1
|
Tatematsu BK, Sojka DK. Tissue-resident natural killer cells derived from conventional natural killer cells are regulated by progesterone in the uterus. Mucosal Immunol 2025; 18:390-401. [PMID: 39708955 DOI: 10.1016/j.mucimm.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The murine uterus contains three subsets of innate lymphoid cells (ILCs). Innate lymphoid cell type 1 (ILC1) and conventional natural killer (cNK) cells seed the uterus before puberty. Tissue-resident NK (trNK) cells emerge at puberty and vary in number during the estrous cycle. Here, we addressed the origin of uterine trNK cells and the influence of ovarian hormones on their local activation and differentiation in vivo. We used parabiosed mice in combination with intravascular fluorescent antibody labeling and flow cytometry to distinguish tissue-resident from circulating immune cells. Additionally, we used C57BL/6J ovariectomized (OVX) and non-OVX mice supplemented with ovarian hormones to assess their effects on uterine trNK cell function. Strikingly, mice OVX at three weeks of age and analyzed as adults lacked uterine trNK cells unless progesterone was administered. Our parabiosis studies confirmed that the progesterone-responsive trNK cells are derived from peripheral cNK cells. Moreover, medroxyprogesterone 17-acetate-induced expansion of cNK-derived trNK cells was abolished by a progesterone receptor antagonist. These data reveal a novel, uterine-specific differentiation pathway of trNK cells that is tightly regulated by progesterone.
Collapse
Affiliation(s)
- Bruna K Tatematsu
- Microbiology and Immunology Department, Loyola University Health Science Campus, Maywood, IL, United States 60153
| | - Dorothy K Sojka
- Microbiology and Immunology Department, Loyola University Health Science Campus, Maywood, IL, United States 60153.
| |
Collapse
|
2
|
Cuff AO, Von Woon E, Bainton T, Browne B, Kirkwood PM, Collins F, Gibson DA, Saunders PTK, Horne AW, Johnson MR, MacIntyre DA, Male V. Dynamic roles of ILC3 in endometrial repair and regeneration. DISCOVERY IMMUNOLOGY 2025; 4:kyaf004. [PMID: 40303843 PMCID: PMC12038238 DOI: 10.1093/discim/kyaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/21/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Background Innate lymphoid cells (ILCs) are prominent in the human uterine mucosa and play physiological roles in pregnancy. ILC3 are the second-most common ILC subset in the uterine mucosa, but their role remains unclear. Methods Here we define two subsets of lineage-negative CD56+ CD117+ CRTH2-uterine ILC3, distinguished by their expression of CD127. Results The CD127- subset is most numerous and active during menstruation and immediately after parturition, suggesting a role in the repair of the uterine mucosa (called endometrium outside of pregnancy); the CD127+ subset is most numerous and active immediately after menstruation, as the endometrium regenerates. In healthy endometrium, ILC3 are spatially associated with glandular epithelial and endothelial cells, which both express receptors for the ILC3-derived cytokines, IL-22 and IL-8. In the eutopic endometrium of people with endometriosis, ILC3 are located further from glandular epithelial and endothelial cells suggesting that these cells may be less exposed to ILC3 products, potentially with negative consequences for endometrial regeneration. Conclusion Our findings highlight the dynamic nature of ILC3 in the uterine mucosa and suggest their primary role is in repair and regeneration. An improved understanding of uterine ILC3 will inform future research on endometrial health and disease.
Collapse
Affiliation(s)
- Antonia O Cuff
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ee Von Woon
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Thomas Bainton
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Brendan Browne
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Phoebe M Kirkwood
- Centre for Reproductive Health, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Frances Collins
- Centre for Reproductive Health, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Douglas A Gibson
- Centre for Reproductive Health, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Philippa T K Saunders
- Centre for Reproductive Health, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Andrew W Horne
- Centre for Reproductive Health, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mark R Johnson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - David A MacIntyre
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre, Imperial College London, London, UK
- Robinson Research Institute, University of Adelaide, North Adelaide, Australia
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
3
|
Sparano C, Solís-Sayago D, Zangger NS, Rindlisbacher L, Van Hove H, Vermeer M, Westermann F, Mussak C, Rallo E, Dergun S, Litscher G, Xu Y, Bijnen M, Friedrich C, Greter M, Juranić Lisnić V, Becher B, Gasteiger G, Oxenius A, Tugues S. Autocrine TGF-β1 drives tissue-specific differentiation and function of resident NK cells. J Exp Med 2025; 222:e20240930. [PMID: 39692745 DOI: 10.1084/jem.20240930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
Group 1 innate lymphoid cells (ILCs) encompass NK cells and ILC1s, which have non-redundant roles in host protection against pathogens and cancer. Despite their circulating nature, NK cells can establish residency in selected tissues during ontogeny, forming a distinct functional subset. The mechanisms that initiate, maintain, and regulate the conversion of NK cells into tissue-resident NK (trNK) cells are currently not well understood. Here, we identify autocrine transforming growth factor-β (TGF-β) as a cell-autonomous driver for NK cell tissue residency across multiple glandular tissues during development. Cell-intrinsic production of TGF-β was continuously required for the maintenance of trNK cells and synergized with Hobit to enhance cytotoxic function. Whereas autocrine TGF-β was redundant in tumors, our study revealed that NK cell-derived TGF-β allowed the expansion of cytotoxic trNK cells during local infection with murine cytomegalovirus (MCMV) and contributed to viral control in the salivary gland. Collectively, our findings reveal tissue-specific regulation of trNK cell differentiation and function by autocrine TGF-β1, which is relevant for antiviral immunity.
Collapse
Affiliation(s)
- Colin Sparano
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Darío Solís-Sayago
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | | | - Lukas Rindlisbacher
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Hannah Van Hove
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Marijne Vermeer
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Frederike Westermann
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Caroline Mussak
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Elisa Rallo
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Stanislav Dergun
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Gioana Litscher
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Yishu Xu
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Mitchell Bijnen
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Christin Friedrich
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg , Würzburg, Germany
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka , Rijeka, Croatia
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg , Würzburg, Germany
| | | | - Sonia Tugues
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
- Department of Immunology, Medical Faculty Mannheim, Mannheim Institute for Innate Immunosciences (MI3), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
4
|
Liao Y, Zheng Y, Zhang R, Chen X, Huang J, Liu J, Zhao Y, Zheng Y, Zhang X, Gao Z, Gao X, Bu J, Peng T, Li X, Shen E. Regulatory roles of transcription factors T-bet and Eomes in group 1 ILCs. Int Immunopharmacol 2024; 143:113229. [PMID: 39357208 DOI: 10.1016/j.intimp.2024.113229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
T-bet and Eomes, both T-box transcription factors, have been extensively studied for their critical roles in the differentiation and functional maintenance of various immune cells. In this review, we provide a focused overview of their contributions to the transcriptional activation and differentiation, development, and terminal maturation of natural killer cells and innate lymphoid cell 1 cells. Furthermore, the interplay between T-bet and Eomes in regulating NK cell function, and its subsequent implications for immune responses against infections and tumors, is thoroughly examined. The review explores the ramifications of dysregulated transcription factor expression, examining its impact on homeostatic balance and its role in a spectrum of disease models. Expression variances among distinct NK cell subsets resident in different tissues are highlighted to underscore the complexity of their biological roles. Collectively, this work aims to expand the current understanding of NK cell biology, thereby paving the way for innovative approaches in the realm of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Yue Liao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yanling Zheng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruizhi Zhang
- Department of Emergency Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jijun Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Xueyan Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhiyan Gao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Gao
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jin Bu
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| | - Tieli Peng
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, China.
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Hosking SL, Moldenhauer LM, Tran HM, Chan HY, Groome HM, Lovell EA, Green ES, O’Hara SE, Roberts CT, Foyle KL, Davidge ST, Robertson SA, Care AS. Treg cells promote decidual vascular remodeling and modulate uterine NK cells in pregnant mice. JCI Insight 2024; 10:e169836. [PMID: 39656539 PMCID: PMC11790030 DOI: 10.1172/jci.insight.169836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
Regulatory T (Treg) cells are essential for maternal immune tolerance of the fetus and placenta. In preeclampsia, aberrant Treg cell tolerance is implicated, but how Treg cells affect the uterine vascular dysfunction thought to precede placental impairment and maternal vasculopathy is unclear. We used Foxp3-diphtheria toxin receptor mice to test the hypothesis that Treg cells are essential regulators of decidual spiral artery adaptation to pregnancy. Transient Treg cell depletion during early placental morphogenesis caused impaired remodeling of decidual spiral arteries, altered uterine artery function, and fewer Dolichos biflorus agglutinin+ uterine natural killer (uNK) cells, resulting in late-gestation fetal loss and fetal growth restriction. Replacing the Treg cells by transfer from wild-type donors mitigated the impact on uNK cells, vascular remodeling, and fetal loss. RNA sequencing of decidua revealed genes associated with NK cell function and placental extravillous trophoblasts were dysregulated after Treg cell depletion and normalized by Treg cell replacement. These data implicate Treg cells as essential upstream drivers of uterine vascular adaptation to pregnancy, through a mechanism likely involving phenotypic regulation of uNK cells and trophoblast invasion. The findings provide insight into mechanisms linking impaired adaptive immune tolerance and altered spiral artery remodeling, 2 hallmark features of preeclampsia.
