1
|
Dębia K, Dzięcioł M, Wróblewska A, Janda-Milczarek K. Goutweed ( Aegopodium podagraria L.)-An Edible Weed with Health-Promoting Properties. Molecules 2025; 30:1603. [PMID: 40286209 DOI: 10.3390/molecules30071603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Goutweed (Aegopodium podagraria L.) is a species of medicinal perennial in the celery family (Apiaceae), also considered an edible plant with medicinal effects and high nutritional value. In traditional folk medicine, it was known as a remedy for gout (arthritis) and also used to relieve rheumatism or sciatica. The botanical characteristics, occurrence, nutritional composition, and traditional and present-day applications of this plant are discussed. Furthermore, the important specific plant metabolites including organic acids and their derivatives, flavonoids, coumarins, polyacetylenes and terpene components of essential oil are presented and their biological activity is described. The valuable medicinal properties of Aegopodium podagria L. include anti-inflammatory, antirheumatic, antioxidant, antibacterial, antifungal, diuretic, sedative and protective effects on the kidneys and liver. The aim of this paper was to describe, on the basis of the available literature, the chemical composition, bioactivity and health-promoting properties of this wild edible plant. The information obtained is described and summarized in tables.
Collapse
Affiliation(s)
- Kamila Dębia
- Department of Biology, Parasitology and Pharmaceutical Botany, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstańców Wielkopolskich Street, 70-111 Szczecin, Poland
| | - Małgorzata Dzięcioł
- Department of Chemical Organic Technology and Polymer Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 42 Piastów Avenue, 71-065 Szczecin, Poland
| | - Agnieszka Wróblewska
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 42 Piastów Avenue, 71-065 Szczecin, Poland
| | - Katarzyna Janda-Milczarek
- Department of Biology, Parasitology and Pharmaceutical Botany, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstańców Wielkopolskich Street, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Cho H, Ha SE, Singh R, Kim D, Ro S. microRNAs in Type 1 Diabetes: Roles, Pathological Mechanisms, and Therapeutic Potential. Int J Mol Sci 2025; 26:3301. [PMID: 40244147 PMCID: PMC11990060 DOI: 10.3390/ijms26073301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the progressive destruction of pancreatic β-cells, leading to insulin deficiency. The primary drivers of β-cell destruction in T1D involve autoimmune-mediated processes that trigger chronic inflammation and ultimately β-cell loss. Regulatory microRNAs (miRNAs) play a crucial role in modulating these processes by regulating gene expression through post-transcriptional suppression of target mRNAs. Dysregulated miRNAs have been implicated in T1D pathogenesis, serving as both potential diagnostic biomarkers and therapeutic targets. This review explores the role of miRNAs in T1D, highlighting their involvement in disease mechanisms across both rodent models and human patients. While current antidiabetic therapies manage T1D symptoms, they do not prevent β-cell destruction, leaving patients reliant on lifelong insulin therapy. By summarizing key miRNA expression profiles in diabetic animal models and patients, this review explores the potential of miRNA-based therapies to restore β-cell function and halt or slow the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Seungil Ro
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (H.C.); (S.E.H.); (R.S.); (D.K.)
| |
Collapse
|
3
|
Syed Khaja AS, Binsaleh NK, Qanash H, Alshetaiwi H, Ginawi IAM, Saleem M. Dysregulation and therapeutic prospects of regulatory T cells in type 1 diabetes. Acta Diabetol 2025:10.1007/s00592-025-02478-3. [PMID: 40116924 DOI: 10.1007/s00592-025-02478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that selectively destroys β-cells in the pancreas that produce insulin. Several studies have implicated and elaborated the significant role of regulatory T cells (Tregs) in the pathogenesis of T1D. Tregs are a specialized subset of T cells and are critical regulators of peripheral self-tolerance. However, if the number, function, or stability of these cells is altered, it can lead to autoimmunity. This review summarizes the current knowledge and understanding about Treg function in both health and T1D, Tregs dysregulation, and various factors, including microRNAs, that affect their dysregulation in T1D. The review also focuses on the advantages and challenges of Treg-based therapies for T1D.
Collapse
Affiliation(s)
- Azharuddin Sajid Syed Khaja
- Department of Pathology, College of Medicine, University of Hail, 55476, Hail, Saudi Arabia.
- Medical and Diagnostic Research Centre, University of Hail, 55476, Hail, Saudi Arabia.
| | - Naif K Binsaleh
- Medical and Diagnostic Research Centre, University of Hail, 55476, Hail, Saudi Arabia
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, 55476, Hail, Saudi Arabia
| | - Husam Qanash
- Medical and Diagnostic Research Centre, University of Hail, 55476, Hail, Saudi Arabia
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, 55476, Hail, Saudi Arabia
| | - Hamad Alshetaiwi
- Department of Pathology, College of Medicine, University of Hail, 55476, Hail, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, 55476, Hail, Saudi Arabia
| | | | - Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, 55476, Hail, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, 55476, Hail, Saudi Arabia
| |
Collapse
|
4
|
Li W, Xu G, Chai GW, Ball A, Zhang Q, Kutryk MJB. The MiR-139-5p and CXCR4 axis may play a role in high glucose-induced inflammation by regulating monocyte migration. Sci Rep 2025; 15:6738. [PMID: 40000897 PMCID: PMC11861593 DOI: 10.1038/s41598-025-91100-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
MicroRNAs, a class of small non-coding RNA molecules that regulate gene expression post-transcriptionally, are implicated in various pathological conditions including diabetes mellitus (DM). DM has been increasingly recognized as an inflammatory disease and monocytes play a key role in propagating inflammation under hyperglycemic conditions. We hypothesize that high glucose dysregulates microRNAs to promote monocyte inflammatory activity, which may contribute to the pathogenesis of DM. THP-1 monocytes were cultured in normal (5 mM) and high (25 mM) glucose conditions. RT-qPCR and Western blotting were performed to assay microRNAs and proteins, respectively. Monocytes were transfected with microRNA mimics using Lipofectamine RNAiMAX reagent. THP-1 monocyte growth was assessed using Calcein-AM dye and a Boyden chamber assay was applied to measure monocyte migration. The results showed that high glucose downregulated miR-139-5p associated with increased protein expression of CXCR4, an experimentally validated target of miR-139-5p. Correspondingly, treatment with high glucose resulted in a significant increase in THP-1 cell migration towards SDF-1, a cognate ligand for CXCR4. MiR-139-5p overexpression inhibited high glucose-induced CXCR4 expression, leading to reduced cell migration towards SDF-1. High glucose did not affect THP-1 monocyte growth. In conclusion, the miR-139-5p-CXCR4 axis may play a role in high glucose-induced inflammation by regulating monocyte migration.
Collapse
Affiliation(s)
- Weifang Li
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
| | - Gengchen Xu
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
| | - Gregory W Chai
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
| | - Alexander Ball
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
| | - Qiuwang Zhang
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada.
| | - Michael J B Kutryk
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Tekin H, Lindhardt C, Antvorskov JC, Bager NS, Michaelsen SR, Areškevičiūtė A, Vind JP, Kristensen BW, Josefsen K. Using GeoMx DSP Spatial Proteomics to Investigate Immune Infiltration of NOD Mouse Islet and Exocrine Compartments. Mol Imaging Biol 2024; 26:943-954. [PMID: 39557779 PMCID: PMC11634915 DOI: 10.1007/s11307-024-01961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
PURPOSE Type 1 Diabetes (T1D) pathogenesis involves immune cells infiltrating pancreatic Islets of Langerhans, leading to T cell activation, beta cell destruction, and impaired insulin production. However, infiltration has a heterogenic nature that isn't described in detail, as not all islets are infiltrated. The aim of this study was to investigate if the observed heterogeneity is coupled to differences in immune and/or dysfunctional status of islets or exocrine cells, and if specific markers could elucidate mechanistic details of T1D pathogenesis. PROCEDURES The GeoMx platform was used to spatially quantify protein levels in pancreatic islets and exocrine tissue in Non-Obese Diabetic (NOD) mice. The protein panel included 17 immune activity markers and nine dysfunction markers. Immunohistochemical (IHC) staining and digital image analysis was used to analyze select marker proteins. RESULTS Use of the GeoMx platform to investigate T1D was shown to be possible, as Granzyme B protein levels were found to be lower in distal islet areas when compared to proximal areas. Smooth Muscle Actin protein levels were higher in exocrine areas proximal to immune-infiltrated islets, when compared to distally located exocrine areas. Findings from GeoMx were however not observed in IHC-stained sections. CONCLUSIONS This study demonstrates that investigating T1D is possible with spatial proteomics, as the assays revealed presence of heterogenic islet areas in NOD mice, which may play a role in T1D progression and escape from immune recognition. This study highlights the potential of spatial technologies for elucidating T1D pathogenesis and future treatment strategies.
Collapse
Affiliation(s)
- Hasim Tekin
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Claes Lindhardt
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julie Christine Antvorskov
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Translational Type 1 Diabetes Research, Herlev, Denmark
| | - Nicolai Schou Bager
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Signe Regner Michaelsen
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Aušrinė Areškevičiūtė
- Danish Reference Centre for Prion Disease, Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jonas Pordel Vind
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Knud Josefsen
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
6
|
Matula Z, Király V, Bekő G, Gönczi M, Zóka A, Steinhauser R, Uher F, Vályi-Nagy I. High prevalence of long COVID in anti-TPO positive euthyroid individuals with strongly elevated SARS-CoV-2-specific T cell responses and moderately raised anti-spike IgG levels 23 months post-infection. Front Immunol 2024; 15:1448659. [PMID: 39450181 PMCID: PMC11499158 DOI: 10.3389/fimmu.2024.1448659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, the causative agent of coronavirus disease 2019 (COVID-19), causes post-acute infection syndrome in a surprisingly large number of cases worldwide. This condition, also known as long COVID or post-acute sequelae of COVID-19, is characterized by extremely complex symptoms and pathology. There is a growing consensus that this condition is a consequence of virus-induced immune activation and the inflammatory cascade, with its prolonged duration caused by a persistent virus reservoir. Methods In this cross-sectional study, we analyzed the SARS-CoV-2-specific T cell response against the spike, nucleocapsid, and membrane proteins, as well as the levels of spike-specific IgG antibodies in 51 healthcare workers, categorized into long COVID or convalescent control groups based on the presence or absence of post-acute symptoms. Additionally, we compared the levels of autoantibodies previously identified during acute or critical COVID-19, including anti-dsDNA, anti-cardiolipin, anti-β2-glycoprotein I, anti-neutrophil cytoplasmic antibodies, and anti-thyroid peroxidase (anti-TPO). Furthermore, we analyzed the antibody levels targeting six nuclear antigens within the ENA-6 S panel, as positivity for certain anti-nuclear antibodies has recently been shown to associate not only with acute COVID-19 but also with long COVID. Finally, we examined the frequency of diabetes in both groups. Our investigations were conducted at an average of 18.2 months (convalescent control group) and 23.1 months (long COVID group) after confirmed acute COVID-19 infection, and an average of 21 months after booster vaccination. Results Our results showed significant differences between the two groups regarding the occurrence of acute infection relative to administering the individual vaccine doses, the frequency of acute symptoms, and the T cell response against all structural SARS-CoV-2 proteins. A statistical association was observed between the incidence of long COVID symptoms and highly elevated anti-TPO antibodies based on Pearson's chi-squared test. Although patients with long COVID showed moderately elevated anti-SARS-CoV-2 spike IgG serum antibody levels compared to control participants, and further differences were found regarding the positivity for anti-nuclear antibodies, anti-dsDNA, and HbA1c levels between the two groups, these differences were not statistically significant. Disscussion This study highlights the need for close monitoring of long COVID development in patients with elevated anti-TPO titers, which can be indicated by strongly elevated SARS-CoV-2-specific T cell response and moderately raised anti-spike IgG levels even long after the acute infection. However, our results do not exclude the possibility of new-onset thyroid autoimmunity after COVID-19, and further investigations are required to clarify the etiological link between highly elevated anti-TPO titers and long COVID.
