1
|
Lucarini E, Pagnotta E, Micheli L, Trisolini S, Matteo R, Righetti L, Martelli A, Testai L, Calderone V, Di Cesare Mannelli L, Ghelardini C. Benefits of Camelina sativa Supplementation in Morphine Treatment: Enhanced Analgesia, Delayed Tolerance and Reduced Gut Side Effects Through PPAR-α Receptor Engagement. Int J Mol Sci 2025; 26:2519. [PMID: 40141162 PMCID: PMC11942378 DOI: 10.3390/ijms26062519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Long-term opioid therapies are severely limited by the development of analgesic tolerance and gastrointestinal side effects. Camelina sativa, a plant of the Brassicaceae family, modulates the activity of peroxisome proliferator-activated receptor α (PPAR-α receptor), which is involved in the regulation of pain processing and gut physiology. The aim of this study was to evaluate the efficacy of Camelina sativa defatted seed meal (DSM) supplementation on the development of analgesic tolerance and side effects after repeated treatment with morphine in naïve mice. Co-administering Camelina sativa DSM (1 g kg-1 p.o.) and morphine (10 mg kg-1 s.c.) increased the efficacy and duration of the opioid-induced acute analgesic effect. Camelina supplementation also delayed the onset of tolerance to the morphine analgesic effect. The same result was obtained through either simultaneously administering morphine and camelina or administering camelina 24 h before morphine injection for the entire duration of the experiment. Camelina also counteracted intestinal damage and visceral hypersensitivity caused by morphine treatment. The beneficial effects of camelina on morphine-related analgesic efficacy and gut side effects were prevented via pre-treatment with the PPAR-α antagonist GW6471, though the latter did not influence the development of morphine tolerance. In conclusion, Camelina sativa DSM could be used as a supplement to improve the therapeutic profile of morphine.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| | - Eleonora Pagnotta
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.); (L.R.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| | - Samuele Trisolini
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| | - Roberto Matteo
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.); (L.R.)
| | - Laura Righetti
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.); (L.R.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| |
Collapse
|
2
|
Wu N, Luo Z, Deng R, Zhang Z, Zhang J, Liu S, Luo Z, Qi Q. Sulforaphane: An emerging star in neuroprotection and neurological disease prevention. Biochem Pharmacol 2025; 233:116797. [PMID: 39929442 DOI: 10.1016/j.bcp.2025.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/18/2025] [Accepted: 02/06/2025] [Indexed: 02/16/2025]
Abstract
Neurological diseases, including both acute injuries and chronic neurodegenerative disorders, represent major contributors to morbidity and mortality worldwide. Chronic neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), which require long-term management, present significant challenges in the search for neuroprotective agents with reduced adverse effects and enhanced therapeutic efficacy. Sulforaphane (SFN), a bioactive compound found in cruciferous vegetables like broccoli and cauliflower, has garnered considerable attention for its potent neuroprotective properties and overall health benefits. Marketed primarily as a dietary supplement, SFN has shown a variety of biological activities and therapeutic potential in neurological diseases. Recent surging studies including ours have highlighted its ability to impede the progression of AD, PD, and cerebral ischemia by fostering neurogenesis and inhibiting apoptosis, oxidative stress, and neuroinflammation. This review aims to summarize the latest research on SFN, exploring its advanced therapeutic potential and underlying mechanisms in various neurological diseases, offering a comprehensive overview for researchers focused on neurological pathogenesis and drug development in neuroprotection.
Collapse
Affiliation(s)
- Na Wu
- Department of Neurosurgery, Affiliated Hospital of Xiangnan University, Chenzhou 423000 China
| | - Zepeng Luo
- Department of Neurosurgery, Affiliated Hospital of Xiangnan University, Chenzhou 423000 China
| | - Renfu Deng
- Department of Neurosurgery, Affiliated Hospital of Xiangnan University, Chenzhou 423000 China
| | - Zhijing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632 China
| | - Jichun Zhang
- China Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117 China
| | - Songlin Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008 China.
| | - Zhongping Luo
- Department of Neurosurgery, Affiliated Hospital of Xiangnan University, Chenzhou 423000 China.
