1
|
Estivariz CF, Krow-Lucal ER, Mach O. Immunodeficiency-Related Vaccine-Derived Poliovirus (iVDPV) Infections: A Review of Epidemiology and Progress in Detection and Management. Pathogens 2024; 13:1128. [PMID: 39770387 PMCID: PMC11677883 DOI: 10.3390/pathogens13121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Individuals with certain primary immunodeficiency disorders (PID) may be unable to clear poliovirus infection after exposure to oral poliovirus vaccine (OPV). Over time, vaccine-related strains can revert to immunodeficiency-associated vaccine-derived poliovirus (iVDPVs) that can cause paralysis in the patient and potentially spread in communities with low immunity. We reviewed the efforts for detection and management of PID patients with iVDPV infections and the epidemiology through an analysis of 184 cases reported to the World Health Organization (WHO) during 1962-2024 and a review of polio program and literature reports. Most iVDPV patients (79%) reported in the WHO Registry were residents in middle-income countries and almost half (48%) in the Eastern Mediterranean Region. Type 2 iVDPV was most frequently isolated (53%), but a sharp decline was observed after the switch to bivalent OPV in 2016, with only six cases reported during 2017-2024 compared to 63 during 2009-2016. Patients with common variable immunodeficiency have longer excretion of iVDPV than with other PID types. Implementation of sensitive sentinel surveillance to detect cases of iVDPV infection in high-risk countries and offer antiviral treatment to patients is challenged by competition with other health priorities and regulatory hurdles to the compassionate use of investigational antiviral drugs.
Collapse
Affiliation(s)
| | - Elisabeth R. Krow-Lucal
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30033, USA;
- World Health Organization Headquarters, Av Appia 10, 1211 Geneva, Switzerland;
| | - Ondrej Mach
- World Health Organization Headquarters, Av Appia 10, 1211 Geneva, Switzerland;
| |
Collapse
|
2
|
Mohanty MC, Govindaraj G, Ahmad M, Varose SY, Tatkare M, Shete A, Yadav S, Joshi Y, Yadav P, Sharma D, Kumar A, Verma H, Patil AP, Edavazhipurath A, Dhanasooraj D, Othayoth Kandy S, Puthenpurayil JM, Chakyar K, Melarcode Ramanan K, Madkaikar M. Immunodeficiency-Related Vaccine-Derived Poliovirus (iVDPV) Excretion in an Infant with Severe Combined Immune Deficiency with Spillover to a Parent. Vaccines (Basel) 2024; 12:759. [PMID: 39066397 PMCID: PMC11281642 DOI: 10.3390/vaccines12070759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/28/2024] Open
Abstract
In order to maintain the polio eradication status, it has become evident that the surveillance of cases with acute flaccid paralysis and of environmental samples must be urgently supplemented with the surveillance of poliovirus excretions among individuals with inborn errors of immunity (IEI). All children with IEI were screened for the excretion of poliovirus during a collaborative study conducted by the ICMR-National Institute of Virology, Mumbai Unit, ICMR-National Institute of Immunohaematology, and World Health Organization, India. A seven-month -old male baby who presented with persistent pneumonia and lymphopenia was found to have severe combined immune deficiency (SCID) due to a missense variant in the RAG1 gene. He had received OPV at birth and at 20 weeks. Four stool samples collected at 4 weekly intervals yielded iVDPV type 1. The child's father, an asymptomatic 32-year-old male, was also found to be excreting iVDPV. A haploidentical hematopoietic stem cell transplant was performed, but the child succumbed due to severe myocarditis and pneumonia three weeks later. We report a rare case of transmission of iVDPV from an individual with IEI to a healthy household contact, demonstrating the threat of the spread of iVDPV from persons with IEI and the necessity to develop effective antivirals.
Collapse
Affiliation(s)
- Madhu Chhanda Mohanty
- Mumbai Unit, ICMR-National Institute of Virology, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai 400012, India; (S.Y.V.); (M.T.); (A.P.P.)
| | - Geeta Govindaraj
- Government Medical College, Kozhikode 673008, India; (G.G.); (A.E.); (D.D.); (S.O.K.); (J.M.P.); (K.C.)
| | - Mohammad Ahmad
- Country Office, World Health Organization, New Delhi 110011, India; (M.A.); (D.S.); (A.K.)
| | - Swapnil Y. Varose
- Mumbai Unit, ICMR-National Institute of Virology, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai 400012, India; (S.Y.V.); (M.T.); (A.P.P.)
| | - Manogat Tatkare
- Mumbai Unit, ICMR-National Institute of Virology, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai 400012, India; (S.Y.V.); (M.T.); (A.P.P.)
| | - Anita Shete
- Microbial Containment Laboratory, ICMR-National Institute of Virology, Pune 411021, India; (A.S.); (S.Y.); (Y.J.); (P.Y.)
| | - Savita Yadav
- Microbial Containment Laboratory, ICMR-National Institute of Virology, Pune 411021, India; (A.S.); (S.Y.); (Y.J.); (P.Y.)
| | - Yash Joshi
- Microbial Containment Laboratory, ICMR-National Institute of Virology, Pune 411021, India; (A.S.); (S.Y.); (Y.J.); (P.Y.)
| | - Pragya Yadav
- Microbial Containment Laboratory, ICMR-National Institute of Virology, Pune 411021, India; (A.S.); (S.Y.); (Y.J.); (P.Y.)
| | - Deepa Sharma
- Country Office, World Health Organization, New Delhi 110011, India; (M.A.); (D.S.); (A.K.)
| | - Arun Kumar
- Country Office, World Health Organization, New Delhi 110011, India; (M.A.); (D.S.); (A.K.)
| | - Harish Verma
- World Health Organization, 1209 Geneva, Switzerland;
| | - Ankita P. Patil
- Mumbai Unit, ICMR-National Institute of Virology, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai 400012, India; (S.Y.V.); (M.T.); (A.P.P.)
| | - Athulya Edavazhipurath
- Government Medical College, Kozhikode 673008, India; (G.G.); (A.E.); (D.D.); (S.O.K.); (J.M.P.); (K.C.)
| | - Dhananjayan Dhanasooraj
- Government Medical College, Kozhikode 673008, India; (G.G.); (A.E.); (D.D.); (S.O.K.); (J.M.P.); (K.C.)
| | - Sheena Othayoth Kandy
- Government Medical College, Kozhikode 673008, India; (G.G.); (A.E.); (D.D.); (S.O.K.); (J.M.P.); (K.C.)
| | | | - Krishnan Chakyar
- Government Medical College, Kozhikode 673008, India; (G.G.); (A.E.); (D.D.); (S.O.K.); (J.M.P.); (K.C.)
| | | | | |
Collapse
|
3
|
Thompson KM, Badizadegan K. Review of Poliovirus Transmission and Economic Modeling to Support Global Polio Eradication: 2020-2024. Pathogens 2024; 13:435. [PMID: 38921733 PMCID: PMC11206708 DOI: 10.3390/pathogens13060435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Continued investment in the development and application of mathematical models of poliovirus transmission, economics, and risks leads to their use in support of polio endgame strategy development and risk management policies. This study complements an earlier review covering the period 2000-2019 and discusses the evolution of studies published since 2020 by modeling groups supported by the Global Polio Eradication Initiative (GPEI) partners and others. We systematically review modeling papers published in English in peer-reviewed journals from 2020-2024.25 that focus on poliovirus transmission and health economic analyses. In spite of the long-anticipated end of poliovirus transmission and the GPEI sunset, which would lead to the end of its support for modeling, we find that the number of modeling groups supported by GPEI partners doubled and the rate of their publications increased. Modeling continued to play a role in supporting GPEI and national/regional policies, but changes in polio eradication governance, decentralized management and decision-making, and increased heterogeneity in modeling approaches and findings decreased the overall impact of modeling results. Meanwhile, the failure of the 2016 globally coordinated cessation of type 2 oral poliovirus vaccine use for preventive immunization and the introduction of new poliovirus vaccines and formulation, increased the complexity and uncertainty of poliovirus transmission and economic models and policy recommendations during this time.
Collapse
|
4
|
Fine PEM. Population Immunity and Polio Eradication. Pathogens 2024; 13:183. [PMID: 38535527 PMCID: PMC10974847 DOI: 10.3390/pathogens13030183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
The Global Polio Eradication Initiative made immense progress after its establishment in 1988 as a consequence of high coverage with various poliovirus vaccines in all populations of the world. Problems have arisen in recent years, however, related to security issues in some countries, to the circulation of vaccine-derived polioviruses, and to the recognition that individuals with certain immune deficiencies can remain infected and infectious for many months or years. As natural infection and different vaccines have different effects on the immune system, the patterns of humoral and mucosal immunity to polioviruses in the world today are complex but are crucial to the ultimate success of the eradication initiative. This paper describes the background of the current situation and current immunological patterns and discusses their implications for managing population immunity to polioviruses in the years ahead.