Collapse
Affiliation(s)
- Zsolt Matula
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Viktória Király
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabriella Bekő
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Márton Gönczi
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - András Zóka
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Róbert Steinhauser
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Ferenc Uher
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - István Vályi-Nagy
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| |
Collapse
|
7
|
Fogarasi M, Dima S. Immunomodulatory Functions of TNF-Related Apoptosis-Inducing Ligand in Type 1 Diabetes. Cells 2024; 13:1676. [PMID: 39451194 PMCID: PMC11506310 DOI: 10.3390/cells13201676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF protein superfamily and was initially identified as a protein capable of inducing apoptosis in cancer cells. In addition, TRAIL can promote pro-survival and proliferation signaling in various cell types. Subsequent studies have demonstrated that TRAIL plays several important roles in immunoregulation, immunosuppression, and immune effector functions. Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia due to the loss of insulin-producing β-cells, primarily driven by T-cell-mediated pancreatic islet inflammation. Various genetic, epigenetic, and environmental factors, in conjunction with the immune system, contribute to the initiation, development, and progression of T1D. Recent reports have highlighted TRAIL as an important immunomodulatory molecule with protective effects on pancreatic islets. Experimental data suggest that TRAIL protects against T1D by reducing the proliferation of diabetogenic T cells and pancreatic islet inflammation and restoring normoglycemia in animal models. In this review, we aimed to summarize the consequences of TRAIL action in T1D, focusing on and discussing its signaling mechanisms, role in the immune system, and protective effects in T1D.
Collapse
Affiliation(s)
- Marton Fogarasi
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
8
|
Walczak K, Grzybowska-Adamowicz J, Stawski R, Brzezińska O, Zmysłowska A, Nowak D. Response of Circulating Free Cellular DNA to Repeated Exercise in Men with Type 1 Diabetes Mellitus. J Clin Med 2024; 13:5859. [PMID: 39407919 PMCID: PMC11477321 DOI: 10.3390/jcm13195859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Intense exercise leads to neutrophil extracellular traps (NETs) formation, which triggers cell disintegration. NET, as well as other processes of apoptosis, necrosis, and spontaneous secretion, result in increased levels of cell-free DNA (cf-DNA) in the circulation. An increment of cf-DNA is also observed in autoimmune diseases, such as type 1 diabetes mellitus (T1DM). Repeated exhaustive exercises are an impulse for physiological adaptation; therefore, in this case-control study, we compared the exercise-induced increase in cf-DNA in men with T1DM and healthy controls to determine the development of the tolerance to exercise. Methods: Volunteers performed a treadmill run to exhaustion at a speed matching 70% of their personal VO2 max at three consecutive visits, separated by a 72 h resting period. Blood was collected before and after exercise for the determination of plasma cell-free nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) by real-time PCR, blood cell count and metabolic markers. Results: Each bout of exhaustive exercise induced a great elevation of cf n-DNA levels. An increase in cf mt-DNA was observed after each run. However, the significance of the increase was noted only after the second bout in T1DM participants (p < 0.02). Changes in cf-DNA concentration were transient and returned to baseline values during 72 h of resting. The exercise-induced increment in circulating cf n-DNA and cf mt-DNA was not significantly different between the studied groups (p > 0.05). Conclusions: Cf-DNA appears to be a sensitive marker of inflammation, with a lower post-exercise increase in individuals with T1DM than in healthy men.
Collapse
Affiliation(s)
- Konrad Walczak
- Department of Internal Medicine and Nephrodiabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | | | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland
| | - Olga Brzezińska
- Department of Rheumatology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Agnieszka Zmysłowska
- Department of Clinical Genetics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
9
|
Cebeci E, Katirci E, Karhan M, Korgun ET. The immunomodulator effect of Stevia rebaudiana Bertoni mediated by TNF-α and IL-1β in peripheral blood in diabetic rats. Food Sci Nutr 2024; 12:7581-7590. [PMID: 39479688 PMCID: PMC11521730 DOI: 10.1002/fsn3.4371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Stevia rebaudiana Bertoni, which is a medicinal plant used in the treatment of diabetes, was the focus of this study aiming to investigate its immunomodulatory properties in diabetes. To form the diabetes group, rats were injected intraperitoneally with STZ and rats with blood glucose levels above 200 mg/dL 2 days after STZ injection were included in the diabetes group. To form the stevia and diabetes + stevia groups, stevia was administered daily by gavage to both healthy and diabetic rats for 28 days. At the end of 28 days, the levels of interleukin-1 beta and tumor necrosis factor-alpha in the blood were measured by ELISA. CD3, CD4, and CD8 protein levels in the blood were determined by flow cytometry. Rat body weight increased in the diabetes +25 mg/kg bW stevia group compared with the diabetes group. Blood glucose levels were significantly decreased in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (**p < .01). IL-1β cytokine levels decreased significantly in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (**p < .01). TNF-α cytokine levels decreased significantly in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (**p < .01). The amount of CD8 + T cells decreased significantly in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (*p < .05). The stevia diet leads to a reduction in peripheral circulating cytotoxic T cells and proinflammatory cytokines interleukin-1 beta and tumor necrosis factor-alpha under hyperglycemic conditions.
Collapse
Affiliation(s)
- Erhan Cebeci
- Faculty of Medicine, Department of Histology and EmbryologyAkdeniz UniversityAntalyaTurkey
| | - Ertan Katirci
- Faculty of Medicine, Department of Histology and EmbryologyAhi Evran UniversityKirsehirTurkey
| | - Mustafa Karhan
- Faculty of Engineering, Department of Food EngineeringAkdeniz UniversityAntalyaTurkey
| | - Emin Turkay Korgun
- Faculty of Medicine, Department of Histology and EmbryologyAkdeniz UniversityAntalyaTurkey
| |
Collapse
|
10
|
Faienza MF, Farella I, Khalil M, Portincasa P. Converging Pathways between Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Diabetes in Children. Int J Mol Sci 2024; 25:9924. [PMID: 39337412 PMCID: PMC11432101 DOI: 10.3390/ijms25189924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
In the past thirty years, childhood obesity rates have risen significantly worldwide, affecting over 340 million children in affluent nations. This surge is intricately tied to metabolic disorders, notably insulin resistance, type 2 diabetes mellitus (T2DM), and the continually evolving spectrum of metabolic-associated (dysfunction) steatotic liver disease (MASLD). This review underscores the alarming escalation of childhood obesity and delves comprehensively into the evolving and dynamic changes of nomenclature surrounding diverse conditions of hepatic steatosis, from the initial recognition of non-alcoholic fatty liver disease (NAFLD) to the progressive evolution into MASLD. Moreover, it emphasizes the crucial role of pediatric endocrinologists in thoroughly and accurately investigating MASLD onset in children with T2DM, where each condition influences and exacerbates the progression of the other. This review critically highlights the inadequacies of current screening strategies and diagnosis, stressing the need for a paradigm shift. A proposed solution involves the integration of hepatic magnetic resonance imaging assessment into the diagnostic arsenal for children showing insufficient glycemic control and weight loss post-T2DM diagnosis, thereby complementing conventional liver enzyme testing. This holistic approach aims to significantly enhance diagnostic precision, fostering improved outcomes in this vulnerable high-risk pediatric population.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Ilaria Farella
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| |
Collapse
|
11
|
Abolo L, Ssenkaali J, Mulumba O, Awe OI. Exploring the causal effect of omega-3 polyunsaturated fatty acid levels on the risk of type 1 diabetes: a Mendelian randomization study. Front Genet 2024; 15:1353081. [PMID: 39040994 PMCID: PMC11260775 DOI: 10.3389/fgene.2024.1353081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
The burden of Type 1 diabetes (T1D) is vast and as of 2021, an estimated 8.4 million people were living with the disease worldwide. Predictably, this number could increase to 17.4 million people by 2040. Despite nearly a century of insulin therapy for the management of hyperglycemia in T1D, no therapies exist to treat its underlying etiopathology. Adequate dietary intake of omega-3 fatty acids (ω-3) has been reported in observational studies and Randomized Controlled Trials to be associated with reduced risk of developing T1D but results have been inconclusive. We conducted a Mendelian randomization (MR) study to explore the relationship between ω-3 intake and T1D. We performed a two-sample MR analysis using single nucleotide polymorphisms associated with ω-3 levels in a sample of 114,999 Europeans and their effects on T1D from a genome-wide association study meta-analysis of 24,840 European participants. A main MR analysis using the Inverse-variance weighted (IVW) method was conducted and validated using MR-Egger, Weighted median, and Weighted mode methods. Sensitivity analyses excluding potentially pleiotropic single nucleotide polymorphisms were also performed. Main MR analysis using the IVW method showed no evidence of a causal relationship between ω-3 levels and T1D risk (OR: 0.92, 95% CI: 0.56-1.51, p = 0.745). MR-Egger and Weighted mode methods showed similar results while Weighted median showed a marginally significant association (OR: 1.15, CI: 1.00-1.32, p = 0.048). Sensitivity analysis revealed heterogeneity in the main analysis MR estimates (IVW Q > 100, p < 0.0001) and no directional pleiotropy (Egger intercept: -0.032, p = 0.261). Our study found limited evidence of a causal association between ω-3 and T1D, with only a marginally significant association observed in one of the four MR methods. This challenges the proposition that ω-3-rich diets are of substantial benefit for the prevention and management of T1D.
Collapse
Affiliation(s)
- Lydia Abolo
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University, Kampala, Uganda
- Faculty of Medicine, Lira University, Lira, Uganda
| | - Joachim Ssenkaali
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University, Kampala, Uganda
- Faculty of Medicine, Lira University, Lira, Uganda
| | - Onan Mulumba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University, Kampala, Uganda
| | - Olaitan I. Awe
- Department of Computer Science, University of Ibadan, Ibadan, Oyo, Nigeria
- African Society for Bioinformatics and Computational Biology, Cape Town, South Africa
| |
Collapse
|
12
|
Mannheim J, Johnson D. COVID-19 and Diabetes: An Epidemiologic Overview. Pediatr Ann 2024; 53:e258-e263. [PMID: 38949874 DOI: 10.3928/19382359-20240502-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Past literature on the development of type 1 diabetes (T1D) and type 2 diabetes (T2D) has emphasized the influence of exogenous factors, including viral infections, in the development of these conditions. The coronavirus disease 2019 (COVID-19) pandemic again highlighted the complicated connection between viral infection and the development of diabetes. The complex interplay of proinflammatory, genetic, and socioeconomic factors can help explain the increased incidence of T1D and T2D during the pandemic. Proposed pathophysiological mechanisms connecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to T1D include the expression of angiotensin enzyme 2 receptors on pancreatic islet cells, resultant proinflammatory states, and potential transient damage caused by viral entry. The intricate web of genetic factors, social determinants of health (including the rise of obesity), and the impact of proinflammatory states during SARS-CoV-2 infection on insulin resistance suggests mechanisms linking SARS-CoV-2 infection to the development of diabetes. [Pediatr Ann. 2024;53(7):e258-e263.].