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632 China.
| |
Collapse
|
3
|
Coskun G, Saker D, Kara S, Sapmaz T, Celenk A, Sencar L, Coskun C, Polat S. Anti-Inflammatory effect of INSL-3 on experimental arthritis model and LPS-induced macrophage cell line. Int Immunopharmacol 2024; 143:113439. [PMID: 39442190 DOI: 10.1016/j.intimp.2024.113439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease that affects the joints of approximately 1 % of the population worldwide and is seen 2-4 times less in males. INSL3 is a gender-specific peptide hormone produced much higher in males than in females and may have an anti-inflammatory role in RA. So, in this study, it was aimed to determine the possible anti-inflammatory effect and dose of insulin-like factor-3(INSL3) in an experimental Complete Freund's adjuvant(CFA)-induced RA male rat model and lipopolysaccharide(LPS)-induced macrophage cell line and compare it with prednisolone therapy. For in vivo experiments, 48 male mice were randomly divided into 6 groups with 8 subjects in each group: Control group, Arthritis group, Arthritis + Prednisolone(10 mg/kg) group, Arthritis + INSL3(0.08-0.8-8 μg/day) groups. Joint tissue samples obtained from sacrificed subjects were examined by histochemical and immunohistochemically methods after biometric analyses, arthritis severity scoring, and thermal latency experiments. LPS-induced macrophage cells were also treated with prednisolone(1 µg/ml) and INSL3(50-100-200 nM). Cell viability, cell morphology, and TNF-α and IL-6 immune reactivity were evaluated. According to the data obtained from in vivo analyses, it was seen that INSL3 reduced the paw diameter and arthritis severity scoring, degenerative changes, and inflammation and increased the thermal latency, compared to the arthritis group, although not as much as the prednisolone treatment group. In vitro analyses showed that high doses of INSL3 had positive effects on cell viability, morphology, TNF-α, and IL-6 immune reactivity. In conclusion, it was determined that the anti-inflammatory effect of INSL3 was not as pronounced as prednisolone, but it had a more favorable impact on macrophage cell viability and morphology. It was concluded that INSL3 may be a protective therapeutic agent in combination with existing treatment protocols in treating many autoimmune diseases.
Collapse
Affiliation(s)
- Gulfidan Coskun
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Turkey.
| | - Dilek Saker
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Turkey.
| | - Samat Kara
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Turkey.
| | - Tugce Sapmaz
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Turkey.
| | - Alper Celenk
- Department of Histology and Embryology, Faculty of Veterinary, Cukurova University, Adana, Turkey.
| | - Leman Sencar
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Turkey.
| | - Cagil Coskun
- Department of Biophysics, Faculty of Medicine, Cukurova University, Adana, Turkey.
| | - Sait Polat
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Turkey.
