addition, compound 12a demonstrated high radical scavenging activity and effectively normalised collagen and procollagen levels at 5 μM in an in vitro cell model of a dermal fibrosis.
Collapse
Affiliation(s)
- Luca Marchisio
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Quentin Gaudillat
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Jason Muller
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Andy Zedet
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Marion Tissot
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Dominique Harakat
- Université de Reims Champagne Ardenne, CNRS UMR 7312, ICMR, URCATech, 51100, Reims, France.
| | - François Sénéjoux
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Gwenaël Rolin
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France; INSERM CIC-1431, CHU Besançon, F-25000, Besançon, France.
| | - Bruno Cardey
- Université de Franche-Comté, CNRS, CHRONO-E (UMR 6249), F-25000, Besançon, France.
| | - Corine Girard
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Marc Pudlo
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| |
Collapse
|
5
|
Heng CKM, Darlyuk-Saadon I, Liao W, Mohanam MP, Gan PXL, Gilad N, Chan CCMY, Plaschkes I, Wong WSF, Engelberg D. A combination of alveolar type 2-specific p38α activation with a high-fat diet increases inflammatory markers in mouse lungs. J Biol Chem 2025; 301:108425. [PMID: 40118456 PMCID: PMC12018981 DOI: 10.1016/j.jbc.2025.108425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 03/23/2025] Open
Abstract
Chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease afflict millions of individuals globally and are significant sources of disease mortality. While the molecular mechanisms underlying such diseases are unclear, environmental and social factors, such as cigarette smoke and obesity, increase the risk of disease development. Yet, not all smokers or obese individuals will develop chronic respiratory diseases. The mitogen-activated protein kinase p38α is abnormally active in such maladies, but its contribution, if any, to disease etiology is unknown. To assess whether p38α activation per se in the lung could impose disease symptoms, we generated a transgenic mouse model allowing controllable expression of an intrinsically active variant, p38αD176A+F327S, specifically in lung alveolar type 2 pneumocytes. Sustained expression of p38αD176A+F327S did not appear to induce obvious pathological outcomes or to exacerbate inflammatory outcomes in mice challenged with common respiratory disease triggers. However, mice expressing p38αD176A+F327S in alveolar type 2 cells and fed with a high-fat diet exhibited increased numbers of airway eosinophils and lymphocytes, upregulated levels of proinflammatory cytokines and chemokines including interleukin-1β and eotaxin, as well as a reduction in levels of leptin and adiponectin within the lung. Neither high-fat diet nor p38αD176A+F327S alone induced such outcomes. Perhaps in obese individuals with associated respiratory diseases, elevated p38α activity which happens to occur is the factor that promotes their development.
Collapse
Affiliation(s)
- C K Matthew Heng
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Ilona Darlyuk-Saadon
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Wupeng Liao
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manju P Mohanam
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Phyllis X L Gan
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nechama Gilad
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christabel C M Y Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - W S Fred Wong
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore.
| | - David Engelberg
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
6
|
Jiang Q, Kumar R, Zhao Y, Subbian S, Shi L. Arginine as host directed therapy in tuberculosis: insights from modulating arginine metabolism by supplementation and arginase inhibition. ONE HEALTH ADVANCES 2025; 3:5. [PMID: 40124736 PMCID: PMC11928424 DOI: 10.1186/s44280-025-00070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a global health challenge. Arginine metabolism is central to immune responses, regulating nitric oxide (NO) production via inducible NO synthase (Nos2) and competing pathways mediated by arginases (Arg1 and Arg2). This study examines the impact of arginine supplementation and arginase inhibition during the acute phase of Mtb infection in mouse lungs, focusing on immune function, lung pathology, and mitochondrial function. Arginine supplementation enhanced Nos2 expression, promoted mitophagy, and supported angiogenesis and/or tissue repair by upregulating Vegfa. These mechanisms synergized to balance pro-inflammatory responses with tissue repair, improving immune defense while mitigating lung damage. In contrast, arginase inhibition disrupted Vegfa-mediated immune homeostasis, and impaired mitophagy, leading to exacerbated lung pathology. These findings underscore the complementary roles of Nos2 and arginase-mediated pathways in maintaining immune equilibrium during Mtb infection. Our results highlight arginine supplementation as a promising host-directed therapy for TB, capable of enhancing protective immunity and facilitating tissue repair. Conversely, caution is warranted for strategies targeting arginase due to potential adverse effects on inflammation resolution and mitochondrial quality control. Future studies should explore the long-term efficacy of arginine-based therapies and their integration with existing antibiotic regimens for optimal TB management. Supplementary Information The online version contains supplementary material available at 10.1186/s44280-025-00070-6.
Collapse
Affiliation(s)
- Qingkui Jiang
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ 79103 USA
| | - Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ 79103 USA
| | - Yi Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523713 China
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, Guangdong 523808 China
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ 79103 USA
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ 79103 USA
| |
Collapse
|
7
|
Yakhshimurodov UR, Yamashita K, Miki K, Kawamura T, Saito S, Miyagawa S. A generalized protocol for the induction of M2-like macrophages from mouse and rat bone marrow mononuclear cells. Biol Methods Protoc 2025; 10:bpaf020. [PMID: 40177524 PMCID: PMC11964487 DOI: 10.1093/biomethods/bpaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Regardless of origin and localization, macrophages are the major immune cells that maintain homeostasis in both healthy and diseased states. However, there is no consensus on the phenotypes, functions and fates of macrophages. Existing studies clarify macrophage biology from different biomedical research perspectives, but the heterogeneity of induction methods hinders reproducibility and comparability. To address this problem, we validated a novel generalized in vitro protocol for the induction of M2-like macrophages from mice and rats bone marrow mononuclear cells. Our approach improves reliability and cross-species applicability, providing a valuable tool for macrophage research.
Collapse
Affiliation(s)
- Ulugbek R Yakhshimurodov
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Kizuku Yamashita
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Kenji Miki
- Premium Research Institute for Human Metaverse Medicine (PRIMe), Osaka University, Suita, 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Shunsuke Saito
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
8
|
Gallo A, Sammartino JC, Vazzana R, Giambruno R, Carcione C, Cuscino N, Castelbuono S, Miceli V, Bulati M, Lilleri D, Cassaniti I, Conaldi PG, Baldanti F. Transcriptomic profiles of monocyte-derived macrophages exposed to SARS-CoV-2 VOCs reveal immune-evasion escape driven by delta. J Transl Med 2025; 23:151. [PMID: 39905461 PMCID: PMC11796281 DOI: 10.1186/s12967-025-06158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Since the breakout of COVID-19, the mutated forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown enhanced rates of transmission and adaptation to humans. The variants of concern (VOC), designated Alpha, Beta, Gamma, Delta, and Omicron emerged independent of one another, and in turn rapidly became dominant. The success of each VOC, as well as the virus fitness, were enabled by altered intrinsic functional properties and, reasonably, to virus antigenicity changes, conferring the ability to evade a primed immune response. METHODS We analysed the gene expression profiles of monocyte-derived macrophages (MDM) isolated from whole blood of healthy participants exposed to the 5 different SARS-CoV-2 VOC: D614G, Alpha (B.1.1.7), Gamma (P1), Delta (B.1.617.2), and Omicron BA.1 (B.1.1.529), and to the HCoV-OC43 strain, a coronavirus already present in the population before the SARS-CoV-2 pandemic. Whole transcriptome RNA-Seq, for both coding and non-coding RNAs, was then made. RESULTS After exposure to the 5 VOC of MDM, we initially assessed the presence of the viral SARS-CoV-2 transcripts to confirm viral entry. We then analysed the RNA-Seq data and observed a significant deregulation of both coding and non-coding RNAs. In particular, our RNA-Seq analysis showed a significant up-regulation of several genes involved in different immunological processes, such as PARP9/PARP14 axes, in macrophages exposed to D614G, Alpha, and Gamma variants. Surprisingly, our data showed that macrophages exposed to the Delta variant exhibited a transcriptional profile more similar to the naïve control group, while macrophages exposed to the Omicron variant showed intermediate differentially expressed genes (DEGs) between the two groups. By checking the canonical markers for M1/M2 differentiation states, we did not observe any expression in macrophages exposed to the Delta variant, suggesting an M0 status, comparable to the naïve control group. Finally, we observed a significant deregulation of 3 main types of non-coding RNAs (ncRNAs): long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small nucleolar RNAs (snoRNAs), some of which are common to coronaviruses, and some specific to SARS-CoV-2. CONCLUSION The SARS-CoV-2-dependent alteration of the transcriptome of monocyte-derived macrophage (MDM)-infected cells can be linked to the chronological order of the variants' appearance in the human population. Our data suggest an evolution of VOC in modulating the host immune response, with a strong change in pace beginning with the advent of the Delta variant. MDMs exposed to Delta showed a failure in the activation of the adaptive immune response, and this correlates with the more severe symptoms developed by people affected with this SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Alessia Gallo
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy.
| | - Josè Camilla Sammartino
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Roberta Vazzana
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Roberto Giambruno
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | | - Nicola Cuscino
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Salvatore Castelbuono
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Vitale Miceli
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Matteo Bulati
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Daniele Lilleri
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Irene Cassaniti
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Università degli Studi di Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Pier Giulio Conaldi
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Fausto Baldanti
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Università degli Studi di Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
9
|
An J, Choi M, Kim S, Yoon H, Jang AS, Lee SK, Rhim T. Isoprenaline-Modified Polyethyleneimine as an Efficient Gene Delivery System for Targeted Asthma Therapy and Airway Remodeling Inhibition. Biomater Res 2025; 29:0136. [PMID: 39896757 PMCID: PMC11782793 DOI: 10.34133/bmr.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 02/04/2025] Open
Abstract
This study introduces a novel gene delivery system, polyethyleneimine modified with isoprenaline (PEI-isoprenaline), to enhance targeted gene delivery in the context of asthma therapy and airway remodeling. In vitro investigations used Beas2B cells to assess the biocompatibility of isoprenaline, PEI-isoprenaline, and small interfering RNA (siRNA)/PEI-isoprenaline complexes, with cytotoxicity evaluations confirming their safety. The transfection efficiency of the siRNA/PEI-isoprenaline complex was scrutinized in THP-1 cells and displayed superior performance in delivering siRNA to cells expressing the β2 adrenergic receptor (ADRB2). In vivo studies used a murine chronic asthma model to evaluate gene delivery to ADRB2-expressing cells in bronchoalveolar fluid and lung tissues. Therapeutic effects were comprehensively assessed through cell analyses, revealing substantial reductions in airway inflammatory cells and fibrosis, particularly in the Arg1 siRNA/PEI-isoprenaline group. The siRNA/PEI-isoprenaline complex exhibited an impressive 80% delivery rate, greatly surpassing the performance of polyethyleneimine 2K (20%). Notably, the complex achieved a substantial 63% reduction in arginase-1 gene expression, validating its therapeutic potential. Noteworthy inhibitory effects on airway hyperresponsiveness were observed, underscoring the complex's potential as a targeted gene delivery system for asthma treatment. Our findings underscore the promise and effectiveness of the PEI-isoprenaline complex as a gene delivery system, with its demonstrated biocompatibility, transfection efficiency, and therapeutic outcomes, including arginase-1 gene knockdown and mitigation of airway inflammation and fibrosis, indicating it as a promising candidate for advancing asthma therapy and contributing to the understanding and control of airway remodeling in respiratory diseases.