Collapse
|
13
|
Pedersen IB, Kjolby M, Hjelholt AJ, Madsen M, Christensen AMR, Adolfsen D, Hjelle JS, Kremke B, Støvring H, Jessen N, Vestergaard ET, Kristensen K, Frobert O. INfluenza VaccInation To mitigate typE 1 Diabetes (INVITED): a study protocol for a randomised, double-blind, placebo-controlled clinical trial in children and adolescents with recent-onset type 1 diabetes. BMJ Open 2024; 14:e084808. [PMID: 38950997 PMCID: PMC11328621 DOI: 10.1136/bmjopen-2024-084808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
INTRODUCTION Children and adolescents with recent-onset type 1 diabetes (T1D) commonly maintain a certain level of insulin production during the remission phase, which can last months to years. Preserving β-cell function can reduce T1D complications and improve glycaemic control. Influenza vaccination has pleiotropic effects and administration of the vaccine during the early phases of T1D may offer β-cell protection. This study aims to assess the effect of influenza vaccination on preserving β-cell function in children and adolescents with recent-onset T1D. METHODS AND ANALYSIS The INfluenza VaccInation To mitigate typE 1 Diabetes trial is a randomised, double-blind, placebo-controlled, multicentre trial in paediatric patients with recent-onset T1D aged 7-17 years. 100 participants will be randomised in a 1:1 ratio to receive either a standard inactivated quadrivalent influenza vaccine or a placebo within 14 days of diagnosis. The primary outcome is a difference in mean change (from baseline to 12 months) in C-peptide level between groups during a 2-hour mixed-meal tolerance test. Secondary outcomes include mean change (from baseline to 6 months) in C-peptide levels, haemoglobin A1c, ambulatory glucose profiles and insulin requirements. Exploratory outcomes are diabetes-related autoantibodies, inflammatory markers and serum haemagglutinin inhibition antibody titres against the influenza viruses. The current treatment for T1D is largely symptomatic, relying on insulin administration. There is a pressing need for novel pharmacological approaches aimed at modulating the immune system to preserve residual β-cell function. Existing immunotherapies are cost-prohibitive and associated with multiple side effects, whereas influenza vaccination is inexpensive and generally well tolerated. A positive outcome of this study holds potential for immediate implementation into standard care for children and adolescents with recent-onset T1D and may guide future research on immune modulation in T1D. ETHICS AND DISSEMINATION Ethical approval was obtained from Danish Health Authorities prior to participant enrollment. The trial results will be submitted to a peer-reviewed journal. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT05585983 and EudraCT Number 2022-500906-17-01.
Collapse
Affiliation(s)
- Ida Borreby Pedersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus Universitet Faculty of Health, Aarhus, Denmark
| | - Mads Kjolby
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus Universitet, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus N, Denmark
| | - Astrid Johannesson Hjelholt
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Pharmacology, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Madsen
- Department of Paediatrics and Adolescents Medicine, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
| | - Ann-Margrethe Rønholt Christensen
- Department of Paediatrics and Adolescents Medicine, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
| | - Ditte Adolfsen
- Department of Paediatrics and Adolescents Medicine, Viborg Regional Hospital, Viborg, Denmark
| | - Jesper Sand Hjelle
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Paediatrics and Adolescents Medicine, Gødstrup Hospital, Herning, Denmark
| | - Britta Kremke
- Department of Paediatrics and Adolescents Medicine, Randers Regional Hospital, Randers, Denmark
| | - Henrik Støvring
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus Universitet, Aarhus, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus Universitet, Aarhus, Denmark
| | - Esben Thyssen Vestergaard
- Department of Clinical Medicine, Aarhus Universitet Faculty of Health, Aarhus, Denmark
- Department of Paediatrics and Adolescents Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Kurt Kristensen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus Universitet Faculty of Health, Aarhus, Denmark
| | - Ole Frobert
- Department of Biomedicine, Aarhus Universitet, Aarhus, Denmark
- Department of Cardiology, Örebro University Hospital, Orebro, Sweden
| |
Collapse
|
14
|
Liu J, Yang Y, Qi Y. Efficacy of mesenchymal stromal cells in the treatment of type 1 diabetes: a systematic review. Cell Tissue Bank 2024; 25:663-676. [PMID: 38383908 PMCID: PMC11143029 DOI: 10.1007/s10561-024-10128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
To investigate the efficacy of mesenchymal stromal cells in the treatment of type 1 diabetes. Articles about the effects of mesenchymal stromal cells for T1D were retrieved in PubMed, Web of Science, Embase, and the Cochrane Library databases up to July 2023. Additional relevant studies were manually searched through citations. HbA1c, FBG, PBG, insulin requirement and C-peptide were assessed. The risk of bias was evaluated with the ROB 2.0 and ROBINS-I tools. Six RCTs and eight nRCTs were included. Of the 14 studies included, two evaluated BM-MSCs, three evaluated UC-MSCs, five evaluated AHSCT, two evaluated CB-SCs, and two evaluated UC-SCs plus aBM-MNCs. At the end of follow-up, ten studies found that mesenchymal stromal cells improved glycemic outcomes in T1D, while the remaining four studies showed no significant improvement. Findings support the positive impacts observed from utilizing mesenchymal stromal cells in individuals with T1D. However, the overall methodological quality of the identified studies and findings is heterogeneous, limiting the interpretation of the therapeutic benefits of mesenchymal stromal cells in T1D. Methodically rigorous research is needed to further increase credibility.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Endocrinology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430034, China
| | - Yang Yang
- Department of Endocrinology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430034, China.
| | - Yun Qi
- Department of Endocrinology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430034, China.
| |
Collapse
|
15
|
Pant T, Lin CW, Bedrat A, Jia S, Roethle MF, Truchan NA, Ciecko AE, Chen YG, Hessner MJ. Monocytes in type 1 diabetes families exhibit high cytolytic activity and subset abundances that correlate with clinical progression. SCIENCE ADVANCES 2024; 10:eadn2136. [PMID: 38758799 PMCID: PMC11100571 DOI: 10.1126/sciadv.adn2136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Monocytes are immune regulators implicated in the pathogenesis of type 1 diabetes (T1D), an autoimmune disease that targets insulin-producing pancreatic β cells. We determined that monocytes of recent onset (RO) T1D patients and their healthy siblings express proinflammatory/cytolytic transcriptomes and hypersecrete cytokines in response to lipopolysaccharide exposure compared to unrelated healthy controls (uHCs). Flow cytometry measured elevated circulating abundances of intermediate monocytes and >2-fold more CD14+CD16+HLADR+KLRD1+PRF1+ NK-like monocytes among patients with ROT1D compared to uHC. The intermediate to nonclassical monocyte ratio among ROT1D patients correlated with the decline in functional β cell mass during the first 24 months after onset. Among sibling nonprogressors, temporal decreases were measured in the intermediate to nonclassical monocyte ratio and NK-like monocyte abundances; these changes coincided with increases in activated regulatory T cells. In contrast, these monocyte populations exhibited stability among T1D progressors. This study associates heightened monocyte proinflammatory/cytolytic activity with T1D susceptibility and progression and offers insight to the age-dependent decline in T1D susceptibility.
Collapse
Affiliation(s)
- Tarun Pant
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chien-Wei Lin
- Division of Biostatistics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amina Bedrat
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shuang Jia
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mark F. Roethle
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nathan A. Truchan
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley E. Ciecko
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Martin J. Hessner
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
16
|
Nemčić M, Shkunnikova S, Kifer D, Plavša B, Vučić Lovrenčić M, Morahan G, Duvnjak L, Pociot F, Gornik O. N-glycosylation of immunoglobulin A in children and adults with type 1 diabetes mellitus. Heliyon 2024; 10:e30529. [PMID: 38765169 PMCID: PMC11098780 DOI: 10.1016/j.heliyon.2024.e30529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Aims To identify N-glycan structures on immunoglobulin A related to type 1 diabetes mellitus among children at the disease onset and adults with type 1 diabetes mellitus. Methods Human polyclonal IgA N-glycans were profiled using hydrophilic interaction ultra performance liquid chromatography in two cohorts. The first cohort consisted of 62 children at the onset of type 1 diabetes mellitus and 86 of their healthy siblings. The second cohort contained 84 adults with the disease and 84 controls. Associations between N-glycans and type 1 diabetes mellitus were tested using linear mixed model for the paediatric cohort, or general linear model for the adult cohort. False discovery rate was controlled by Benjamini-Hochberg method modified by Li and Ji. Results In children, an increase in a single oligomannose N-glycan was associated with type 1 diabetes mellitus (B = 0.529, p = 0.0067). N-glycome of the adults displayed increased branching (B = 0.466, p = 0.0052), trigalactosylation (B = 0.466, p = 0.0052), trisialylation (B = 0.629, p < 0.001), and mannosylation (B = 0.604, p < 0.001). The strongest association with the disease was a decrease in immunoglobulin A core fucosylation (B = -0.900, p < 0.001). Conclusions Changes in immunoglobulin N-glycosylation patterns in type 1 diabetes point to disruptions in immunoglobulin A catabolism and dysregulated inflammatory capabilities of the antibody, potentially impacting immune responses and inflammation.
Collapse
Affiliation(s)
- Matej Nemčić
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, Zagreb, Croatia
| | - Sofia Shkunnikova
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, Zagreb, Croatia
| | - Domagoj Kifer
- Department of Biophysics, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, Zagreb, Croatia
| | - Branimir Plavša
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, Zagreb, Croatia
| | | | - Grant Morahan
- Centre for Diabetes Research, The Harry Perkins Institute for Medical Research, 6 Verdun St, Nedlands, WA, Australia
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Parkville, Victoria, 3010, VIC, Australia
| | - Lea Duvnjak
- Department of Endocrinology, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Dugi dol 4A, Zagreb, Croatia
| | - Flemming Pociot
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Olga Gornik
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, Zagreb, Croatia
| |
Collapse
|
17
|
Yang K, Zhang Y, Ding J, Li Z, Zhang H, Zou F. Autoimmune CD8+ T cells in type 1 diabetes: from single-cell RNA sequencing to T-cell receptor redirection. Front Endocrinol (Lausanne) 2024; 15:1377322. [PMID: 38800484 PMCID: PMC11116783 DOI: 10.3389/fendo.2024.1377322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by pancreatic β cell destruction and mediated primarily by autoreactive CD8+ T cells. It has been shown that only a small number of stem cell-like β cell-specific CD8+ T cells are needed to convert normal mice into T1D mice; thus, it is likely that T1D can be cured or significantly improved by modulating or altering self-reactive CD8+ T cells. However, stem cell-type, effector and exhausted CD8+ T cells play intricate and important roles in T1D. The highly diverse T-cell receptors (TCRs) also make precise and stable targeted therapy more difficult. Therefore, this review will investigate the mechanisms of autoimmune CD8+ T cells and TCRs in T1D, as well as the related single-cell RNA sequencing (ScRNA-Seq), CRISPR/Cas9, chimeric antigen receptor T-cell (CAR-T) and T-cell receptor-gene engineered T cells (TCR-T), for a detailed and clear overview. This review highlights that targeting CD8+ T cells and their TCRs may be a potential strategy for predicting or treating T1D.
Collapse
Affiliation(s)
- Kangping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yihan Zhang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Hejin Zhang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Muñoz García A, Juksar J, Groen N, Zaldumbide A, de Koning E, Carlotti F. Single-cell transcriptomics reveals a role for pancreatic duct cells as potential mediators of inflammation in diabetes mellitus. Front Immunol 2024; 15:1381319. [PMID: 38742118 PMCID: PMC11089191 DOI: 10.3389/fimmu.2024.1381319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/25/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Inflammation of the pancreas contributes to the development of diabetes mellitus. Although it is well-accepted that local inflammation leads to a progressive loss of functional beta cell mass that eventually causes the onset of the disease, the development of islet inflammation remains unclear. Methods Here, we used single-cell RNA sequencing to explore the cell type-specific molecular response of primary human pancreatic cells exposed to an inflammatory environment. Results We identified a duct subpopulation presenting a unique proinflammatory signature among all pancreatic cell types. Discussion Overall, the findings of this study point towards a role for duct cells in the propagation of islet inflammation, and in immune cell recruitment and activation, which are key steps in the pathophysiology of diabetes mellitus.