| |
Collapse
|
4
|
Saker D, Sencar L, Coskun G, Sapmaz Ercakalli T, Yilmaz DM, Polat S. Galantamine and wedelolactone combined treatment suppresses LPS-induced NLRP3 inflammasome activation in microglial cells. Immunopharmacol Immunotoxicol 2024; 46:805-814. [PMID: 39279139 DOI: 10.1080/08923973.2024.2405579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
CONTEXT Inflammasome NLR family pyrin domain-containing 3 (NLRP3) is associated with neurological disorders. Neuroinflammation can be suppressed by inhibiting NLRP3 inflammasome activation, decreasing neurodegenerative disorder progression. We devised a therapeutic technique that can reduce neuroinflammation induced by microglial activation, avoiding neurodegeneration. We aimed to investigate the mechanisms underlying the pharmacological effects of galantamine and wedelolactone by evaluating the response of the nuclear factor kappa B (NF-κB) signaling pathway and NLRP3 inflammasome in lipopolysaccharide (LPS)-activated N9 microglia. METHODS LPS and adenosine triphosphate were used to activate the NLRP3 inflammasome in N9 microglial cells, which were pretreated with galantamine and wedelolactone. Caspase-1, NLRP3, NF-κB, and interleukin (IL)-1β levels were measured using RT-qPCR and immunostaining. RESULTS Combined administration of galantamine and wedelolactone rescued microglial cells from LPS-induced cell death. Furthermore, treatment with galantamine and wedelolactone led to the suppression of NF-κB expression. NLRP3, caspase-1, and IL-1β levels were decreased by the combined treatment. DISCUSSION AND CONCLUSION The concurrent administration of galantamine and wedelolactone effectively suppresses the production of inflammatory cytokines and NLRP3 inflammasome activation in microglia. This inhibitory effect is likely linked to the NF-κB signaling pathway modulation. Therefore, this combined treatment is a potential therapeutic approach for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Dilek Saker
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Leman Sencar
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Gulfidan Coskun
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Tugce Sapmaz Ercakalli
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | | | - Sait Polat
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
5
|
Li J, Nan W, Huang X, Meng H, Wang S, Zheng Y, Li Y, Li H, Zhang Z, Du L, Yin X, Wu H. Eicosapentaenoic acid induces macrophage Mox polarization to prevent diabetic cardiomyopathy. EMBO Rep 2024; 25:5507-5536. [PMID: 39482491 PMCID: PMC11624267 DOI: 10.1038/s44319-024-00271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 11/03/2024] Open
Abstract
Diabetic cardiomyopathy (DC) leads to heart failure, with few effective approaches for its intervention. Eicosapentaenoic acid (EPA) is an essential nutrient that benefits the cardiovascular system, but its effect on DC remains unknown. Here, we report that EPA protects against DC in streptozotocin and high-fat diet-induced diabetic mice, with an emphasis on the reduction of cardiac M1-polarized macrophages. In vitro, EPA abrogates cardiomyocyte injury induced by M1-polarized macrophages, switching macrophage phenotype from M1 to Mox, but not M2, polarization. Moreover, macrophage Mox polarization combats M1-polarized macrophage-induced cardiomyocyte injury. Further, heme oxygenase 1 (HO-1) was identified to maintain the Mox phenotype, mediating EPA suppression of macrophage M1 polarization and the consequential cardiomyocyte injury. Mechanistic studies reveal that G-protein-coupled receptor 120 mediates the upregulation of HO-1 by EPA. Notably, EPA promotes Mox polarization in monocyte-derived macrophages from diabetic patients. The current study provides EPA and macrophage Mox polarization as novel strategies for DC intervention.
Collapse
Affiliation(s)
- Jie Li
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Wenshan Nan
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
- Department of Endocrinology and Metabolism, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
| | - Xiaoli Huang
- Department of Nutrition, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Huali Meng
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Shue Wang
- Experimental Center of Public Health and Preventive Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
| | - Ying Li
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Xiao Yin
- Department of Endocrinology and Metabolism, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, 105 Jiefang Rd., Jinan, Shandong, 250013, China.
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China.
- Shandong Provincial Engineering and Technology Research Center for Food Safety Monitoring and Evaluation, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China.