Collapse
Affiliation(s)
- Jiwon An
- Department of Bioengineering, College of Engineering,
Hanyang University, Seoul 04763, Korea
| | - Moonhwan Choi
- Department of Bioengineering, College of Engineering,
Hanyang University, Seoul 04763, Korea
| | - Sol Kim
- Department of Bioengineering, College of Engineering,
Hanyang University, Seoul 04763, Korea
| | - Hyungkyung Yoon
- Department of Bioengineering, College of Engineering,
Hanyang University, Seoul 04763, Korea
| | - An-Soo Jang
- Department of Internal Medicine,
Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea
| | - Sang-Kyung Lee
- Department of Bioengineering, College of Engineering,
Hanyang University, Seoul 04763, Korea
| | - Taiyoun Rhim
- Department of Bioengineering, College of Engineering,
Hanyang University, Seoul 04763, Korea
- Institute of Bioengineering and Biopharmaceutical Research,
Hanyang University, Seoul 04763, Korea
| |
Collapse
|
10
|
Noureddine M, Chang LA, El Ayache F, Laghlali G, Burgess E, Gruneberg L, Warang P, Jiang K, Nijhuis H, Coughlan L, Diego JGB, Park S, Levican J, Schotsaert M. Muscle macrophage regenerative response after squalene-adjuvanted influenza vaccination drives Th2-skewed response and is reduced with age. RESEARCH SQUARE 2025:rs.3.rs-5760877. [PMID: 39975920 PMCID: PMC11838721 DOI: 10.21203/rs.3.rs-5760877/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Squalene-based adjuvants like MF59, and its research alternative AddaVax, induce transient muscle injury, but their working mechanisms downstream of muscle injury remain unclear. We show that an AddaVax-adjuvanted quadrivalent inactivated influenza virus vaccine (QIV) intramuscular injection triggers muscle regeneration-like immune processes and increases CX3CR1+Ly6C+ macrophages in the muscle and inguinal lymph nodes by day 4 post-injection. This leads to a Th2 skewed vaccine response with higher levels of vaccine specific IgG1 titers, and Th2-associated cytokines in the lungs 5 days after subsequent influenza viral challenge. In aged mice, the macrophage recruitment and polarization is diminished, which is consistent with age-associated muscle mass loss, reflecting the age-related decline in muscle regeneration. Unlike young mice, aged mice exhibit a reduction in magnitude and skewing of AddaVax-mediated Th2 responses to QIV. We found that adoptive transfer of bone marrow-derived macrophages derived from young mice into aged mice at the moment of vaccination leads to their infiltration into the injected muscle, where they collect vaccine antigens, drain to the lymph node, and enhance the Th2 response, recapitulating the young host response but in an older host. However, rescuing the Th2-skewing effects of AddaVax alone was not sufficient to enhance protection against mismatched subsequent influenza viral infection in aged mice, suggesting additional factors at play in the diminished vaccine response in aged hosts. This underscores the importance of the macrophage-driven muscle regenerative response in the mechanism of action for squalene-based adjuvants like AddaVax and emphasizes the need to study how muscle damage and regenerative pathways in intramuscular vaccine responses contribute to vaccine effectiveness.
Collapse
Affiliation(s)
- Moataz Noureddine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lauren A. Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Farah El Ayache
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Eleanor Burgess
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Leonie Gruneberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kaijun Jiang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haye Nijhuis
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Juan Garcia-Bernalt Diego
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Seokchan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jorge Levican
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
11
|
Husain I, Shah H, Jordan CZ, Natesh NR, Fay OK, Chen Y, Privratsky JR, Kitai H, Souma T, Varghese S, Howell DN, Thorp EB, Luo X. Targeting allograft inflammatory factor 1 reprograms kidney macrophages to enhance repair. J Clin Invest 2025; 135:e185146. [PMID: 39836477 PMCID: PMC11870741 DOI: 10.1172/jci185146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
The role of macrophages (MΦs) remains incompletely understood in kidney injury and repair. The plasticity of MΦs offers an opportunity to polarize them toward mediating injury resolution in both native and transplanted kidneys undergoing ischemia and/or rejection. Here, we show that infiltrating kidney MΦs augmented their own allograft inflammatory factor 1 (AIF-1) expression after injury. Aif1 genetic deletion led to MΦ polarization toward a reparative phenotype while halting the development of kidney fibrosis. The enhanced repair was mediated by higher levels of antiinflammatory and proregenerative markers, leading to a reduction in cell death and an increase in proliferation of kidney tubular epithelial cells after ischemia followed by reperfusion injury (I/RI). Adoptive transfer of Aif1-/- MΦs into Aif1+/+ mice conferred protection against I/RI. Conversely, depletion of MΦs reversed the tissue-reparative effects in Aif1-/- mice. We further demonstrated increased expression of AIF-1 in human kidney biopsies from native kidneys with acute kidney injury or chronic kidney disease, as well as in biopsies from kidney allografts undergoing acute or chronic rejection. We conclude that AIF-1 is a MΦ marker of renal inflammation, and its targeting uncouples MΦ reparative functions from profibrotic functions. Thus, therapies inhibiting AIF-1 when ischemic injury is inevitable have the potential to reduce the global burden of kidney disease.
Collapse
Affiliation(s)
- Irma Husain
- Division of Nephrology, Department of Medicine, and
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Holly Shah
- Division of Nephrology, Department of Medicine, and
| | | | - Naveen R. Natesh
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
| | | | | | | | - Hiroki Kitai
- Division of Nephrology, Department of Medicine, and
| | | | - Shyni Varghese
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, and
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | | | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, and
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
12
|
Isali I, McClellan P, Wong TR, Hijaz S, Fletcher DR, Liu G, Bonfield TL, Anderson JM, Hijaz A, Akkus O. Differential effects of macrophage subtype-specific cytokines on fibroblast proliferation and endothelial cell function in co-culture system. J Biomed Mater Res A 2025; 113:e37799. [PMID: 39295242 DOI: 10.1002/jbm.a.37799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
Macrophages are involved in several critical activities associated with tissue repair and regeneration. Current approaches in regenerative medicine are focusing on leveraging the innate immune response to accelerate tissue regeneration and improve long-term healing outcomes. Of particular interest in this regard are the currently known, four main M2 macrophage subtypes: M2interleukin (IL)-4,IL-13, M2IC, M2IL-10, M2non-selective adenosine receptor agonists (NECA) (M2IL-4,IL-13 → M2NECA). In this study, rat bone marrow-derived macrophages (M0) were polarized to each of the four subtypes M2IL-4,IL-13 → M2NECA and cultured for 72 h in vitro. Luminex assay results highlighted increased production of tissue inhibitor of metalloproteinases-1 (TIMP-1) for M2IL-4,IL-13, higher amounts of transforming growth factor-beta 1 (TGF-β1) for M2IL-10, and elevated vascular endothelial growth factor A (VEGF-A) from M2NECA. Co-culture experiments performed with M2IL-10 macrophages and L929 fibroblasts highlighted the increased production of soluble collagen within the media as well as higher amounts of collagen in the extracellular matrix. Human umbilical vein endothelial cells (HUVECs) were co-cultured with M2NECA macrophages, which demonstrated an increase in intercellular adhesion molecule (ICAM) and platelet endothelial cell adhesion molecule (PECAM), as well as increased formation of endothelial tubes. The findings of this study emphasize a critical demand for further characterization and analyses of distinct M2 subtypes and careful selection of specific macrophage populations for regeneration of specific tissue types. The current, broad classification of "M2" may be sufficient in many general tissue engineering applications, but, as conditions are constantly in flux within the microenvironment in vivo, a higher degree of specificity and control over the initial M2 subtype could result in more consistent long-term outcomes where macrophages are utilized as part of an overall regenerative strategy.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - Phillip McClellan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas R Wong
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sara Hijaz
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, USA
| | - David R Fletcher
- Case Western Reserve University, Department of Genetics and Genome Sciences, Cleveland, Ohio, USA
| | - Guiming Liu
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
| | - Tracey L Bonfield
- Case Western Reserve University, Department of Genetics and Genome Sciences, Cleveland, Ohio, USA
| | - James M Anderson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adonis Hijaz
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Orthopedics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Heuser SK, Li J, Pudewell S, LoBue A, Li Z, Cortese-Krott MM. Biochemistry, pharmacology, and in vivo function of arginases. Pharmacol Rev 2025; 77:100015. [PMID: 39952693 DOI: 10.1124/pharmrev.124.001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 01/22/2025] Open
Abstract
The enzyme arginase catalyzes the hydrolysis of l-arginine into l-ornithine and urea. The 2 existing isoforms Arg1 and Arg2 exhibit different cellular localizations and metabolic functions. Arginase activity is crucial for nitrogen detoxification in the urea cycle, synthesis of polyamines, and control of l-arginine bioavailability and nitric oxide (NO) production. Despite significant progress in the understanding of the biochemistry and function of arginases, several open questions remain. Recent studies have revealed that the regulation and function of Arg1 and Arg2 are cell type-specific, species-specific, and profoundly different in mice and humans. The main differences are in the distribution and function of Arg1 and Arg2 in immune and erythroid cells. Contrary to what was previously thought, Arg1 activity appears to be only partially related to vascular NO signaling under homeostatic conditions in the vascular wall, but its expression is increased under disease conditions and may be targeted by treatment with arginase inhibitors. Arg2 appears to be mainly a catabolic enzyme involved in the synthesis of l-ornithine, polyamine, and l-proline but may play a putative role in blood pressure control, at least in mice. The immunosuppressive role of arginase-mediated arginine depletion is a promising target for cancer treatment. This review critically revises and discusses the biochemistry, pharmacology, and in vivo function of arginases, focusing on the insights gained from the analysis of cell-specific Arg1 and Arg2 knockout mice and human studies using arginase inhibitors or pegylated recombinant arginase. SIGNIFICANCE STATEMENT: Further basic and translational research is needed to deepen our understanding of the regulation of Arg1 and Arg2 in different cell types in consideration of their localization, species-specificity, and multiple biochemical and physiological roles. This will lead to better pharmacological strategies to target arginase activity in liver, cardiovascular, hematological, immune/infectious diseases, and cancer.
Collapse
Affiliation(s)
- Sophia K Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Silke Pudewell
- Department of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Zhixin Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Genčić MS, Stojanović NM, Denić JM, Stojanović-Radić ZZ, Stojanović P, Van Hecke K, Jovanović LS, Nikolić MV, Jevtović-Stoimenov T, Radulović NS, D'hooghe M. Repurposing of monocyclic β-lactams as anti-inflammatory agents - The case of new ferrocene-azetidin-2-one hybrids. Eur J Med Chem 2024; 280:116910. [PMID: 39406117 DOI: 10.1016/j.ejmech.2024.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/25/2024]
Abstract
There is growing interest in developing monotherapy drugs that treat inflammation caused by microbial infections, focusing on dual antimicrobial and anti-inflammatory agents with minimal side effects and high safety margins. This study synthesized and characterized a library of novel cis-4-ferrocenylazetidin-2-ones, evaluating their antimicrobial and anti-inflammatory activities. These organometallic monocyclic β-lactams showed moderate in vitro antimicrobial activity against various standard microbial strains, including yeasts and Gram-negative and Gram-positive bacteria. Some compounds overcame the resistance of clinical Staphylococcus aureus isolates. Traditionally, monocyclic β-lactams target Gram-negative bacilli, but adding a ferrocene moiety and substituting the COOH group near the N-1 position with a non-ionizable ester group (COOR) extended their activity spectrum. The anti-inflammatory properties were assessed in macrophage-based models, revealing non-cytotoxicity below 10 μM. Two compounds were shown to be strong and selective arginase inhibitors, while five others effectively suppressed excessive NO formation without affecting basal NO production. The presence of a phenoxy group at C-3 of the β-lactam ring appeared to be crucial for selective NO inhibition. These hybrids did not scavenge NO but inhibited NO synthesis by suppressing iNOS expression. Overall, two novel hybrids were identified as promising hit candidates for treating infection-induced inflammatory reactions.