Collapse
Affiliation(s)
- Amadeo Muñoz García
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Juri Juksar
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Nathalie Groen
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Eelco de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
19
|
Leenders F, de Koning EJP, Carlotti F. Pancreatic β-Cell Identity Change through the Lens of Single-Cell Omics Research. Int J Mol Sci 2024; 25:4720. [PMID: 38731945 PMCID: PMC11083883 DOI: 10.3390/ijms25094720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
The main hallmark in the development of both type 1 and type 2 diabetes is a decline in functional β-cell mass. This decline is predominantly attributed to β-cell death, although recent findings suggest that the loss of β-cell identity may also contribute to β-cell dysfunction. This phenomenon is characterized by a reduced expression of key markers associated with β-cell identity. This review delves into the insights gained from single-cell omics research specifically focused on β-cell identity. It highlights how single-cell omics based studies have uncovered an unexpected level of heterogeneity among β-cells and have facilitated the identification of distinct β-cell subpopulations through the discovery of cell surface markers, transcriptional regulators, the upregulation of stress-related genes, and alterations in chromatin activity. Furthermore, specific subsets of β-cells have been identified in diabetes, such as displaying an immature, dedifferentiated gene signature, expressing significantly lower insulin mRNA levels, and expressing increased β-cell precursor markers. Additionally, single-cell omics has increased insight into the detrimental effects of diabetes-associated conditions, including endoplasmic reticulum stress, oxidative stress, and inflammation, on β-cell identity. Lastly, this review outlines the factors that may influence the identification of β-cell subpopulations when designing and performing a single-cell omics experiment.
Collapse
Affiliation(s)
| | | | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.L.); (E.J.P.d.K.)
| |
Collapse
|
20
|
Bottardi S, Layne T, Ramòn AC, Quansah N, Wurtele H, Affar EB, Milot E. MNDA, a PYHIN factor involved in transcriptional regulation and apoptosis control in leukocytes. Front Immunol 2024; 15:1395035. [PMID: 38680493 PMCID: PMC11045911 DOI: 10.3389/fimmu.2024.1395035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammation control is critical during the innate immune response. Such response is triggered by the detection of molecules originating from pathogens or damaged host cells by pattern-recognition receptors (PRRs). PRRs subsequently initiate intra-cellular signalling through different pathways, resulting in i) the production of inflammatory cytokines, including type I interferon (IFN), and ii) the initiation of a cascade of events that promote both immediate host responses as well as adaptive immune responses. All human PYRIN and HIN-200 domains (PYHIN) protein family members were initially proposed to be PRRs, although this view has been challenged by reports that revealed their impact on other cellular mechanisms. Of relevance here, the human PYHIN factor myeloid nuclear differentiation antigen (MNDA) has recently been shown to directly control the transcription of genes encoding factors that regulate programmed cell death and inflammation. While MNDA is mainly found in the nucleus of leukocytes of both myeloid (neutrophils and monocytes) and lymphoid (B-cell) origin, its subcellular localization has been shown to be modulated in response to genotoxic agents that induce apoptosis and by bacterial constituents, mediators of inflammation. Prior studies have noted the importance of MNDA as a marker for certain forms of lymphoma, and as a clinical prognostic factor for hematopoietic diseases characterized by defective regulation of apoptosis. Abnormal expression of MNDA has also been associated with altered levels of cytokines and other inflammatory mediators. Refining our comprehension of the regulatory mechanisms governing the expression of MNDA and other PYHIN proteins, as well as enhancing our definition of their molecular functions, could significantly influence the management and treatment strategies of numerous human diseases. Here, we review the current state of knowledge regarding PYHIN proteins and their role in innate and adaptive immune responses. Emphasis will be placed on the regulation, function, and relevance of MNDA expression in the control of gene transcription and RNA stability during cell death and inflammation.
Collapse
Affiliation(s)
- Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
| | - Taylorjade Layne
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
| | - Ailyn C. Ramòn
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
21
|
Pant T, Uche N, Juric M, Zielonka J, Bai X. Regulation of immunomodulatory networks by Nrf2-activation in immune cells: Redox control and therapeutic potential in inflammatory diseases. Redox Biol 2024; 70:103077. [PMID: 38359749 PMCID: PMC10877431 DOI: 10.1016/j.redox.2024.103077] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Inflammatory diseases present a serious health challenge due to their widespread prevalence and the severe impact on patients' lives. In the quest to alleviate the burden of these diseases, nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a pivotal player. As a transcription factor intimately involved in cellular defense against metabolic and oxidative stress, Nrf2's role in modulating the inflammatory responses of immune cells has garnered significant attention. Recent findings suggest that Nrf2's ability to alter the redox status of cells underlies its regulatory effects on immune responses. Our review delves into preclinical and clinical evidence that underscores the complex influence of Nrf2 activators on immune cell phenotypes, particularly in the inflammatory milieu. By offering a detailed analysis of Nrf2's role in different immune cell populations, we cast light on the potential of Nrf2 activators in shaping the immune response towards a more regulated state, mitigating the adverse effects of inflammation through modeling redox status of immune cells. Furthermore, we explore the innovative use of nanoencapsulation techniques that enhance the delivery and efficacy of Nrf2 activators, potentially advancing the treatment strategies for inflammatory ailments. We hope this review will stimulate the development and expansion of Nrf2-targeted treatments that could substantially improve outcomes for patients suffering from a broad range of inflammatory diseases.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Nnamdi Uche
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
22
|
Mohammadi V, Maleki AJ, Nazari M, Siahmansouri A, Moradi A, Elahi R, Esmaeilzadeh A. Chimeric Antigen Receptor (CAR)-Based Cell Therapy for Type 1 Diabetes Mellitus (T1DM); Current Progress and Future Approaches. Stem Cell Rev Rep 2024; 20:585-600. [PMID: 38153634 DOI: 10.1007/s12015-023-10668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that destroys insulin-producing pancreatic β-cells. Insulin replacement therapy is currently the mainstay of treatment for T1DM; however, treatment with insulin does not ameliorate disease progression, as dysregulated immune response and inflammation continue to cause further pancreatic β-cell degradation. Therefore, shifting therapeutic strategies toward immunomodulating approaches could be effective to prevent and reverse disease progression. Different immune-modulatory therapies could be used, e.g., monoclonal-based immunotherapy, mesenchymal stem cell, and immune cell therapy. Since immune-modulatory approaches could have a systemic effect on the immune system and cause toxicity, more specific treatment options should target the immune response against pancreatic β-cells. In this regard, chimeric antigen receptor (CAR)-based immunotherapy could be a promising candidate for modulation of dysregulated immune function in T1DM. CAR-based therapy has previously been approved for a number of hematologic malignancies. Nevertheless, there is renewed interest in CAR T cells' " off-the-shelf " treatment for T1DM. Several pre-clinical studies demonstrated that redirecting antigen-specific CAR T cells, especially regulatory CAR T cells (CAR Tregs), toward the pancreatic β-cells, could prevent diabetes onset and progression in diabetic mice models. Here, we aim to review the current progress of CAR-based immune-cell therapy for T1DM and the corresponding challenges, with a special focus on designing CAR-based immunomodulatory strategies to improve its efficacy in the treatment of T1DM.
Collapse
Affiliation(s)
- Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Siahmansouri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amirhosein Moradi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
23
|
Kioulaphides S, García AJ. Encapsulation and immune protection for type 1 diabetes cell therapy. Adv Drug Deliv Rev 2024; 207:115205. [PMID: 38360355 PMCID: PMC10948298 DOI: 10.1016/j.addr.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Type 1 Diabetes (T1D) involves the autoimmune destruction of insulin-producing β-cells in the pancreas. Exogenous insulin injections are the current therapy but are user-dependent and cannot fully recapitulate physiological insulin secretion dynamics. Since the emergence of allogeneic cell therapy for T1D, the Edmonton Protocol has been the most promising immunosuppression protocol for cadaveric islet transplantation, but the lack of donor islets, poor cell engraftment, and required chronic immunosuppression have limited its application as a therapy for T1D. Encapsulation in biomaterials on the nano-, micro-, and macro-scale offers the potential to integrate islets with the host and protect them from immune responses. This method can be applied to different cell types, including cadaveric, porcine, and stem cell-derived islets, mitigating the issue of a lack of donor cells. This review covers progress in the efforts to integrate insulin-producing cells from multiple sources to T1D patients as a form of cell therapy.
Collapse
Affiliation(s)
- Sophia Kioulaphides
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
24
|
Wang B, Song X, Zhang X, Li Y, Xu M, Liu X, Li B, Fu S, Ling H, Wang Y, Zhang X, Li A, Liu M. Harnessing the benefits of glycine supplementation for improved pancreatic microcirculation in type 1 diabetes mellitus. Microvasc Res 2024; 151:104617. [PMID: 37918522 DOI: 10.1016/j.mvr.2023.104617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is predominantly managed using insulin replacement therapy, however, pancreatic microcirculatory disturbances play a critical role in T1DM pathogenesis, necessitating alternative therapies. This study aimed to investigate the protective effects of glycine supplementation on pancreatic microcirculation in T1DM. Streptozotocin-induced T1DM and glycine-supplemented mice (n = 6 per group) were used alongside control mice. Pancreatic microcirculatory profiles were determined using a laser Doppler blood perfusion monitoring system and wavelet transform spectral analysis. The T1DM group exhibited disorganized pancreatic microcirculatory oscillation. Glycine supplementation significantly restored regular biorhythmic contraction and relaxation, improving blood distribution patterns. Further-more, glycine reversed the lower amplitudes of endothelial oscillators in T1DM mice. Ultrastructural deterioration of islet microvascular endothelial cells (IMECs) and islet microvascular pericytes, including membrane and organelle damage, collagenous fiber proliferation, and reduced edema, was substantially reversed by glycine supplementation. Additionally, glycine supplementation inhibited the production of IL-6, TNF-α, IFN-γ, pro-MMP-9, and VEGF-A in T1DM, with no significant changes in energetic metabolism observed in glycine-supplemented IMECs. A statistically significant decrease in MDA levels accompanied by an increase in SOD levels was also observed with glycine supplementation. Notably, negative correlations emerged between inflammatory cytokines and microhemodynamic profiles. These findings suggest that glycine supplementation may offer a promising therapeutic approach for protecting against pancreatic microcirculatory dysfunction in T1DM.
Collapse
Affiliation(s)
- Bing Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xiaohong Song
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xu Zhang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing 100034, China
| | - Yuan Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Mengting Xu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xueting Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Sunjing Fu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Hao Ling
- Department of Radiology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yingyu Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xiaoyan Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ailing Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Mingming Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China..
| |
Collapse
|
25
|
Xue C, Chen K, Gao Z, Bao T, Dong L, Zhao L, Tong X, Li X. Common mechanisms underlying diabetic vascular complications: focus on the interaction of metabolic disorders, immuno-inflammation, and endothelial dysfunction. Cell Commun Signal 2023; 21:298. [PMID: 37904236 PMCID: PMC10614351 DOI: 10.1186/s12964-022-01016-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/11/2022] [Indexed: 11/01/2023] Open
Abstract
Diabetic vascular complications (DVCs), including macro- and micro- angiopathy, account for a high percentage of mortality in patients with diabetes mellitus (DM). Endothelial dysfunction is the initial and role step for the pathogenesis of DVCs. Hyperglycemia and lipid metabolism disorders contribute to endothelial dysfunction via direct injury of metabolism products, crosstalk between immunity and inflammation, as well as related interaction network. Although physiological and phenotypic differences support their specified changes in different targeted organs, there are still several common mechanisms underlying DVCs. Also, inhibitors of these common mechanisms may decrease the incidence of DVCs effectively. Thus, this review may provide new insights into the possible measures for the secondary prevention of DM. And we discussed the current limitations of those present preventive measures in DVCs research. Video Abstract.