| |
Collapse
|
6
|
Coutinho-Wolino KS, Brito ML, Trigueira PC, de Menezes LO, do Nascimento CS, Stockler-Pinto MB. Genetic Signature of a Healthy Lifestyle: New Horizons for Preventing Noncommunicable Chronic Diseases by Modulating MicroRNA-155. Nutr Rev 2024:nuae142. [PMID: 39383044 DOI: 10.1093/nutrit/nuae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
The development and progression of several noncommunicable diseases (NCDs) are associated with microRNA (miR) 155 (miR-155) activation, which promotes inflammation and oxidative stress. In particular, miR-155 regulates nuclear transcription factor-kappa B (NF-κB) by silencing gene expression of proteins involved in NF-κB suppression, such as suppressor of cytokine signaling 1 (SOCS1) and SH-2 containing inositol 5' polyphosphate 1 (SHIP1), increases the production of reactive oxygen species, and suppresses gene expression of antioxidant enzymes through nuclear factor erythroid 2-related factor 2 (Nrf2) inhibition. In this context, a healthy lifestyle based on a diet rich in nutrients and bioactive compounds as well as regular physical activity may modulate the activity of several miRs. Following this concept, studies involving nutrients, bioactive compounds, and physical activity have been developed to modulate miR-155 activation. This narrative review aims to discuss how a healthy lifestyle based on a diet rich in nutrients, bioactive compounds, and physical activity may modulate the miR-155 pathway and consequently prevent the development and progression of NCDs. Nutrients and bioactive compounds from food may act by inhibiting pathways that promote miR-155 activation such as NF-κB and promote activation of pathways that are associated with the downregulation of miR-155, such as Nrf2, and SOCS1 pathways. Regular physical activity also seems to influence miR-155 levels through an improvement in the immune system during muscle recovery. There is relevant evidence that shows a positive effect of nutrients, bioactive compounds, and physical activity with the modulation of miR-155, which can potentially provide benefits in the clinical setting in cases of NCDs.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
| | - Michele L Brito
- Postgraduate Program in Pathology, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
| | - Pricilla C Trigueira
- Postgraduate Program in Pathology, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
| | - Larissa O de Menezes
- Graduate Program in Nutrition, Faculty of Nutrition, Fluminense Federal University, Niterói, 24020-140, Brazil
| | - Clara S do Nascimento
- Graduate Program in Biomedicine, Faculty of Biomedicine, Fluminense Federal University, Niterói, 24020-140, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
- Postgraduate Program in Pathology, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, 24020-140, Brazil
| |
Collapse
|
7
|
Khan WU, Salman M, Ali M, Majid H, Yar MS, Akhtar M, Parvez S, Najmi AK. Neuroprotective Effects of Sulforaphane in a rat model of Alzheimer's Disease induced by Aβ (1-42) peptides. Neurochem Int 2024; 179:105839. [PMID: 39173832 DOI: 10.1016/j.neuint.2024.105839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
The intricate nature of Alzheimer's disease (AD) has presented significant hurdles in the development of effective interventions. Sulforaphane (SFN) is of interest due to its antioxidative, anti-inflammatory, and neuroprotective properties, which could address various aspects of AD pathology. This study explores the potential of SFN in a rat model of AD induced by Aβ (1-42) peptides. AD symptoms were triggered in rats by injecting Aβ (1-42) peptides directly into their cerebral ventricles. SFN (10 mg/kg and 20 mg/kg), Trigonelline (10 mg/kg), and Pioglitazone (10 mg/kg) were administered in Aβ (1-42) treated animals. Behavioral assessments were performed using the Novel Object Recognition tests. Various biochemical parameters, such as soluble Aβ (1-42), IRS-S312, GSK-3β, TNF-α, acetylcholinesterase, nitrite levels, lipid peroxidation, and reduced glutathione activity, were quantified using ELISA kits and spectrophotometric assays. Histopathological analyses included Hematoxylin and Eosin, Crystal Violet, Congo red, and IRS-1 Immunohistochemistry staining. Quantification was performed to assess neuronal loss and Aβ plaque burden. The novelty of this study lies in its comprehensive evaluation of SFN's impact on multiple AD-related pathways at dual doses. The Novel Object Recognition test revealed that SFN, especially at higher doses, improved memory deficits induced by Aβ (1-42). Biochemically, SFN reduced hippocampal Aβ levels, IRS-S312, GSK-3β, TNF-α, and acetylcholinesterase activity, while increasing glutathione levels, all in a dose-dependent manner. Histopathological analyses further confirmed SFN's protective role against Aβ-induced neuronal damage, amyloidosis, and changes in insulin signaling. These results highlight SFN's potential as a multifaceted therapeutic agent for AD, offering a promising avenue for treatment due to its antioxidative, anti-inflammatory, and neuroprotective properties. The inclusion of combination treatments with Trigonelline and Pioglitazone alongside SFN offers insights into potential synergistic effects, which could pave the way for developing combination therapies for AD.