Collapse
Affiliation(s)
- Shanna L. Hosking
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lachlan M. Moldenhauer
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ha M. Tran
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hon Y. Chan
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Holly M. Groome
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Evangeline A.K. Lovell
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ella S. Green
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Stephanie E. O’Hara
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Claire T. Roberts
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Kerrie L. Foyle
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra T. Davidge
- Women and Children’s Health Research Institute, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah A. Robertson
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alison S. Care
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Froehlich F, Landerholm K, Neeb J, Meß AK, Seiler DL, Tilburgs T, Karsten CM. Emerging role of C5aR2: novel insights into the regulation of uterine immune cells during pregnancy. Front Immunol 2024; 15:1411315. [PMID: 38979410 PMCID: PMC11229525 DOI: 10.3389/fimmu.2024.1411315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
Pregnancy is a fascinating immunological phenomenon because it allows allogeneic fetal and placental tissues to survive inside the mother. As a component of innate immunity with high inflammatory potential, the complement system must be tightly regulated during pregnancy. Dysregulation of the complement system plays a role in pregnancy complications including pre-eclampsia and intrauterine growth restriction. Complement components are also used as biomarkers for pregnancy complications. However, the mechanisms of detrimental role of complement in pregnancy is poorly understood. C5a is the most potent anaphylatoxin and generates multiple immune reactions via two transmembrane receptors, C5aR1 and C5aR2. C5aR1 is pro-inflammatory, but the role of C5aR2 remains largely elusive. Interestingly, murine NK cells have been shown to express C5aR2 without the usual co-expression of C5aR1. Furthermore, C5aR2 appears to regulate IFN-γ production by NK cells in vitro. As IFN-γ produced by uterine NK cells is one of the major factors for the successful development of a vital pregnancy, we investigated the role anaphylatoxin C5a and its receptors in the establishment of pregnancy and the regulation of uterine NK cells by examinations of murine C5ar2-/- pregnancies and human placental samples. C5ar2-/- mice have significantly reduced numbers of implantation sites and a maternal C5aR2 deficiency results in increased IL-12, IL-18 and IFN-γ mRNA expression as well as reduced uNK cell infiltration at the maternal-fetal interface. Human decidual leukocytes have similar C5a receptor expression patterns showing clinical relevance. In conclusion, this study identifies C5aR2 as a key contributor to dNK infiltration and pregnancy success.
Collapse
Affiliation(s)
- Fenna Froehlich
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Konstanze Landerholm
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Johanna Neeb
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Ann-Kathrin Meß
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Tamara Tilburgs
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | |
Collapse
|
7
|
Katirci E, Kendirci-Katirci R, Korgun ET. Are innate lymphoid cells friend or foe in human pregnancy? Am J Reprod Immunol 2024; 91:e13834. [PMID: 38500395 DOI: 10.1111/aji.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Innate lymphoid cells (ILCs) are involved in the innate immune system because they lack specific antigen receptors and lineage markers. ILCs also display phenotypic and characteristic features of adaptive immune cells. Therefore, ILCs are functional in essential interactions between adaptive and innate immunity. ILCs are found in both lymphoid and nonlymphoid tissues and migrate to the area of inflammation during the inflammatory process. ILCs respond to pathogens by producing a variety of cytokines and are involved in the barrier defense of antigens and in many immunological processes such as allergic events. Recent research has shown that ILCs are functional during human pregnancy and have been suggested to be essential for the healthy progression of pregnancy. In this review, we focus on the role of ILCs in human pregnancy by discussing the relationship between ILCs and the pregnancy microenvironment, specifically summarizing the role of ILCs in physiological and pathological pregnancies.
Collapse
Affiliation(s)
- Ertan Katirci
- Department of Histology and Embryology, Faculty of Medicine, Ahi Evran University, Kirsehir, Turkey
| | - Remziye Kendirci-Katirci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
8
|
Wasilewska A, Grabowska M, Moskalik-Kierat D, Brzoza M, Laudański P, Garley M. Immunological Aspects of Infertility-The Role of KIR Receptors and HLA-C Antigen. Cells 2023; 13:59. [PMID: 38201263 PMCID: PMC10778566 DOI: 10.3390/cells13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The mechanisms of immune tolerance of a mother against an antigenically foreign fetus without a concomitant loss of defense capabilities against pathogens are the factors underlying the success of a pregnancy. A significant role in human defense is played by killer immunoglobulin-like receptor (KIR) receptors, which regulate the function of the natural killer (NK) cells capable of destroying antigenically foreign cells, virus-infected cells, or tumor-lesioned cells. A special subpopulation of NK cells called uterine NK cells (uNK) is found in the uterus. Disruption of the tolerance process or overactivity of immune-competent cells can lead to immune infertility, a situation in which a woman's immune system attacks her own reproductive cells, making it impossible to conceive or maintain a pregnancy. Since the prominent role of the inflammatory response in infertility, including KIR receptors and NK cells, has been postulated, the process of antigen presentation involving major histocompatibility complex (MHC) molecules (HLA) appears to be crucial for a successful pregnancy. Proper interactions between KIR receptors on female uNK cells and HLA class I molecules, with a predominant role for HLA-C, found on the surface of germ cells, are strategically important during embryo implantation. In addition, maintaining a functional balance between activating and inhibitory KIR receptors is essential for proper placenta formation and embryo implantation in the uterus. A disruption of this balance can lead to complications during pregnancy. The discovery of links between KIR and HLA-C has provided valuable information about the complexity of maternal-fetal immune interactions that determine the success of a pregnancy. The great diversity of maternal KIR and fetal HLA-C ligands is associated with the occurrence of KIR/HLA-C combinations that are more or less favorable for reproductive success.
Collapse
Affiliation(s)
- Anna Wasilewska
- Laboratory of Immunogenetics, University Clinical Center, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.)
| | - Marcelina Grabowska
- Laboratory of Immunogenetics, University Clinical Center, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.)
| | - Dominika Moskalik-Kierat
- Laboratory of Immunogenetics, University Clinical Center, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.)
| | - Martyna Brzoza
- Laboratory of Immunogenetics, University Clinical Center, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.)
| | - Piotr Laudański
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
- Women’s Health Research Institute, Calisia University, 62-800 Kalisz, Poland
- OVIklinika Infertility Center, 01-377 Warsaw, Poland
| | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, 15-269 Białystok, Poland
| |
Collapse
|
9
|
Parks SE, Geng T, Monsivais D. Endometrial TGFβ signaling fosters early pregnancy development by remodeling the fetomaternal interface. Am J Reprod Immunol 2023; 90:e13789. [PMID: 38009061 PMCID: PMC10683870 DOI: 10.1111/aji.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/28/2023] Open
Abstract
The endometrium is a unique and highly regenerative tissue with crucial roles during the reproductive lifespan of a woman. As the first site of contact between mother and embryo, the endometrium, and its critical processes of decidualization and immune cell recruitment, play a leading role in the establishment of pregnancy, embryonic development, and reproductive capacity. These integral processes are achieved by the concerted actions of steroid hormones and a myriad of growth factor signaling pathways. This review focuses on the roles of the transforming growth factor β (TGFβ) pathway in the endometrium during the earliest stages of pregnancy through the lens of immune cell regulation and function. We discuss how key ligands in the TGFβ family signal through downstream SMAD transcription factors and ultimately remodel the endometrium into a state suitable for embryo implantation and development. We also focus on the key roles of the TGFβ signaling pathway in recruiting uterine natural killer cells and their collective remodeling of the decidua and spiral arteries. By providing key details about immune cell populations and TGFβ signaling within the endometrium, it is our goal to shed light on the intricate remodeling that is required to achieve a successful pregnancy.
Collapse
Affiliation(s)
- Sydney E. Parks
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Han M, Hu L, Wu D, Zhang Y, Li P, Zhao X, Zeng Y, Ren G, Hou Z, Pang Y, Zhao T, Zhong C. IL-21R-STAT3 signalling initiates a differentiation program in uterine tissue-resident NK cells to support pregnancy. Nat Commun 2023; 14:7109. [PMID: 37925507 PMCID: PMC10625623 DOI: 10.1038/s41467-023-42990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Tissue-resident Natural Killer (trNK) cells are crucial components of local immunity that activate rapidly upon infection. However, under steady state conditions, their responses are tightly controlled to prevent unwanted tissue damage. The mechanisms governing their differentiation and activation are not fully understood. Here, we characterise uterine trNK cells longitudinally during pregnancy by single cell RNA sequencing and find that the combined expression pattern of 4-1BB and CD55 defines their three distinct stages of differentiation in mice. Mechanistically, an IL-21R-STAT3 axis is essential for initiating the trNK cell differentiation. The fully differentiated trNK cells demonstrate enhanced functionality, which is necessary for remodelling spiral arteries in the decidua. We identify an apoptotic program that is specific to the terminal differentiation stage, which may preclude tissue damage by these highly activated trNK cells. In summary, uterine trNK cells become intensely active and effective during pregnancy, but tightly controlled via a differentiation program that also limits potential harm, suggesting an intricate mechanism for harnessing trNK cells in maintaining pregnancy.
Collapse
Affiliation(s)
- Mengwei Han
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Luni Hu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Di Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yime Zhang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Peng Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xingyu Zhao
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yanyu Zeng
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Guanqun Ren
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Zhiyuan Hou
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yanli Pang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tongbiao Zhao
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chao Zhong
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| |
Collapse
|
11
|
Manukyan G, Kriegova E, Slavik L, Mikulkova Z, Ulehlova J, Martirosyan A, Papajik T. Antiphospholipid antibody-mediated NK cell cytotoxicity. J Reprod Immunol 2023; 155:103791. [PMID: 36621092 DOI: 10.1016/j.jri.2022.103791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune thrombophilia that is characterised by thrombosis and obstetric complications in the presence of antiphospholipid antibodies (aPL). Pregnancy complications remain a challenging problem for patients with APS, especially during the first trimester. Although natural killer (NK) cells constitute up to 70% of decidual lymphocytes during the first trimester, their contribution to early pregnancy loss in APS is largely unknown. We aimed to analyse whether aPL are able to recruit antibody-dependent cellular cytotoxicity (ADCC) of NK cells, with special emphasis on the differences in the effects of aPL containing anti-β2GPI domain 1 (anti-β2GPI-D1) antibodies (aPL+/D1+) and those that do not (aPL+/D1-). Our findings revealed a differential distribution of NK subsets in the presence of different aPL. Namely, aPL+/D1- IgGs increased CD56dim/CD16dim cells, while aPL+/D1 + IgGs increased the number of CD56bright/CD16dim cells. ADCC NK cell cytotoxicity was found to be higher in the presence of aPL+/D1- IgGs, as defined by an increased target cell death, degranulation and increased expression of CD11b, CD69 and NKG2D. Overall, our evidence showed that aPL are able to recruit ADCC, suggesting NK cells as candidate cells for APS-related obstetric complications.