Collapse
Affiliation(s)
- Chongxiang Xue
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zezheng Gao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - LiShuo Dong
- Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
26
|
Tong KI, Hopstock LA, Cook S. Association of C-reactive protein with future development of diabetes: a population-based 7-year cohort study among Norwegian adults aged 30 and older in the Tromsø Study 2007-2016. BMJ Open 2023; 13:e070284. [PMID: 37775289 PMCID: PMC10546179 DOI: 10.1136/bmjopen-2022-070284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/29/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVES The extent to which observed associations between high-sensitivity C-reactive protein (hs-CRP) and incident diabetes are explained by obesity and hypertension remains unclear. This study aimed to investigate the association of hs-CRP with developing diabetes in a Norwegian general population sample. DESIGN A cohort study using two population-based surveys of the Tromsø Study: the sixth survey Tromsø6 (2007-2008) as baseline and the seventh survey Tromsø7 (2015-2016) at follow-up. SETTING Tromsø municipality of Norway, a country with increasing proportion of older adults and a high prevalence of overweight, obesity and hypertension. PARTICIPANTS 8067 women and men without diabetes, aged 30-87 years, at baseline Tromsø6 who subsequently also participated in Tromsø7. OUTCOME MEASURES Diabetes defined by self-reported diabetes, diabetes medication use and/or HbA1c≥6.5% (≥48 mmol/mol) was modelled by logistic regression for the association with baseline hs-CRP, either stratified into three quantiles or as continuous variable, adjusted for demographic factors, behavioural and cardiovascular risk factors, lipid-lowering medication use, and hypertension. Interactions by sex, body mass index (BMI), hypertension or abdominal obesity were assessed by adding interaction terms in the fully adjusted model. RESULTS There were 320 (4.0%) diabetes cases after 7 years. After multivariable adjustment including obesity and hypertension, individuals in the highest hs-CRP tertile 3 had 73% higher odds of developing diabetes (OR 1.73; p=0.004; 95% CI 1.20 to 2.49) when compared with the lowest tertile or 28% higher odds of incidence per one-log of hs-CRP increment (OR 1.28; p=0.003; 95% CI 1.09 to 1.50). There was no evidence for interaction between hs-CRP and sex, hypertension, BMI or abdominal obesity. CONCLUSIONS Raised hs-CRP was associated with future diabetes development in a Norwegian adult population sample. The CRP-diabetes association could not be fully explained by obesity or hypertension.
Collapse
Affiliation(s)
- Kit I Tong
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Sarah Cook
- School of Public Health, Imperial College London, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
27
|
Blagov AV, Summerhill VI, Sukhorukov VN, Popov MA, Grechko AV, Orekhov AN. Type 1 diabetes mellitus: Inflammation, mitophagy, and mitochondrial function. Mitochondrion 2023; 72:11-21. [PMID: 37453498 DOI: 10.1016/j.mito.2023.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a T-cell-mediated autoimmune disease characterized by the damage of insulin-secreting β-cells in the pancreatic islets of Langerhans. To date, its etiology is not fully understood, despite decades of active search for root causes, and that underlines the complexity of the disease pathogenesis. It was found that mitophagy plays a regulatory role in the development of autoimmune response during T1DM pathogenesis by preventing the accumulation of defective/dysfunctional mitochondria in pancreatic cells. Mitochondrial dysfunction due to impaired mitophagy with the release of mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA (mtDNA) contributes to initiating an inflammatory response by elevating pro-inflammatory cytokines and interacting with receptors like those involved in the pathogen-associated response. Moreover, mtROS and mtDNA activate pathways leading to the development of chronic inflammation, which is tightly implicated in T1DM autoimmunity. In this review, we summarized the evidence highlighting the functional role of mitophagy and mitochondria in the development of immune response and chronic inflammation during T1DM pathogenesis. Several anti-inflammatory and mitophagy-related treatment options have been explored.
Collapse
Affiliation(s)
- Alexander V Blagov
- Institute of General Pathology and Pathophysiology, 8, Baltiiskaya Street, Moscow 125315, Russia.
| | - Volha I Summerhill
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia.
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8, Baltiiskaya Street, Moscow 125315, Russia; Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia.
| | - Mikhail A Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), 61/2, Shchepkin Street, Moscow 129110, Russia.
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3, Solyanka Street, Moscow 109240, Russia.
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8, Baltiiskaya Street, Moscow 125315, Russia; Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia.
| |
Collapse
|
28
|
Hossen MM, Ma Y, Yin Z, Xia Y, Du J, Huang JY, Huang JJ, Zou L, Ye Z, Huang Z. Current understanding of CTLA-4: from mechanism to autoimmune diseases. Front Immunol 2023; 14:1198365. [PMID: 37497212 PMCID: PMC10367421 DOI: 10.3389/fimmu.2023.1198365] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Autoimmune diseases (ADs) are characterized by the production of autoreactive lymphocytes, immune responses to self-antigens, and inflammation in related tissues and organs. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is majorly expressed in activated T cells and works as a critical regulator in the inflammatory response. In this review, we first describe the structure, expression, and how the signaling pathways of CTLA-4 participate in reducing effector T-cell activity and enhancing the immunomodulatory ability of regulatory T (Treg) cells to reduce immune response, maintain immune homeostasis, and maintain autoimmune silence. We then focused on the correlation between CTLA-4 and different ADs and how this molecule regulates the immune activity of the diseases and inhibits the onset, progression, and pathology of various ADs. Finally, we summarized the current progress of CTLA-4 as a therapeutic target for various ADs.
Collapse
Affiliation(s)
- Md Munnaf Hossen
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Yanmei Ma
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Yuhao Xia
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jim Yi Huang
- Department of Psychology, University of Oklahoma, Norman, OK, United States
| | - Jennifer Jin Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Linghua Zou
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Rehabilitation Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhong Huang
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| |
Collapse
|
29
|
Ludovico ID, Sarkar S, Elliott E, Virtanen SM, Erlund I, Ramanadham S, Mirmira RG, Metz TO, Nakayasu ES. Fatty acid-mediated signaling as a target for developing type 1 diabetes therapies. Expert Opin Ther Targets 2023; 27:793-806. [PMID: 37706269 PMCID: PMC10591803 DOI: 10.1080/14728222.2023.2259099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION Type 1 diabetes (T1D) is an autoimmune disease in which pro-inflammatory and cytotoxic signaling drive the death of the insulin-producing β cells. This complex signaling is regulated in part by fatty acids and their bioproducts, making them excellent therapeutic targets. AREAS COVERED We provide an overview of the fatty acid actions on β cells by discussing how they can cause lipotoxicity or regulate inflammatory response during insulitis. We also discuss how diet can affect the availability of fatty acids and disease development. Finally, we discuss development avenues that need further exploration. EXPERT OPINION Fatty acids, such as hydroxyl fatty acids, ω-3 fatty acids, and their downstream products, are druggable candidates that promote protective signaling. Inhibitors and antagonists of enzymes and receptors of arachidonic acid and free fatty acids, along with their derived metabolites, which cause pro-inflammatory and cytotoxic responses, have the potential to be developed as therapeutic targets also. Further, because diet is the main source of fatty acid intake in humans, balancing protective and pro-inflammatory/cytotoxic fatty acid levels through dietary therapy may have beneficial effects, delaying T1D progression. Therefore, therapeutic interventions targeting fatty acid signaling hold potential as avenues to treat T1D.
Collapse
Affiliation(s)
- Ivo Díaz Ludovico
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Emily Elliott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Suvi M. Virtanen
- Health and Well-Being Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland
- Tampere University Hospital, Research, Development and Innovation Center, Tampere, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Iris Erlund
- Department of Governmental Services, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
30
|
Kabakchieva P, Assyov Y, Gerasoudis S, Vasilev G, Peshevska-Sekulovska M, Sekulovski M, Lazova S, Miteva DG, Gulinac M, Tomov L, Velikova T. Islet transplantation-immunological challenges and current perspectives. World J Transplant 2023; 13:107-121. [PMID: 37388389 PMCID: PMC10303418 DOI: 10.5500/wjt.v13.i4.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Pancreatic islet transplantation is a minimally invasive procedure aiming to reverse the effects of insulin deficiency in patients with type 1 diabetes (T1D) by transplanting pancreatic beta cells. Overall, pancreatic islet transplantation has improved to a great extent, and cellular replacement will likely become the mainstay treatment. We review pancreatic islet transplantation as a treatment for T1D and the immunological challenges faced. Published data demonstrated that the time for islet cell transfusion varied between 2 and 10 h. Approximately 54% of the patients gained insulin independence at the end of the first year, while only 20% remained insulin-free at the end of the second year. Eventually, most transplanted patients return to using some form of exogenous insulin within a few years after the transplantation, which imposed the need to improve immunological factors before transplantation. We also discuss the immunosuppressive regimens, apoptotic donor lymphocytes, anti-TIM-1 antibodies, mixed chimerism-based tolerance induction, induction of antigen-specific tolerance utilizing ethylene carbodiimide-fixed splenocytes, pretransplant infusions of donor apoptotic cells, B cell depletion, preconditioning of isolated islets, inducing local immunotolerance, cell encapsulation and immunoisolation, using of biomaterials, immunomodulatory cells, etc.
Collapse
Affiliation(s)
- Plamena Kabakchieva
- Clinic of Internal Diseases, Naval Hospital-Varna, Military Medical Academy, Varna 9010, Bulgaria
| | - Yavor Assyov
- Clinic of Endocrinology, Department of Internal Diseases, University Hospital "Alexandrovska", Medical University-Sofia, Sofia 1434, Bulgaria
| | | | - Georgi Vasilev
- Department of Neurology, Faculty of Medicine, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Anesthesiology and Intensive Care, University hospital Lozenetz, Sofia 1407, Bulgaria
| | - Snezhina Lazova
- Department of Pediatric, University Hospital "N. I. Pirogov", Sofia 1606, Bulgaria
- Department of Healthcare, Faculty of Public Health "Prof. Tsekomir Vodenicharov, MD, DSc", Medical University of Sofia, Sofia 1527, Bulgaria
| | | | - Milena Gulinac
- Department of General and Clinical Pathology, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Latchezar Tomov
- Department of Informatics, New Bulgarian University, Sofia 1618, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
31
|
Singh A, Afshan N, Singh A, Singh SK, Yadav S, Kumar M, Sarma DK, Verma V. Recent trends and advances in type 1 diabetes therapeutics: A comprehensive review. Eur J Cell Biol 2023; 102:151329. [PMID: 37295265 DOI: 10.1016/j.ejcb.2023.151329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/12/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the destruction of pancreatic β-cells, leading to insulin deficiency. Insulin replacement therapy is the current standard of care for T1D, but it has significant limitations. However, stem cell-based replacement therapy has the potential to restore β-cell function and achieve glycaemic control eradicating the necessity for drugs or injecting insulin externally. While significant progress has been made in preclinical studies, the clinical translation of stem cell therapy for T1D is still in its early stages. In continuation, further research is essentially required to determine the safety and efficacy of stem cell therapies and to develop strategies to prevent immune rejection of stem cell-derived β-cells. The current review highlights the current state of cellular therapies for T1D including, different types of stem cell therapies, gene therapy, immunotherapy, artificial pancreas, and cell encapsulation being investigated, and their potential for clinical translation.