Collapse
Affiliation(s)
- Wasi Uzzaman Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mubashshir Ali
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Haya Majid
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
8
|
Zhang X, Zhang D, Fan A, Zhou X, Yang C, Zhou J, Shen M, Liu H, Zou K, Tao J. A novel effect of sulforaphane on promoting mouse granulosa cells proliferation via the NRF2-TKT pathway. J Adv Res 2024:S2090-1232(24)00422-3. [PMID: 39341455 DOI: 10.1016/j.jare.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Granulosa cells (GCs) is essential for maintaining follicular development. Follicle-stimulating Hormone (FSH) has been demonstrated to effectively promote GCs proliferation, driving the establishment of various superovulation techniques for animal husbandry. However, these techniques face challenges, such as high costs, hormonal imbalances, and an increased risk of early ovarian dysfunction. Therefore, it is important to investigate new methods to improve GCs proliferation. OBJECTIVES This study aimed to investigate the effect of sulforaphane (SFN) on ovarian GCs proliferation and the underlying mechanisms. METHODS A comparative transcriptomic analysis of ovaries from the control, SFN, and FSH groups was conducted to identify the primary factors contributing to high proliferative capacity. The role of SFN in the regulation of cell proliferation has been examined in mouse ovarian GCs. Gene interference, overexpression, CUT&TAG technology, and transcriptome analyses were performed to elucidate the underlying mechanisms of the nuclear factor E2-related factor 2 (NRF2)-transketolase (TKT) axis in mediating GCs proliferation. RESULTS Our research revealed a previously unknown function of SFN, an isothiocyanate of plant origin that is prevalent in cruciferous vegetables, in facilitating the proliferation of mouse ovarian GCs. The efficacy of SFN in enhancing GCs proliferation is similar to that of FSH. At the mechanistic level, SFN promotes NRF2 to transport to the nucleus, which subsequently activates the key enzyme of the non-oxidative pentose phosphate pathway TKT. This activation is instrumental in generating ribose 5-phosphate, a critical precursor for amino acid and nucleotide biosynthesis that underpins the proliferation of GCs. CONCLUSION Collectively, our findings delineate a novel pathway by which SFN, through the NRF2-TKT axis, enhances the nucleotide pool and thereby supports the proliferation of mouse GCs, presenting novel avenues for exploration in reproductive biology and agricultural sciences.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dingding Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aoyun Fan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyi Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Caixia Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqi Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kang Zou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Sreedharan S, Pande A, Pande A, Majeed M, Cisneros-Zevallos L. The Neuroprotective Effects of Oroxylum indicum Extract in SHSY-5Y Neuronal Cells by Upregulating BDNF Gene Expression under LPS Induced Inflammation. Nutrients 2024; 16:1887. [PMID: 38931243 PMCID: PMC11206423 DOI: 10.3390/nu16121887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The brain-derived neurotrophic factor (BDNF) plays a crucial role during neuronal development as well as during differentiation and synaptogenesis. They are important proteins present in the brain that support neuronal health and protect the neurons from detrimental signals. The results from the present study suggest BDNF expression can be increase up to ~8-fold by treating the neuroblastoma cells SHSY-5Y with an herbal extract of Oroxylum indicum (50 μg/mL) and ~5.5-fold under lipopolysaccharides (LPS)-induced inflammation conditions. The Oroxylum indicum extract (Sabroxy) was standardized to 10% oroxylin A, 6% chrysin, and 15% baicalein. In addition, Sabroxy has shown to possess antioxidant activity that could decrease the damage caused by the exacerbation of radicals during neurodegeneration. A mode of action of over expression of BDNF with and without inflammation is proposed for the Oroxylum indicum extract, where the three major hydroxyflavones exert their effects through additive or synergistic effects via five possible targets including GABA, Adenoside A2A and estrogen receptor bindings, anti-inflammatory effects, and reduced mitochondrial ROS production.