Collapse
Affiliation(s)
- Paul E M Fine
- Department of Infectious Disease Epidemiology and International Health, London School of Hygiene and Tropical Medicine, Keppel St., London WC1E 7HT, UK
| |
Collapse
|
5
|
Badizadegan K, Kalkowska DA, Thompson KM. Health Economic Analysis of Antiviral Drugs in the Global Polio Eradication Endgame. Med Decis Making 2023; 43:850-862. [PMID: 37577803 PMCID: PMC10680042 DOI: 10.1177/0272989x231191127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Polio antiviral drugs (PAVDs) may provide a critical tool in the eradication endgame by stopping poliovirus infections in immunodeficient individuals who may not clear the virus without therapeutic intervention. Although prolonged/chronic poliovirus excreters are rare, they represent a source of poliovirus reintroduction into the general population. Prior studies that assumed the successful cessation of all oral poliovirus vaccine (OPV) use estimated the potential upper bound of the incremental net benefits (INBs) of resource investments in research and development of PAVDs. However, delays in polio eradication, OPV cessation, and the development of PAVDs necessitate an updated economic analysis to reevaluate the costs and benefits of further investments in PAVDs. METHODS Using a global integrated model of polio transmission, immunity, vaccine dynamics, risks, and economics, we explore the risks of reintroduction of polio transmission due to immunodeficiency-related vaccine-derived poliovirus (iVDPV) excreters and reevaluate the upper bound of the INBs of PAVDs. RESULTS Under the current conditions, for which the use of OPV will likely continue for the foreseeable future, even with successful eradication of type 1 wild poliovirus by the end of 2023 and continued use of Sabin OPV for outbreak response, we estimate an upper bound INB of 60 million US$2019. With >100 million US$2019 already invested in PAVD development and with the introduction of novel OPVs that are less likely to revert to neurovirulence, our analysis suggests the expected INBs of PAVDs would not offset their costs. CONCLUSIONS While PAVDs could play an important role in the polio endgame, their expected economic benefits drop with ongoing OPV use and poliovirus transmissions. However, stakeholders may pursue the development of PAVDs as a desired product regardless of their economic benefits.HighlightsWhile polio antiviral drugs could play an important role in the polio endgame, their expected economic benefits continue to drop with delays in polio eradication and the continued use of oral poliovirus vaccines.The incremental net benefits of investments in polio antiviral drug development and screening for immunodeficiency-related circulating polioviruses are small.Limited global resources are better spent on increasing global population immunity to polioviruses to stop and prevent poliovirus transmission.
Collapse
|
6
|
Mohanty MC, Desai M, Mohammad A, Aggarwal A, Govindaraj G, Bhattad S, Lashkari HP, Rajasekhar L, Verma H, Kumar A, Sawant U, Varose SY, Taur P, Yadav RM, Tatkare M, Fernandes M, Bargir U, Majumdar S, Edavazhippurath A, Rangarajan J, Manthri R, Madkaikar MR. Assessment of Enterovirus Excretion and Identification of VDPVs in Patients with Primary Immunodeficiency in India: Outcome of ICMR-WHO Collaborative Study Phase-I. Vaccines (Basel) 2023; 11:1211. [PMID: 37515027 PMCID: PMC10383878 DOI: 10.3390/vaccines11071211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of vaccine-derived polioviruses (VDPVs) in patients with Primary Immunodeficiency (PID) is a threat to the polio-eradication program. In a first of its kind pilot study for successful screening and identification of VDPV excretion among patients with PID in India, enteroviruses were assessed in stool specimens of 154 PID patients across India in a period of two years. A total of 21.42% of patients were tested positive for enteroviruses, 2.59% tested positive for polioviruses (PV), whereas 18.83% of patients were positive for non-polio enteroviruses (NPEV). A male child of 3 years and 6 months of age diagnosed with Hyper IgM syndrome was detected positive for type1 VDPV (iVDPV1) with 1.6% nucleotide divergence from the parent Sabin strain. E21 (19.4%), E14 (9%), E11 (9%), E16 (7.5%), and CVA2 (7.5%) were the five most frequently observed NPEV types in PID patients. Patients with combined immunodeficiency were at a higher risk for enterovirus infection as compared to antibody deficiency. The high susceptibility of PID patients to enterovirus infection emphasizes the need for enhanced surveillance of these patients until the use of OPV is stopped. The expansion of PID surveillance and integration with a national program will facilitate early detection and follow-up of iVDPV excretion to mitigate the risk for iVDPV spread.
Collapse
Affiliation(s)
| | - Mukesh Desai
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai 400012, India
| | - Ahmad Mohammad
- World Health Organization, Country Office, New Delhi 110011, India
| | - Amita Aggarwal
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Geeta Govindaraj
- Department of Pediatrics, Government Medical College, Kozhikode 673008, India
| | - Sagar Bhattad
- Department of Pediatrics, Aster CMI Hospital, Bangalore 560092, India
| | | | - Liza Rajasekhar
- Department of Clinical Immunology and Rheumatology, Nizam’s Institute of Medical Sciences, Hyderabad 500082, India
| | - Harish Verma
- World Health Organization, CH-1211 Geneva, Switzerland
| | - Arun Kumar
- World Health Organization, Country Office, New Delhi 110011, India
| | - Unnati Sawant
- Mumbai Unit, ICMR-National Institute of Virology (ICMR-NIV), Mumbai 400012, India
| | | | - Prasad Taur
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai 400012, India
| | - Reetika Malik Yadav
- ICMR-National Institute of Immunohaematology (ICMR-NIIH), Mumbai 400012, India
| | - Manogat Tatkare
- Mumbai Unit, ICMR-National Institute of Virology (ICMR-NIV), Mumbai 400012, India
| | - Mevis Fernandes
- Mumbai Unit, ICMR-National Institute of Virology (ICMR-NIV), Mumbai 400012, India
| | - Umair Bargir
- ICMR-National Institute of Immunohaematology (ICMR-NIIH), Mumbai 400012, India
| | - Sanjukta Majumdar
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | | | - Jyoti Rangarajan
- Department of Pediatrics, Aster CMI Hospital, Bangalore 560092, India
| | - Ramesh Manthri
- Department of Clinical Immunology and Rheumatology, Nizam’s Institute of Medical Sciences, Hyderabad 500082, India
| | | |
Collapse
|
7
|
Singanayagam A, Klapsa D, Burton-Fanning S, Hand J, Wilton T, Stephens L, Mate R, Shillitoe B, Celma C, Slatter M, Flood T, Gopal R, Martin J, Zambon M. Asymptomatic immunodeficiency-associated vaccine-derived poliovirus infections in two UK children. Nat Commun 2023; 14:3413. [PMID: 37296153 PMCID: PMC10251316 DOI: 10.1038/s41467-023-39094-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Increasing detections of vaccine-derived poliovirus (VDPV) globally, including in countries previously declared polio free, is a public health emergency of international concern. Individuals with primary immunodeficiency (PID) can excrete polioviruses for prolonged periods, which could act as a source of cryptic transmission of viruses with potential to cause neurological disease. Here, we report on the detection of immunodeficiency-associated VDPVs (iVDPV) from two asymptomatic male PID children in the UK in 2019. The first child cleared poliovirus with increased doses of intravenous immunoglobulin, the second child following haematopoetic stem cell transplantation. We perform genetic and phenotypic characterisation of the infecting strains, demonstrating intra-host evolution and a neurovirulent phenotype in transgenic mice. Our findings highlight a pressing need to strengthen polio surveillance. Systematic collection of stool from asymptomatic PID patients who are at high risk for poliovirus excretion could improve the ability to detect and contain iVDPVs.
Collapse
Affiliation(s)
- Anika Singanayagam
- Polio Reference Service, UK Health Security Agency, Colindale, London, UK.
- Department of Infectious Disease, Imperial College London, London, UK.
| | - Dimitra Klapsa
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Potters Bar, London, UK
| | - Shirelle Burton-Fanning
- Microbiology and Virology Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Julian Hand
- Polio Reference Service, UK Health Security Agency, Colindale, London, UK
| | - Thomas Wilton
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Potters Bar, London, UK
| | - Laura Stephens
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Potters Bar, London, UK
| | - Ryan Mate
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Potters Bar, London, UK
| | - Benjamin Shillitoe
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Cristina Celma
- Polio Reference Service, UK Health Security Agency, Colindale, London, UK
| | - Mary Slatter
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Terry Flood
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Robin Gopal
- Polio Reference Service, UK Health Security Agency, Colindale, London, UK
| | - Javier Martin
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Potters Bar, London, UK
| | - Maria Zambon
- Polio Reference Service, UK Health Security Agency, Colindale, London, UK.
| |
Collapse
|
8
|
Mbani CJ, Nekoua MP, Moukassa D, Hober D. The Fight against Poliovirus Is Not Over. Microorganisms 2023; 11:1323. [PMID: 37317297 DOI: 10.3390/microorganisms11051323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023] Open
Abstract
Poliovirus (PV), the virus that causes both acute poliomyelitis and post-polio syndrome, is classified within the Enterovirus C species, and there are three wild PV serotypes: WPV1, WPV2 and WPV3. The launch of the Global Polio Eradication Initiative (GPEI) in 1988 eradicated two of the three serotypes of WPV (WPV2 and WPV3). However, the endemic transmission of WPV1 persists in Afghanistan and Pakistan in 2022. There are cases of paralytic polio due to the loss of viral attenuation in the oral poliovirus vaccine (OPV), known as vaccine-derived poliovirus (VDPV). Between January 2021 and May 2023, a total of 2141 circulating VDPV (cVDPV) cases were reported in 36 countries worldwide. Because of this risk, inactivated poliovirus (IPV) is being used more widely, and attenuated PV2 has been removed from OPV formulations to obtain bivalent OPV (containing only types 1 and 3). In order to avoid the reversion of attenuated OPV strains, the new OPV, which is more stable due to genome-wide modifications, as well as sabin IPV and virus-like particle (VLP) vaccines, is being developed and offers promising solutions for eradicating WP1 and VDPV.