Collapse
Affiliation(s)
- Marija S Genčić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Nikola M Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, Bulevar Zorana Đinđića 81, 18000, Niš, Serbia
| | - Jelena M Denić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Zorica Z Stojanović-Radić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Predrag Stojanović
- National Reference Laboratory for Anaerobic Infections - Clostridium difficile, Center of Microbiology, Institute for Public Health Niš, Bulevar Zorana Đinđića 50, 18000, Niš, Serbia
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Faculty of Science, Ghent University, Krijgslaan 281-S3, B-9000, Ghent, Belgium
| | - Ljiljana S Jovanović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Marija Vukelić Nikolić
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Bulevar Zorana Đinđića 81, 18000, Niš, Serbia
| | - Tatjana Jevtović-Stoimenov
- Department of Biochemistry, Faculty of Medicine, University of Niš, Bulevar Zorana Đinđića 81, 18000, Niš, Serbia
| | - Niko S Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000, Gent, Belgium.
| |
Collapse
|
15
|
Aisanjiang M, Dai W, Wu L, Yuan Y, Liu S, Liao G, Li L, Tong X, Zhang H, Chen Y, Liu J, Cheng J, Wang C, Lu Y. Ameliorating lung fibrosis and pulmonary function in diabetic mice: Therapeutic potential of mesenchymal stem cell. Biochem Biophys Res Commun 2024; 737:150495. [PMID: 39126861 DOI: 10.1016/j.bbrc.2024.150495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to investigate the potential of mesenchymal stem cells (MSCs) in alleviating diabetic lung injury by decreasing inflammation, fibrosis and recovering tissue macrophage homeostasis. To induce pulmonary injuries in an in vivo murine model, we utilized a streptozotocin (STZ), and high-fat diet (HFD) induced diabetic C57 mouse model. Subsequently, human umbilical cord-derived MSCs (hUC-MSCs) were administered through the tail vein on a weekly basis for a duration of 4 weeks. In addition, in vitro experiments involved co-culturing of isolated primary abdominal macrophages from diabetic mice and high glucose-stimulated MLE-12 cells with hUC-MSCs. The objective was to evaluate if hUC-MSCs co-culturing could effectively mitigate cell inflammation and fibrosis. Following hUC-MSCs injection, diabetic mice displayed enhanced pulmonary functional parameters, reduced pulmonary fibrosis, and diminished inflammation. Notably, the dynamic equilibrium of lung macrophages shifted from the M1 phenotype to the M2 phenotype, accompanied by a notable reduction in various indicators associated with inflammation and fibrosis. Results from cell co-culturing experiments further supported this trend, demonstrating a reduction in inflammatory and fibrotic indicators. In conclusion, our findings suggest that hUC-MSCs treatment holds promise in mitigating diabetic pulmonary injury by significantly reducing inflammation, fibrosis and maintain tissue macrophage homeostasis within the lungs. This study sheds light on the therapeutic potential of hUC-MSCs in managing diabetic complications affecting the pulmonary system.
Collapse
Affiliation(s)
- Maikeliya Aisanjiang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wenshu Dai
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Luna Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal experimental center of West China hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Heteng Zhang
- Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Younan Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Yanrong Lu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Wu Y, Avcilar-Kücükgöze I, Santovito D, Atzler D. Amino Acid Metabolism and Autophagy in Atherosclerotic Cardiovascular Disease. Biomolecules 2024; 14:1557. [PMID: 39766264 PMCID: PMC11673637 DOI: 10.3390/biom14121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiovascular disease is the most common cause of mortality globally, accounting for approximately one out of three deaths. The main underlying pathology is atherosclerosis, a dyslipidemia-driven, chronic inflammatory disease. The interplay between immune cells and non-immune cells is of great importance in the complex process of atherogenesis. During atheroprogression, intracellular metabolic pathways, such as amino acid metabolism, are master switches of immune cell function. Autophagy, an important stress survival mechanism involved in maintaining (immune) cell homeostasis, is crucial during the development of atherosclerosis and is strongly regulated by the availability of amino acids. In this review, we focus on the interplay between amino acids, especially L-leucine, L-arginine, and L-glutamine, and autophagy during atherosclerosis development and progression, highlighting potential therapeutic perspectives.
Collapse
Affiliation(s)
- Yuting Wu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
| | - Irem Avcilar-Kücükgöze
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Donato Santovito
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, 20133 Milan, Italy
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Walter Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
17
|
Barone LJ, Cardoso NP, Mansilla FC, Castillo M, Capozzo AV. Enhanced infectivity of bovine viral diarrhoea virus (BVDV) in arginase-producing bovine monocyte-derived macrophages. Virulence 2024; 15:2283899. [PMID: 37966797 PMCID: PMC11756584 DOI: 10.1080/21505594.2023.2283899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023] Open
Abstract
Macrophages are important cells of the innate immunity that play a major role in Bovine Viral Diarrhoea Virus (BVDV) pathogenesis. Macrophages are not a homogenous population; they exist in different phenotypes, typically divided into two main categories: classically (pro-inflammatory) and alternatively activated (anti-inflammatory) or M1 and M2, respectively. The role of bovine macrophage phenotypes on BVDV infection is still unclear. This study characterized the interaction between BVDV and monocyte-derived macrophages (Mo-Mφ) collected from healthy cattle and polarized to an M1 or M2 state by using LPS, INF-γ, IL-4, or azithromycin. Arginase activity quantitation was utilized as a marker of the M2 Mo-Mφ spectrum. There was a significant association between arginase activity and the replication rate of BVDV strains of different genotypes and biotypes. Inhibition of arginase activity also reduced BVDV infectivity. Calves treated with azithromycin-induced Mo-Mφ of the M2 state produced high levels of arginase. Interestingly, azithromycin administered in vivo increased the susceptibility of macrophages to BVDV infection ex vivo. Mo-Mφ from pregnant dams and calves produced higher arginase levels than those from non-pregnant adult animals. The increased infection of arginase-producing alternatively activated bovine macrophages with BVDV supports the need to delve into a possible leading role of M2 macrophages in establishing the immune-suppressive state during BVDV convalescence.
Collapse
Affiliation(s)
- Lucas José Barone
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Nancy Patricia Cardoso
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Florencia Celeste Mansilla
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Mariángeles Castillo
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Alejandra Victoria Capozzo
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
18
|
Rados M, Landegger A, Schmutzler L, Rabidou K, Taschner-Mandl S, Fetahu IS. Natural killer cells in neuroblastoma: immunological insights and therapeutic perspectives. Cancer Metastasis Rev 2024; 43:1401-1417. [PMID: 39294470 PMCID: PMC11554946 DOI: 10.1007/s10555-024-10212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Natural killer (NK) cells have multifaceted roles within the complex tumor milieu. They are pivotal components of innate immunity and shape the dynamic landscape of tumor-immune cell interactions, and thus can be leveraged for use in therapeutic interventions. NK-based immunotherapies have had remarkable success in hematological malignancies, but these therapies are met with many challenges in solid tumors, including neuroblastoma (NB), a childhood tumor arising from the sympathetic nervous system. With a focus on NB, this review outlines the mechanisms employed by NK cells to recognize and eliminate malignant cells, delving into the dynamic relationship between ligand-receptor interactions, cytokines, and other molecules that facilitate the cross talk between NK and NB cells. We discuss the immunomodulatory functions of NK cells and the mechanisms that contribute to loss of this immunosurveillance in NB, with a focus on how this dynamic has been utilized in recent immunotherapy advancements for NB.
Collapse
Affiliation(s)
- Magdalena Rados
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - Lukas Schmutzler
- Department of Otorhinolaryngology - Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Kimberlie Rabidou
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, USA
| | | | - Irfete S Fetahu
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Valades-Aguilar BA, Rivera-González TI, Rangel-López R, Luna-Barcenas G, Franco-Molina MÁ, Rodriguez-Padilla C, Zárate-Triviño DG. Influence of Chitosan Purification on the Immunomodulator Potential of Chitosan Nanoparticles on Human Monocytes. Polymers (Basel) 2024; 16:3390. [PMID: 39684135 DOI: 10.3390/polym16233390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The deproteinization of chitosan is a necessary purification process for materials with biomedical purposes; however, chitosan sourcing and purification methods can modify its molecular weight, deacetylation degree, and residual proteins. These factors affect the reactive groups that affect the immunomodulatory activities of cells, particularly macrophages and monocytes; considering this activity is key when developing successful and functional biomaterials. Here, two brands of chitosan were purified and used to synthesize nanoparticles to evaluate their immunomodulatory effect on monocyte and macrophage differentiation. Chitosan FT-IR showed bands related to its purification process, with increased OH group intensity. Nanoparticles (CtsNps) synthesized with purified chitosan were of a smaller size compared to those using unpurified chitosan due to the alkaline purification process's shortening of the polymeric chain. At low concentrations (50 μg/mL), CtsNps showed a lower expression of CD80 and CD14, corroborating the differentiation effect of chitosan. Inducible nitric oxide synthase (iNOS) is related to a pro-inflammatory response and M1 macrophage polarization was detected in monocytes treated with purified and unpurified nanoparticles. Sigma-purified chitosan nanoparticles (CtsNps SigmaP), at 300 μg/mL, showed arginase production related to an anti-inflammatory response and M2 macrophage polarization. The chitosan purification process induces a shift in the polarization of macrophages to an anti-inflammatory M2 profile. This effect is concentration-dependent and should be further studied in each use case to favor the suitable biological response.
Collapse
Affiliation(s)
- Bruno Alejandro Valades-Aguilar
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, NL, Mexico
| | - Teodoro Iván Rivera-González
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, NL, Mexico
| | - Raúl Rangel-López
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, NL, Mexico
| | - Gabriel Luna-Barcenas
- School of Engineering and Sciences, The Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Querétaro 76130, QRO, Mexico
| | - Moisés Ármides Franco-Molina
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, NL, Mexico
| | - Cristina Rodriguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, NL, Mexico
| | - Diana Ginette Zárate-Triviño
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, NL, Mexico
| |
Collapse
|
20
|
Kadyrov FF, Koenig AL, Amrute JM, Dun H, Li W, Weinheimer CJ, Nigro JM, Kovacs A, Bredemeyer AL, Yang S, Das S, Penna VR, Parvathaneni A, Lai L, Hartmann N, Kopecky BJ, Kreisel D, Lavine KJ. Hypoxia sensing in resident cardiac macrophages regulates monocyte fate specification following ischemic heart injury. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1337-1355. [PMID: 39433910 DOI: 10.1038/s44161-024-00553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
Myocardial infarction initiates cardiac remodeling and is central to heart failure pathogenesis. Following myocardial ischemia-reperfusion injury, monocytes enter the heart and differentiate into diverse subpopulations of macrophages. Here we show that deletion of Hif1α, a hypoxia response transcription factor, in resident cardiac macrophages led to increased remodeling and overrepresentation of macrophages expressing arginase 1 (Arg1). Arg1+ macrophages displayed an inflammatory gene signature and may represent an intermediate state of monocyte differentiation. Lineage tracing of Arg1+ macrophages revealed a monocyte differentiation trajectory consisting of multiple transcriptionally distinct states. We further showed that deletion of Hif1α in resident cardiac macrophages resulted in arrested progression through this trajectory and accumulation of an inflammatory intermediate state marked by persistent Arg1 expression. Depletion of the Arg1+ trajectory accelerated cardiac remodeling following ischemic injury. Our findings unveil distinct trajectories of monocyte differentiation and identify hypoxia sensing as an important determinant of monocyte differentiation following myocardial infarction.