Collapse
Affiliation(s)
- Akash Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Noor Afshan
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anshuman Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Suraj Kumar Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sudhanshu Yadav
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Vinod Verma
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
32
|
Nainu F, Frediansyah A, Mamada SS, Permana AD, Salampe M, Chandran D, Emran TB, Simal-Gandara J. Natural products targeting inflammation-related metabolic disorders: A comprehensive review. Heliyon 2023; 9:e16919. [PMID: 37346355 PMCID: PMC10279840 DOI: 10.1016/j.heliyon.2023.e16919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Currently, the incidence of metabolic disorders is increasing, setting a challenge to global health. With major advancement in the diagnostic tools and clinical procedures, much has been known in the etiology of metabolic disorders and their corresponding pathophysiologies. In addition, the use of in vitro and in vivo experimental models prior to clinical studies has promoted numerous biomedical breakthroughs, including in the discovery and development of drug candidates to treat metabolic disorders. Indeed, chemicals isolated from natural products have been extensively studied as prospective drug candidates to manage diabetes, obesity, heart-related diseases, and cancer, partly due to their antioxidant and anti-inflammatory properties. Continuous efforts have been made in parallel to improve their bioactivity and bioavailability using selected drug delivery approaches. Here, we provide insights on recent progress in the role of inflammatory-mediated responses on the initiation of metabolic disorders, with particular reference to diabetes mellitus, obesity, heart-related diseases, and cancer. In addition, we discussed the prospective role of natural products in the management of diabetes, obesity, heart-related diseases, and cancers and provide lists of potential biological targets for high throughput screening in drug discovery and development. Lastly, we discussed findings observed in the preclinical and clinical studies prior to identifying suitable approaches on the phytochemical drug delivery systems that are potential to be used in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | | | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
33
|
Manilla V, Santopaolo F, Gasbarrini A, Ponziani FR. Type 2 Diabetes Mellitus and Liver Disease: Across the Gut-Liver Axis from Fibrosis to Cancer. Nutrients 2023; 15:nu15112521. [PMID: 37299482 DOI: 10.3390/nu15112521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Type 2 diabetes mellitus is a widespread disease worldwide, and is one of the cornerstones of metabolic syndrome. The existence of a strong relationship between diabetes and the progression of liver fibrosis has been demonstrated by several studies, using invasive and noninvasive techniques. Patients with type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) show faster progression of fibrosis than patients without diabetes. Many confounding factors make it difficult to determine the exact mechanisms involved. What we know so far is that both liver fibrosis and T2DM are expressions of metabolic dysfunction, and we recognize similar risk factors. Interestingly, both are promoted by metabolic endotoxemia, a low-grade inflammatory condition caused by increased endotoxin levels and linked to intestinal dysbiosis and increased intestinal permeability. There is broad evidence on the role of the gut microbiota in the progression of liver disease, through both metabolic and inflammatory mechanisms. Therefore, dysbiosis that is associated with diabetes can act as a modifier of the natural evolution of NAFLD. In addition to diet, hypoglycemic drugs play an important role in this scenario, and their benefit is also the result of effects exerted in the gut. Here, we provide an overview of the mechanisms that explain why diabetic patients show a more rapid progression of liver disease up to hepatocellular carcinoma (HCC), focusing especially on those involving the gut-liver axis.
Collapse
Affiliation(s)
- Vittoria Manilla
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
34
|
Rabinovitch A, Koshelev D, Lagunas-Rangel FA, Kosheleva L, Gavra T, Schiöth HB, Levit S. Efficacy of combination therapy with GABA, a DPP-4i and a PPI as an adjunct to insulin therapy in patients with type 1 diabetes. Front Endocrinol (Lausanne) 2023; 14:1171886. [PMID: 37293502 PMCID: PMC10246767 DOI: 10.3389/fendo.2023.1171886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction The purpose of this retrospective clinic chart review study was to determine the potential of a combination therapy (CT) consisting of γ-aminobutyric acid (GABA), a dipeptidyl peptidase-4 inhibitor (DPP-4i), and a proton pump inhibitor (PPI) to improve glycemic control as an adjunct to insulin therapy in patients with type 1 diabetes (T1D). Research design and methods Nineteen patients with T1D on insulin therapy were treated with additional CT in oral form. Fasting blood glucose (FBG), HbA1c, insulin dose-adjusted HbA1c (IDA-A1c), daily insulin dose, insulin/weight ratio (IWR), and fasting plasma C-peptide were measured after 26-42 weeks of treatments. Results FBG, HbA1c, IDA-A1c, insulin dose and IWR were all significantly decreased while plasma C-peptide was significantly increased by the CT. Treatment outcomes were further analyzed by separation of the 19 patients into two groups. One group started on the CT within 12 months of insulin treatment (early therapy, 10 patients) and another group started on this therapy only after 12 months of insulin treatment (late therapy, 9 patients). FBG, IDA-A1c, insulin dose, and IWR decreased significantly in both the early and late CT groups, however to a better extent in the early therapy group. Moreover, plasma C-peptide increased significantly only in the early therapy group, and 7 of the 10 patients in this group were able to discontinue insulin treatment while maintaining good glycemic control to study end compared with none of the 9 patients in the late therapy group. Conclusion These results support the concept that the combination of GABA, a DPP-4i and a PPI as an adjunct to insulin therapy improves glycemic control in patients with T1D, and that the insulin dose required for glycemic control can be reduced or even eliminated in some patients receiving this novel therapy.
Collapse
Affiliation(s)
| | - Daniil Koshelev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Levicure LTD, Rishon Lezion, Israel
| | | | - Liudmila Kosheleva
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Levicure LTD, Rishon Lezion, Israel
| | - Tali Gavra
- Research Unit, Assuta Medical Centers, Tel Aviv, Israel
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Shmuel Levit
- Levicure LTD, Rishon Lezion, Israel
- Diabetes and Metabolism Institute, Assuta Medical Centers, Tel Aviv, Israel
| |
Collapse
|
35
|
Senkevich K, Alipour P, Chernyavskaya E, Yu E, Noyce AJ, Gan-Or Z. Potential Protective Link Between Type I Diabetes and Parkinson's Disease Risk and Progression. Mov Disord 2023. [PMID: 37148456 DOI: 10.1002/mds.29424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Epidemiological studies suggested an association between Parkinson's disease (PD) and type 2 diabetes, but less is known about type 1 diabetes (T1D) and PD. OBJECTIVE This study sought to explore the association between T1D and PD. METHODS We used Mendelian randomization, linkage disequilibrium score regression, and multi-tissue transcriptome-wide analysis to examine the association between PD and T1D. RESULTS Mendelian randomization showed a potentially protective role of T1D for PD risk (odds ratio [OR], 0.97; 95% confidence interval [CI], 0.94-0.99; P = 0.039), as well as motor (OR, 0.94; 95% CI, 0.88-0.99; P = 0.044) and cognitive progression (OR, 1.50; 95% CI, 1.08-2.09; P = 0.015). We further found a negative genetic correlation between T1D and PD (rg = -0.17; P = 0.016), and we identified eight genes in cross-tissue transcriptome-wide analysis that were associated with both traits. CONCLUSIONS Our results suggest a potential genetic link between T1D and PD risk and progression. Larger comprehensive epidemiological and genetic studies are required to validate our findings. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Konstantin Senkevich
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Paria Alipour
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | | | - Eric Yu
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
36
|
Ke Q, Greenawalt AN, Manukonda V, Ji X, Tisch RM. The regulation of self-tolerance and the role of inflammasome molecules. Front Immunol 2023; 14:1154552. [PMID: 37081890 PMCID: PMC10110889 DOI: 10.3389/fimmu.2023.1154552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Inflammasome molecules make up a family of receptors that typically function to initiate a proinflammatory response upon infection by microbial pathogens. Dysregulation of inflammasome activity has been linked to unwanted chronic inflammation, which has also been implicated in certain autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes, systemic lupus erythematosus, and related animal models. Classical inflammasome activation-dependent events have intrinsic and extrinsic effects on both innate and adaptive immune effectors, as well as resident cells in the target tissue, which all can contribute to an autoimmune response. Recently, inflammasome molecules have also been found to regulate the differentiation and function of immune effector cells independent of classical inflammasome-activated inflammation. These alternative functions for inflammasome molecules shape the nature of the adaptive immune response, that in turn can either promote or suppress the progression of autoimmunity. In this review we will summarize the roles of inflammasome molecules in regulating self-tolerance and the development of autoimmunity.
Collapse
Affiliation(s)
- Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ashley Nicole Greenawalt
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Veera Manukonda
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xingqi Ji
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland Michael Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
37
|
Fan T, Yu Y, Chen YL, Gu P, Wong S, Xia ZY, Liu JA, Cheung CW. Histone deacetylase 5-induced deficiency of signal transducer and activator of transcription-3 acetylation contributes to spinal astrocytes degeneration in painful diabetic neuropathy. Glia 2023; 71:1099-1119. [PMID: 36579750 DOI: 10.1002/glia.24328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
Diabetes patients with painful diabetic neuropathy (PDN) show severe spinal atrophy, suggesting pathological changes of the spinal cord contributes to central sensitization. However, the cellular changes and underlying molecular mechanisms within the diabetic spinal cord are less clear. By using a rat model of type 1 diabetes (T1D), we noted an extensive and irreversible spinal astrocyte degeneration at an early stage of T1D, which is highly associated with the chronification of PDN. Molecularly, acetylation of astrocytic signal transducer and activator of transcription-3 (STAT3) that is essential for maintaining the homeostatic astrocytes population was significantly impaired in the T1D model, resulting in a dramatic loss of spinal astrocytes and consequently promoting pain hypersensitivity. Mechanistically, class IIa histone deacetylase, HDAC5 were aberrantly activated in spinal astrocytes of diabetic rats, which promoted STAT3 deacetylation by direct protein-protein interactions, leading to the PDN phenotypes. Restoration of STAT3 signaling or inhibition of HDAC5 rescued astrocyte deficiency and attenuated PDN in the T1D model. Our work identifies the inhibitory axis of HDAC5-STAT3 induced astrocyte deficiency as a key mechanism underlying the pathogenesis of the diabetic spinal cord that paves the way for potential therapy development for PDN.
Collapse
Affiliation(s)
- Tingting Fan
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ying Yu
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yong-Long Chen
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Pan Gu
- Department of Anaesthesiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Stanley Wong
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zheng-Yuan Xia
- Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jessica Aijia Liu
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Chi-Wai Cheung
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR.,Department of Anaesthesiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
38
|
Kiaf B, Bode K, Schuster C, Kissler S. Gata3 is detrimental to regulatory T cell function in autoimmune diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533297. [PMID: 36993342 PMCID: PMC10055278 DOI: 10.1101/2023.03.18.533297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Regulatory T cells (Tregs) protect against autoimmunity. In type 1 diabetes (T1D), Tregs slow the progression of beta cell autoimmunity within pancreatic islets. Increasing the potency or frequency of Tregs can prevent diabetes, as evidenced by studies in the nonobese diabetic (NOD) mouse model for T1D. We report herein that a significant proportion of islets Tregs in NOD mice express Gata3. The expression of Gata3 was correlated with the presence of IL-33, a cytokine known to induce and expand Gata3+ Tregs. Despite significantly increasing the frequency of Tregs in the pancreas, exogenous IL-33 was not protective. Based on these data, we hypothesized that Gata3 is deleterious to Treg function in autoimmune diabetes. To test this notion, we generated NOD mice with a Treg-specific deletion of Gata3. We found that deleting Gata3 in Tregs strongly protected against diabetes. Disease protection was associated with a shift of islet Tregs toward a suppressive CXCR3+Foxp3+ population. Our results suggest that islet Gata3+ Tregs are maladaptive and that this Treg subpopulation compromises the regulation of islet autoimmunity, contributing to diabetes onset.