Collapse
Affiliation(s)
- Chaldam Jespère Mbani
- Laboratoire de Virologie URL3610, Université de Lille, CHU Lille, 59000 Lille, France
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Technique, Université Marien Ngouabi, Brazzaville BP 69, Congo
| | | | - Donatien Moukassa
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Technique, Université Marien Ngouabi, Brazzaville BP 69, Congo
| | - Didier Hober
- Laboratoire de Virologie URL3610, Université de Lille, CHU Lille, 59000 Lille, France
| |
Collapse
|
9
|
Mohanty MC, Mohammad A, Verma H, Kumar A, Madkaikar MR, Desai M, Varose SY, Sawant U, Yadav RM, Taur P, Kathuria R, Tatkare M, Murhekar M, Haldar P, Abraham P. Poliovirus surveillance in patients with primary immunodeficiencies, India. Bull World Health Organ 2023; 101:346-354. [PMID: 37131936 PMCID: PMC10140681 DOI: 10.2471/blt.22.289066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Individuals with primary immunodeficiencies who are infected with vaccine-derived polioviruses may continue to shed poliovirus for months and go undetected by surveillance programmes of acute flaccid paralysis. These patients therefore pose a risk of initiating poliovirus outbreaks that jeopardize efforts towards global polio eradication. To identify these individuals, we designed a study protocol for the establishment of a network for surveillance of immunodeficiency-related vaccine-derived poliovirus in India. In the first step we identified recognized centres in India that could diagnose and enrol patients with primary immunodeficiency disorder into the study. Stool sample collection from study sites, culture, isolation, characterization of enteroviruses and reporting to study sites was carried out at the National Institute of Virology Mumbai Unit, as per the WHO national polio surveillance project protocol. In the first phase of the study from January 2020 to December 2021, we implemented the protocol at seven study sites at different medical institutes to determine the proportion of poliovirus infections in primary immunodeficiency disorder patients of India. We later expanded the study by including an additional 14 medical institutes across the country in the second phase running from January 2022 to December 2023. We believe this study protocol will help other countries to initiate immunodeficiency-related vaccine-derived poliovirus surveillance to identify and follow up patients who are long-term excretors of vaccine-derived poliovirus. Integration of immunodeficiency-related poliovirus surveillance with acute flaccid paralysis surveillance of the existing poliovirus network will enhance continuous screening of patients with primary immunodeficiency disorder in the future.
Collapse
Affiliation(s)
- Madhu Chhanda Mohanty
- National Institute of Virology Mumbai Unit, Indian Council of Medical Research, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai-400012, India
| | - Ahmad Mohammad
- World Health Organization Country Office, New Delhi, India
| | - Harish Verma
- Polio Eradication, World Health Organization, Geneva, Switzerland
| | - Arun Kumar
- World Health Organization Country Office, New Delhi, India
| | | | - Mukesh Desai
- Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Swapnil Yashwant Varose
- National Institute of Virology Mumbai Unit, Indian Council of Medical Research, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai-400012, India
| | - Unnati Sawant
- National Institute of Virology Mumbai Unit, Indian Council of Medical Research, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai-400012, India
| | - Reetika Malik Yadav
- National Institute of Immunohaematology, Indian Council of Medical Research, Mumbai, India
| | - Prasad Taur
- Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | | | - Manogat Tatkare
- National Institute of Virology Mumbai Unit, Indian Council of Medical Research, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai-400012, India
| | - Megh Murhekar
- National Institute of Virology Mumbai Unit, Indian Council of Medical Research, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai-400012, India
| | | | - Priya Abraham
- National Institute of Virology, Indian Council of Medical Research, Pune, India
| |
Collapse
|
10
|
Li S, Chen X, Li S, Weng X, Lin J, Jin J, Qian W. Total Hip Arthroplasty in the Nonparalytic Limb of Residual Poliomyelitis Patients: A Propensity Score Matched Study. Orthop Surg 2023; 15:1037-1044. [PMID: 36810876 PMCID: PMC10102314 DOI: 10.1111/os.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE Poliomyelitis is a rare neuromuscular disease that can cause hip osteoarthritis on the contralateral side due to an abnormal mechanical weight-bearing state, making some residual poliomyelitis patients candidates for total hip arthroplasty (THA). The aim of this study was to investigate the clinical outcome of THA in the nonparalytic limbs of these patients compared with those of non-poliomyelitis patients. METHODS Patients treated between January 2007 and May 2021 were retrospectively identified in a single center arthroplasty database. Eight residual poliomyelitis cases that met the inclusion criteria were matched to non-poliomyelitis cases in a ratio of 1:2 based on age, sex, body mass index (BMI), age-adjusted Charlson comorbidity index (aCCI), surgeon, and operation date. The hip function, health-related quality of life, radiographic outcomes, and complications were analyzed with unpaired Student's t test, Mann-Whitney test, Fisher's exact test or analysis of covariance (ANCOVA). Survivorship analysis was determined using the Kaplan-Meier estimator analysis and Gehan-Breslow-Wilcoxon test. RESULTS After a mean follow-up of about 5 years, patients with residual poliomyelitis had worse postoperative mobility outcomes(P < 0.05), but there was no difference in total modified Harris hip score (mHHS) or European quality of life-visual analogue scale (EQ-VAS) between the two groups (P > 0.05). There was no difference in radiographic outcomes or complications between the two groups, and patients had similar postoperative satisfaction (P > 0.05). No readmission or reoperation occurred in the poliomyelitis group (P > 0.05), but the postoperative limb length discrepancy (LLD) in the residual poliomyelitis group was greater than that in the control group (P < 0.05). CONCLUSION Functional outcomes, health-related quality of life improvement were similarly significantly improved in the nonparalytic limb of residual poliomyelitis patients after THA compared with conventional osteoarthritis patients. However, the residual LLD and weak muscle strength of the affected side will still influence mobility, so residual poliomyelitis patients should be fully informed of this outcome before surgery.
Collapse
Affiliation(s)
- Songlin Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chineses Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xi Chen
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shanni Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chineses Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xisheng Weng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chineses Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Lin
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chineses Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Jin
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chineses Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenwei Qian
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chineses Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Chong CY, Kam KQ, Yung CF. Combating a resurgence of poliomyelitis through public health surveillance and vaccination. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2023. [DOI: 10.47102/annals-acadmedsg.2022390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Poliomyelitis, or polio, is a highly infectious disease and can result in permanent flaccid paralysis of the limbs. Singapore was certified polio-free by the World Health Organization (WHO) on 29 October 2000, together with 36 other countries in the Western Pacific Region. The last imported case of polio in Singapore was in 2006. Fortunately, polio is vaccine-preventable—the world saw the global eradication of wild poliovirus types 2 and 3 achieved in 2015 and 2019, respectively. However, in late 2022, a resurgence of paralytic polio cases from vaccine-derived poliovirus (VDPV) was detected in countries like Israel and the US (specifically, New York); VDPV was also detected during routine sewage water surveillance with no paralysis cases in London, UK. Without global eradication, there is a risk of re-infection from importation and spread of wild poliovirus or VDPV, or new emergence and circulation of VDPV. During the COVID-19 pandemic, worldwide routine childhood vaccination coverage fell by 5% to 81% in 2020–2021. Fortunately, Singapore has maintained a constantly high vaccination coverage of 96% among 1-year-old children as recorded in 2021. All countries must ensure high poliovirus vaccination coverage in their population to eradicate poliovirus globally, and appropriate interventions must be taken to rectify this if the coverage falters. In 2020, WHO approved the emergency use listing of a novel oral polio vaccine type 2 for countries experiencing circulating VDPV type 2 outbreaks. Environmental and wastewater surveillance should be implemented to allow early detection of “silent” poliovirus transmission in the population, instead of relying on clinical surveillance of acute flaccid paralysis based on case definition alone.
Keywords: Acute flaccid paralysis, infectious diseases, polio vaccine, poliovirus, surveillance
Collapse
|
12
|
Polio and Its Epidemiology. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
13
|
Epidemiology of type 2 vaccine-derived poliovirus outbreaks between 2016 and 2020. Vaccine 2022; 41 Suppl 1:A19-A24. [PMID: 36008232 DOI: 10.1016/j.vaccine.2022.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/31/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
The number and geographic breadth of circulating vaccine-derived poliovirus type 2 (cVDPV2) outbreaks detected after the withdrawal of type 2 containing oral polio vaccine (April 2016) have exceeded forecasts.Using Acute Flaccid Paralysis (AFP) investigations and environmental surveillance (ES) data from the Global Polio Laboratory Network, we summarize the epidemiology of cVDPV2 outbreaks. Between 01 January 2016 to 31 December 2020, a total of 68 unique cVDPV2 genetic emergences were detected across 34 countries. The cVDPV2 outbreaks have been associated with 1596 acute flaccid paralysis cases across four World Health Organization regions: 962/1596 (60.3%) cases occurred in African Region; 619/1596 (38.8%) in the Eastern Mediterranean Region; 14/1596 (0.9%) in Western-Pacific Region; and 1/1596 (0.1%) in the European Region. As the majority of the cVDPV2 outbreaks have been seeded through monovalent type 2 oral poliovirus vaccine (mOPV2) use in outbreak responses, the introduction of the more stable novel oral poliovirus vaccine will be instrumental in stopping emergence of new cVDPV2 lineages.