Collapse
Affiliation(s)
- Shareena Sreedharan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Alpana Pande
- Analytical R&D Department, Sabinsa Corporation, East Windsor, NJ 08520, USA
| | - Anurag Pande
- Analytical R&D Department, Sabinsa Corporation, East Windsor, NJ 08520, USA
| | - Muhammed Majeed
- Analytical R&D Department, Sabinsa Corporation, East Windsor, NJ 08520, USA
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Food Science & Technology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Isothiocyanates: Insights from Sulforaphane. Biomedicines 2024; 12:1169. [PMID: 38927376 PMCID: PMC11200786 DOI: 10.3390/biomedicines12061169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Isothiocyanates (ITCs) belong to a group of natural products that possess a highly reactive electrophilic -N=C=S functional group. They are stored in plants as precursor molecules, glucosinolates, which are processed by the tyrosinase enzyme upon plant tissue damage to release ITCs, along with other products. Isolated from broccoli, sulforaphane is by far the most studied antioxidant ITC, acting primarily through the induction of a transcription factor, the nuclear factor erythroid 2-related factor 2 (Nrf2), which upregulates downstream antioxidant genes/proteins. Paradoxically, sulforaphane, as a pro-oxidant compound, can also increase the levels of reactive oxygen species, a mechanism which is attributed to its anticancer effect. Beyond highlighting the common pro-oxidant and antioxidant effects of sulforaphane, the present paper was designed to assess the diverse anti-inflammatory mechanisms reported to date using a variety of in vitro and in vivo experimental models. Sulforaphane downregulates the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, cycloxyhenase-2, and inducible nitric oxide synthase. The signalling pathways of nuclear factor κB, activator protein 1, sirtuins 1, silent information regulator sirtuin 1 and 3, and microRNAs are among those affected by sulforaphane. These anti-inflammatory actions are sometimes due to direct action via interaction with the sulfhydryl structural moiety of cysteine residues in enzymes/proteins. The following are among the topics discussed in this paper: paradoxical signalling pathways such as the immunosuppressant or immunostimulant mechanisms; crosstalk between the oxidative and inflammatory pathways; and effects dependent on health and disease states.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
11
|
Tao L, Yu W, Liu Z, Zhao D, Lin S, Szalóki D, Kicsák M, Kurtán T, Zhang H. JE-133 Suppresses LPS-Induced Neuroinflammation Associated with the Regulation of JAK/STAT and Nrf2 Signaling Pathways. ACS Chem Neurosci 2024; 15:258-267. [PMID: 38181172 DOI: 10.1021/acschemneuro.3c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, and interrupting the microglial-mediated neuroinflammation has been suggested as a promising strategy to delay or prevent the progression of neurodegeneration. In this study, we investigated the effects of JE-133, an optically active isochroman-2H-chromene conjugate containing a 1,3-disubstituted isochroman unit, on lipopolysaccharide (LPS)-induced microglial neuroinflammation and underlying mechanisms both in vitro and in vivo. First, JE-133 treatment decreased LPS-induced overproduction of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nitrite, and nitric oxide synthase (iNOS) in BV2 microglial cells. Further study revealed that JE-133 downregulated the phosphorylation level of JAK/STAT and upregulated the protein level of Nrf2/HO-1 in LPS-stimulated BV2 microglial cells and verified that JE-133 directly bound to Keap1 by a pull-down assay. Next, JE-133 administration also inhibited neuroinflammation in vivo, as indicated by a reduced CD11b protein level and an overexpressed mRNA level of the pro-inflammatory cytokine TNF-α in the hippocampus of LPS-injected mice. Moreover, the regulative effects of JE-133 on the JAK/STAT and Nrf2/HO-1 pathways were also verified in the hippocampus of LPS-injected mice. Taken together, our study for the first time reports that JE-133 exhibits inhibitory effects against LPS-stimulated neuroinflammation both in vitro and in vivo, which might be associated with the simultaneous regulation of the JAK/STAT and Nrf2 pathways. Our findings may provide important clues for the discovery of effective drug leads/candidates against neuroinflammation-associated neurodegeneration.