Collapse
Affiliation(s)
- Gayane Manukyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, Yerevan, Armenia; Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic.
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Ludek Slavik
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Zuzana Mikulkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Jana Ulehlova
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Anush Martirosyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Tomas Papajik
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
12
|
Wolf K, Ibrahim SA, Schneiderman S, Riehl V, Dambaeva S, Beaman K. Conventional natural killer cells control vascular remodeling in the uterus during pregnancy by acidifying the extracellular matrix with a2V. Biol Reprod 2023; 108:121-132. [PMID: 36173897 DOI: 10.1093/biolre/ioac184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 01/20/2023] Open
Abstract
Vascular remodeling within the uterus immediately before and during early pregnancy increases blood flow in the fetus and prevents the development of gestational hypertension. Tissue-resident natural killer (trNK) cells secrete pro-angiogenic growth factors but are insufficient for uterine artery (UtA) remodeling in the absence of conventional natural killer (cNK) cells. Matrix metalloproteinase-9 (MMP9) is activated in acidic environments to promote UtA remodeling. We have previously shown that ATPase a2V plays a role in regulating the function of cNK cells during pregnancy. We studied the effect of a2V deletion on uterine cNK cell populations and pregnancy outcomes in VavCrea2Vfl/fl mice, where a2V is conditionally deleted in hematopoietic stem cells. Conventional NKcells were reduced but trNK cells were retained in implantation sites at gestational day 9.5, and UtA remodeling was inhibited despite no differences in concentrations of pro-angiogenic growth factors. The ratio of pro-MMP9 to total was significantly elevated in VavCrea2Vfl/fl mice, and MMP9 activity was significantly reduced. The pH of implantation sites was significantly elevated in VavCrea2Vfl/fl mice. We concluded that the role of cNK cells in the uterus is to acidify the extracellular matrix (ECM) using a2V, which activates MMP9 to degrade the ECM, release bound pro-angiogenic growth factors, and contribute to UtA remodeling. Our results are significant for the understanding of the development of gestational hypertension.
Collapse
Affiliation(s)
- Katharine Wolf
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Safaa A Ibrahim
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sylvia Schneiderman
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Valerie Riehl
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Svetlana Dambaeva
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Kenneth Beaman
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
13
|
Sagae Y, Horie A, Yanai A, Ohara T, Nakakita B, Kitawaki Y, Okunomiya A, Tani H, Yamaguchi K, Hamanishi J, Lydon JP, Daikoku T, Watanabe H, Mandai M. Versican provides the provisional matrix for uterine spiral artery dilation and fetal growth. Matrix Biol 2023; 115:16-31. [PMID: 36423736 DOI: 10.1016/j.matbio.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
The extracellular matrix (ECM) in the endometrium plays a crucial role in mammalian pregnancy. We have shown that versican secreted from the endometrial epithelium promotes embryo implantation. Versican is a proteoglycan, a major player in the provisional matrix, and versikine, its N-terminal fragment cleaved by ADAMTS proteinases, serves as a bioactive molecule. Here, since versican expression in the placenta was dynamically altered in humans and mice, we investigated the role of versican in pregnancy using uterine-specific Vcan deletion mice (uKO mice) and ADAMTS-resistant versican expressing mice (V1R mice). uKO mice exhibited insufficient spiral artery dilation, followed by fetal growth restriction and maternal hypertension. Further analysis revealed impaired proliferation of tissue-resident natural killer cells required for spiral artery dilation. V1R mice showed the same results as the control, eliminating the involvement of versikine. Our results provide a new concept that versican, one factor of ECM, contributes to placentation and following fetal growth.
Collapse
Affiliation(s)
- Yusuke Sagae
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihito Horie
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akihiro Yanai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsutomu Ohara
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Baku Nakakita
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshimi Kitawaki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asuka Okunomiya
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohiko Tani
- Department of Gynecology and Obstetrics, Shizuoka General Hospital, Shizuoka, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - John P Lydon
- Department of Pathology and Immunology, Center for Drug Discovery, Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
14
|
Understanding the Immune System in Fetal Protection and Maternal Infections during Pregnancy. J Immunol Res 2022; 2022:7567708. [PMID: 35785037 PMCID: PMC9249541 DOI: 10.1155/2022/7567708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
The fetal-maternal immune system determines the fate of pregnancy. The trophoblast cells not only give an active response against external stimuli but are also involved in secreting most of the cytokines. These cells have an essential function in fetal acceptance or fetal rejection. Other immune cells also play a pivotal role in carrying out a successful pregnancy. The disruption in this mechanism may lead to harmful effects on pregnancy. The placenta serves as an immune barrier in fetus protection against invading pathogens. Once the infections prevail, they may localize in placental and fetal tissues, and the presence of inflammation due to cytokines may have detrimental effects on pregnancy. Moreover, some pathogens are responsible for congenital fetal anomalies and affect almost all organs of the developing fetus. This review article is designed to address the bacterial and viral infections that threaten pregnancy and their possible outcomes. Moreover, training of the fetal immune system against the exposure of infections and the role of CD49a + NK cells in embryonic development will also be highlighted.
Collapse
|
15
|
IL-33–ILC2 axis in the female reproductive tract. Trends Mol Med 2022; 28:569-582. [DOI: 10.1016/j.molmed.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023]
|
16
|
Role of Natural Killer Cells during Pregnancy and Related Complications. Biomolecules 2022; 12:biom12010068. [PMID: 35053216 PMCID: PMC8773865 DOI: 10.3390/biom12010068] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 02/06/2023] Open
Abstract
A high number of leucocytes reside in the human endometrium and are distributed differentially during the menstrual cycle and pregnancy. During early pregnancy, decidual natural killer (dNK) cells are the most common type of natural killer (NK) cells in the uterus. The increase in the number of uterine NK (uNK) cells during the mid-secretory phase of the menstrual cycle, followed by further increase of dNK cells in early pregnancy, has heightened interest in their involvement during pregnancy. Extensive research has revealed various roles of dNK cells during pregnancy including the formation of new blood vessels, migration of trophoblasts, and immunological tolerance. The present review article is focused on the significance of NK cells during pregnancy and their role in pregnancy-related diseases. The article will provide an in-depth review of cellular and molecular interactions during pregnancy and related disorders, with NK cells playing a pivotal role. Moreover, this study will help researchers to understand the physiology of normal pregnancy and related complications with respect to NK cells, so that future research work can be designed to alleviate the complications.
Collapse
|
17
|
Das A, Harly C, Ding Y, Bhandoola A. ILC Differentiation from Progenitors in the Bone Marrow. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:7-24. [DOI: 10.1007/978-981-16-8387-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Tissue-resident immunity in the female and male reproductive tract. Semin Immunopathol 2022; 44:785-799. [PMID: 35488095 PMCID: PMC9053558 DOI: 10.1007/s00281-022-00934-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The conception of how the immune system is organized has been significantly challenged over the last years. It became evident that not all lymphocytes are mobile and recirculate through secondary lymphoid organs. Instead, subsets of immune cells continuously reside in tissues until being reactivated, e.g., by a recurring pathogen or other stimuli. Consequently, the concept of tissue-resident immunity has emerged, and substantial evidence is now available to support its pivotal function in maintaining tissue homeostasis, sensing challenges and providing antimicrobial protection. Surprisingly, insights on tissue-resident immunity in the barrier tissues of the female reproductive tract are sparse and only slowly emerging. The need for protection from vaginal and amniotic infections, the uniqueness of periodic tissue shedding and renewal of the endometrial barrier tissue, and the demand for a tailored decidual immune adaptation during pregnancy highlight that tissue-resident immunity may play a crucial role in distinct compartments of the female reproductive tract. This review accentuates the characteristics of tissue-resident immune cells in the vagina, endometrium, and the decidua during pregnancy and discusses their functional role in modulating the risk for infertility, pregnancy complications, infections, or cancer. We here also review data published to date on tissue-resident immunity in the male reproductive organs, which is still a largely uncharted territory.
Collapse
|
19
|
Depierreux DM, Kieckbusch J, Shreeve N, Hawkes DA, Marsh B, Blelloch R, Sharkey A, Colucci F. Beyond Maternal Tolerance: Education of Uterine Natural Killer Cells by Maternal MHC Drives Fetal Growth. Front Immunol 2022; 13:808227. [PMID: 35619712 PMCID: PMC9127083 DOI: 10.3389/fimmu.2022.808227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/25/2022] [Indexed: 01/19/2023] Open
Abstract
Reproductive immunology has moved on from the classical Medawar question of 60 years ago "why doesn't the mother reject the fetus?". Looking beyond fetal-maternal tolerance, modern reproductive immunology focuses on how the maternal immune system supports fetal growth. Maternal uterine natural killer (uNK) cells, in partnership with fetal trophoblast cells, regulate physiological vascular changes in the uterus of pregnant women and mice. These vascular changes are necessary to build the placenta and sustain fetal growth. NK cell functions in the uterus and elsewhere, including anti-viral and anti-tumour immunity mediated mostly by blood NK cells, are modulated by NK cell education, a quantifiable process that determines cellular activation thresholds. This process relies largely on interactions between self-MHC class I molecules and inhibitory NK cell receptors. By getting to know self, the maternal immune system sets up uNK cells to participate to tissue homeostasis in the womb. Placentation can be viewed as a form of natural transplantation unique in vertebrates and this raises the question of how uNK cell education or missing-self recognition affect their function and, ultimately fetal growth. Here, using combinations of MHC-sufficient and -deficient mice, we show that uNK cell education is linked to maternal and not fetal MHC, so that MHC-deficient dams produce more growth-restricted fetuses, even when the fetuses themselves express self-MHC. We also show that, while peripheral NK cells reject bone marrow cells according to the established rules of missing-self recognition, uNK cells educated by maternal MHC do not reject fetuses that miss self-MHC and these fetuses grow to their full potential. While these results are not directly applicable to clinical research, they show that NK education by maternal MHC-I is required for optimal fetal growth.