Collapse
|
14
|
Pethani AS, Kazi Z, Nayyar U, Shafiq-Ur-Rehman M, Yousafzai MT, Ondrej M, Saleem AF. Poliovirus excretion among children with primary immune deficiency in Pakistan: a pilot surveillance study protocol. BMJ Open 2021; 11:e045904. [PMID: 34321293 PMCID: PMC8319991 DOI: 10.1136/bmjopen-2020-045904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Children with primary immunodeficiency disorders (PID) are more susceptible to developing viral infections and are at a substantially increased risk of developing paralytic poliomyelitis. Such children, if given oral polio vaccines tend to excrete poliovirus chronically that may lead to the propagation of highly divergent vaccine-derived poliovirus (VDPV). Consequently, they may act as a reservoir for the community by introducing an altered virus potentially imposing a risk to global polio eradication. However, the risks of chronic and prolonged excretion are not well characterised in the study context. This study seeks to establish a pilot surveillance system for successful identification and monitoring of VDPV excretion among children with PID. It will assess whether the Jeffrey Modell warning signs of PID can be used as an appropriate screening tool for PID in Pakistan. METHODS AND ANALYSIS In this pilot surveillance, recruitment of PID cases is currently done at participating hospitals in Pakistan. Potential children are screened and tested against the Jeffrey Modell Foundation (JMF) warning signs for immunodeficiency and their stool is collected to test for poliovirus excretion. Cases excreting poliovirus are followed until the two consecutive negative stool samples are obtained over a period of 6 months. The data will be analysed to calculate hospital-based proportions of total Immunodeficiency-related vaccine-derived poliovirus (iVDPV) cases over a 2-year period and to determine the sensitivity and specificity of the JMF signs. ETHICS AND DISSEMINATION This protocol was reviewed and approved by the WHO (WHO Reference-2018/811124-0), Aga Khan University (AKU ERC-2018-0380-1029) and National Bioethics Committee (Ref No. 4-87 NBC-308-Y2). The results will be published in an open access peer-reviewed scientific journal and presented to the iVDPV Working Group members, policy-makers, paediatric consultants and fellow researchers with the same domain interest. It may be presented in scientific conferences and seminars in the form of oral or poster presentations.
Collapse
Affiliation(s)
| | - Zaubina Kazi
- Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Ujala Nayyar
- Polio Eradication Initiative, World Health Organization Country Office for Pakistan, Islamabad, Pakistan
| | - Muhammad Shafiq-Ur-Rehman
- Polio Eradication Initiative, World Health Organization Country Office for Pakistan, Islamabad, Pakistan
| | | | - Mach Ondrej
- Polio Department, World Health Organization, Geneva, Switzerland
| | | |
Collapse
|
15
|
Álamo-Junquera D, Politi J, Simón P, Dieli-Crimi R, Borrell RP, Colobran R, Martínez-Gallo M, Campins M, Antón A, Esperalba J, Andrés C, Codina MG, Polverino E, Narciso MR, Molinero E, Rius C. Coordinated Response to Imported Vaccine-Derived Poliovirus Infection, Barcelona, Spain, 2019-2020. Emerg Infect Dis 2021; 27:1513-1516. [PMID: 33900188 PMCID: PMC8084499 DOI: 10.3201/eid2705.204675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In 2019, the Public Health Agency of Barcelona, Spain, was notified of a vaccine-derived poliovirus infection. The patient had an underlying common variable immunodeficiency and no signs of acute flaccid paralysis. We describe the ongoing coordinated response to contain the infection, which included compassionate-use treatment with pocapavir.
Collapse
|
16
|
Monogenic susceptibility to live viral vaccines. Curr Opin Immunol 2021; 72:167-175. [PMID: 34107321 PMCID: PMC9586878 DOI: 10.1016/j.coi.2021.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
Live attenuated viral vaccines (LAV) have saved millions of lives globally through their capacity to elicit strong, cross-reactive and enduring adaptive immune responses. However, LAV can also act as a Trojan horse to reveal inborn errors of immunity, thereby highlighting important protective elements of the healthy antiviral immune response. In the following article, we draw out these lessons by reviewing the spectrum of LAV-associated disease reported in a variety of inborn errors of immunity. We note the contrast between adaptive disorders, which predispose to both LAV and their wild type counterparts, and defects of innate immunity in which parenterally delivered LAV behave in a particularly threatening manner. Recognition of the underlying pathomechanisms can inform our approach to disease management and vaccination in a wider group of individuals, including those receiving immunomodulators that impact the relevant pathways.
Collapse
|
17
|
Mbaeyi C, Moran T, Wadood Z, Ather F, Sykes E, Nikulin J, Al Safadi M, Stehling-Ariza T, Zomahoun L, Ismaili A, Abourshaid N, Asghar H, Korukluoglu G, Duizer E, Ehrhardt D, Burns CC, Sharaf M. Stopping a polio outbreak in the midst of war: Lessons from Syria. Vaccine 2021; 39:3717-3723. [PMID: 34053791 DOI: 10.1016/j.vaccine.2021.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Outbreaks of circulating vaccine-derived polioviruses (cVDPVs) pose a threat to the eventual eradication of all polioviruses. In 2017, an outbreak of cVDPV type 2 (cVDPV2) occurred in the midst of a war in Syria. We describe vaccination-based risk factors for and the successful response to the outbreak. METHODS We performed a descriptive analysis of cVDPV2 cases and key indicators of poliovirus surveillance and vaccination activities during 2016-2018. In the absence of reliable subnational coverage data, we used the caregiver-reported vaccination status of children with non-polio acute flaccid paralysis (AFP) as a proxy for vaccination coverage. We then estimated the relative odds of being unvaccinated against polio, comparing children in areas affected by the outbreak to children in other parts of Syria in order to establish the presence of poliovirus immunity gaps in outbreak affected areas. FINDINGS A total of 74 cVDPV2 cases were reported, with paralysis onset ranging from 3 March to 21 September 2017. All but three cases were reported from Deir-ez-Zor governorate and 84% had received < 3 doses of oral poliovirus vaccine (OPV). After adjusting for age and sex, non-polio AFP case-patients aged 6-59 months in outbreak-affected areas had 2.5 (95% CI: 1.1-5.7) increased odds of being unvaccinated with OPV compared with non-polio AFP case-patients in the same age group in other parts of Syria. Three outbreak response rounds of monovalent OPV type 2 (mOPV2) vaccination were conducted, with governorate-level coverage mostly exceeding 80%. INTERPRETATION Significant declines in both national and subnational polio vaccination coverage, precipitated by war and a humanitarian crisis, led to a cVDPV2 outbreak in Syria that was successfully contained following three rounds of mOPV2 vaccination.
Collapse
Affiliation(s)
- Chukwuma Mbaeyi
- United States Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA.