Collapse
Affiliation(s)
- Farid F Kadyrov
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrew L Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Junedh M Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hao Dun
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wenjun Li
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carla J Weinheimer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jessica M Nigro
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Attila Kovacs
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrea L Bredemeyer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Steven Yang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shibali Das
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vinay R Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alekhya Parvathaneni
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lulu Lai
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Niklas Hartmann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Benjamin J Kopecky
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
21
|
Tang X, Liu W, Liang J, Zhu X, Ge X, Fang D, Ling L, Yuan F, Zeng K, Chen Q, Zhang G, Gong L, Zhang S. Triamcinolone Acetonide Protects Against Light-Induced Retinal Degeneration by Activating Anti-Inflammatory STAT6/Arg1 Signaling in Microglia. Inflammation 2024:10.1007/s10753-024-02152-w. [PMID: 39340587 DOI: 10.1007/s10753-024-02152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Affiliation(s)
- Xiangcheng Tang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Wei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, Guangdong, China
| | - Jia Liang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Xingfei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, Guangdong, China
| | - Xiangyu Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, Guangdong, China
| | - Dong Fang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Lirong Ling
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, Guangdong, China
| | - Fanglan Yuan
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Kun Zeng
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Qingshan Chen
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Lili Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, Guangdong, China.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510230, Guangdong, China.
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China.
| |
Collapse
|
22
|
Yang SJ, Luo Y, Chen BH, Zhan LH. Screening and identification of the hub genes in severe acute pancreatitis and sepsis. Front Mol Biosci 2024; 11:1425143. [PMID: 39364223 PMCID: PMC11446880 DOI: 10.3389/fmolb.2024.1425143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/31/2024] [Indexed: 10/05/2024] Open
Abstract
Background Severe acute pancreatitis (SAP) is accompanied with acute onset, rapid progression, and complicated condition. Sepsis is a common complication of SAP with a high mortality rate. This research aimed to identify the shared hub genes and key pathways of SAP and sepsis, and to explore their functions, molecular mechanism, and clinical value. Methods We obtained SAP and sepsis datasets from the Gene Expression Omnibus (GEO) database and employed differential expression analysis and weighted gene co-expression network analysis (WGCNA) to identify the shared differentially expressed genes (DEGs). Functional enrichment analysis and protein-protein interaction (PPI) was used on shared DEGs to reveal underlying mechanisms in SAP-associated sepsis. Machine learning methods including random forest (RF), least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) were adopted for screening hub genes. Then, receiver operating characteristic (ROC) curve and nomogram were applied to evaluate the diagnostic performance. Finally, immune cell infiltration analysis was conducted to go deeply into the immunological landscape of sepsis. Result We obtained a total of 123 DEGs through cross analysis between Differential expression analysis and WGCNA important module. The Gene Ontology (GO) analysis uncovered the shared genes exhibited a significant enrichment in regulation of inflammatory response. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the shared genes were primarily involved in immunoregulation by conducting NOD-like receptor (NLR) signaling pathway. Three machine learning results revealed that two overlapping genes (ARG1, HP) were identified as shared hub genes for SAP and sepsis. The immune infiltration results showed that immune cells played crucial part in the pathogenesis of sepsis and the two hub genes were substantially associated with immune cells, which may be a therapy target. Conclusion ARG1 and HP may affect SAP and sepsis by regulating inflammation and immune responses, shedding light on potential future diagnostic and therapeutic approaches for SAP-associated sepsis.
Collapse
Affiliation(s)
- Si-Jiu Yang
- Department of Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yan Luo
- Department of Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bao-He Chen
- Department of Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ling-Hui Zhan
- Department of Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fujian, China
| |
Collapse
|
23
|
Mizuno N, Shiga S, Tanaka Y, Kimura T, Yanagawa Y. CDK8/19 inhibitor enhances arginase-1 expression in macrophages via STAT6 and p38 MAPK activation. Eur J Pharmacol 2024; 979:176852. [PMID: 39067565 DOI: 10.1016/j.ejphar.2024.176852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Macrophages polarize into alternatively activated M2 macrophages through interleukin (IL)-4, and they express high levels of arginase-1, which promotes anti-inflammatory responses. Several studies have confirmed the anti-inflammatory effects of cyclin-dependent kinase (CDK) 8/19 inhibition, and hence, numerous CDK8/19 inhibitors, such as BRD6989, have been developed. However, the effects of CDK8/19 inhibitors on arginase-1 expression in macrophages have not yet been elucidated. This study investigated the effects of CDK8/19 inhibitor on arginase-1 expression in IL-4-activated macrophages. The results showed that BRD6989 increased arginase-1 expression transcriptionally in murine peritoneal macrophages and the murine macrophage cell line RAW264.7 in an IL-4-dependent manner. In addition, the results indicated that BRD6989 enhances signal transducer and activator of transcription (STAT) 6 phosphorylation. Meanwhile, BRD6989 exhibited the capability to activate p38 mitogen-activated protein kinase (MAPK) even in the absence of IL-4 stimulation. Moreover, we observed that a p38 MAPK inhibitor suppressed the BRD6989-induced increase in arginase-1 expression. Besides, BRD6989 increased the surface expression of CD206, an M2 macrophage marker. Thus, this study demonstrated for the first time that CDK8/19 inhibition increases arginase-1 expression, suggesting that this mechanism involves the activation of STAT6 and p38 MAPK. This finding implies that CDK8/19 inhibition may facilitate the production of anti-inflammatory M2 macrophages.
Collapse
Affiliation(s)
- Natsumi Mizuno
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Tobetsu, Ishikari, 061-0293, Japan.
| | - Saki Shiga
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Tobetsu, Ishikari, 061-0293, Japan
| | - Yoshiyuki Tanaka
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Tobetsu, Ishikari, 061-0293, Japan
| | - Tatsuki Kimura
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Tobetsu, Ishikari, 061-0293, Japan
| | - Yoshiki Yanagawa
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Tobetsu, Ishikari, 061-0293, Japan
| |
Collapse
|
24
|
Yuan Z, Shu L, Fu J, Yang P, Wang Y, Sun J, Zheng M, Liu Z, Yang J, Song J, Song S, Cai Z. Single-Cell RNA Sequencing Deconstructs the Distribution of Immune Cells Within Abdominal Aortic Aneurysms in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1986-2003. [PMID: 39051127 DOI: 10.1161/atvbaha.124.321129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Inflammation is a key component in the development of abdominal aortic aneurysm (AAA), yet insights into the roles of immune cells and their interactions in this process are limited. METHODS Using single-cell RNA transcriptomic analysis, we deconstructed the CD45+ cell population in elastase-induced murine AAA at the single-cell level. We isolated each group of immune cells from murine AAA tissue at different time points and divided them into several subtypes, listed the remarkable differentially expressed genes, explored the developmental trajectories of immune cells, and demonstrated the interactions among them. RESULTS Our findings reveal significant differences in several immune cell subsets, including macrophages, dendritic cells, and T cells, within the AAA microenvironment compared with the normal aorta. Especially, conventional dendritic cell type 1 exclusively existed in the AAA tissue rather than the normal aortas. Via CellChat analysis, we identified several intercellular communication pathways like visfatin, which targets monocyte differentiation and neutrophil extracellular trap-mediated interaction between neutrophils and dendritic cells, which might contribute to AAA development. Some of these pathways were validated in human AAA. CONCLUSIONS Despite the absence of external pathogenic stimuli, AAA tissues develop a complex inflammatory microenvironment involving numerous immune cells. In-depth studies of the inflammatory network shall provide new strategies for patients with AAA.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Animals
- Single-Cell Analysis
- Disease Models, Animal
- Mice, Inbred C57BL
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/immunology
- Mice
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Humans
- Macrophages/metabolism
- Macrophages/immunology
- Male
- Transcriptome
- RNA-Seq
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Gene Expression Profiling/methods
- Pancreatic Elastase
- Cell Communication
Collapse
Affiliation(s)
- Zhen Yuan
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Li Shu
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Jiantao Fu
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Peipei Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Yidong Wang
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Jie Sun
- Pathology (J. Sun, M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Zheng
- Pathology (J. Sun, M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Vascular Surgery (Z.L.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China (J. Song, S.S.)
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China (J. Song, S.S.)
| | - Zhejun Cai
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| |
Collapse
|
25
|
Vonderohe C, Stoll B, Didelija I, Nguyen T, Mohammad M, Jones-Hall Y, Cruz MA, Marini J, Burrin D. Citrulline and ADI-PEG20 reduce inflammation in a juvenile porcine model of acute endotoxemia. Front Immunol 2024; 15:1400574. [PMID: 39176089 PMCID: PMC11338849 DOI: 10.3389/fimmu.2024.1400574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Background Arginine is a conditionally essential amino acid that is depleted in critically ill or surgical patients. In pediatric and adult patients, sepsis results in an arginine-deficient state, and the depletion of plasma arginine is associated with greater mortality. However, direct supplementation of arginine can result in the excessive production of nitric oxide (NO), which can contribute to the hypotension and macrovascular hypo-reactivity observed in septic shock. Pegylated arginine deiminase (ADI-PEG20, pegargiminase) reduces plasma arginine and generates citrulline that can be transported intracellularly to generate local arginine and NO, without resulting in hypotension, while maintaining microvascular patency. The objective of this study was to assess the efficacy of ADI-PEG20 with and without supplemental intravenous citrulline in mitigating hypovolemic shock, maintaining tissue levels of arginine, and reducing systemic inflammation in an endotoxemic pediatric pig model. Methods Twenty 3-week-old crossbred piglets were implanted with jugular and carotid catheters as well as telemetry devices in the femoral artery to measure blood pressure, body temperature, heart rate, and respiration rate. The piglets were assigned to one of three treatments before undergoing a 5 h lipopolysaccharide (LPS) infusion protocol. Twenty-four hours before LPS infusion, control pigs (LPS; n=6) received saline, ADI-PEG20 pigs (n=7) received an injection of ADI-PEG20, and seven pigs (ADI-PEG20 + CIT pigs [n=7]) received ADI-PEG20 and 250 mg/kg citrulline intravenously. Pigs were monitored throughout LPS infusion and tissue was harvested at the end of the protocol. Results Plasma arginine levels decreased and remained low in ADI-PEG20 + CIT and ADI-PEG20 pigs compared with LPS pigs but tissue arginine levels in the liver and kidney were similar across all treatments. Mean arterial pressure in all groups decreased from 90 mmHg to 60 mmHg within 1 h of LPS infusion but there were no significant differences between treatment groups. ADI-PEG20 and ADI-PEG20 + CIT pigs had less CD45+ infiltrate in the liver and lung and lower levels of pro-inflammatory cytokines in the plasma. Conclusion ADI-PEG20 and citrulline supplementation failed to ameliorate the hypotension associated with acute endotoxic sepsis in pigs but reduced systemic and local inflammation in the lung and liver.
Collapse
Affiliation(s)
- Caitlin Vonderohe
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Barbara Stoll
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Inka Didelija
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Trung Nguyen
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veteran Administration Medical Center, Houston, TX, United States
| | - Mahmoud Mohammad
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Yava Jones-Hall
- Department of Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Science, College Station, TX, United States
| | - Miguel A. Cruz
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veteran Administration Medical Center, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Juan Marini
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Douglas Burrin
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
26
|
Nagai M, Okawa T, Nakata K, Takahashi D, Miyajima R, Shiratori H, Yamanaka D, Nakamura A, Oyama C, Takahashi SI, Toyama-Sorimachi N, Suzuki K, Ohashi W, Dohi T, Kawamura YI, Hase K. Sugar and arginine facilitate oral tolerance by ensuring the functionality of tolerogenic immune cell subsets in the intestine. Cell Rep 2024; 43:114490. [PMID: 38990720 DOI: 10.1016/j.celrep.2024.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Although oral tolerance is a critical system in regulating allergic disorders, the mechanisms by which dietary factors regulate the induction and maintenance of oral tolerance remain unclear. To address this, we explored the differentiation and function of various immune cells in the intestinal immune system under fasting and ad libitum-fed conditions before oral ovalbumin (OVA) administration. Fasting mitigated OVA-specific Treg expansion, which is essential for oral tolerance induction. This abnormality mainly resulted from functional defects in the CX3CR1+ cells responsible for the uptake of luminal OVA and reduction of tolerogenic CD103+ dendritic cells. Eventually, fasting impaired the preventive effect of oral OVA administration on asthma and allergic rhinitis development. Specific food ingredients, namely carbohydrates and arginine, were indispensable for oral tolerance induction by activating glycolysis and mTOR signaling. Overall, prior food intake and nutritional signals are critical for maintaining immune homeostasis by inducing tolerance to ingested food antigens.