Collapse
Affiliation(s)
- Delphine M Depierreux
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Jens Kieckbusch
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Norman Shreeve
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Delia A Hawkes
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Bryan Marsh
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States
| | - Robert Blelloch
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States
| | - Andrew Sharkey
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Gordon SM. Interleukin-15 in Outcomes of Pregnancy. Int J Mol Sci 2021; 22:11094. [PMID: 34681751 PMCID: PMC8541205 DOI: 10.3390/ijms222011094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/15/2023] Open
Abstract
Interleukin-15 (IL-15) is a pleiotropic cytokine that classically acts to support the development, maintenance, and function of killer lymphocytes. IL-15 is abundant in the uterus prior to and during pregnancy, but it is subject to tight spatial and temporal regulation. Both mouse models and human studies suggest that homeostasis of IL-15 is essential for healthy pregnancy. Dysregulation of IL-15 is associated with adverse outcomes of pregnancy. Herein, we review producers of IL-15 and responders to IL-15, including non-traditional responders in the maternal uterus and fetal placenta. We also review regulation of IL-15 at the maternal-fetal interface and propose mechanisms of action of IL-15 to facilitate additional study of this critical cytokine in the context of pregnancy.
Collapse
Affiliation(s)
- Scott M. Gordon
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Huhn O, Zhao X, Esposito L, Moffett A, Colucci F, Sharkey AM. How Do Uterine Natural Killer and Innate Lymphoid Cells Contribute to Successful Pregnancy? Front Immunol 2021; 12:607669. [PMID: 34234770 PMCID: PMC8256162 DOI: 10.3389/fimmu.2021.607669] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most abundant immune cells in the uterine mucosa both before and during pregnancy. Circumstantial evidence suggests they play important roles in regulating placental development but exactly how they contribute to the successful outcome of pregnancy is still unclear. Uterine ILCs (uILCs) include subsets of tissue-resident natural killer (NK) cells and ILCs, and until recently the phenotype and functions of uILCs were poorly defined. Determining the specific roles of each subset is intrinsically challenging because of the rapidly changing nature of the tissue both during the menstrual cycle and pregnancy. Single-cell RNA sequencing (scRNAseq) and high dimensional flow and mass cytometry approaches have recently been used to analyse uILC populations in the uterus in both humans and mice. This detailed characterisation has significantly changed our understanding of the heterogeneity within the uILC compartment. It will also enable key clinical questions to be addressed including whether specific uILC subsets are altered in infertility, miscarriage and pregnancy disorders such as foetal growth restriction and pre-eclampsia. Here, we summarise recent advances in our understanding of the phenotypic and functional diversity of uILCs in non-pregnant endometrium and first trimester decidua, and review how these cells may contribute to successful placental development.
Collapse
Affiliation(s)
- Oisín Huhn
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge, Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Xiaohui Zhao
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Laura Esposito
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ashley Moffett
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge, Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Andrew M. Sharkey
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Shreeve N, Depierreux D, Hawkes D, Traherne JA, Sovio U, Huhn O, Jayaraman J, Horowitz A, Ghadially H, Perry JRB, Moffett A, Sled JG, Sharkey AM, Colucci F. The CD94/NKG2A inhibitory receptor educates uterine NK cells to optimize pregnancy outcomes in humans and mice. Immunity 2021; 54:1231-1244.e4. [PMID: 33887202 PMCID: PMC8211638 DOI: 10.1016/j.immuni.2021.03.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/13/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
The conserved CD94/NKG2A inhibitory receptor is expressed by nearly all human and ∼50% of mouse uterine natural killer (uNK) cells. Binding human HLA-E and mouse Qa-1, NKG2A drives NK cell education, a process of unknown physiological importance influenced by HLA-B alleles. Here, we show that NKG2A genetic ablation in dams mated with wild-type males caused suboptimal maternal vascular responses in pregnancy, accompanied by perturbed placental gene expression, reduced fetal weight, greater rates of smaller fetuses with asymmetric growth, and abnormal brain development. These are features of the human syndrome pre-eclampsia. In a genome-wide association study of 7,219 pre-eclampsia cases, we found a 7% greater relative risk associated with the maternal HLA-B allele that does not favor NKG2A education. These results show that the maternal HLA-B→HLA-E→NKG2A pathway contributes to healthy pregnancy and may have repercussions on offspring health, thus establishing the physiological relevance for NK cell education. Video Abstract
CD94/NKG2A educates uterine NK cells NKG2A-deficient dams display reduced utero-placental hemodynamic adaptations Asymmetric growth restriction and abnormal brain development in NKG2A-deficient dams Non-functional HLA-B→HLA-E→NKG2A pathway exposes women to greater pre-eclampsia risk
Collapse
Affiliation(s)
- Norman Shreeve
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - Delphine Depierreux
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - Delia Hawkes
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
| | | | - Ulla Sovio
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - Oisin Huhn
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Centre for Trophoblast Research, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK; AstraZeneca, Granta Park, Cambridge CB21 6GH, UK
| | - Jyothi Jayaraman
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neurobiology, University of Cambridge, Cambridge, UK
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge, Cambridge UK
| | - Ashley Moffett
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - John G Sled
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Canada
| | - Andrew M Sharkey
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Centre for Trophoblast Research, Cambridge, UK.
| |
Collapse
|
23
|
Kumar V. Innate Lymphoid Cells and Adaptive Immune Cells Cross-Talk: A Secret Talk Revealed in Immune Homeostasis and Different Inflammatory Conditions. Int Rev Immunol 2021; 40:217-251. [PMID: 33733998 DOI: 10.1080/08830185.2021.1895145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The inflammatory immune response has evolved to protect the host from different pathogens, allergens, and endogenous death or damage-associated molecular patterns. Both innate and adaptive immune components are crucial in inducing an inflammatory immune response depending on the stimulus type and its duration of exposure or the activation of the primary innate immune response. As the source of inflammation is removed, the aggravated immune response comes to its homeostatic level. However, the failure of the inflammatory immune response to subside to its normal level generates chronic inflammatory conditions, including autoimmune diseases and cancer. Innate lymphoid cells (ILCs) are newly discovered innate immune cells, which are present in abundance at mucosal surfaces, including lungs, gastrointestinal tract, and reproductive tract. Also, they are present in peripheral blood circulation, skin, and lymph nodes. They play a crucial role in generating the pro-inflammatory immune response during diverse conditions. On the other hand, adaptive immune cells, including different types of T and B cells are major players in the pathogenesis of autoimmune diseases (type 1 diabetes mellitus, rheumatoid arthritis, psoriasis, and systemic lupus erythematosus, etc.) and cancers. Thus the article is designed to discuss the immunological role of different ILCs and their interaction with adaptive immune cells in maintaining the immune homeostasis, and during inflammatory autoimmune diseases along with other inflammatory conditions (excluding pathogen-induced inflammation), including cancer, graft-versus-host diseases, and human pregnancy.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St Lucia, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Liu S, Liu Q, Xie H, Li M, Wang F, Shen J, Liu M, Ren C, Hou X. Imbalance of uterine innate lymphoid cells is involved in the abnormal pregnancy induced by Toxoplasma gondii infection. J Reprod Immunol 2021; 145:103312. [PMID: 33770728 DOI: 10.1016/j.jri.2021.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
Toxoplasma gondii (T. gondii) is a ubiquitous intracellular protozoan parasite that causes adverse pregnancy outcomes. Innate lymphoid cells (ILCs) are critical mediators of mucosal immunity, and have been reported to play an important role in uterine vascular adaptation for successful pregnancy. However, the specific role of ILCs in T. gondii-infection-induced adverse pregnancy outcomes remains elusive. In the present study, we found that T. gondii infection caused the imbalance of uterine ILC cells (uILCs). It was characterized by substantially lower expression of the transcription factor GATA-3 and RORγt and higher expression of T-bet in uILCs. Consistent with the transcription factor changes, uILCs from T. gondii-infected mice produced much less IL-5 and IL-17 and substantially more IFN-γ and TNF-α than did uILCs from uninfected mice. Notably, IL-12, IL-18, and their receptors were increased in the uterus of T. gondii-infected mice. In vitro experiments showed that IL-12 and IL-18 treatment reduced the percentages of uILC2 and uILC3 and increased the percentages of uILC1. Conclusion, our data suggest that alterations in uILC composition may disrupt the balance of immune microenvironment after T. gondii infection and contribute to the adverse pregnancy outcomes caused by T. gondii infection.
Collapse
Affiliation(s)
- Siqi Liu
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Qi Liu
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Huiyuan Xie
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Minmin Li
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Fuyan Wang
- School of Medicine, Ningbo University, Ningbo, PR China
| | - Jijia Shen
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Miao Liu
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Cuiping Ren
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Xin Hou
- Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China; School of Medicine, Ningbo University, Ningbo, PR China.
| |
Collapse
|
25
|
Akoto C, Chan CYS, Tshivuila-Matala COO, Ravi K, Zhang W, Vatish M, Norris SA, Hemelaar J. Innate lymphoid cells are reduced in pregnant HIV positive women and are associated with preterm birth. Sci Rep 2020; 10:13265. [PMID: 32764636 PMCID: PMC7413261 DOI: 10.1038/s41598-020-69966-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/21/2020] [Indexed: 01/13/2023] Open
Abstract
Preterm birth is the leading cause of neonatal and child mortality worldwide. Globally, 1.4 million pregnant women are estimated to be living with HIV/AIDS, the majority of whom live in sub-Saharan Africa. Maternal HIV infection and antiretroviral treatment (ART) have been associated with increased rates of preterm birth, but the underlying mechanisms remain unknown. Acute HIV infection is associated with a rapid depletion of all three subsets of innate lymphoid cells (ILCs), ILC1s, ILC2s and ILC3s, which is not reversed by ART. ILCs have been found at the maternal-fetal interface and we therefore investigated the potential association between maternal HIV infection, peripheral ILC frequencies and preterm birth. In our study of pregnant South African women with accurately dated pregnancies, we show that maternal HIV infection is associated with reduced levels of all three ILC subsets. Preterm birth was also associated with lower levels of all three ILC subsets in early pregnancy. ILC frequencies were lowest in HIV positive women who experienced preterm birth. Moreover, ILC levels were reduced in pregnancies resulting in spontaneous onset of preterm labour and in extreme preterm birth (< 28 weeks gestation). Our findings suggest that reduced ILC frequencies may be a link between maternal HIV infection and preterm birth. In addition, ILC frequencies in early pregnancy may serve as predictive biomarkers for women who are at risk of delivering preterm.