| | - Thomas Moran
- World Health Organization Headquarters, Avenue Appia 20, 1202 Geneva, Switzerland
| | - Zubair Wadood
- World Health Organization Headquarters, Avenue Appia 20, 1202 Geneva, Switzerland
| | - Fazal Ather
- Middle East and North Africa Office, United Nations Children's Fund, Abdulqader Al-Abed Street, Building No. 15, Tla'a Al-Ali, Amman, Jordan
| | - Emma Sykes
- World Health Organization, Regional Office for the Eastern Mediterranean, Mohammad Jamjoum Street, Ministry of Interior Circle Building No. 5, P.O. Box 811547, Amman 11181, Jordan
| | - Joanna Nikulin
- World Health Organization, Regional Office for the Eastern Mediterranean, Mohammad Jamjoum Street, Ministry of Interior Circle Building No. 5, P.O. Box 811547, Amman 11181, Jordan
| | - Mohammad Al Safadi
- World Health Organization Headquarters, Avenue Appia 20, 1202 Geneva, Switzerland
| | - Tasha Stehling-Ariza
- United States Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Laurel Zomahoun
- World Health Organization Headquarters, Avenue Appia 20, 1202 Geneva, Switzerland
| | - Abdelkarim Ismaili
- World Health Organization, Regional Office for the Eastern Mediterranean, Mohammad Jamjoum Street, Ministry of Interior Circle Building No. 5, P.O. Box 811547, Amman 11181, Jordan
| | - Nidal Abourshaid
- Syria Country Office, United Nations Children's Fund, East Mazzeh, Al Shafiee St., Damascus, Syria
| | - Humayun Asghar
- World Health Organization, Regional Office for the Eastern Mediterranean, Mohammad Jamjoum Street, Ministry of Interior Circle Building No. 5, P.O. Box 811547, Amman 11181, Jordan
| | - Gulay Korukluoglu
- Public Health Institutions of Turkey, Adnan Saygun Cad. No. 55, F Blok 06100 Sihhiye, Ankara, Turkey
| | - Erwin Duizer
- National Polio Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Derek Ehrhardt
- United States Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Cara C Burns
- United States Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Magdi Sharaf
- World Health Organization, Regional Office for the Eastern Mediterranean, Mohammad Jamjoum Street, Ministry of Interior Circle Building No. 5, P.O. Box 811547, Amman 11181, Jordan
| |
Collapse
|
18
|
Shulman LM, Weil M, Somech R, Stauber T, Indenbaum V, Rahav G, Mendelson E, Sofer D. Underperformed and Underreported Testing for Persistent Oropharyngeal Poliovirus Infections in Primary Immune Deficient Patients-Risk for Reemergence of Polioviruses. J Pediatric Infect Dis Soc 2021; 10:326-333. [PMID: 32538431 DOI: 10.1093/jpids/piaa053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/06/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND Individuals with primary immune deficiencies (PIDs) may excrete poliovirus for extended periods and remain a major reservoir for polio after eradication. Poliovirus can spread by fecal-oral or oral-oral transmission. In middle- and high-income countries, oral-oral transmission may be more prevalent than fecal-oral transmission of polioviruses where PIDs patients survive longer. Our aim was to determine the prevalence of prolonged or persistent oropharyngeal poliovirus infections in PIDs. METHODS We performed a literature search for reports of prolonged (excreting poliovirus for ≥6 months and ≤5 years) or persistent (excreting poliovirus for >5 years) poliovirus infections in PIDs. RESULTS There were 140 PID cases with prolonged or persistent poliovirus infections. All had poliovirus-positive stools. Testing of oropharyngeal mucosa was only reported for 6 cases, 4 of which were positive. Molecular analyses demonstrated independent evolution of poliovirus in the gut and oropharyngeal mucosa in 2 cases. Seven PIDs had multiple lineages of the same poliovirus serotype in stools without information about polioviruses in oropharyngeal mucosa. CONCLUSIONS Testing for persistence of poliovirus in oropharyngeal mucosa of PID patients is rare, with virus recovered in 4 of 5 cases in whom stools were positive. Multiple lineages or serotypes in 7 additional PID cases may indicate separate foci of infection, some of which might be in oropharyngeal mucosa. We recommend screening throat swabs in addition to stools for poliovirus in PID patients. Containment protocols for reducing both oral-oral and fecal-oral transmission from PID patients must be formulated for hospitals and community settings.
Collapse
Affiliation(s)
- Lester M Shulman
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Merav Weil
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Tali Stauber
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Victoria Indenbaum
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| | - Galia Rahav
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Infectious Disease Unit, Sheba Medical Center, Tel Hashomer, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Danit Sofer
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
19
|
Jallow S, Wilmshurst JM, Howard W, Copelyn J, Seakamela L, Chan KW, Sebunya R, Sibiya R, Du Plessis H, Jacobs C, Berkowitz N, Blumberg L, McCarthy K, Maseti E, Kamupira M, Dlamini N, Gumede N, Diop OM, Lau YL, Moonsamy S, Eley B, Suchard M. Accelerated Immunodeficiency-associated Vaccine-derived Poliovirus Serotype 3 Sequence Evolution Rate in an 11-week-old Boy With X-linked Agammaglobulinemia and Perinatal Human Immunodeficiency Virus Exposure. Clin Infect Dis 2021; 70:132-135. [PMID: 31086993 PMCID: PMC6912151 DOI: 10.1093/cid/ciz361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/29/2019] [Indexed: 01/10/2023] Open
Abstract
Primary B-cell immunodeficiencies are risk factors for the generation of vaccine-derived polioviruses. We report immunodeficiency-associated vaccine-derived poliovirus serotype 3 in an 11-week-old boy with X-linked agammaglobulinemia. Unique characteristics of this case include early age of presentation, high viral evolutionary rate, and the child's perinatal exposure to human immunodeficiency virus.
Collapse
Affiliation(s)
- Sabelle Jallow
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Neuroscience Institute, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa
| | - Wayne Howard
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg
| | - Julie Copelyn
- Paediatric Infectious Diseases Unit, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa.,Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Lerato Seakamela
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, China
| | - Robert Sebunya
- Department of Paediatric Neurology, Neuroscience Institute, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa
| | - Rosinah Sibiya
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg
| | - Heleen Du Plessis
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg
| | - Charlene Jacobs
- Division of Public Health, Surveillance and Response, Department of Health, Provincial Government of the Western Cape, Cape Town
| | | | | | - Kerrigan McCarthy
- Outbreak Response Unit, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg
| | - Elizabeth Maseti
- Child, Youth and School Health, National Department of Health, Pretoria, South Africa
| | - Mercy Kamupira
- World Health Organization (WHO) Country Office, Pretoria, South Africa
| | - Nonhlanhla Dlamini
- Child, Youth and School Health, National Department of Health, Pretoria, South Africa
| | - Nicksy Gumede
- WHO Regional Office for Africa, Brazzaville, Republic of Congo
| | - Ousmane M Diop
- Polio Department, WHO Strategic Initiatives Cluster, Geneva, Switzerland
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, China
| | - Shelina Moonsamy
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg
| | - Brian Eley
- Paediatric Infectious Diseases Unit, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa.,Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Melinda Suchard
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg.,Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
20
|
Macklin G, Diop OM, Humayun A, Shahmahmoodi S, El-Sayed ZA, Triki H, Rey G, Avagyan T, Grabovac V, Jorba J, Farag N, Mach O. Update on Immunodeficiency-Associated Vaccine-Derived Polioviruses - Worldwide, July 2018-December 2019. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2020; 69:913-917. [PMID: 32673297 PMCID: PMC7366852 DOI: 10.15585/mmwr.mm6928a4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Since establishment of the Global Polio Eradication Initiative* in 1988, polio cases have declined >99.9% worldwide; extensive use of live, attenuated oral poliovirus vaccine (OPV) in routine childhood immunization programs and mass campaigns has led to eradication of two of the three wild poliovirus (WPV) serotypes (types 2 and 3) (1). Despite its safety record, OPV can lead to rare emergence of vaccine-derived polioviruses (VDPVs) when there is prolonged circulation or replication of the vaccine virus. In areas with inadequate OPV coverage, circulating VDPVs (cVDPVs) that have reverted to neurovirulence can cause outbreaks of paralytic polio (2). Immunodeficiency-associated VDPVs (iVDPVs) are isolated from persons with primary immunodeficiency (PID). Infection with iVDPV can progress to paralysis or death of patients with PID, and excretion risks seeding cVDPV outbreaks; both risks might be reduced through antiviral treatment, which is currently under development. This report updates previous reports and includes details of iVDPV cases detected during July 2018-December 2019 (3). During this time, 16 new iVDPV cases were reported from five countries (Argentina, Egypt, Iran, Philippines, and Tunisia). Alongside acute flaccid paralysis (AFP) surveillance (4), surveillance for poliovirus infections among patients with PID has identified an increased number of persons excreting iVDPVs (5). Expansion of PID surveillance will facilitate early detection and follow-up of iVDPV excretion among patients with PID to mitigate the risk for iVDPV spread. This will be critical to help identify all poliovirus excretors and thus achieve and maintain eradication of all polioviruses.
Collapse
|
21
|
Thompson KM, Kalkowska DA. Review of poliovirus modeling performed from 2000 to 2019 to support global polio eradication. Expert Rev Vaccines 2020; 19:661-686. [PMID: 32741232 PMCID: PMC7497282 DOI: 10.1080/14760584.2020.1791093] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Over the last 20 years (2000-2019) the partners of the Global Polio Eradication Initiative (GPEI) invested in the development and application of mathematical models of poliovirus transmission as well as economics, policy, and risk analyses of polio endgame risk management options, including policies related to poliovirus vaccine use during the polio endgame. AREAS COVERED This review provides a historical record of the polio studies published by the three modeling groups that primarily performed the bulk of this work. This review also systematically evaluates the polio transmission and health economic modeling papers published in English in peer-reviewed journals from 2000 to 2019, highlights differences in approaches and methods, shows the geographic coverage of the transmission modeling performed, identified common themes, and discusses instances of similar or conflicting insights or recommendations. EXPERT OPINION Polio modeling performed during the last 20 years substantially impacted polio vaccine choices, immunization policies, and the polio eradication pathway. As the polio endgame continues, national preferences for polio vaccine formulations and immunization strategies will likely continue to change. Future modeling will likely provide important insights about their cost-effectiveness and their relative benefits with respect to controlling polio and potentially achieving and maintaining eradication.
Collapse
|
22
|
Surveillance optimisation to detect poliovirus in the pre-eradication era: a modelling study of England and Wales. Epidemiol Infect 2020; 148:e157. [PMID: 32398193 PMCID: PMC7379320 DOI: 10.1017/s0950268820001004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Surveillance for acute flaccid paralysis (AFP) cases are essential for polio eradication. However, as most poliovirus infections are asymptomatic and some regions of the world are inaccessible, additional surveillance tools require development. Within England and Wales, we demonstrate how inclusion of environmental sampling (ENV) improves the sensitivity of detecting both wild and vaccine-derived polioviruses (VDPVs) when compared to current surveillance. Statistical modelling was used to estimate the spatial risk of wild and VDPV importation and circulation in England and Wales. We estimate the sensitivity of each surveillance mode to detect poliovirus and the probability of being free from poliovirus, defined as being below a pre-specified prevalence of infection. Poliovirus risk was higher within local authorities in Manchester, Birmingham, Bradford and London. The sensitivity of detecting wild poliovirus within a given month using AFP and enterovirus surveillance was estimated to be 0.096 (95% CI 0.055–0.134). Inclusion of ENV in the three highest risk local authorities and a site in London increased surveillance sensitivity to 0.192 (95% CI 0.191–0.193). The sensitivity of ENV strategies can be compared using the framework by varying sites and the frequency of sampling. The probability of being free from poliovirus slowly increased from the date of the last case in 1993. ENV within areas thought to have the highest risk improves detection of poliovirus, and has the potential to improve confidence in the polio-free status of England and Wales and detect VDPVs.