Collapse
Affiliation(s)
- Motoyoshi Nagai
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan.
| | - Takuma Okawa
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Kazuaki Nakata
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Reina Miyajima
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Hiroaki Shiratori
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Daisuke Yamanaka
- Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Atsuo Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan; Dairy Science and Technology Institute, Kyodo Milk Industry Co., Hinode-machi, Nishitama-gun, Tokyo, Japan
| | - Chinatsu Oyama
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Koichiro Suzuki
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Wakana Ohashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Taeko Dohi
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Yuki I Kawamura
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan; The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima 960-1296, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan.
| |
Collapse
|
27
|
Asahina R, Takahashi M, Takano H, Yao R, Abe M, Goshima Y, Ohshima T. The role of CRMP4 in LPS-induced neuroinflammation. Brain Res 2024:149094. [PMID: 38914219 DOI: 10.1016/j.brainres.2024.149094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Neuroinflammation has been gaining attention as one of the potential causes of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis in recent years. The suppression of excessive proinflammatory responses is expected to be a target for the treatment and prevention of neurodegenerative diseases. Collapsin response mediator protein 4 (CRMP4) is involved in cytoskeleton-associated axonal guidance in the developing brain. Recently, the involvement of CRMP4 in several pathological conditions, including inflammation induced by lipopolysaccharide (LPS), a widely used inflammatory molecule, has been reported. However, the role of CRMP4 in LPS-induced inflammation in vivo remains largely unknown. In this study, we generated microglia-specific CRMP4 knockout mice for the first time and examined the role of CRMP4 in an LPS-induced brain inflammation model. We found that microglia after LPS injection in substantia nigra was significantly reduced in Crmp4-/- mice compared to Crmp4+/+mice. The increased expression of IL-10 in striatum samples was downregulated in Crmp4-/- mice. A significant reduction in Iba1 expression was also observed in microglia-specific Crmp4 knockout mice compared with that in control mice. In contrast, the expression of IL-10 did not change in these mice, whereas arginase 1 (Arg1) expression was significantly suppressed. These results demonstrate the involvement of CRMP4 in LPS-induced inflammation in vivo, that CRMP4 suppresses microglial proliferation in a cell-autonomous manner.
Collapse
Affiliation(s)
- Ryo Asahina
- Departent of Life Science and Medical Bioscience, Waseda University, Japan
| | - Miyuki Takahashi
- Departent of Life Science and Medical Bioscience, Waseda University, Japan
| | - Hiroshi Takano
- Department of Cell Biology, The Cancer Institute of JFCR, Japan
| | - Ryoji Yao
- Department of Cell Biology, The Cancer Institute of JFCR, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Toshio Ohshima
- Departent of Life Science and Medical Bioscience, Waseda University, Japan.
| |
Collapse
|
28
|
Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. J Hematol Oncol 2024; 17:44. [PMID: 38863020 PMCID: PMC11167803 DOI: 10.1186/s13045-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Macrophages infiltrating tumour tissues or residing in the microenvironment of solid tumours are known as tumour-associated macrophages (TAMs). These specialized immune cells play crucial roles in tumour growth, angiogenesis, immune regulation, metastasis, and chemoresistance. TAMs encompass various subpopulations, primarily classified into M1 and M2 subtypes based on their differentiation and activities. M1 macrophages, characterized by a pro-inflammatory phenotype, exert anti-tumoural effects, while M2 macrophages, with an anti-inflammatory phenotype, function as protumoural regulators. These highly versatile cells respond to stimuli from tumour cells and other constituents within the tumour microenvironment (TME), such as growth factors, cytokines, chemokines, and enzymes. These stimuli induce their polarization towards one phenotype or another, leading to complex interactions with TME components and influencing both pro-tumour and anti-tumour processes.This review comprehensively and deeply covers the literature on macrophages, their origin and function as well as the intricate interplay between macrophages and the TME, influencing the dual nature of TAMs in promoting both pro- and anti-tumour processes. Moreover, the review delves into the primary pathways implicated in macrophage polarization, examining the diverse stimuli that regulate this process. These stimuli play a crucial role in shaping the phenotype and functions of macrophages. In addition, the advantages and limitations of current macrophage based clinical interventions are reviewed, including enhancing TAM phagocytosis, inducing TAM exhaustion, inhibiting TAM recruitment, and polarizing TAMs towards an M1-like phenotype. In conclusion, while the treatment strategies targeting macrophages in precision medicine show promise, overcoming several obstacles is still necessary to achieve an accessible and efficient immunotherapy.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Linrui Zhu Chen
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - María Paniagua-Sancho
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain.
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, 56017, Italy.
| |
Collapse
|
29
|
Bernstein KE, Cao D, Shibata T, Saito S, Bernstein EA, Nishi E, Yamashita M, Tourtellotte WG, Zhao TV, Khan Z. Classical and nonclassical effects of angiotensin-converting enzyme: How increased ACE enhances myeloid immune function. J Biol Chem 2024; 300:107388. [PMID: 38763333 PMCID: PMC11208953 DOI: 10.1016/j.jbc.2024.107388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
As part of the classical renin-angiotensin system, the peptidase angiotensin-converting enzyme (ACE) makes angiotensin II which has myriad effects on systemic cardiovascular function, inflammation, and cellular proliferation. Less well known is that macrophages and neutrophils make ACE in response to immune activation which has marked effects on myeloid cell function independent of angiotensin II. Here, we discuss both classical (angiotensin) and nonclassical functions of ACE and highlight mice called ACE 10/10 in which genetic manipulation increases ACE expression by macrophages and makes these mice much more resistant to models of tumors, infection, atherosclerosis, and Alzheimer's disease. In another model called NeuACE mice, neutrophils make increased ACE and these mice are much more resistant to infection. In contrast, ACE inhibitors reduce neutrophil killing of bacteria in mice and humans. Increased expression of ACE induces a marked increase in macrophage oxidative metabolism, particularly mitochondrial oxidation of lipids, secondary to increased peroxisome proliferator-activated receptor α expression, and results in increased myeloid cell ATP. ACE present in sperm has a similar metabolic effect, and the lack of ACE activity in these cells reduces both sperm motility and fertilization capacity. These nonclassical effects of ACE are not due to the actions of angiotensin II but to an unknown molecule, probably a peptide, that triggers a profound change in myeloid cell metabolism and function. Purifying and characterizing this peptide could offer a new treatment for several diseases and prove potentially lucrative.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Erika Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Physiology, São Paulo School of Medicine, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tuantuan V Zhao
- Research Oncology, Gilead Sciences, Foster City, California, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Institute for Myeloma & Bone Cancer Research, West Hollywood, California, USA
| |
Collapse
|
30
|
Jha A, Moore E. Laminin-derived peptide, IKVAV, modulates macrophage phenotype through integrin mediation. Matrix Biol Plus 2024; 22:100143. [PMID: 38405086 PMCID: PMC10884775 DOI: 10.1016/j.mbplus.2024.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Macrophages are highly plastic immune cells known to exist on a spectrum of phenotypes including pro-inflammatory (M1) or pro-healing (M2). Macrophages interact with extracellular matrix (ECM) ligands, such as fragments of collagen and laminin. Interaction of macrophages with ECM ligands is mediated through integrin receptors. However, the role of ECM ligands in directing macrophage function through integrins is not yet fully understood. Particularly, α2β1 has been implicated in modulating macrophage function, but complexity in mechanisms employed for integrin-ligation especially with laminin-derived peptides makes it challenging to understand macrophage-ECM interactions. We hypothesize that targeting α2β1 through laminin-derived peptide, IKVAV, will modulate macrophage phenotype. In this work we: i) investigated macrophage response to IKVAV in 2D and in a 3D platform, and ii) identified α2β1's role as it pertains to macrophage modulation via IKVAV. Soluble IKVAV treatment significantly reduced M1 markers and increased M2 markers via immunocytochemistry and gene expression. While the 3D ECM-mimicking PEG-IKVAV hydrogels did not have significant effects in modulating macrophage phenotype, we found that macrophage modulation via IKVAV is dependent on the concentration of peptide used and duration of exposure. To investigate integrin-ligand interactions for macrophages, α2β1 signaling was modulated by antagonists and agonists. We observed that blocking α2β1 reduces M1 activation. To understand integrin-ligand interactions and leveraging the therapeutic ability of macrophages in designing immunomodulatory solutions, it is critical to elucidate IKVAV's role in mediating macrophage phenotype.
Collapse
Affiliation(s)
- Aakanksha Jha
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Erika Moore
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| |
Collapse
|
31
|
Hansakon A, Angkasekwinai P. Arginase inhibitor reduces fungal dissemination in murine pulmonary cryptococcosis by promoting anti-cryptococcal immunity. Int Immunopharmacol 2024; 132:111995. [PMID: 38581993 DOI: 10.1016/j.intimp.2024.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Elevation of arginase enzyme activity in the lung contributes to the pathogenesis of various chronic inflammatory diseases and infections. Inhibition of arginase expression and activity is able to alleviate those effects. Here, we investigated the immunomodulatory effect of arginase inhibitor in C. neoformans infection. In the pulmonary cryptococcosis model that was shown to recapitulate human infection, we found arginase expression was excessively induced in the lung during the late stage of infection. To inhibit the activity of arginase, we administered a specific arginase inhibitor, nor-NOHA, during C. neoformans infection. Inhibition of arginase reduced eosinophil infiltration and level of IL-13 secretion in the lungs. Whole lung transcriptome RNA-sequencing analysis revealed that treatment with nor-NOHA resulted in shifting the Th2-type gene expression patterns induced by C. neoformans infection to the Th1-type immune profile, with higher expression of cytokines Ifng, Il6, Tnfa, Csf3, chemokines Cxcl9 and Cxcl10 and transcription factor Stat1. More importantly, mice treated with arginase inhibitor had more infiltrating brain leukocytes and enhanced gene expression of Th1-associated cytokines and chemokines that are known to be essential for protection against C. neoformans infection. Inhibition of arginase dramatically attenuated spleen and brain infection, with improved survival. Taken together, these studies demonstrated that inhibiting arginase activity induced by C. neoformans infection can modulate host immune response by enhancing protective type-1 immune response during C. neoformans infection. The inhibition of arginase activity could be an immunomodulatory target to enhance protective anti-cryptococcal immune responses.