Collapse
Affiliation(s)
- Charlene Akoto
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Christina Y S Chan
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Chrystelle O O Tshivuila-Matala
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,South African Medical Research Council Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Krithi Ravi
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Wei Zhang
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Shane A Norris
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,South African Medical Research Council Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Joris Hemelaar
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK. .,South African Medical Research Council Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
26
|
Li Y, Lopez GE, Lindner PN, Parrella L, Larson M, Sun Y, Stanic AK. The role of RORγt at maternal-fetal interface during murine pregnancy. Am J Reprod Immunol 2020; 84:e13250. [PMID: 32314428 PMCID: PMC8261794 DOI: 10.1111/aji.13250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/15/2020] [Accepted: 04/04/2020] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Innate lymphoid cells (ILCs, including NK cells) and their subsets are the most frequent lymphocytes at the maternal-fetal interface (decidua). Recent recognition of extensive ILC subset diversity at mucosal sites and the possible role they might play at different stages of pregnancy poses questions about their composition and lineage stability. Namely, RORγt-dependent ILC3s have been recognized as a key cellular mediator of tissue organization in the gut and secondary lymphoid organs, prompting examination of their distribution and role in decidua during pregnancy. METHOD OF STUDY We employed highly polychromatic flow cytometry with conventional and machine learning-aided analysis to map ILC subsets and dissected the role of canonical transcription factor RORγt using fate-mapping animals and RORγt-/- animals. RESULTS We demonstrate a comprehensive immunome map of ILCs/NKs, revealing a dynamic interface even in the absence of antigenic or allogeneic challenge. Strikingly, we demonstrate plasticity of RORγt expression in decidual ILCs with across gestation. However, gross reproductive efficiency is not affected in RORγt-/- animals. CONCLUSION These results indicated that RORγt+ ILCs are highly plastic at the maternal-fetal interface, but dispensable for normal pregnancy, revealing a novel mechanism of transcriptional immunoregulation in pregnancy.
Collapse
Affiliation(s)
- Yan Li
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Gladys E. Lopez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Payton N. Lindner
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Luke Parrella
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Mariah Larson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Yan Sun
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Reproductive Medicine Center, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University
| | - Aleksandar K. Stanic
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
27
|
Ban Z, Knöspel F, Schneider MR. Shedding light into the black box: Advances in in vitro systems for studying implantation. Dev Biol 2020; 463:1-10. [DOI: 10.1016/j.ydbio.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
|
28
|
Hashemi E, Malarkannan S. Tissue-Resident NK Cells: Development, Maturation, and Clinical Relevance. Cancers (Basel) 2020; 12:cancers12061553. [PMID: 32545516 PMCID: PMC7352973 DOI: 10.3390/cancers12061553] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells belong to type 1 innate lymphoid cells (ILC1) and are essential in killing infected or transformed cells. NK cells mediate their effector functions using non-clonotypic germ-line-encoded activation receptors. The utilization of non-polymorphic and conserved activating receptors promoted the conceptual dogma that NK cells are homogeneous with limited but focused immune functions. However, emerging studies reveal that NK cells are highly heterogeneous with divergent immune functions. A distinct combination of several activation and inhibitory receptors form a diverse array of NK cell subsets in both humans and mice. Importantly, one of the central factors that determine NK cell heterogeneity and their divergent functions is their tissue residency. Decades of studies provided strong support that NK cells develop in the bone marrow. However, evolving evidence supports the notion that NK cells also develop and differentiate in tissues. Here, we summarize the molecular basis, phenotypic signatures, and functions of tissue-resident NK cells and compare them with conventional NK cells.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
29
|
Pawlak JB, Bálint L, Lim L, Ma W, Davis RB, Benyó Z, Soares MJ, Oliver G, Kahn ML, Jakus Z, Caron KM. Lymphatic mimicry in maternal endothelial cells promotes placental spiral artery remodeling. J Clin Invest 2020; 129:4912-4921. [PMID: 31415243 DOI: 10.1172/jci120446] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/08/2019] [Indexed: 12/27/2022] Open
Abstract
Molecular heterogeneity of endothelial cells underlies their highly specialized functions during changing physiological conditions within diverse vascular beds. For example, placental spiral arteries (SAs) undergo remarkable remodeling to meet the ever-growing demands of the fetus - a process which is deficient in preeclampsia. The extent to which maternal endothelial cells coordinate with immune cells and pregnancy hormones to promote SA remodeling remains largely unknown. Here we found that remodeled SAs expressed the lymphatic markers PROX1, LYVE1, and VEGFR3, mimicking lymphatic identity. Uterine natural killer (uNK) cells, which are required for SA remodeling and secrete VEGFC, were both sufficient and necessary for VEGFR3 activation in vitro and in mice lacking uNK cells, respectively. Using Flt4Chy/+ mice with kinase inactive VEGFR3 and Vegfcfl/fl Vav1-Cre mice, we demonstrated that SA remodeling required VEGFR3 signaling, and that disrupted maternal VEGFR3 signaling contributed to late-gestation fetal growth restriction. Collectively, we identified a novel instance of lymphatic mimicry by which maternal endothelial cells promote SA remodeling, furthering our understanding of the vascular heterogeneity employed for the mitigation of pregnancy complications such as fetal growth restriction and preeclampsia.
Collapse
Affiliation(s)
- John B Pawlak
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - László Bálint
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.,MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Lillian Lim
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wanshu Ma
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Reema B Davis
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zoltán Benyó
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Michael J Soares
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Center for Perinatal Research, Children's Research Institute, Children's Mercy, Kansas City, Missouri, USA
| | - Guillermo Oliver
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.,MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
30
|
St-Germain LE, Castellana B, Baltayeva J, Beristain AG. Maternal Obesity and the Uterine Immune Cell Landscape: The Shaping Role of Inflammation. Int J Mol Sci 2020; 21:E3776. [PMID: 32471078 PMCID: PMC7312391 DOI: 10.3390/ijms21113776] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is often equated to the physiological response to injury or infection. Inflammatory responses defined by cytokine storms control cellular mechanisms that can either resolve quickly (i.e., acute inflammation) or remain prolonged and unabated (i.e., chronic inflammation). Perhaps less well-appreciated is the importance of inflammatory processes central to healthy pregnancy, including implantation, early stages of placentation, and parturition. Pregnancy juxtaposed with disease can lead to the perpetuation of aberrant inflammation that likely contributes to or potentiates maternal morbidity and poor fetal outcome. Maternal obesity, a prevalent condition within women of reproductive age, associates with increased risk of developing multiple pregnancy disorders. Importantly, chronic low-grade inflammation is thought to underlie the development of obesity-related obstetric and perinatal complications. While diverse subsets of uterine immune cells play central roles in initiating and maintaining healthy pregnancy, uterine leukocyte dysfunction as a result of maternal obesity may underpin the development of pregnancy disorders. In this review we discuss the current knowledge related to the impact of maternal obesity and obesity-associated inflammation on uterine immune cell function, utero-placental establishment, and pregnancy health.
Collapse
Affiliation(s)
- Lauren E. St-Germain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Barbara Castellana
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Jennet Baltayeva
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Alexander G. Beristain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| |
Collapse
|
31
|
Al-Nasiry S, Ambrosino E, Schlaepfer M, Morré SA, Wieten L, Voncken JW, Spinelli M, Mueller M, Kramer BW. The Interplay Between Reproductive Tract Microbiota and Immunological System in Human Reproduction. Front Immunol 2020; 11:378. [PMID: 32231664 PMCID: PMC7087453 DOI: 10.3389/fimmu.2020.00378] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the microbiota, i.e., combined populations of microorganisms living inside and on the surface of the human body, has increasingly attracted attention of researchers in the medical field. Indeed, since the completion of the Human Microbiome Project, insight and interest in the role of microbiota in health and disease, also through study of its combined genomes, the microbiome, has been steadily expanding. One less explored field of microbiome research has been the female reproductive tract. Research mainly from the past decade suggests that microbial communities residing in the reproductive tract represent a large proportion of the female microbial network and appear to be involved in reproductive failure and pregnancy complications. Microbiome research is facing technological and methodological challenges, as detection techniques and analysis methods are far from being standardized. A further hurdle is understanding the complex host-microbiota interaction and the confounding effect of a multitude of constitutional and environmental factors. A key regulator of this interaction is the maternal immune system that, during the peri-conceptional stage and even more so during pregnancy, undergoes considerable modulation. This review aims to summarize the current literature on reproductive tract microbiota describing the composition of microbiota in different anatomical locations (vagina, cervix, endometrium, and placenta). We also discuss putative mechanisms of interaction between such microbial communities and various aspects of the immune system, with a focus on the characteristic immunological changes during normal pregnancy. Furthermore, we discuss how abnormal microbiota composition, “dysbiosis,” is linked to a spectrum of clinical disorders related to the female reproductive system and how the maternal immune system is involved. Finally, based on the data presented in this review, the future perspectives in diagnostic approaches, research directions and therapeutic opportunities are explored.