Collapse
|
23
|
Abstract
Pocapavir exhibits antiviral activity against both polio and nonpolio enteroviruses. There is limited experience of the use of this investigational drug in young children with enteroviral infection. We describe the successful clearance of prolonged immunodeficiency-associated vaccine-derived type 3 poliovirus infection by pocapavir in an infant with underlying X-linked agammaglobulinemia.
Collapse
|
24
|
Macklin GR, O'Reilly KM, Grassly NC, Edmunds WJ, Mach O, Santhana Gopala Krishnan R, Voorman A, Vertefeuille JF, Abdelwahab J, Gumede N, Goel A, Sosler S, Sever J, Bandyopadhyay AS, Pallansch MA, Nandy R, Mkanda P, Diop OM, Sutter RW. Evolving epidemiology of poliovirus serotype 2 following withdrawal of the serotype 2 oral poliovirus vaccine. Science 2020; 368:401-405. [PMID: 32193361 PMCID: PMC10805349 DOI: 10.1126/science.aba1238] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/11/2020] [Indexed: 11/02/2022]
Abstract
Although there have been no cases of serotype 2 wild poliovirus for more than 20 years, transmission of serotype 2 vaccine-derived poliovirus (VDPV2) and associated paralytic cases in several continents represent a threat to eradication. The withdrawal of the serotype 2 component of oral poliovirus vaccine (OPV2) was implemented in April 2016 to stop VDPV2 emergence and secure eradication of all serotype 2 poliovirus. Globally, children born after this date have limited immunity to prevent transmission. Using a statistical model, we estimated the emergence date and source of VDPV2s detected between May 2016 and November 2019. Outbreak response campaigns with monovalent OPV2 are the only available method to induce immunity to prevent transmission. Yet our analysis shows that using monovalent OPV2 is generating more paralytic VDPV2 outbreaks with the potential for establishing endemic transmission. A novel OPV2, for which two candidates are currently in clinical trials, is urgently required, together with a contingency strategy if this vaccine does not materialize or perform as anticipated.
Collapse
Affiliation(s)
- G R Macklin
- Centre of Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Polio Eradication, World Health Organization, Geneva, Switzerland
| | - K M O'Reilly
- Centre of Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - N C Grassly
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - W J Edmunds
- Centre of Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - O Mach
- Polio Eradication, World Health Organization, Geneva, Switzerland
| | | | - A Voorman
- Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - J F Vertefeuille
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - J Abdelwahab
- United Nations Children's Fund (UNICEF), New York, NY, USA
| | - N Gumede
- Regional Office for Africa, World Health Organization, Brazzaville, Congo
| | - A Goel
- Polio Eradication, World Health Organization, Geneva, Switzerland
| | - S Sosler
- Gavi (the Vaccine Alliance), Geneva, Switzerland
| | - J Sever
- Rotary International, Evanston, IL, USA
| | | | - M A Pallansch
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - R Nandy
- United Nations Children's Fund (UNICEF), New York, NY, USA
| | - P Mkanda
- Regional Office for Africa, World Health Organization, Brazzaville, Congo
| | - O M Diop
- Polio Eradication, World Health Organization, Geneva, Switzerland
| | - R W Sutter
- Polio Eradication, World Health Organization, Geneva, Switzerland
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| |
Collapse
|
25
|
Alfaro-Murillo JA, Ávila-Agüero ML, Fitzpatrick MC, Crystal CJ, Falleiros-Arlant LH, Galvani AP. The case for replacing live oral polio vaccine with inactivated vaccine in the Americas. Lancet 2020; 395:1163-1166. [PMID: 32247397 PMCID: PMC8572547 DOI: 10.1016/s0140-6736(20)30213-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 11/21/2022]
Affiliation(s)
- Jorge A Alfaro-Murillo
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA
| | - Marí L Ávila-Agüero
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA; Paediatric Infectious Diseases Department, Hospital Nacional de Niños "Dr Carlos Sáenz Herrera", San José, Costa Rica.
| | - Meagan C Fitzpatrick
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Caroline J Crystal
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA
| | | | - Alison P Galvani
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
26
|
Verani JFDS, Laender F. A erradicação da poliomielite em quatro tempos. CAD SAUDE PUBLICA 2020; 36Suppl 2:e00145720. [DOI: 10.1590/0102-311x00145720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022] Open
Abstract
O objetivo deste artigo é rever o “estado da arte” dos avanços, obstáculos e estratégias para atingir a erradicação global da pólio. As ações de controle da poliomielite iniciaram na década de 1960 com o advento das duas vacinas antipoliomielíticas, a vacina oral da pólio (VOP) e a vacina inativada da pólio (VIP). No período de 1985 a 2020, são implementadas estratégias para atingir a meta de erradicação do poliovírus selvagem (WPV). Após o sucesso da interrupção da transmissão autóctone do WPV na região da Américas, foi lançada a meta da erradicação global. Descrevemos o processo de erradicação em quatro tempos: (1) O advento das vacinas VIP e VOP iniciou a era do controle da poliomielite; (2) A utilização massiva e simultânea da VOP teve impacto significativo sobre a transmissão do poliovírus selvagem no final da década de 1970 no Brasil; (3) Políticas públicas (nacionais e internacionais) decidem pela erradicação da transmissão autóctone do poliovírus selvagem nas Américas e definem as estratégias epidemiológicas para interromper a transmissão; e (4) A implantação das estratégias de erradicação interrompeu a transmissão autóctone do WPV em quase todas as regiões do mundo, exceto no Paquistão e Afeganistão, onde, em 2020, cadeias de transmissão do WPV1 desafiam as estratégias de contenção do vírus. Por outro lado, a persistência e a disseminação da circulação do poliovírus derivado da VOP, em países com baixa cobertura vacinal, somadas às dificuldades para substituir a VOP pela VIP constituem, atualmente, os obstáculos para a erradicação a curto prazo. Finalmente, discutimos as estratégias para superar os obstáculos e os desafios na era pós-erradicação.
Collapse
|
27
|
Kalkowska DA, Pallansch MA, Thompson KM. Updated modelling of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters. Epidemiol Infect 2019; 147:e295. [PMID: 31647050 PMCID: PMC6813650 DOI: 10.1017/s095026881900181x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/16/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022] Open
Abstract
Conditions and evidence continue to evolve related to the prediction of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters, which affect assumptions related to forecasting risks and evaluating potential risk management options. Multiple recent reviews provided information about individual iVDPV excreters, but inconsistencies among the reviews raise some challenges. This analysis revisits the available evidence related to iVDPV excreters and provides updated model estimates that can support future risk management decisions. The results suggest that the prevalence of iVDPV excreters remains highly uncertain and variable, but generally confirms the importance of managing the risks associated with iVDPV excreters throughout the polio endgame in the context of successful cessation of all oral poliovirus vaccine use.
Collapse
Affiliation(s)
| | - M. A. Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
28
|
Persistent Infection and Transmission of Senecavirus A from Carrier Sows to Contact Piglets. J Virol 2019; 93:JVI.00819-19. [PMID: 31434730 DOI: 10.1128/jvi.00819-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/22/2019] [Indexed: 01/14/2023] Open
Abstract
Senecavirus A (SVA) is a picornavirus that causes acute vesicular disease (VD), that is clinically indistinguishable from foot-and-mouth disease (FMD), in pigs. Notably, SVA RNA has been detected in lymphoid tissues of infected animals several weeks following resolution of the clinical disease, suggesting that the virus may persist in select host tissues. Here, we investigated the occurrence of persistent SVA infection and the contribution of stressors (transportation, immunosuppression, or parturition) to acute disease and recrudescence from persistent SVA infection. Our results show that transportation stress leads to a slight increase in disease severity following infection. During persistence, transportation, immunosuppression, and parturition stressors did not lead to overt/recrudescent clinical disease, but intermittent viremia and virus shedding were detected up to day 60 postinfection (p.i.) in all treatment groups following stress stimulation. Notably, real-time PCR and in situ hybridization (ISH) assays confirmed that the tonsil harbors SVA RNA during the persistent phase of infection. Immunofluorescence assays (IFA) specific for double-stranded RNA (dsRNA) demonstrated the presence of double-stranded viral RNA in tonsillar cells. Most importantly, infectious SVA was isolated from the tonsil of two animals on day 60 p.i., confirming the occurrence of carrier animals following SVA infection. These findings were supported by the fact that contact piglets (11/44) born to persistently infected sows were infected by SVA, demonstrating successful transmission of the virus from carrier sows to contact piglets. Results here confirm the establishment of persistent infection by SVA and demonstrate successful transmission of the virus from persistently infected animals.IMPORTANCE Persistent viral infections have significant implications for disease control strategies. Previous studies demonstrated the persistence of SVA RNA in the tonsil of experimentally or naturally infected animals long after resolution of the clinical disease. Here, we showed that SVA establishes persistent infection in SVA-infected animals, with the tonsil serving as one of the sites of virus persistence. Importantly, persistently infected carrier animals shedding SVA in oral and nasal secretions or feces can serve as sources of infection to other susceptible animals, as evidenced by successful transmission of SVA from persistently infected sows to contact piglets. These findings unveil an important aspect of SVA infection biology, suggesting that persistently infected pigs may function as reservoirs for SVA.