Collapse
Affiliation(s)
- Adithap Hansakon
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12120, Thailand; Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12120, Thailand; Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani 12120, Thailand.
| |
Collapse
|
32
|
Merle-Nguyen L, Ando-Grard O, Bourgon C, St Albin A, Jacquelin J, Klonjkowski B, Le Poder S, Meunier N. Early corticosteroid treatment enhances recovery from SARS-CoV-2 induced loss of smell in hamster. Brain Behav Immun 2024; 118:78-89. [PMID: 38367845 DOI: 10.1016/j.bbi.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
Among the numerous long COVID symptoms, olfactory dysfunction persists in ∼10 % of patients suffering from SARS-CoV-2 induced anosmia. Among the few potential therapies, corticoid treatment has been used for its anti-inflammatory effect with mixed success in patients. In this study, we explored its impact using hamster as an animal model. SARS-CoV-2 infected hamsters lose their smell abilities and this loss is correlated with damage of the olfactory epithelium and persistent presence of innate immunity cells. We started a dexamethasone treatment 2 days post infection, when olfaction was already impacted, until 11 days post infection when it started to recover. We observed an improvement of olfactory capacities in the animals treated with corticoid compared to those treated with vehicle. This recovery was not related to differences in the remaining damage to the olfactory epithelium, which was similar in both groups. This improvement was however correlated with a reduced inflammation in the olfactory epithelium with a local increase of the mature olfactory neuron population. Surprisingly, at 11 days post infection, we observed an increased and disorganized presence of immature olfactory neurons, especially in persistent inflammatory zones of the epithelium. This unusual population of immature olfactory neurons coincided with a strong increase of olfactory epithelium proliferation in both groups. Our results indicate that persistent inflammation of the olfactory epithelium following SARS-CoV-2 infection may alter the extent and speed of regeneration of the olfactory neuron population, and that corticoid treatment is effective to limit inflammation and improve olfaction recovery following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Laetitia Merle-Nguyen
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ophélie Ando-Grard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clara Bourgon
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Audrey St Albin
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Juliette Jacquelin
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bernard Klonjkowski
- UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94704 Paris, France
| | - Sophie Le Poder
- UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94704 Paris, France
| | - Nicolas Meunier
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
33
|
Gopalakrishnan B, Galili U, Saenger M, Burket NJ, Koss W, Lokender MS, Wolfe KM, Husak SJ, Stark CJ, Solorio L, Cox A, Dunbar A, Shi R, Li J. α-Gal Nanoparticles in CNS Trauma: II. Immunomodulation Following Spinal Cord Injury (SCI) Improves Functional Outcomes. Tissue Eng Regen Med 2024; 21:437-453. [PMID: 38308742 PMCID: PMC10987462 DOI: 10.1007/s13770-023-00616-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Previous investigations have shown that local application of nanoparticles presenting the carbohydrate moiety galactose-α-1,3-galactose (α-gal epitopes) enhance wound healing by activating the complement system and recruiting pro-healing macrophages to the injury site. Our companion in vitro paper suggest α-gal epitopes can similarly recruit and polarize human microglia toward a pro-healing phenotype. In this continuation study, we investigate the in vivo implications of α-gal nanoparticle administration directly to the injured spinal cord. METHODS α-Gal knock-out (KO) mice subjected to spinal cord crush were injected either with saline (control) or with α-gal nanoparticles immediately following injury. Animals were assessed longitudinally with neurobehavioral and histological endpoints. RESULTS Mice injected with α-gal nanoparticles showed increased recruitment of anti-inflammatory macrophages to the injection site in conjunction with increased production of anti-inflammatory markers and a reduction in apoptosis. Further, the treated group showed increased axonal infiltration into the lesion, a reduction in reactive astrocyte populations and increased angiogenesis. These results translated into improved sensorimotor metrics versus the control group. CONCLUSIONS Application of α-gal nanoparticles after spinal cord injury (SCI) induces a pro-healing inflammatory response resulting in neuroprotection, improved axonal ingrowth into the lesion and enhanced sensorimotor recovery. The data shows α-gal nanoparticles may be a promising avenue for further study in CNS trauma.
Collapse
Affiliation(s)
- Bhavani Gopalakrishnan
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Megan Saenger
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Noah J Burket
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Wendy Koss
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Manjari S Lokender
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Kaitlyn M Wolfe
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Samantha J Husak
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Collin J Stark
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - August Dunbar
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Riyi Shi
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jianming Li
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
34
|
Duraisamy P, Angusamy A, Ravi S, Krishnan M, Martin LC, Manikandan B, Sundaram J, Ramar M. Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization. 3 Biotech 2024; 14:80. [PMID: 38375513 PMCID: PMC10874368 DOI: 10.1007/s13205-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
Macrophages are primary immune cells that mediate a wide range of inflammatory diseases through their polarization potential. In this study, phytol isolated from Scoparia dulcis has been explored against 7-ketocholesterol and bacterial lipopolysaccharide-induced macrophage polarization in IC-21 cells. Isolated phytol has been characterized using GC-MS, TLC, HPTLC, FTIR, 1H-NMR, and HPLC analyses. The immunomodulatory effects of viable concentrations of phytol were tested on oxidative stress, arginase activity, nuclear and mitochondrial membrane potentials in IC-21 cells in addition to the modulation of calcium and lipids. Further, gene and protein expression of atherogenic markers were studied. Results showed that the isolated phytol at a viable concentration of 400 µg/ml effectively reduced the production of nitric oxide, superoxide anion (ROS generation), calcium and lipid accumulation, stabilized nuclear and mitochondrial membranes, and increased arginase activity. The atherogenic markers including iNOS, COX-2, IL-6, IL-1β, MMP-9, CD36, and NF-κB were significantly downregulated at the levels of gene and protein expression, while macrophage surface and nuclear receptor markers (CD206, CD163, and PPAR-γ) were significantly upregulated by phytol pre-treatment in macrophages. Therefore, the present pharmacognostic study supports the role of phytol isolated from Scoparia dulcis in preventing M2-M1 macrophage polarization under inflammatory conditions, making it a promising compound. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03924-9.
Collapse
Affiliation(s)
| | - Annapoorani Angusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600015 India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| |
Collapse
|
35
|
Chen L, Pan D, Zhang Y, Zhang E, Ma L. C-C Motif Chemokine 2 Regulates Macrophage Polarization and Contributes to Myocardial Infarction Healing. J Interferon Cytokine Res 2024; 44:68-79. [PMID: 38153396 DOI: 10.1089/jir.2023.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Macrophages are crucial immune cells that play essential roles in the healing of myocardial infarction (MI), undergoing continuous polarization throughout this process. C-C motif chemokine 2 (CCL2) is a chemokine that regulates inflammatory responses during MI. However, the extent to which CCL2 influences macrophage polarization and MI healing remains incompletely understood. In this study, we investigate the role of CCL2 in macrophage polarization and MI healing. Our findings reveal that CCL2 is differentially expressed in lipopolysaccharide (LPS)-induced M1 and interleukin (IL)-4-induced M2 RAW264.7 macrophages. Knockdown of CCL2 attenuates TNF-α secretion stimulated by LPS, while overexpression of CCL2 mitigates IL-10 production triggered by IL-4 in these macrophages. Moreover, CCL2 deficiency disrupts LPS-induced M1 polarization, whereas CCL2 overexpression reduces M2 polarization of RAW264.7 macrophages induced by IL-4. Further exploration indicates that the promotion of M1 polarization by CCL2 is significantly impaired by inhibition of the p38-mediated MAPK pathway and NF-κB pathway. In a MI mouse model, CCL2 knockdown remarkably reduces infarct size, collagen synthesis, and the expression of cardiac fibrosis and hypertrophy markers. The activity of the p38-mediated MAPK pathway and NF-κB pathway is downregulated by CCL2 knockdown as well. Additionally, the number of total macrophages and M1 macrophages in the infarct decreases, while the number of M2 macrophages increases upon CCL2 deficiency. In conclusion, these results suggest that CCL2 is a key regulator of macrophage polarization, controlling MI healing in vivo.
Collapse
Affiliation(s)
- Liangwei Chen
- Department of Cardiac and Macrovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dihao Pan
- Department of Cardiac and Macrovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiran Zhang
- Department of Cardiac and Macrovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Ma
- Department of Cardiac and Macrovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Stinson MW, Liu S, Laurenson AJ, Rotty JD. Macrophage migration is differentially regulated by fibronectin and laminin through altered adhesion and myosin II localization. Mol Biol Cell 2024; 35:ar22. [PMID: 38088893 PMCID: PMC10881148 DOI: 10.1091/mbc.e23-04-0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Macrophages are indispensable for proper immune surveillance and inflammatory regulation. They also exhibit dramatic phenotypic plasticity and are highly responsive to their local microenvironment, which includes the extracellular matrix (ECM). This work demonstrates that two fibrous ECM glycoproteins, fibronectin (FN) and laminin (LAM), elicit distinct morphological and migratory responses from macrophages in two-dimensional environments. LAM 111 inhibits macrophage cell spreading, but drives them to migrate rapidly and less persistently compared with cells on FN. Differential integrin engagement and ROCK/myosin II organization helps explain why macrophages alter their morphology and migration character on these two ECM components. This study also demonstrates that LAM 111 exerts a suppressive effect toward FN, as macrophages plated on a LAM/FN mixture adopt a morphology and migratory character almost identical to LAM alone. This suggests that distinct responses can be initiated downstream of receptor-ECM engagement, and that one component of the microenvironment may affect the cell's ability to sense another. Overall, macrophages appear intrinsically poised to rapidly switch between distinct migratory characters based on their ECM environments. The role of ECM composition in dictating motile and inflammatory responses in three-dimensional and in vivo contexts warrants further study.
Collapse
Affiliation(s)
- Matthew W. Stinson
- Uniformed Services University of the Health Sciences, Department of Biochemistry, Bethesda, MD 20814
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Sophia Liu
- Uniformed Services University of the Health Sciences, Department of Biochemistry, Bethesda, MD 20814
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Alexander J. Laurenson
- Uniformed Services University of the Health Sciences, Department of Biochemistry, Bethesda, MD 20814
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Jeremy D. Rotty
- Uniformed Services University of the Health Sciences, Department of Biochemistry, Bethesda, MD 20814
| |
Collapse
|
37
|
Jung M, Bonavida B. Immune Evasion in Cancer Is Regulated by Tumor-Asociated Macrophages (TAMs): Targeting TAMs. Crit Rev Oncog 2024; 29:1-17. [PMID: 38989734 DOI: 10.1615/critrevoncog.2024053096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Recent advancements in cancer treatment have explored a variety of approaches to address the needs of patients. Recently, immunotherapy has evolved as an efficacious treatment for various cancers resistant to conventional therapies. Hence, significant milestones in immunotherapy were achieved clinically in a large subset of cancer patients. Unfortunately, some cancer types do not respond to treatment, and among the responsive cancers, some patients remain unresponsive to treatment. Consequently, there is a critical need to examine the mechanisms of immune resistance and devise strategies to target immune suppressor cells or factors, thereby allowing for tumor sensitivity to immune cytotoxic cells. M2 macrophages, also known as tumor-associated macrophages (TAMs), are of interest due to their role in suppressing the immune system and influencing antitumor immune responses through modulating T cell activity and immune checkpoint expression. TAMs are associated with signaling pathways that modulate the tumor microenvironment (TME), contributing to immune evasion. One approach targets TAMs, focusing on preventing the polarization of M1 macrophages into the protumoral M2 phenotype. Other strategies focus on direct or indirect targeting of M2 macrophages through understanding the interaction of TAMs with immune factors or signaling pathways. Clinically, biomarkers associated with TAMs' immune resistance in cancer patients have been identified, opening avenues for intervention using pharmacological agents or immunotherapeutic approaches. Ultimately, these multifaceted approaches are promising in overcoming immune resistance and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Megan Jung
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
38
|
Wang S, Böhnert V, Joseph AJ, Sudaryo V, Skariah G, Swinderman JT, Yu FB, Subramanyam V, Wolf DM, Lyu X, Gilbert LA, van’t Veer LJ, Goodarzi H, Li L. ENPP1 is an innate immune checkpoint of the anticancer cGAMP-STING pathway in breast cancer. Proc Natl Acad Sci U S A 2023; 120:e2313693120. [PMID: 38117852 PMCID: PMC10756298 DOI: 10.1073/pnas.2313693120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/10/2023] [Indexed: 12/22/2023] Open
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) expression correlates with poor prognosis in many cancers, and we previously discovered that ENPP1 is the dominant hydrolase of extracellular cGAMP: a cancer-cell-produced immunotransmitter that activates the anticancer stimulator of interferon genes (STING) pathway. However, ENPP1 has other catalytic activities and the molecular and cellular mechanisms contributing to its tumorigenic effects remain unclear. Here, using single-cell RNA-seq, we show that ENPP1 in both cancer and normal tissues drives primary breast tumor growth and metastasis by dampening extracellular 2'3'-cyclic-GMP-AMP (cGAMP)-STING-mediated antitumoral immunity. ENPP1 loss-of-function in both cancer cells and normal tissues slowed primary tumor growth and abolished metastasis. Selectively abolishing the cGAMP hydrolysis activity of ENPP1 phenocopied ENPP1 knockout in a STING-dependent manner, demonstrating that restoration of paracrine cGAMP-STING signaling is the dominant anti-cancer mechanism of ENPP1 inhibition. Finally, ENPP1 expression in breast tumors deterministically predicated whether patients would remain free of distant metastasis after pembrolizumab (anti-PD-1) treatment followed by surgery. Altogether, ENPP1 blockade represents a strategy to exploit cancer-produced extracellular cGAMP for controlled local activation of STING and is therefore a promising therapeutic approach against breast cancer.