Collapse
Affiliation(s)
- Badr Kiaf
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston MA 02115
| | - Kevin Bode
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston MA 02115
| | - Cornelia Schuster
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston MA 02115
| | - Stephan Kissler
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston MA 02115
- Diabetes Program, Harvard Stem Cell Institute, Cambridge MA 02138
| |
Collapse
|
39
|
Aghamiri SS, Puniya BL, Amin R, Helikar T. A multiscale mechanistic model of human dendritic cells for in-silico investigation of immune responses and novel therapeutics discovery. Front Immunol 2023; 14:1112985. [PMID: 36993954 PMCID: PMC10040975 DOI: 10.3389/fimmu.2023.1112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique ability to mediate inflammatory responses of the immune system. Given the critical role of DCs in shaping immunity, they present an attractive avenue as a therapeutic target to program the immune system and reverse immune disease disorders. To ensure appropriate immune response, DCs utilize intricate and complex molecular and cellular interactions that converge into a seamless phenotype. Computational models open novel frontiers in research by integrating large-scale interaction to interrogate the influence of complex biological behavior across scales. The ability to model large biological networks will likely pave the way to understanding any complex system in more approachable ways. We developed a logical and predictive model of DC function that integrates the heterogeneity of DCs population, APC function, and cell-cell interaction, spanning molecular to population levels. Our logical model consists of 281 components that connect environmental stimuli with various layers of the cell compartments, including the plasma membrane, cytoplasm, and nucleus to represent the dynamic processes within and outside the DC, such as signaling pathways and cell-cell interactions. We also provided three sample use cases to apply the model in the context of studying cell dynamics and disease environments. First, we characterized the DC response to Sars-CoV-2 and influenza co-infection by in-silico experiments and analyzed the activity level of 107 molecules that play a role in this co-infection. The second example presents simulations to predict the crosstalk between DCs and T cells in a cancer microenvironment. Finally, for the third example, we used the Kyoto Encyclopedia of Genes and Genomes enrichment analysis against the model's components to identify 45 diseases and 24 molecular pathways that the DC model can address. This study presents a resource to decode the complex dynamics underlying DC-derived APC communication and provides a platform for researchers to perform in-silico experiments on human DC for vaccine design, drug discovery, and immunotherapies.
Collapse
Affiliation(s)
| | | | - Rada Amin
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
40
|
Liu J, Hermon T, Gao X, Dixon D, Xiao H. Arsenic and Diabetes Mellitus: A Putative Role for the Immune System. ALL LIFE 2023; 16:2167869. [PMID: 37152101 PMCID: PMC10162781 DOI: 10.1080/26895293.2023.2167869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/02/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is an enormous public health issue worldwide. Recent data suggest that chronic arsenic exposure is linked to the risk of developing type 1 and type 2 DM, albeit the underlying mechanisms are unclear. This review discusses the role of the immune system as a link to possibly explain some of the mechanisms of developing T1DM or T2DM associated with arsenic exposure in humans, animal models, and in vitro studies. The rationale for the hypothesis includes: (1) Arsenic is a well-recognized modulator of the immune system; (2) arsenic exposures are associated with increased risk of DM; and (3) dysregulation of the immune system is one of the hallmarks in the pathogenesis of both T1DM and T2DM. A better understanding of DM in association with immune dysregulation and arsenic exposures may help to understand how environmental exposures modulate the immune system and how these effects may impact the manifestation of disease.
Collapse
Affiliation(s)
- Jingli Liu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Tonia Hermon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Xiaohua Gao
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
41
|
Klatka M, Rysz I, Hymos A, Polak A, Mertowska P, Mertowski S, Smolak K, Grywalska E. Effect of Epstein-Barr Virus Infection on Selected Immunological Parameters in Children with Type 1 Diabetes. Int J Mol Sci 2023; 24:ijms24032392. [PMID: 36768715 PMCID: PMC9917181 DOI: 10.3390/ijms24032392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders with different etiologies, pathogeneses and clinical pictures, characterized by chronic hyperglycemia due to abnormal insulin secretion or action. Type 1 diabetes mellitus is the most common type of diabetes mellitus in children and adolescents, accounting for about 90% of diabetes in the population under the age of 18. The etiopathogenesis of type 1 diabetes is multifactorial. The disease occurs as a result of the interaction of three factors: genetic predisposition, environmental factors and the immune response. Research in recent years has focused on the involvement of Epstein-Barr virus (EBV) in the pathogenesis of type I diabetes. The goals of treating type 1 diabetes include maintaining blood-glucose, fructosamine and glycated hemoglobin (HbA1c) levels; therefore, the main purpose of this study was to evaluate the effect of EBV infection on the activation of selected immune cells, fructosamine levels and HbA1c levels in children with type I diabetes. Based on our study, we found a lower percentage of CD8+ T lymphocytes with expression of the CD69 molecule in patients with anti-VCA antibodies in the IgG class, and a lower percentage of CD8+ T lymphocytes with expression of the CD25+ molecule in patients with anti-EBNA-1 antibodies in the IgG class, which may indicate limited control of the immune system during EBV infection in patients. There was a lower percentage of CD3+CD4+ T lymphocytes secreting IL-4 in the study group, indicating that a deficiency in IL-4 production may be related to the development of type 1 diabetes. There was an increase in the percentage of CD4+CD3+IL-10 lymphocytes in the study group with anti-VCA antibodies present in the IgG class and anti-EBNA-1 antibodies in the IgG class compared to the patients without antibodies. In addition, there was a significant increase in fructosamine levels and higher glycated hemoglobin levels in the study group with antibodies to EBV antigens. In addition, an increase in the percentage of T lymphocytes with a CD4+CD3+IL-17+ phenotype in the patients with anti-VCA IgG antibodies was confirmed, and higher HbA1c levels may suggest that EBV infection is accompanied by an increase in IL-17 secretion.
Collapse
Affiliation(s)
- Maria Klatka
- Department of Pediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Izabela Rysz
- Department of Pediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Anna Hymos
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Agnieszka Polak
- Department of Endocrinology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (P.M.); (S.M.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (P.M.); (S.M.)
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
42
|
Del Chierico F, Rapini N, Deodati A, Matteoli MC, Cianfarani S, Putignani L. Pathophysiology of Type 1 Diabetes and Gut Microbiota Role. Int J Mol Sci 2022; 23:ijms232314650. [PMID: 36498975 PMCID: PMC9737253 DOI: 10.3390/ijms232314650] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial autoimmune disease driven by T-cells against the insulin-producing islet β-cells, resulting in a marked loss of β-cell mass and function. Although a genetic predisposal increases susceptibility, the role of epigenetic and environmental factors seems to be much more significant. A dysbiotic gut microbial profile has been associated with T1D patients. Moreover, new evidence propose that perturbation in gut microbiota may influence the T1D onset and progression. One of the prominent features in clinically silent phase before the onset of T1D is the presence of a microbiota characterized by low numbers of commensals butyrate producers, thus negatively influencing the gut permeability. The loss of gut permeability leads to the translocation of microbes and microbial metabolites and could lead to the activation of immune cells. Moreover, microbiota-based therapies to slow down disease progression or reverse T1D have shown promising results. Starting from this evidence, the correction of dysbiosis in early life of genetically susceptible individuals could help in promoting immune tolerance and thus in reducing the autoantibodies production. This review summarizes the associations between gut microbiota and T1D for future therapeutic perspectives and other exciting areas of research.
Collapse
Affiliation(s)
- Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Novella Rapini
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Annalisa Deodati
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Maria Cristina Matteoli
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Stefano Cianfarani
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Women’s and Children Health, Karolisnska Institute and University Hospital, 17177 Stockholm, Sweden
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Correspondence: ; Tel.: +39-0668592980
| |
Collapse
|
43
|
Du C, Whiddett RO, Buckle I, Chen C, Forbes JM, Fotheringham AK. Advanced Glycation End Products and Inflammation in Type 1 Diabetes Development. Cells 2022; 11:3503. [PMID: 36359899 PMCID: PMC9657002 DOI: 10.3390/cells11213503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 08/08/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which the β-cells of the pancreas are attacked by the host's immune system, ultimately resulting in hyperglycemia. It is a complex multifactorial disease postulated to result from a combination of genetic and environmental factors. In parallel with increasing prevalence of T1D in genetically stable populations, highlighting an environmental component, consumption of advanced glycation end products (AGEs) commonly found in in Western diets has increased significantly over the past decades. AGEs can bind to cell surface receptors including the receptor for advanced glycation end products (RAGE). RAGE has proinflammatory roles including in host-pathogen defense, thereby influencing immune cell behavior and can activate and cause proliferation of immune cells such as islet infiltrating CD8+ and CD4+ T cells and suppress the activity of T regulatory cells, contributing to β-cell injury and hyperglycemia. Insights from studies of individuals at risk of T1D have demonstrated that progression to symptomatic onset and diagnosis can vary, ranging from months to years, providing a window of opportunity for prevention strategies. Interaction between AGEs and RAGE is believed to be a major environmental risk factor for T1D and targeting the AGE-RAGE axis may act as a potential therapeutic strategy for T1D prevention.
Collapse
Affiliation(s)
- Chenping Du
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba 4102, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Australia
| | - Rani O. Whiddett
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba 4102, Australia
| | - Irina Buckle
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba 4102, Australia
- Faculty of Medicine, The University of Queensland, St Lucia 4072, Australia
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Australia
| | - Josephine M. Forbes
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba 4102, Australia
- Faculty of Medicine, The University of Queensland, St Lucia 4072, Australia
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Amelia K. Fotheringham
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba 4102, Australia
- Faculty of Medicine, The University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
44
|
Ilonen J, Laine A, Kiviniemi M, Härkönen T, Lempainen J, Knip M, Groop P, Ilonen J, Otonkoski T, Veijola R, Abram A, Aito H, Arkhipov I, Blanco‐Sequeiros E, Bondestam J, Granholm M, Haapalehto‐Ikonen M, Horn T, Huopio H, Janer J, Johansson C, Kalliokoski L, Keskinen P, Kinnala A, Korteniemi M, Laakkonen H, Lähde J, Miettinen P, Nykänen P, Popov E, Pulkkinen M, Salonen M, Salonen P, Sankala J, Sidoroff V, Suomi A, Tiainen T, Veijola R. Associations between deduced first islet specific autoantibody with sex, age at diagnosis and genetic risk factors in young children with type 1 diabetes. Pediatr Diabetes 2022; 23:693-702. [PMID: 35403376 PMCID: PMC9541564 DOI: 10.1111/pedi.13340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES We aimed to further characterize demography and genetic associations of type 1 diabetes "endotypes" defined by the first appearing islet specific autoantibodies. RESEARCH DESIGN AND METHODS We analyzed 3277 children diagnosed before the age of 10 years from the Finnish Pediatric Diabetes Register. The most likely first autoantibody could be deduced in 1636 cases (49.9%) based on autoantibody combinations at diagnosis. Distribution of age, sex, HLA genotypes and allele frequencies of 18 single nucleotide polymorphisms (SNPs) in non-HLA risk genes were compared between the endotypes. RESULTS Two major groups with either glutamic acid decarboxylase (GADA) or insulin autoantibodies (IAA) as the deduced first autoantibody showed significant differences in their demographic and genetic features. Boys and children diagnosed at young age had more often IAA-initiated autoimmunity whereas GADA-initiated autoimmunity was observed more frequently in girls and in subjects diagnosed at an older age. IAA as the first autoantibody was also most common in HLA genotype groups conferring high-disease risk while GADA first was seen more evenly and frequently in HLA groups associated with lower type 1 diabetes risk. The risk alleles in IKZF4 and ERBB3 genes were associated with GADA-initiated whereas those in PTPN22, INS and PTPN2 genes were associated with IAA-initiated autoimmunity. CONCLUSIONS The results support the assumption that in around half of the young children the first autoantibody can be deduced based on islet autoantibody combinations at disease diagnosis. Strong differences in sex and age distributions as well as in genetic associations could be observed between GADA- and IAA-initiated autoimmunity.