Collapse
|
29
|
Weil M, Rahav G, Somech R, Stauber T, Alfandari J, Weiss L, Silberstein I, Indenbaum V, Or IB, Mendelson E, Sofer D, Shulman LM. First report of a persistent oropharyngeal infection of type 2 vaccine-derived poliovirus (iVDPV2) in a primary immune deficient (PID) patient after eradication of wild type 2 poliovirus. Int J Infect Dis 2019; 83:40-43. [DOI: 10.1016/j.ijid.2019.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 01/12/2023] Open
|
30
|
Pöyhönen L, Bustamante J, Casanova JL, Jouanguy E, Zhang Q. Life-Threatening Infections Due to Live-Attenuated Vaccines: Early Manifestations of Inborn Errors of Immunity. J Clin Immunol 2019; 39:376-390. [PMID: 31123910 DOI: 10.1007/s10875-019-00642-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Live-attenuated vaccines (LAVs) can protect humans against 12 viral and three bacterial diseases. By definition, any clinical infection caused by a LAV that is sufficiently severe to require medical intervention attests to an inherited or acquired immunodeficiency that must be diagnosed or identified. Self-healing infections can also result from milder forms of immunodeficiency. We review here the inherited forms of immunodeficiency underlying severe infections of LAVs. Inborn errors of immunity (IEIs) underlying bacille Calmette-Guérin (BCG), oral poliovirus (OPV), vaccine measles virus (vMeV), and oral rotavirus vaccine (ORV) disease have been described from 1951, 1963, 1966, and 2009 onward, respectively. For each of these four LAVs, the underlying IEIs show immunological homogeneity despite genetic heterogeneity. Specifically, BCG disease is due to inborn errors of IFN-γ immunity, OPV disease to inborn errors of B cell immunity, vMeV disease to inborn errors of IFN-α/β and IFN-λ immunity, and ORV disease to adaptive immunity. Severe reactions to the other 11 LAVs have been described yet remain "idiopathic," in the absence of known underlying inherited or acquired immunodeficiencies, and are warranted to be the focus of research efforts. The study of IEIs underlying life-threatening LAV infections is clinically important for the affected patients and their families, as well as immunologically, for the study of the molecular and cellular basis of host defense against both attenuated and parental pathogens.
Collapse
Affiliation(s)
- Laura Pöyhönen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
31
|
Oberste MS. Progress of polio eradication and containment requirements after eradication. Transfusion 2018; 58 Suppl 3:3078-3083. [DOI: 10.1111/trf.15018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/05/2018] [Indexed: 11/29/2022]
Affiliation(s)
- M. Steven Oberste
- Division of Viral Diseases, Centers for Disease Control and Prevention Atlanta Georgia
| |
Collapse
|
32
|
Galal NM, Meshaal S, ElHawary R, Nasr E, Bassiouni L, Ashghar H, Farag NH, Mach O, Burns C, Iber J, Chen Q, ElMarsafy A. Poliovirus excretion following vaccination with live poliovirus vaccine in patients with primary immunodeficiency disorders: clinicians' perspectives in the endgame plan for polio eradication. BMC Res Notes 2018; 11:717. [PMID: 30305145 PMCID: PMC6180599 DOI: 10.1186/s13104-018-3822-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023] Open
Abstract
Objective Primary immunodeficiency (PID) patients are prone to developing viral infections and should not be vaccinated with live vaccines. In such patients, prolonged excretion and viral divergence may occur and they may subsequently act as reservoirs in the community introducing mutated virus and jeopardizing polio eradication. One hundred and thirty PID cases were included for poliovirus detection in stool with assessment of divergence of detected polioviruses from oral polio vaccine (OPV) virus. Clinical presentations of PID patients with detectable poliovirus in stool specimens are described. Results Six PID patients (4.5%) had detectable vaccine-derived poliovirus (VDPV) excretion in stool specimens; of these, five patients had severe combined immunodeficiency (two with acute flaccid paralysis, one with meningoencephalitis and two without neurological manifestations), and one patient had X-linked agammaglobulinemia (paralysis developed shortly after diagnosis of immunodeficiency). All six case-patients received trivalent OPV. Five case-patients had type 2 immunodeficiency-related vaccine-derived polioviruses (iVDPV2) excretion; one had concomitant excretion of Sabin like type 3 virus and one was identified as iVDPV1 excretor. Surveillance for poliovirus excretion among PID patients is critical as these patients represent a potential source to reseed polioviruses into populations.
Collapse
Affiliation(s)
- Nermeen M Galal
- Department of Pediatrics, Cairo University, Cairo University Specialized Pediatric Hospital, 1 Ali Ibrahim Street, Mounira, Cairo, Egypt.
| | - Safaa Meshaal
- Department of Clinical and Chemical Pathology, Cairo University, 2 Ali Ibrahim Street, Kasr Alainy, Cairo, 11956, Egypt
| | - Rabab ElHawary
- Department of Clinical and Chemical Pathology, Cairo University, 2 Ali Ibrahim Street, Kasr Alainy, Cairo, 11956, Egypt
| | - Eman Nasr
- Holding Company for Biological Products and Vaccines, VACSERA, Regional Reference Polio Laboratory, 51 Wezaret ElZeraa, Al Agouzah, Dokki, Giza, 22311, Egypt
| | - Laila Bassiouni
- Holding Company for Biological Products and Vaccines, VACSERA, Regional Reference Polio Laboratory, 51 Wezaret ElZeraa, Al Agouzah, Dokki, Giza, 22311, Egypt
| | - Humayun Ashghar
- World Health Organization, EMRO and HQ, Avenue Appia 20, 1202, Geneva, Switzerland
| | - Noha H Farag
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30333, USA
| | - Ondrej Mach
- World Health Organization, EMRO and HQ, Avenue Appia 20, 1202, Geneva, Switzerland
| | - Cara Burns
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30333, USA
| | - Jane Iber
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30333, USA
| | - Qi Chen
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30333, USA
| | - Aisha ElMarsafy
- Department of Pediatrics, Cairo University, Cairo University Specialized Pediatric Hospital, 1 Ali Ibrahim Street, Mounira, Cairo, Egypt
| |
Collapse
|
33
|
Luk ADW, Ni K, Wu Y, Lam KT, Chan KW, Lee PP, Tu W, Mao H, Lau YL. Type I and III Interferon Productions Are Impaired in X-Linked Agammaglobulinemia Patients Toward Poliovirus but Not Influenza Virus. Front Immunol 2018; 9:1826. [PMID: 30147693 PMCID: PMC6095995 DOI: 10.3389/fimmu.2018.01826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background X-linked agammaglobulinemia (XLA) is a primary immunodeficiency caused by Bruton's tyrosine kinase (BTK) mutation. Patients are susceptible to severe enterovirus infections. The underlying mechanism remains unknown. BTK is involved in toll-like receptors pathway, which initiates antiviral responses including interferon (IFN) productions. Objective To demonstrate type I and III IFN productions in dendritic cells of XLA patients is decreased in response to oral poliovirus vaccine (OPV) but not H1N1 virus. Methods Monocyte-derived dendritic cells (MoDCs) were derived from nine XLA patients aged 22-32 years old and 23 buffy coats from Hong Kong Red Cross blood donors. LFM-A13 was used to inhibit BTK. OPV Sabin type 1 and H1N1 influenza virus were used to stimulate MoDCs with RPMI as mock stimulation. The antiviral cytokine productions and phenotypic maturation of MoDCs were determined 24 h post-stimulation. OPV RNA was determined at 0, 6, 12, and 24 h post-stimulation. Results Upon OPV stimulation, IFN-α2, IFN-β, and IFN-λ1 productions in MoDCs from XLA patients and BTK-inhibited MoDCs of healthy controls were significantly lower than that from healthy controls. Whereas upon H1N1 stimulation, the IFN-α2, IFN-β, and IFN-λ1 productions were similar in MoDCs from XLA patients, BTK-inhibited MoDCs of healthy controls and healthy controls. The mean fluorescent intensities (MFI) of CD83, CD86, and MHC-II in MoDCs from XLA patients in response to OPV was similar to that in response to mock stimulation, while the MFI of CD83, CD86, and MHC-II were significantly higher in response to H1N1 stimulation than that in response to mock stimulation. Whereas, the MFI of CD83, CD86, and MHC-II in MoDCs of healthy controls were significantly higher in response to both OPV and H1N1 stimulation compared to that in response to mock stimulation. Conclusion Production of type I and III IFN in response to OPV was deficient in MoDCs from XLA patients, but was normal in response to H1N1 due to deficient BTK function. Moreover, phenotypic maturation of MoDCs from XLA patients was impaired in response to OPV but not to H1N1. These selective impairments may account for the unique susceptibility of XLA patients toward severe enterovirus infections.