Collapse
Affiliation(s)
- Songnan Wang
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Arc Institute, Palo Alto, CA94304
| | - Volker Böhnert
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
| | - Alby J. Joseph
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Arc Institute, Palo Alto, CA94304
| | - Valentino Sudaryo
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Arc Institute, Palo Alto, CA94304
| | - Gemini Skariah
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
| | - Jason T. Swinderman
- Arc Institute, Palo Alto, CA94304
- Department of Urology, University of California, San Francisco, CA94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
| | | | - Vishvak Subramanyam
- Department of Urology, University of California, San Francisco, CA94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
- Department of Biophysics & Biochemistry, University of California, San Francisco, CA94143
- Baker Computational Health Science Institute, University of California, San Francisco, CA94143
| | - Denise M. Wolf
- Department of Laboratory Medicine, University of California, San Francisco, CA94115
| | - Xuchao Lyu
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Luke A. Gilbert
- Arc Institute, Palo Alto, CA94304
- Department of Urology, University of California, San Francisco, CA94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
| | - Laura J. van’t Veer
- Department of Laboratory Medicine, University of California, San Francisco, CA94115
| | - Hani Goodarzi
- Department of Urology, University of California, San Francisco, CA94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
- Department of Biophysics & Biochemistry, University of California, San Francisco, CA94143
- Baker Computational Health Science Institute, University of California, San Francisco, CA94143
| | - Lingyin Li
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Arc Institute, Palo Alto, CA94304
| |
Collapse
|
39
|
Kambouris AR, Brammer JA, Roussey H, Chen C, Cross AS. A combination of burn wound injury and Pseudomonas infection elicits unique gene expression that enhances bacterial pathogenicity. mBio 2023; 14:e0245423. [PMID: 37929965 PMCID: PMC10746159 DOI: 10.1128/mbio.02454-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE The interaction between an underlying disease process and a specific pathogen may lead to the unique expression of genes that affect bacterial pathogenesis. These genes may not be observed during infection in the absence of, or with a different underlying process or infection during the underlying process with a different pathogen. To test this hypothesis, we used Nanostring technology to compare gene transcription in a murine-burned wound infected with P. aeruginosa. The Nanostring probeset allowed the simultaneous direct comparison of immune response gene expression in both multiple host tissues and P. aeruginosa in conditions of burn alone, infection alone, and burn with infection. While RNA-Seq is used to discover novel transcripts, NanoString could be a technique to monitor specific changes in transcriptomes between samples and bypass the additional adjustments for multispecies sample processing or the need for the additional steps of alignment and assembly required for RNASeq. Using Nanostring, we identified arginine and IL-10 as important contributors to the lethal outcome of burned mice infected with P. aeruginosa. While other examples of altered gene transcription are in the literature, our study suggests that a more systematic comparison of gene expression in various underlying diseases during infection with specific bacterial pathogens may lead to the identification of unique host-pathogen interactions and result in more precise therapeutic interventions.
Collapse
Affiliation(s)
- Adrienne R. Kambouris
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jerod A. Brammer
- US Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Houston, Texas, USA
| | - Holly Roussey
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alan S. Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, Proteomic, and Metabolomic Correlates of Traffic-Related Air Pollution in the Context of Cardiorespiratory Health: A Systematic Review, Pathway Analysis, and Network Analysis. TOXICS 2023; 11:1014. [PMID: 38133415 PMCID: PMC10748071 DOI: 10.3390/toxics11121014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead to cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
41
|
Balmos IA, Slevin M, Brinzaniuc K, Muresan AV, Suciu H, Molnár GB, Mocian A, Szabó B, Nagy EE, Horváth E. Intraplaque Neovascularization, CD68+ and iNOS2+ Macrophage Infiltrate Intensity Are Associated with Atherothrombosis and Intraplaque Hemorrhage in Severe Carotid Atherosclerosis. Biomedicines 2023; 11:3275. [PMID: 38137496 PMCID: PMC10741508 DOI: 10.3390/biomedicines11123275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Atherosclerosis is a progressive disease that results from endothelial dysfunction, inflammatory arterial wall disorder and the formation of the atheromatous plaque. This results in carotid artery stenosis and is responsible for atherothrombotic stroke and ischemic injury. Low-grade plaque inflammation determines biological stability and lesion progression. METHODS Sixty-seven cases with active perilesional inflammatory cell infiltrate were selected from a larger cohort of patients undergoing carotid endarterectomy. CD68+, iNOS2+ and Arg1+ macrophages and CD31+ endothelial cells were quantified around the atheroma lipid core using digital morphometry, and expression levels were correlated with determinants of instability: ulceration, thrombosis, plaque hemorrhage, calcification patterns and neovessel formation. RESULTS Patients with intraplaque hemorrhage had greater CD68+ macrophage infiltration (p = 0.003). In 12 cases where iNOS2 predominated over Arg1 positivity, the occurrence of atherothrombotic events was significantly more frequent (p = 0.046). CD31 expression, representing neovessel formation, correlated positively with atherothrombosis (p = 0.020). CONCLUSIONS Intraplaque hemorrhage is often described against the background of an intense inflammatory cell infiltrate. Atherothrombosis is associated with the presence of neovessels and pro-inflammatory macrophages expressing iNOS2. Modulating macrophage polarization may be a successful therapeutic approach to prevent plaque destabilization.
Collapse
Affiliation(s)
- Ioan Alexandru Balmos
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.A.B.); (G.B.M.); (A.M.)
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Vascular Surgery Clinic, County Emergency Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
| | - Mark Slevin
- Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Klara Brinzaniuc
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adrian Vasile Muresan
- Vascular Surgery Clinic, County Emergency Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
- M3 Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania (B.S.)
| | - Horatiu Suciu
- M3 Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania (B.S.)
- Emergency Institute for Cardiovascular Diseases and Transplantation, 540142 Targu Mures, Romania
| | - Gyopár Beáta Molnár
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.A.B.); (G.B.M.); (A.M.)
- Pathology Service, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania;
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adriana Mocian
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.A.B.); (G.B.M.); (A.M.)
- Vascular Surgery Clinic, County Emergency Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
| | - Béla Szabó
- M3 Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania (B.S.)
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 540394 Targu Mures, Romania
| | - Emőke Horváth
- Pathology Service, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania;
- Department of Pathology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| |
Collapse
|
42
|
Sharma D, Sharma A, Hu L, Chen TA, Voon S, Bayless KJ, Goldman J, Walsh AJ, Zhao F. Perfusability and immunogenicity of implantable pre-vascularized tissues recapitulating features of native capillary network. Bioact Mater 2023; 30:184-199. [PMID: 37589031 PMCID: PMC10425689 DOI: 10.1016/j.bioactmat.2023.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
Vascularization is a key pre-requisite to engineered anatomical scale three dimensional (3-D) constructs to ensure their nutrient and oxygen supply upon implantation. Presently, engineered pre-vascularized 3-D tissues are limited to only micro-scale hydrogels, which meet neither the anatomical scale needs nor the complexity of natural extracellular matrix (ECM) environments. Anatomical scale perfusable constructs are critically needed for translational applications. To overcome this challenge, we previously developed pre-vascularized ECM sheets with long and oriented dense microvascular networks. The present study further evaluated the patency, perfusability and innate immune response toward these pre-vascularized constructs. Macrophage-co-cultured pre-vascularized constructs were evaluated in vitro to confirm micro-vessel patency and perturbations in macrophage metabolism. Subcutaneously implanted pre-vascularized constructs remained viable and formed a functional anastomosis with host vasculature within 3 days of implantation. This completely biological pre-vascularized construct holds great potential as a building block to engineer perfusable anatomical scale tissues.
Collapse
Affiliation(s)
- Dhavan Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Archita Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Linghao Hu
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Te-An Chen
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Sarah Voon
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Kayla J. Bayless
- School of Medicine, Texas A&M University, College Station, TX, United States
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Alex J. Walsh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
43
|
Meleady L, Towriss M, Kim J, Bacarac V, Dang V, Rowland ME, Ciernia AV. Histone deacetylase 3 regulates microglial function through histone deacetylation. Epigenetics 2023; 18:2241008. [PMID: 37506371 PMCID: PMC10392760 DOI: 10.1080/15592294.2023.2241008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
As the primary innate immune cells of the brain, microglia respond to damage and disease through pro-inflammatory release of cytokines and neuroinflammatory molecules. Histone acetylation is an activating transcriptional mark that regulates inflammatory gene expression. Inhibition of histone deacetylase 3 (Hdac3) has been utilized in pre-clinical models of depression, stroke, and spinal cord injury to improve recovery following injury, but the molecular mechanisms underlying Hdac3's regulation of inflammatory gene expression in microglia is not well understood. To address this lack of knowledge, we examined how pharmacological inhibition of Hdac3 in an immortalized microglial cell line (BV2) impacted histone acetylation and gene expression of pro- and anti-inflammatory genes in response to immune challenge with lipopolysaccharide (LPS). Flow cytometry and cleavage under tags & release using nuclease (CUT & RUN) revealed that Hdac3 inhibition increases global and promoter-specific histone acetylation, resulting in the release of gene repression at baseline and enhanced responses to LPS. Hdac3 inhibition enhanced neuroprotective functions of microglia in response to LPS through reduced nitric oxide release and increased phagocytosis. The findings suggest Hdac3 serves as a regulator of microglial inflammation, and that inhibition of Hdac3 facilitates the microglial response to inflammation and its subsequent clearing of debris or damaged cells. Together, this work provides new mechanistic insights into therapeutic applications of Hdac3 inhibition which mediate reduced neuroinflammatory insults through microglial response.
Collapse
Affiliation(s)
- Laura Meleady
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Morgan Towriss
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Jennifer Kim
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Vince Bacarac
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Vivien Dang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Megan E. Rowland
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
44
|
Kosyreva A, Vishnyakova P, Tsvetkov I, Kiseleva V, Dzhalilova DS, Miroshnichenko E, Lokhonina A, Makarova O, Fatkhudinov T. Advantages and disadvantages of treatment of experimental ARDS by M2-polarized RAW 264.7 macrophages. Heliyon 2023; 9:e21880. [PMID: 38027880 PMCID: PMC10658332 DOI: 10.1016/j.heliyon.2023.e21880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/20/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Innate immunity reactions are core to any immunological process, including systemic inflammation and such extremes as acute respiratory distress syndrome (ARDS) and cytokine storm. Macrophages, the key cells of innate immunity, show high phenotypic plasticity: depending on microenvironmental cues, they can polarize into M1 (classically activated, pro-inflammatory) or M2 (alternatively activated, anti-inflammatory). The anti-inflammatory M2 macrophage polarization-based cell therapies constitute a novel prospective modality. Systemic administration of 'educated' macrophages is intended at their homing in lungs in order to mitigate the pro-inflammatory cytokine production and reduce the risks of 'cytokine storm' and related severe complications. Acute respiratory distress syndrome (ARDS) is the main mortality factor in pneumonia including SARS-CoV-associated cases. This study aimed to evaluate the influence of infusions of RAW 264.7 murine macrophage cell line polarized towards M2 phenotype on the development of LPS-induced ARDS in mouse model. The results indicate that the M2-polarized RAW 264.7 macrophage infusions in the studied model of ARDS promote relocation of lymphocytes from their depots in immune organs to the lungs. In addition, the treatment facilitates expression of M2-polarization markers Arg1, Vegfa and Tgfb and decreases of M1-polarization marker Cd38 in lung tissues, which can indicate the anti-inflammatory response activation. However, treatment of ARDS with M2-polarized macrophages didn't change the neutrophil numbers in the lungs. Moreover, the level of the Arg1 protein in lungs decreased throughtout the treatment with M2 macrophages, which is probably because of the pro-inflammatory microenvironment influence on the polarization of macrophages towards M1. Thus, the chemical polarization of macrophages is unstable and depends on the microenvironment. This adverse effect can be reduced through the use of primary autologous macrophages or some alternative methods of M2 polarization, notably siRNA-mediated.