Collapse
Affiliation(s)
- Salwan Al-Nasiry
- Department of Obstetrics and Gynecology, GROW School of Oncology and Developmental Biology, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| | - Elena Ambrosino
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Research School GROW (School for Oncology & Developmental Biology), Institute for Public Health Genomics, Maastricht University, Maastricht, Netherlands
| | - Melissa Schlaepfer
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Servaas A Morré
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Research School GROW (School for Oncology & Developmental Biology), Institute for Public Health Genomics, Maastricht University, Maastricht, Netherlands.,Laboratory of Immunogenetics, Department Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam UMC, Amsterdam, Netherlands
| | - Lotte Wieten
- Tissue Typing Laboratory, Department of Transplantation Immunology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marialuigia Spinelli
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Martin Mueller
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
32
|
Valero-Pacheco N, Beaulieu AM. Transcriptional Regulation of Mouse Tissue-Resident Natural Killer Cell Development. Front Immunol 2020; 11:309. [PMID: 32161593 PMCID: PMC7052387 DOI: 10.3389/fimmu.2020.00309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that are well-known for their ability to kill infected or malignant cells. Beyond their roles in tumor surveillance and anti-pathogen defense, more recent studies have highlighted key roles for NK cells in a broad range of biological processes, including metabolic homeostasis, immunomodulation of T cells, contact hypersensitivity, and pregnancy. Consistent with the breadth and diversity of these functions, it is now appreciated that NK cells are a heterogeneous population, comprised of specialized and sometimes tissue-specific subsets with distinct phenotypes and effector functions. Indeed, in addition to the conventional NK cells (cNKs) that are abundant and have been well-studied in the blood and spleen, distinct subsets of tissue-resident NK cells (trNKs) and "helper" Group 1 innate lymphoid cells (ILC1s) have now been described in multiple organs and tissues, including the liver, uterus, thymus, adipose tissue, and skin, among others. The cNK, trNK, and/or helper ILC1 populations that co-exist in these various tissues exhibit both common and distinct developmental requirements, suggesting that a combination of lineage-, subset-, and tissue-specific differentiation processes may contribute to the unique functional properties of these various populations. Here, we provide an overview of the transcriptional regulatory pathways known to instruct the development and differentiation of cNK, trNK, and helper ILC1 populations in specific tissues in mice.
Collapse
Affiliation(s)
- Nuriban Valero-Pacheco
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers – The State University of New Jersey, Newark, NJ, United States
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers – The State University of New Jersey, Newark, NJ, United States
| | - Aimee M. Beaulieu
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers – The State University of New Jersey, Newark, NJ, United States
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers – The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
33
|
Sojka DK. Uterine Natural Killer Cell Heterogeneity: Lessons From Mouse Models. Front Immunol 2020; 11:290. [PMID: 32153593 PMCID: PMC7046796 DOI: 10.3389/fimmu.2020.00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are the most abundant lymphocytes at the maternal-fetal interface. Epidemiological data implicate NK cells in human pregnancy outcomes. Discoveries using mouse NK cells have guided subsequent advances in human NK cell biology. However, it remains challenging to identify mouse and human uterine NK (uNK) cell function(s) because of the dynamic changes in the systemic-endocrinological and local uterine structural microenvironments during pregnancy. This review discusses functional similarities and differences between mouse and human NK cells at the maternal-fetal interface.
Collapse
Affiliation(s)
- Dorothy K Sojka
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
34
|
Distinctive phenotypes and functions of innate lymphoid cells in human decidua during early pregnancy. Nat Commun 2020; 11:381. [PMID: 31959757 PMCID: PMC6971012 DOI: 10.1038/s41467-019-14123-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022] Open
Abstract
During early pregnancy, decidual innate lymphoid cells (dILCs) interact with surrounding maternal cells and invading fetal extravillous trophoblasts (EVT). Here, using mass cytometry, we characterise five main dILC subsets: decidual NK cells (dNK)1–3, ILC3s and proliferating NK cells. Following stimulation, dNK2 and dNK3 produce more chemokines than dNK1 including XCL1 which can act on both maternal dendritic cells and fetal EVT. In contrast, dNK1 express receptors including Killer-cell Immunoglobulin-like Receptors (KIR), indicating they respond to HLA class I ligands on EVT. Decidual NK have distinctive organisation and content of granules compared with peripheral blood NK cells. Acquisition of KIR correlates with higher granzyme B levels and increased chemokine production in response to KIR activation, suggesting a link between increased granule content and dNK1 responsiveness. Our analysis shows that dILCs are unique and provide specialised functions dedicated to achieving placental development and successful reproduction. As an interface between maternal and fetal tissues, decidua hosts immune cells specialized in fostering a successful pregnancy. Here the authors carry out high-dimensional characterization of function, morphology and surface markers of human decidual innate lymphoid cells (ILCs), identifying subsets with features distinct from blood ILC.
Collapse
|
35
|
Abstract
Natural killer (NK) cells are members of a rapidly expanding family of innate lymphoid cells (ILCs). While most previously studied NK cells were derived from the mouse spleen and circulate in the blood, recently others and we found tissue-resident NK (trNK) cells in many tissues that resemble group 1 ILCs (ILC1s). During pregnancy, NK cells are the most abundant lymphocytes in the uterus at the maternal-fetal interface and are involved in placental vascular remodeling. Prior studies suggested that these uterine NK (uNK) cells are mostly derived from circulating NK cells. However, the murine virgin uterus contains mostly trNK cells and it has been challenging to determine their contribution to uNK cells in pregnancy as well as other potential function(s) of uNK cells due to the dynamic microenvironment in the pregnant uterus. This review focuses on the origins and functions of the heterogeneous populations of uNK cells during the course of murine pregnancy.
Collapse
Affiliation(s)
- Dorothy K Sojka
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Liping Yang
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Wayne M Yokoyama
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
36
|
Vacca P, Chiossone L, Mingari MC, Moretta L. Heterogeneity of NK Cells and Other Innate Lymphoid Cells in Human and Murine Decidua. Front Immunol 2019; 10:170. [PMID: 30800126 PMCID: PMC6375891 DOI: 10.3389/fimmu.2019.00170] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/30/2022] Open
Abstract
Innate lymphoid cells (ILCs) represent a heterogeneous group of cells lacking genetically rearranged antigen receptors that derive from common lymphoid progenitors. Five major groups of ILCs have been defined based on their cytokine production pattern and developmental transcription factor requirements: namely, natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue-inducer (LTi) cells. ILC1s, ILC2s, and ILC3s mirror the corresponding T helper subsets (Th1, Th2, and Th17, respectively) and produce cytokines involved in defense against pathogens, lymphoid organogenesis, and tissue remodeling. During the first trimester of pregnancy, decidual tissues contain high proportion of decidual NK (dNK) cells, representing up to 50% of decidual lymphocytes, and ILC3s. They release peculiar cytokines and chemokines that contribute to successful pregnancy. Recent studies revealed that ILCs display a high degree of plasticity allowing their prompt adaptation to environmental changes. Decidual NK cells may derive from peripheral blood NK cells migrated when pregnancy establishes or from in situ differentiation of hematopoietic precursors. Previous studies showed that human and murine decidua contain dNK cells, tissue resident NK cells, and ILC3s, all characterized by unique phenotypic and functional properties, most likely induced by decidual microenvironment to favor the establishment and the maintenance of pregnancy. Thus, during the early phase of pregnancy, the simultaneous presence of different ILC subsets further underscores the complexity of the cellular components of decidual tissues as well as the role of decidual microenvironment in shaping the plasticity and the function of ILCs.
Collapse
Affiliation(s)
- Paola Vacca
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Laura Chiossone
- Innate Pharma Research Labs, Innate Pharma, Marseille, France
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,UOC Immunology, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
37
|
Vazquez J, Chasman DA, Lopez GE, Tyler CT, Ong IM, Stanic AK. Transcriptional and Functional Programming of Decidual Innate Lymphoid Cells. Front Immunol 2019; 10:3065. [PMID: 32038619 PMCID: PMC6992589 DOI: 10.3389/fimmu.2019.03065] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
A successful pregnancy requires many physiological adaptations from the mother, including the establishment of tolerance toward the semiallogeneic fetus. Innate lymphoid cells (ILCs) have arisen as important players in immune regulation and tissue homeostasis at mucosal and barrier surfaces. Dimensionality reduction and transcriptomic analysis revealed the presence of two novel CD56Bright decidual ILCs that express low T-bet and divergent Eomes levels. Transcriptional correlation with recently identified first trimester decidual dNKs suggests that these novel decidual ILCs might be present throughout pregnancy. Functional testing with permutation analysis revealed production of multiple factors by individual cells, with a preference for IFNγ and VEGF. Overall, our data suggests continuity of a unique decidual innate lymphocytes across pregnancy with a polyfunctional functional profile conducive for pregnancy.
Collapse
Affiliation(s)
- Jessica Vazquez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Deborah A. Chasman
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Gladys E. Lopez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Chanel T. Tyler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Irene M. Ong
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Aleksandar K. Stanic
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Aleksandar K. Stanic
| |
Collapse
|
38
|
Pang XL, Yin TL, Yan WJ, Li J, He F, Yang J. Molecular detection of uterine innate lymphoid cells in the immunological mouse model of pregnancy loss. Int Immunopharmacol 2018; 68:1-6. [PMID: 30597415 DOI: 10.1016/j.intimp.2018.12.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 01/04/2023]
Abstract
Innate lymphoid cells (ILCs) are newly identified members of the innate lymphocyte family, which can function as adaptive T cells and act as critical modulators of inflammatory processes within different tissues and immune diseases. The role of uterine ILCs (uILCs) has recently been elucidated alongside changes associated with normal pregnancy. However, the proportions of uterine ILCs and their role in unsuccessful pregnancy remain unclear. We analyzed the characterization of uILC subsets and the expression of signature cytokines associated with ILCs in a mouse model of unsuccessful pregnancy induced by LPS, and we describe the dynamic changes they undergo during this process. We found that mice exposed to LPS display significantly higher levels of uNK cells, and uILC3s. However, a lower proportion of uILC2s and uILC1s were detected in abortion mice. In addition, we found that abortion mice display markedly higher expression of IFN-γ and IL-A17, and lower levels of IL-5. No significant differences in the expression of IL-13 and IL-22 were observed. The findings suggest that uILCs play distinct non-redundant roles during pregnancy, and uILCs may affect maternal-fetal tolerance via IL-17A, IL-5, and IFN-γ production.