Collapse
Affiliation(s)
- Jorma Ilonen
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Antti‐Pekka Laine
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Minna Kiviniemi
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Taina Härkönen
- Pediatric Research Center, Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland,Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland,Departments of PediatricsTurku University HospitalTurkuFinland,Clinical MicrobiologyTurku University HospitalTurkuFinland
| | - Mikael Knip
- Pediatric Research Center, Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland,Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland,Tampere Center for Child Health ResearchTampere University HospitalTampereFinland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee F, Gallo MV, Schell LM. Associations between autoimmune dysfunction and pollutants in Akwesasne Mohawk women: Dichlorodiphenyltrichloroethane and polychlorinated biphenyl exposure. Am J Hum Biol 2022; 34:e23773. [PMID: 35726969 DOI: 10.1002/ajhb.23773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pollutant exposures, including polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT), have been found to disrupt normal immune function. Native American communities are disproportionately affected by autoimmune dysfunction and are more likely to be exposed to harmful pollutants than the general population. OBJECTIVE To determine the association between autoimmune dysfunction and pollutant exposure levels, this study evaluates the statistical relationship between the presence of autoimmune dysfunction and pollutant exposure. METHODS Information was collected from Akwesasne Mohawk women (n = 182), 21-39 years of age, between 2009 and 2013. Data collection included anthropometric measurements, medical diagnoses of autoimmune disease and symptoms of autoimmune dysfunction in the medical record, and blood draws for measurement of pollutants. Multivariate analyses determined the association between toxicant exposure and autoimmune dysfunction. RESULTS Toxicant p,p'-DDE was positively associated with an almost two-fold risk of autoimmune dysfunction. p,p'-DDE and PCB congeners 32, 136, and 138 were positively associated in a multivariate analysis with an autoimmune diagnosis. CONCLUSIONS Pollutant exposures, specifically to p,p'-DDE and some PCB congeners, are common exposures that are associated with autoimmune dysfunction and autoimmune disease, although there are other factors and causes related to autoimmune dysfunction incidence.
Collapse
Affiliation(s)
- Florence Lee
- Department of Anthropology, University at Albany, Albany, New York, USA
| | - Mia V Gallo
- Department of Anthropology, University at Albany, Albany, New York, USA
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, New York, USA
| | - Lawrence M Schell
- Department of Anthropology, University at Albany, Albany, New York, USA
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany, Albany, New York, USA
| |
Collapse
|
46
|
Waibel M, Thomas HE, Wentworth JM, Couper JJ, MacIsaac RJ, Cameron FJ, So M, Krishnamurthy B, Doyle MC, Kay TW. Investigating the efficacy of baricitinib in new onset type 1 diabetes mellitus (BANDIT)—study protocol for a phase 2, randomized, placebo controlled trial. Trials 2022; 23:433. [PMID: 35606820 PMCID: PMC9125350 DOI: 10.1186/s13063-022-06356-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Type 1 diabetes (T1D) places an extraordinary burden on individuals and their families, as well as on the healthcare system. Despite recent advances in glucose sensors and insulin pump technology, only a minority of patients meet their glucose targets and face the risk of both acute and long-term complications, some of which are life-threatening.
The JAK-STAT pathway is critical for the immune-mediated pancreatic beta cell destruction in T1D. Our pre-clinical data show that inhibitors of JAK1/JAK2 prevent diabetes and reverse newly diagnosed diabetes in the T1D non-obese diabetic mouse model. The goal of this study is to determine if the JAK1/JAK2 inhibitor baricitinib impairs type 1 diabetes autoimmunity and preserves beta cell function.
Methods
This will be as a multicentre, two-arm, double-blind, placebo-controlled randomized trial in individuals aged 10–30 years with recent-onset T1D. Eighty-three participants will be randomized in a 2:1 ratio within 100 days of diagnosis to receive either baricitinib 4mg/day or placebo for 48 weeks and then monitored for a further 48 weeks after stopping study drug. The primary outcome is the plasma C-peptide 2h area under the curve following ingestion of a mixed meal. Secondary outcomes include HbA1c, insulin dose, continuous glucose profile and adverse events. Mechanistic assessments will characterize general and diabetes-specific immune responses.
Discussion
This study will determine if baricitinib slows the progressive, immune-mediated loss of beta cell function that occurs after clinical presentation of T1D. Preservation of beta cell function would be expected to improve glucose control and prevent diabetes complications, and justify additional trials of baricitinib combined with other therapies and of its use in at-risk populations to prevent T1D.
Trial registration
ANZCTR ACTRN12620000239965. Registered on 26 February 2020. ClinicalTrials.gov NCT04774224. Registered on 01 March 2021
Collapse
|
47
|
Elvira B, Vandenbempt V, Bauzá-Martinez J, Crutzen R, Negueruela J, Ibrahim H, Winder ML, Brahma MK, Vekeriotaite B, Martens PJ, Singh SP, Rossello F, Lybaert P, Otonkoski T, Gysemans C, Wu W, Gurzov EN. PTPN2 Regulates the Interferon Signaling and Endoplasmic Reticulum Stress Response in Pancreatic β-Cells in Autoimmune Diabetes. Diabetes 2022; 71:653-668. [PMID: 35044456 DOI: 10.2337/db21-0443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of β-cells in the pancreas. Protein tyrosine phosphatases (PTPs) are candidate genes for T1D and play a key role in autoimmune disease development and β-cell dysfunction. Here, we assessed the global protein and individual PTP profiles in the pancreas from nonobese mice with early-onset diabetes (NOD) mice treated with an anti-CD3 monoclonal antibody and interleukin-1 receptor antagonist. The treatment reversed hyperglycemia, and we observed enhanced expression of PTPN2, a PTP family member and T1D candidate gene, and endoplasmic reticulum (ER) chaperones in the pancreatic islets. To address the functional role of PTPN2 in β-cells, we generated PTPN2-deficient human stem cell-derived β-like and EndoC-βH1 cells. Mechanistically, we demonstrated that PTPN2 inactivation in β-cells exacerbates type I and type II interferon signaling networks and the potential progression toward autoimmunity. Moreover, we established the capacity of PTPN2 to positively modulate the Ca2+-dependent unfolded protein response and ER stress outcome in β-cells. Adenovirus-induced overexpression of PTPN2 partially protected from ER stress-induced β-cell death. Our results postulate PTPN2 as a key protective factor in β-cells during inflammation and ER stress in autoimmune diabetes.
Collapse
Affiliation(s)
- Bernat Elvira
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Valerie Vandenbempt
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Julia Bauzá-Martinez
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Raphaël Crutzen
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Javier Negueruela
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matthew L Winder
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Manoja K Brahma
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Beata Vekeriotaite
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Pieter-Jan Martens
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, KU Leuven, Leuven, Belgium
| | | | - Fernando Rossello
- University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Lybaert
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, KU Leuven, Leuven, Belgium
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
48
|
Suire CN, Hade MD. Extracellular Vesicles in Type 1 Diabetes: A Versatile Tool. Bioengineering (Basel) 2022; 9:105. [PMID: 35324794 PMCID: PMC8945706 DOI: 10.3390/bioengineering9030105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes is a chronic autoimmune disease affecting nearly 35 million people. This disease develops as T-cells continually attack the β-cells of the islets of Langerhans in the pancreas, which leads to β-cell death, and steadily decreasing secretion of insulin. Lowered levels of insulin minimize the uptake of glucose into cells, thus putting the body in a hyperglycemic state. Despite significant progress in the understanding of the pathophysiology of this disease, there is a need for novel developments in the diagnostics and management of type 1 diabetes. Extracellular vesicles (EVs) are lipid-bound nanoparticles that contain diverse content from their cell of origin and can be used as a biomarker for both the onset of diabetes and transplantation rejection. Furthermore, vesicles can be loaded with therapeutic cargo and delivered in conjunction with a transplant to increase cell survival and long-term outcomes. Crucially, several studies have linked EVs and their cargos to the progression of type 1 diabetes. As a result, gaining a better understanding of EVs would help researchers better comprehend the utility of EVs in regulating and understanding type 1 diabetes. EVs are a composition of biologically active components such as nucleic acids, proteins, metabolites, and lipids that can be transported to particular cells/tissues through the blood system. Through their varied content, EVs can serve as a flexible aid in the diagnosis and management of type 1 diabetes. In this review, we provide an overview of existing knowledge about EVs. We also cover the role of EVs in the pathogenesis, detection, and treatment of type 1 diabetes and the function of EVs in pancreas and islet β-cell transplantation.
Collapse
|
49
|
Inflammation, Fibrosis and Cancer: Mechanisms, Therapeutic Options and Challenges. Cancers (Basel) 2022; 14:cancers14030552. [PMID: 35158821 PMCID: PMC8833582 DOI: 10.3390/cancers14030552] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/09/2023] Open
Abstract
Uncontrolled inflammation is a salient factor in multiple chronic inflammatory diseases and cancers. In this review, we provided an in-depth analysis of the relationships and distinctions between uncontrolled inflammation, fibrosis and cancers, while emphasizing the challenges and opportunities of developing novel therapies for the treatment and/or management of these diseases. We described how drug delivery systems, combination therapy and the integration of tissue-targeted and/or pathways selective strategies could overcome the challenges of current agents for managing and/or treating chronic inflammatory diseases and cancers. We also recognized the value of the re-evaluation of the disease-specific roles of multiple pathways implicated in the pathophysiology of chronic inflammatory diseases and cancers-as well as the application of data from single-cell RNA sequencing in the success of future drug discovery endeavors.
Collapse
|
50
|
Huang G, Li M, Tian X, Jin Q, Mao Y, Li Y. The emerging roles of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications. Endocr Metab Immune Disord Drug Targets 2022; 22:997-1008. [PMID: 35049442 DOI: 10.2174/1871530322666220113142533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a metabolic disease caused by a combination of genetics and environmental factors. The importance of the inflammatory response occurring in the pancreas and adipose tissue in the occurrence and progression of diabetes has been gradually accepted. Excess blood glucose and free fatty acids produce large amounts of inflammatory cytokines and chemokines through oxidative stress and endoplasmic reticulum stress. There is sufficient evidence that proinflammatory mediators, such as interleukin (IL)-1β, IL-6, macrophage chemotactic protein-1, and tumor necrosis factor-α, are engaged in the insulin resistance in peripheral adipose tissue and the apoptosis of pancreatic β-cells. IL-36, IL-37, and IL-38, as new members of the IL-1 family, play an indispensable effect in the regulation of immune system homeostasis and are involved in the pathogenesis of inflammatory and autoimmune diseases. Recently, the abnormal expression of IL-36, IL-37, and IL-38 in diabetes has been reported. In this review, we discuss the emerging functions, potential mechanisms, and future research directions on the role of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Guoqing Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Mingcai Li
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiaoqing Tian
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Qiankai Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yushan Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yan Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| |
Collapse
|