Collapse
Affiliation(s)
- A.M. Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - P.A. Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - I.S. Tsvetkov
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - V.V. Kiseleva
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - D. Sh. Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - E.A. Miroshnichenko
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - A.V. Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - O.V. Makarova
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - T.H. Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| |
Collapse
|
45
|
Cordeiro MCC, Tomé FD, Arruda FS, da Fonseca SG, Nagib PRA, Celes MRN. Curcumin as a Stabilizer of Macrophage Polarization during Plasmodium Infection. Pharmaceutics 2023; 15:2505. [PMID: 37896265 PMCID: PMC10610200 DOI: 10.3390/pharmaceutics15102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Malaria is a parasitic infection responsible for high morbidity and mortality rates worldwide. During the disease, phagocytosis of infected red blood cells by the macrophages induces the production of reactive oxygen (ROS) and nitrogen species (RNS), culminating in parasite death. Curcumin (CUR) is a bioactive compound that has been demonstrated to reduce the production of pro-inflammatory cytokines and chemokines produced by macrophages but to reduce parasitemia in infected mice. Hence, the main purpose of this study is to investigate whether curcumin may interfere with macrophage function and polarization after Plasmodium berghei infection in vitro. In our findings, non-polarized macrophage (M0), classically activated (M1), and alternatively activated (M2) phenotypes showed significantly increased phagocytosis of infected red blood cells (iRBCs) when compared to phagocytosis of uninfected red blood cells (RBCs) 3 h after infection. After 24 h, M1 macrophages exposed to RBCs + CUR showed greater elimination capacity when compared to macrophages exposed to iRBCs + CUR, suggesting the interference of curcumin with the microbicidal activity. Additionally, curcumin increased the phagocytic activity of macrophages when used in non-inflammatory conditions (M0) and reduced the inducible nitric oxide synthase (iNOS) and arginase activities in all macrophage phenotypes infected (M0, M1, and M2), suggesting interference in arginine availability by curcumin and balance promotion in macrophage polarization in neutral phenotype (M0). These results support the view of curcumin treatment in malaria as an adjuvant, promoting a balance between pro- and anti-inflammatory responses for a better clinical outcome.
Collapse
Affiliation(s)
- Maria Clara C. Cordeiro
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| | - Fernanda D. Tomé
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| | - Felipe S. Arruda
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| | - Simone Gonçalves da Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| | - Patrícia R. A. Nagib
- Department of Microbiology, Immunology and Parasitology, Biological Science Institute, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil;
| | - Mara R. N. Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| |
Collapse
|
46
|
Susser LI, Nguyen MA, Geoffrion M, Emerton C, Ouimet M, Khacho M, Rayner KJ. Mitochondrial Fragmentation Promotes Inflammation Resolution Responses in Macrophages via Histone Lactylation. Mol Cell Biol 2023; 43:531-546. [PMID: 37807652 PMCID: PMC10569354 DOI: 10.1080/10985549.2023.2253131] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/10/2023] [Indexed: 10/10/2023] Open
Abstract
During the inflammatory response, macrophage phenotypes can be broadly classified as pro-inflammatory/classically activated "M1", or pro-resolving/alternatively "M2" macrophages. Although the classification of macrophages is general and assumes there are distinct phenotypes, in reality macrophages exist across a spectrum and must transform from a pro-inflammatory state to a proresolving state following an inflammatory insult. To adapt to changing metabolic needs of the cell, mitochondria undergo fusion and fission, which have important implications for cell fate and function. We hypothesized that mitochondrial fission and fusion directly contribute to macrophage function during the pro-inflammatory and proresolving phases. In the present study, we find that mitochondrial length directly contributes to macrophage phenotype, primarily during the transition from a pro-inflammatory to a proresolving state. Phenocopying the elongated mitochondrial network (by disabling the fission machinery using siRNA) leads to a baseline reduction in the inflammatory marker IL-1β, but a normal inflammatory response to LPS, similar to control macrophages. In contrast, in macrophages with a phenocopied fragmented phenotype (by disabling the fusion machinery using siRNA) there is a heightened inflammatory response to LPS and increased signaling through the ATF4/c-Jun transcriptional axis compared to control macrophages. Importantly, macrophages with a fragmented mitochondrial phenotype show increased expression of proresolving mediator arginase 1 and increased phagocytic capacity. Promoting mitochondrial fragmentation caused an increase in cellular lactate, and an increase in histone lactylation which caused an increase in arginase 1 expression. These studies demonstrate that a fragmented mitochondrial phenotype is critical for the proresolving response in macrophages and specifically drive epigenetic changes via lactylation of histones following an inflammatory insult.
Collapse
Affiliation(s)
- Leah I. Susser
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | - My-Anh Nguyen
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | | | | | - Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity & Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
- Centre for Infection, Immunity & Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
47
|
Long H, Lichtnekert J, Andrassy J, Schraml BU, Romagnani P, Anders HJ. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes account for organ injury, regeneration or atrophy. Front Immunol 2023; 14:1194988. [PMID: 37868987 PMCID: PMC10587486 DOI: 10.3389/fimmu.2023.1194988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Mononuclear phagocytes (MP), i.e., monocytes, macrophages, and dendritic cells (DCs), are essential for immune homeostasis via their capacities to clear pathogens, pathogen components, and non-infectious particles. However, tissue injury-related changes in local microenvironments activate resident and infiltrating MP towards pro-inflammatory phenotypes that contribute to inflammation by secreting additional inflammatory mediators. Efficient control of injurious factors leads to a switch of MP phenotype, which changes the microenvironment towards the resolution of inflammation. In the same way, MP endorses adaptive structural responses leading to either compensatory hypertrophy of surviving cells, tissue regeneration from local tissue progenitor cells, or tissue fibrosis and atrophy. Under certain circumstances, MP contribute to the reversal of tissue fibrosis by clearance of the extracellular matrix. Here we give an update on the tissue microenvironment-related factors that, upon tissue injury, instruct resident and infiltrating MP how to support host defense and recover tissue function and integrity. We propose that MP are not intrinsically active drivers of organ injury and dysfunction but dynamic amplifiers (and biomarkers) of specific tissue microenvironments that vary across spatial and temporal contexts. Therefore, MP receptors are frequently redundant and suboptimal targets for specific therapeutic interventions compared to molecular targets upstream in adaptive humoral or cellular stress response pathways that influence tissue milieus at a contextual level.
Collapse
Affiliation(s)
- Hao Long
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Julia Lichtnekert
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Joachim Andrassy
- Department of General, Visceral and Transplant Surgery, University Hospital of Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Barbara U. Schraml
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-University (LMU), Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Paola Romagnani
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Firenze, Nephrology and Dialysis Unit, Meyer Children’s Hospital, Firenze, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| |
Collapse
|
48
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, proteomic, and metabolomic correlates of traffic-related air pollution: A systematic review, pathway analysis, and network analysis relating traffic-related air pollution to subclinical and clinical cardiorespiratory outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.30.23296386. [PMID: 37873294 PMCID: PMC10592990 DOI: 10.1101/2023.09.30.23296386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease, and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
49
|
Kaplan A, Lakkis B, El-Samadi L, Karaayvaz EB, Booz GW, Zouein FA. Cooling Down Inflammation in the Cardiovascular System via the Nicotinic Acetylcholine Receptor. J Cardiovasc Pharmacol 2023; 82:241-265. [PMID: 37539950 DOI: 10.1097/fjc.0000000000001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
ABSTRACT Inflammation is a major player in many cardiovascular diseases including hypertension, atherosclerosis, myocardial infarction, and heart failure. In many individuals, these conditions coexist and mutually exacerbate each other's progression. The pathophysiology of these diseases entails the active involvement of both innate and adaptive immune cells. Immune cells that possess the α7 subunit of the nicotinic acetylcholine receptor on their surface have the potential to be targeted through both pharmacological and electrical stimulation of the cholinergic system. The cholinergic system regulates the inflammatory response to various stressors in different organ systems by systematically suppressing spleen-derived monocytes and chemokines and locally improving immune cell function. Research on the cardiovascular system has demonstrated the potential for atheroma plaque stabilization and regression as favorable outcomes. Smaller infarct size and reduced fibrosis have been associated with improved cardiac function and a decrease in adverse cardiac remodeling. Furthermore, enhanced electrical stability of the myocardium can lead to a reduction in the incidence of ventricular tachyarrhythmia. In addition, improving mitochondrial dysfunction and decreasing oxidative stress can result in less myocardial tissue damage caused by reperfusion injury. Restoring baroreflex activity and reduction in renal damage can promote blood pressure regulation and help counteract hypertension. Thus, the present review highlights the potential of nicotinic acetylcholine receptor activation as a natural approach to alleviate the adverse consequences of inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- Department of Cardiology, Kemer Public Hospital, Kemer, Antalya, Turkey
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Bachir Lakkis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Lana El-Samadi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Ekrem Bilal Karaayvaz
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, France
| |
Collapse
|
50
|
Ravi S, Duraisamy P, Krishnan M, Martin LC, Manikandan B, Ramar M. Sitosterol-rich Digera muricata against 7-ketocholesterol and lipopolysaccharide-mediated atherogenic responses by modulating NF-ΚB/iNOS signalling pathway in macrophages. 3 Biotech 2023; 13:331. [PMID: 37670802 PMCID: PMC10475456 DOI: 10.1007/s13205-023-03741-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Digera muricata L., commonly known as Tartara, is an edible herb used as traditional medicine in many countries of Africa and Asia. This study aimed to elucidate the effect of a phytosterol-rich extract of D. muricata on 7-ketocholesterol-mediated atherosclerosis in macrophages. The extract was examined by phytochemical analyses, GC-MS, TLC, DPPH scavenging and hRBC membrane stabilization assays. Macrophage polarization was studied with experimental groups framed based on alamar blue cell viability and griess assays. Regulations of arginase enzyme activity, ROS generation, mitochondrial membrane potential, cell membrane integrity, pinocytosis, lipid uptake and peroxidation, as well as, intracellular calcium deposition were determined. In addition, expressions of atherogenic mediators were analysed using PCR, ELISA and immunocytochemistry techniques. Diverse phytochemicals with higher free radical scavenging activity and anti-inflammatory potential have been detected in the D. muricata. Co-treatment with D. muricata markedly reduced the atherogenic responses induced by 7KCh in the presence of LPS such as ROS, especially, NO and O2- along with lipid peroxidation. Furthermore, D. muricata significantly normalized mitochondrial membrane potential, cell membrane integrity, pinocytic activity, intracellular lipid accumulation and calcium deposition. These results provided us with the potentiality of D. muricata in ameliorating atherogenesis. Additionally, it decreased the expression of pro-atherogenic mediators (iNOS, COX-2, MMP9, IL-6, IL-1β, CD36, CD163 and TGFβ1) and increased anti-atherogenic mediators (MRC1 and PPARγ) with high cellular expressions of NF-κB and iNOS. Results showed the potential of sitosterol-rich D. muricata as a versatile biomedical therapeutic agent against abnormal macrophage polarization and its associated pathologies.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600 015 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| |
Collapse
|