Collapse
Affiliation(s)
- Xiang-Li Pang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R.C; Clinic Research Center for Assisted Reproductive Technology and Embryonic Development in Hubei province, Wuhan, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R.C; Clinic Research Center for Assisted Reproductive Technology and Embryonic Development in Hubei province, Wuhan, China
| | - Wen-Jie Yan
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R.C; Clinic Research Center for Assisted Reproductive Technology and Embryonic Development in Hubei province, Wuhan, China
| | - Jie Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R.C; Clinic Research Center for Assisted Reproductive Technology and Embryonic Development in Hubei province, Wuhan, China
| | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R.C; Clinic Research Center for Assisted Reproductive Technology and Embryonic Development in Hubei province, Wuhan, China.
| |
Collapse
|
39
|
Barrow AD, Colonna M. Innate lymphoid cell sensing of tissue vitality. Curr Opin Immunol 2018; 56:82-93. [PMID: 30529190 DOI: 10.1016/j.coi.2018.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 01/03/2023]
Abstract
Innate lymphoid cells (ILCs) constitute a heterogeneous population of cytokine-secreting cells that colonize different tissues and are heavily reliant on cytokines and other secreted factors for their development, maintenance and effector functions. Most ILCs are tissue resident and differentiate in non-lymphoid peripheral tissues. As tissue-resident sentinels, ILCs must rapidly identify pathogens or malignancy in an effort to return the tissue to homeostasis. Here we review the mechanisms that ILCs employ to sense cytokines and other potent immunoregulatory factors that promote their development in different tissues as well as the ability to distinguish pathogenic versus healthy tissue microenvironments and highlight the importance of these pathways for human disease.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
40
|
Sojka DK, Yang L, Yokoyama WM. Uterine natural killer cells: To protect and to nurture. Birth Defects Res 2018; 110:1531-1538. [PMID: 30467993 DOI: 10.1002/bdr2.1419] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022]
Abstract
During the course of pregnancy, the maternal-fetal interface is tightly regulated and undergoes dynamic changes that promote the successful development of the semi-allogeneic fetus. In response to embryo implantation, the uterus remodels with maternal immune cells occupying the maternal-fetal interface and uterine natural killer (uNK) cells becoming the most prominent leukocyte. Recently, uNK cells have been discovered to be heterogeneous, including conventional NK and tissue-resident NK cells. Here, we will review the recent advances in uNK cell biology and discuss their functional mechanisms which protect and nurture the growing fetus.
Collapse
Affiliation(s)
- Dorothy K Sojka
- Rheumatology Division, Washington University School of Medicine, St. Louis, Missouri
| | - Liping Yang
- Rheumatology Division, Washington University School of Medicine, St. Louis, Missouri
| | - Wayne M Yokoyama
- Rheumatology Division, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
41
|
Filipovic I, Chiossone L, Vacca P, Hamilton RS, Ingegnere T, Doisne JM, Hawkes DA, Mingari MC, Sharkey AM, Moretta L, Colucci F. Molecular definition of group 1 innate lymphoid cells in the mouse uterus. Nat Commun 2018; 9:4492. [PMID: 30374017 PMCID: PMC6206068 DOI: 10.1038/s41467-018-06918-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/26/2018] [Indexed: 01/05/2023] Open
Abstract
Determining the function of uterine lymphocytes is challenging because of the dynamic changes in response to sex hormones and, during pregnancy, to the invading foetal trophoblast cells. Here we provide a genome-wide transcriptome atlas of mouse uterine group 1 innate lymphoid cells (ILCs) at mid-gestation. Tissue-resident Eomes+CD49a+ NK cells (trNK), which resemble human uterine NK cells, are most abundant during early pregnancy, and have gene signatures associated with TGF-β responses and interactions with trophoblast, epithelial, endothelial, smooth muscle cells, leucocytes and extracellular matrix. Conventional NK cells expand late in gestation and may engage in crosstalk with trNK cells involving IL-18 and IFN-γ. Eomes-CD49a+ ILC1s dominate before puberty, and specifically expand in second pregnancies when the expression of the memory cell marker CXCR6 is upregulated. These results identify trNK cells as the cellular hub of uterine group 1 ILCs, and mark CXCR6+ ILC1s as potential memory cells of pregnancy.
Collapse
Affiliation(s)
- Iva Filipovic
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Laura Chiossone
- G. Gaslini Institute, Genoa, 16147, Genoa, Italy
- Innate Pharma Research Labs, Innate Pharma, 13009, Marseille, France
| | - Paola Vacca
- Policlinico San Martino IRCCS per l'Oncologia, Genoa, 16132, Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16132, Genova, Italy
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Russell S Hamilton
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Tiziano Ingegnere
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Jean-Marc Doisne
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK
- Department of Immunology, Pasteur Institute, 75015, Paris, France
| | - Delia A Hawkes
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK
| | - Maria Cristina Mingari
- Policlinico San Martino IRCCS per l'Oncologia, Genoa, 16132, Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16132, Genova, Italy
- Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132, Genova, Italy
| | - Andrew M Sharkey
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
42
|
Miller D, Motomura K, Garcia-Flores V, Romero R, Gomez-Lopez N. Innate Lymphoid Cells in the Maternal and Fetal Compartments. Front Immunol 2018; 9:2396. [PMID: 30416502 PMCID: PMC6212529 DOI: 10.3389/fimmu.2018.02396] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022] Open
Abstract
Pregnancy success is orchestrated by the complex balance between the maternal and fetal immune systems. Herein, we summarize the potential role of innate lymphoid cells (ILCs) in the maternal and fetal compartments. We reviewed published literature describing different ILC subsets [ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTi) cells] in the uterus, decidua, fetal tissues [liver, secondary lymphoid organs (SLO), intestine, and lung] and amniotic cavity. ILC1s, ILC2s, and ILC3s are present in the murine uterus prior to and during pregnancy but have only been detected in the non-pregnant endometrium in humans. Specifically, ILC2s reside in the murine uterus from mid-pregnancy to term, ILC1s increase throughout gestation, and ILC3s remain constant. Yet, LTi cells have only been detected in the non-pregnant murine uterus. In the human decidua, ILC1s, ILC3s, and LTi-like cells are more abundant during early gestation, whereas ILC2s increase at the end of pregnancy. Decidual ILC1s were also detected during mid-gestation in mice. Interestingly, functional decidual ILC2s and ILC3s increased in women who underwent spontaneous preterm labor, indicating the involvement of such cells in this pregnancy complication. Fetal ILCs exist in the liver, SLO, intestine, lung, and amniotic cavity. The fetal liver is thought to be the source of ILC progenitors since the differentiation of these cells from hematopoietic stem cells occurs at this site, and mature ILC subsets can be found in this compartment as well. The interaction between LTi cells and specialized stromal cells is important during the formation of SLO. Mature ILCs are found at the mucosal surfaces of the lung and intestine, from where they can extravasate into the amniotic cavity. Amniotic fluid ILCs express high levels of RORγt, CD161, and CD103, hallmarks of ILC3s. Such cells are more abundant in the second trimester than later in gestation. Although amniotic fluid ILC3s produce IL-17A and TNFα, indicating their functionality, their numbers in patients with intra-amniotic infection/inflammation remain unchanged compared to those without this pregnancy complication. Collectively, these findings suggest that maternal (uterine and decidual) ILCs play central roles in both the initiation and maintenance of pregnancy, and fetal ILCs participate in the development of immunity.
Collapse
Affiliation(s)
- Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
43
|
Sojka DK, Yang L, Plougastel-Douglas B, Higuchi DA, Croy BA, Yokoyama WM. Cutting Edge: Local Proliferation of Uterine Tissue-Resident NK Cells during Decidualization in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 201:2551-2556. [PMID: 30275046 DOI: 10.4049/jimmunol.1800651] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/07/2018] [Indexed: 11/19/2022]
Abstract
NK cells accumulate in adult murine and human uteri during decidualization induced physiologically, pathologically, or experimentally. Adoptive transfer studies indicate that uterine NK (uNK) cells arise from circulating progenitors. However, virgin uteri contain few circulating NK1.1+CD49a- conventional NK cells, whereas NK1.1+CD49a+ tissue-resident NK (trNK) cells are abundant. In this study, we employed a novel, immune-competent NK cell-specific reporter mouse to track accumulation of uNK cells during unmanipulated pregnancies. We identified conventional NK and trNK cells accumulating in both decidua basalis and myometrium. Only trNK cells showed evidence of proliferation. In parabiosis studies using experimentally induced deciduomata, the accumulated uNK cells were proliferating trNK cells; migrating NK cells made no contribution. Together, these data suggest proliferating trNK cells are the source of uNK cells during endometrial decidualization.
Collapse
Affiliation(s)
- Dorothy K Sojka
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Liping Yang
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO 63110; and
| | | | - Darryl A Higuchi
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO 63110; and
| | - B Anne Croy
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Wayne M Yokoyama
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO 63110; and
| |
Collapse
|
44
|
Ni X, Fu B, Zhang J, Sun R, Tian Z, Wei H. Cytokine-Based Generation of CD49a +Eomes -/+ Natural Killer Cell Subsets. Front Immunol 2018; 9:2126. [PMID: 30319610 PMCID: PMC6167425 DOI: 10.3389/fimmu.2018.02126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/29/2018] [Indexed: 01/06/2023] Open
Abstract
Recent studies have identified CD49a+Eomes− and CD49a+Eomes+ subsets of tissue-resident NK (trNK) cells in different organs of the mouse. However, the characteristics of CD49a+Eomes−/+ NK cell development and the regulation of Eomes expression in NK cells remain unclear. Here, we established an in vitro cytokine-based feeder-free system in which bone marrow progenitor cells differentiate into CD49a+ NK cells. IL-15 was identified as being the key cytokine in this system that supported the development and maintenance of CD49a+ NK cells. The CD49a+ NK cells generated were Eomes−CD49b− and shared the same phenotype as hepatic trNK cells. IL-4 induced the expression of Eomes in generated NK cells and converted them into CD49a+Eomes+ cells, which were phenotypically and functionally similar to uterine trNK cells. Moreover, the IL-4/STAT6 axis was identified as being important in the generation of CD49a+Eomes+ induced NK cells. Collectively, these studies describe an approach to generate CD49a+Eomes−/+ subsets of NK cells and demonstrate important roles for IL-15 and IL-4 in the differentiation of these cells. These findings have potential for developmental research underlying the generation of different subsets of NK cells and the application of adoptive NK cell transfer therapies.