Collapse
Affiliation(s)
- Anderson Dik Wai Luk
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ke Ni
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yuet Wu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kwok-Tai Lam
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Pamela P. Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Shenzhen Primary Immunodeficiency Diagnostic and Therapeutic Laboratory, Department of Paediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Shenzhen Primary Immunodeficiency Diagnostic and Therapeutic Laboratory, Department of Paediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Huawei Mao
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Department of Rheumatology and Immunology, Ministry of Education Key Laboratory of Child Development and Disorder, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Shenzhen Primary Immunodeficiency Diagnostic and Therapeutic Laboratory, Department of Paediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
34
|
Duintjer Tebbens RJ, Thompson KM. Polio endgame risks and the possibility of restarting the use of oral poliovirus vaccine. Expert Rev Vaccines 2018; 17:739-751. [PMID: 30056767 PMCID: PMC6168953 DOI: 10.1080/14760584.2018.1506333] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Ending all cases of poliomyelitis requires successful cessation of all oral poliovirus vaccine (OPV), but the Global Polio Eradication Initiative (GPEI) partners should consider the possibility of an OPV restart. AREAS COVERED We review the risks of continued live poliovirus transmission after OPV cessation and characterize events that led to OPV restart in a global model that focused on identifying optimal strategies for OPV cessation and the polio endgame. Numerous different types of events that occurred since the globally coordinated cessation of serotype 2-containing OPV in 2016 highlight the possibility of continued outbreaks after homotypic OPV cessation. Modeling suggests a high risk of uncontrolled outbreaks once more than around 5,000 homotypic polio cases occur after cessation of an OPV serotype, at which point restarting OPV would become necessary to protect most populations. Current efforts to sunset the GPEI and transition its responsibilities to national governments poses risks that may limit the ability to implement management strategies needed to minimize the probability of an OPV restart. EXPERT COMMENTARY OPV restart remains a real possibility, but risk management choices made by the GPEI partners and national governments can reduce the risks of this low-probability but high-consequence event.
Collapse
|
35
|
Kew O, Pallansch M. Breaking the Last Chains of Poliovirus Transmission: Progress and Challenges in Global Polio Eradication. Annu Rev Virol 2018; 5:427-451. [PMID: 30001183 DOI: 10.1146/annurev-virology-101416-041749] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the launch of the Global Polio Eradication Initiative (GPEI), paralytic cases associated with wild poliovirus (WPV) have fallen from ∼350,000 in 1988 to 22 in 2017. WPV type 2 (WPV2) was last detected in 1999, WPV3 in 2012, and WPV1 appeared to be localized to Pakistan and Afghanistan in 2017. Through continuous refinement, the GPEI has overcome operational and biological challenges far more complex and daunting than originally envisioned. Operational challenges had led to sustained WPV endemicity in core reservoirs and widespread dissemination to polio-free countries. The biological challenges derive from intrinsic limitations to the oral poliovirus vaccine: ( a) reduced immunogenicity in high-risk settings and ( b) genetic instability, leading to repeated outbreaks of circulating vaccine-derived polioviruses and prolonged infections in individuals with primary immunodeficiencies. As polio eradication enters its multifaceted endgame, the GPEI, with its technical, operational, and social innovations, stands as the preeminent model for control of vaccine-preventable diseases worldwide.
Collapse
Affiliation(s)
- Olen Kew
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA; ,
| | - Mark Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA; ,
| |
Collapse
|
36
|
Shaghaghi M, Irannejad M, Abolhassani H, Shahmahmoodi S, Hamidieh AA, Soleyman-Jahi S, Yazdani R, Azizi G, Aghamohammadi A. Clearing Vaccine-Derived Poliovirus Infection Following Hematopoietic Stem Cell Transplantation: a Case Report and Review of Literature. J Clin Immunol 2018; 38:610-616. [PMID: 29948575 DOI: 10.1007/s10875-018-0521-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
Abstract
The use of oral poliovirus vaccine in a worldwide scale has led to a 99.9% decrease in annual incidence of wild-type poliomyelitis and the eradication of serotype 2 poliovirus. However, the emergence of vaccine-derived polioviruses (VDPVs) is endangering the eradication program. Patients with combined immunodeficiencies are at increased risk of both vaccine-associated poliomyelitis and prolonged asymptomatic infection with immunodeficiency-associated VDPVs (iVDPVs). Herein, we present a severe combined immunodeficiency patient with prolonged and asymptomatic iVDPV infection. He continued to shed poliovirus during immunoglobulin replacement therapy and cleared the infection following successful hematopoietic stem cell transplantation (HSCT). To explain the efficiency of HSCT in clearing the infection, we reviewed the literature for all reports of HSCT in iVDPV-excreting patients and discussed novel ideas about the role of different immune mechanisms, including cell-mediated interactions, in mounting immune responses against poliovirus infections. This study could provide further insights into the immune mechanisms contributing to the clearance of enteroviral infections.
Collapse
Affiliation(s)
- Mohammadreza Shaghaghi
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mona Irannejad
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Shohreh Shahmahmoodi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Soleyman-Jahi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Tebbens RJD, Thompson KM. Using integrated modeling to support the global eradication of vaccine-preventable diseases. SYSTEM DYNAMICS REVIEW 2018; 34:78-120. [PMID: 34552305 PMCID: PMC8455164 DOI: 10.1002/sdr.1589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 02/11/2018] [Indexed: 05/17/2023]
Abstract
The long-term management of global disease eradication initiatives involves numerous inherently dynamic processes, health and economic trade-offs, significant uncertainty and variability, rare events with big consequences, complex and inter-related decisions, and a requirement for cooperation among a large number of stakeholders. Over the course of more than 16 years of collaborative modeling efforts to support the Global Polio Eradication Initiative, we developed increasingly complex integrated system dynamics models that combined numerous analytical approaches, including differential equation-based modeling, risk and decision analysis, discrete-event and individual-based simulation, probabilistic uncertainty and sensitivity analysis, health economics, and optimization. We discuss the central role of systems thinking and system dynamics in the overall effort and the value of integrating different modeling approaches to appropriately address the trade-offs involved in some of the policy questions. We discuss practical challenges of integrating different analytical tools and we provide our perspective on the future of integrated modeling.
Collapse
|
38
|
Shaghaghi M, Soleyman-Jahi S, Abolhassani H, Yazdani R, Azizi G, Rezaei N, Barbouche MR, McKinlay MA, Aghamohammadi A. New insights into physiopathology of immunodeficiency-associated vaccine-derived poliovirus infection; systematic review of over 5 decades of data. Vaccine 2018; 36:1711-1719. [PMID: 29478755 DOI: 10.1016/j.vaccine.2018.02.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/26/2018] [Accepted: 02/15/2018] [Indexed: 12/25/2022]
Abstract
Widespread administration of oral poliovirus vaccine (OPV) has decreased global incidence of poliomyelitis by ≈99.9%. However, the emergence of vaccine-derived polioviruses (VDPVs) is threatening polio-eradication program. Primary immunodeficiency (PID) patients are at higher risks of vaccine-associated paralytic poliomyelitis (VAPP) and prolonged excretion of immunodeficiency-associated VDPV (iVDPV). We searched Embase, Medline, Science direct, Scopus, Web of Science, and CDC and WHO databases by 30 September 2016, for all reports of iVDPV cases. Patient-level data were extracted form eligible studies. Data on immunization coverage and income-level of countries were extracted from WHO/UNICEF and the WORLD BANK databases, respectively. We assessed bivariate associations between immunological, clinical, and virological parameters, and exploited multivariable modeling to identify independent determinants of poliovirus evolution and patients' outcomes. Study protocol was registered with PROSPERO (CRD42016052931). 4329 duplicate-removed titles were screened. A total of 107 iVDPV cases were identified from 68 eligible articles. The majority of cases were from higher income countries with high polio-immunization coverage. 74 (69.81%) patients developed VAPP. Combined immunodeficiency patients showed lower rates of VAPP (p < .001) and infection clearance (p = .02), compared to humoral immunodeficiency patients. The rate of poliovirus genomic evolution was higher at early stages of replication, decreasing over time until reaching a steady state. Independent of replication duration, higher extent (p = .04) and rates (p = .03) of genome divergence contributed to a less likelihood of virus clearance. PID type (p < .001), VAPP occurrence (p = .008), and income-level of country (p = .04) independently influenced patients' survival. With the use of OPV, new iVDPVs will emerge independent of the rate of immunization coverage. Inherent features of PIDs contribute to the clinical course of iVDPV infection and virus evolution. This finding could shed further light on poliomyelitis pathogenesis and iVDPV evolution pattern. It also has implications for public health, the polio eradication effort and the development of effective antiviral interventions.
Collapse
Affiliation(s)
- Mohammadreza Shaghaghi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeed Soleyman-Jahi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamed-Ridha Barbouche
- Department of Immunology, Institut Pasteur de Tunis and University Tunis El-Manar, Tunis, Tunisia
| | - Mark A McKinlay
- Center for Vaccine Equity, Task Force for Global Health, Atlanta, GA, United States
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|