Collapse
Affiliation(s)
- Xiang Ni
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Jinghe Zhang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
45
|
Rätsep MT, Moore SD, Jafri S, Mitchell M, Brady HJM, Mandelboim O, Southwood M, Morrell NW, Colucci F, Ormiston ML. Spontaneous pulmonary hypertension in genetic mouse models of natural killer cell deficiency. Am J Physiol Lung Cell Mol Physiol 2018; 315:L977-L990. [PMID: 30234375 PMCID: PMC6337009 DOI: 10.1152/ajplung.00477.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic innate lymphoid cells with an established role in the regulation of vascular structure in pregnancy and cancer. Impaired NK cell function has been identified in patients with pulmonary arterial hypertension (PAH), a disease of obstructive vascular remodeling in the lungs, as well as in multiple rodent models of disease. However, the precise contribution of NK cell impairment to the initiation and progression of PAH remains unknown. Here, we report the development of spontaneous pulmonary hypertension in two independent genetic models of NK cell dysfunction, including Nfil3−/− mice, which are deficient in NK cells due to the absence of the NFIL3 transcription factor, and Ncr1-Gfp mice, which lack the NK activating receptor NKp46. Mouse models of NK insufficiency exhibited increased right ventricular systolic pressure and muscularization of the pulmonary arteries in the absence of elevated left ventricular end-diastolic pressure, indicating that the development of pulmonary hypertension was not secondary to left heart dysfunction. In cases of severe NK cell impairment or loss, a subset of mice failed to develop pulmonary hypertension and instead exhibited reduced systemic blood pressure, demonstrating an extension of vascular abnormalities beyond the pulmonary circulation into the systemic vasculature. In both mouse models, the development of PAH was linked to elevated interleukin-23 production, whereas systemic hypotension in Ncr1-Gfp mice was accompanied by a loss of angiopoietin-2. Together, these results support an important role for NK cells in the regulation of pulmonary and systemic vascular function and the pathogenesis of PAH.
Collapse
Affiliation(s)
- Matthew T Rätsep
- Departments of Biomedical and Molecular Sciences, Medicine, and Surgery, Queen's University Kingston , Ontario , Canada
| | - Stephen D Moore
- Department of Medicine, University of Cambridge, Cambridge , United Kingdom
| | - Salema Jafri
- Department of Medicine, University of Cambridge, Cambridge , United Kingdom
| | - Melissa Mitchell
- Departments of Biomedical and Molecular Sciences, Medicine, and Surgery, Queen's University Kingston , Ontario , Canada
| | | | | | - Mark Southwood
- Department of Medicine, University of Cambridge, Cambridge , United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge , United Kingdom
| | - Francesco Colucci
- Department of Obstetrics and Gynecology, University of Cambridge, Cambridge , United Kingdom
| | - Mark L Ormiston
- Departments of Biomedical and Molecular Sciences, Medicine, and Surgery, Queen's University Kingston , Ontario , Canada
| |
Collapse
|
46
|
Vacca P, Vitale C, Munari E, Cassatella MA, Mingari MC, Moretta L. Human Innate Lymphoid Cells: Their Functional and Cellular Interactions in Decidua. Front Immunol 2018; 9:1897. [PMID: 30154799 PMCID: PMC6102343 DOI: 10.3389/fimmu.2018.01897] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023] Open
Abstract
Innate lymphoid cells (ILC) are developmentally related cell subsets that play a major role in innate defenses against pathogens, in lymphoid organogenesis and in tissue remodeling. The best characterized ILC are natural killer (NK) cells. They are detectable in decidua in the early phases of pregnancy. During the first trimester, NK cells represent up to 50% of decidua lymphocytes. Differently from peripheral blood (PB) NK cells, decidual NK (dNK) cells are poorly cytolytic, and, instead of IFNγ, they release cytokines/chemokines that induce neo-angiogenesis, tissue remodeling, and placentation. dNK interact with resident myeloid cells and participate in the induction of regulatory T cells that play a pivotal role in maintaining an efficient fetal-maternal tolerance. dNK cells may originate from CD34+ precursor cells present in situ and/or from immature NK cells already present in endometrial tissue and/or from PB NK cells migrated to decidua. In addition to NK cells, also ILC3 are present in human decidua during the first trimester. Decidual ILC3 include both natural cytotoxic receptor (NCR)+ and NCR- cells, producing respectively IL-8/IL-22/GM-CSF and TNF/IL-17. NCR+ILC3 have been shown to establish physical and functional interactions with neutrophils that, in turn, produce factors that are crucial for pregnancy induction/maintenance and for promoting the early inflammatory phase, a fundamental process for a successful pregnancy. While NCR+ILC3 display a stable phenotype, most of NCR-ILC3 may acquire phenotypic and functional features of NCR+ILC3. In conclusion, both NK cells and ILC3 are present in human decidua and may establish functional interactions with immune and myeloid cells playing an important role both in innate defenses and in tissue building/remodeling/placentation during the early pregnancy. It is conceivable that altered numbers or function of these cells may play a role in pregnancy failure.
Collapse
Affiliation(s)
- Paola Vacca
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy.,UOC Immunology, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| | - Enrico Munari
- Department of Pathology, Sacro Cuore Don Calabria Hospital, Negrar, Italy.,Department of Pathology AOUI, University of Verona, Verona, Italy
| | | | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy.,UOC Immunology, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
47
|
Xu Y, Romero R, Miller D, Silva P, Panaitescu B, Theis KR, Arif A, Hassan SS, Gomez-Lopez N. Innate lymphoid cells at the human maternal-fetal interface in spontaneous preterm labor. Am J Reprod Immunol 2018; 79:e12820. [PMID: 29457302 PMCID: PMC5948134 DOI: 10.1111/aji.12820] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Pathological inflammation is causally linked to preterm labor and birth, the leading cause of neonatal morbidity and mortality worldwide. Our aims were to investigate whether (i) the newly described family of innate lymphoid cells (ILCs) was present at the human maternal-fetal interface and (ii) ILC inflammatory subsets were associated with the pathological process of preterm labor. METHODS OF STUDY Decidual leukocytes were isolated from women with preterm or term labor as well as from gestational age-matched non-labor controls. ILCs (CD15- CD14- CD3- CD19- CD56- CD11b- CD127+ cells) and their subsets (ILC1, T-bet+ ILCs; ILC2, GATA3+ ILCs; and ILC3, RORγt+ ILCs) and cytokine expression were identified in the decidual tissues using immunophenotyping. RESULTS (i) The proportion of total ILCs was increased in the decidua parietalis of women with preterm labor; (ii) ILC1s were a minor subset of decidual ILCs during preterm and term gestations; (iii) ILC2s were the most abundant ILC subset in the decidua during preterm and term gestations; (iv) the proportion of ILC2s was increased in the decidua basalis of women with preterm labor; (v) the proportion of ILC3s was increased in the decidua parietalis of women with preterm labor; and (vi) during preterm labor, ILC3s had higher expression of IL-22, IL-17A, IL-13, and IFN-γ compared to ILC2s in the decidua. CONCLUSION ILC2s were the most abundant ILC subset at the human maternal-fetal interface during preterm and term gestations. Yet, during preterm labor, an increase in ILC2s and ILC3s was observed in the decidua basalis and decidua parietalis, respectively. These findings provide evidence demonstrating a role for ILCs at the maternal-fetal interface during the pathological process of preterm labor.
Collapse
Affiliation(s)
- Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pablo Silva
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kevin R Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Afrah Arif
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
48
|
Das A, Harly C, Yang Q, Bhandoola A. Lineage specification in innate lymphocytes. Cytokine Growth Factor Rev 2018; 42:20-26. [PMID: 29373198 DOI: 10.1016/j.cytogfr.2018.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 01/12/2023]
Abstract
Innate lymphoid cells (ILCs) are immune cells that lack specific antigen receptors but possess similar effector functions as T cells. Concordantly, ILCs express many transcription factors known to be important for T cell effector function. ILCs develop from lymphoid progenitors in fetal liver and adult bone marrow. However, the identification of ILC progenitor (ILCP) and other precursors in peripheral tissues raises the question of whether ILC development might occur at extramedullary sites. We discuss central and local generation in maintaining ILC abundance at peripheral sites.
Collapse
Affiliation(s)
- Arundhoti Das
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christelle Harly
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qi Yang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
49
|
Natural Killer Cells Promote Fetal Development through the Secretion of Growth-Promoting Factors. Immunity 2017; 47:1100-1113.e6. [DOI: 10.1016/j.immuni.2017.11.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/01/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
|
50
|
Jafri S, Ormiston ML. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities. Am J Physiol Regul Integr Comp Physiol 2017; 313:R693-R705. [PMID: 28978513 DOI: 10.1152/ajpregu.00259.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4+ helper T cell populations, defined by excessive Th17 responses and impaired Treg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8+ T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders.
Collapse
Affiliation(s)
- Salema Jafri
- University of Cambridge, Department of Medicine, Cambridge, United Kingdom; and
| | - Mark L Ormiston
- Queen's University, Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Kingston, Canada
| |
Collapse
|