Collapse
Affiliation(s)
- Lingxue Tao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Weichen Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyi Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Nanchang University, Jiangxi 330031, China
| | - Danfeng Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sijin Lin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dóra Szalóki
- Department of Organic Chemistry, University of Debrecen, Debrecen, P.O. Box 400, Debrecen H-4002, Hungary
| | - Máté Kicsák
- Department of Organic Chemistry, University of Debrecen, Debrecen, P.O. Box 400, Debrecen H-4002, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, P.O. Box 400, Debrecen H-4002, Hungary
| | - Haiyan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Liu G, Tan L, Zhao X, Wang M, Zhang Z, Zhang J, Gao H, Liu M, Qin W. Anti-atherosclerosis mechanisms associated with regulation of non-coding RNAs by active monomers of traditional Chinese medicine. Front Pharmacol 2023; 14:1283494. [PMID: 38026969 PMCID: PMC10657887 DOI: 10.3389/fphar.2023.1283494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the leading cause of numerous cardiovascular diseases with a high mortality rate. Non-coding RNAs (ncRNAs), RNA molecules that do not encode proteins in human genome transcripts, are known to play crucial roles in various physiological and pathological processes. Recently, researches on the regulation of atherosclerosis by ncRNAs, mainly including microRNAs, long non-coding RNAs, and circular RNAs, have gradually become a hot topic. Traditional Chinese medicine has been proved to be effective in treating cardiovascular diseases in China for a long time, and its active monomers have been found to target a variety of atherosclerosis-related ncRNAs. These active monomers of traditional Chinese medicine hold great potential as drugs for the treatment of atherosclerosis. Here, we summarized current advancement of the molecular pathways by which ncRNAs regulate atherosclerosis and mainly highlighted the mechanisms of traditional Chinese medicine monomers in regulating atherosclerosis through targeting ncRNAs.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Meifang Liu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
13
|
Zhu K, Zhang W, Wu Q, Yang Q, Gong Z, Shao S, Zhang W. Astragalin protects the liver from oxidative damage by modulating the lnc XIST/miR-155-5p/Nrf2 axis. J Funct Foods 2023; 108:105769. [DOI: 10.1016/j.jff.2023.105769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
14
|
Houghton CA. The Rationale for Sulforaphane Favourably Influencing Gut Homeostasis and Gut-Organ Dysfunction: A Clinician's Hypothesis. Int J Mol Sci 2023; 24:13448. [PMID: 37686253 PMCID: PMC10487861 DOI: 10.3390/ijms241713448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Given the increasing scientific, clinical and consumer interest in highly prevalent functional gastrointestinal disorders, appropriate therapeutic strategies are needed to address the many aspects of digestive dysfunction. Accumulating evidence for the crucifer-derived bioactive molecule sulforaphane in upstream cellular defence mechanisms highlights its potential as a therapeutic candidate in targeting functional gastrointestinal conditions, as well as systemic disorders. This article catalogues the evolution of and rationale for a hypothesis that multifunctional sulforaphane can be utilised as the initial step in restoring the ecology of the gut ecosystem; it can do this primarily by targeting the functions of intestinal epithelial cells. A growing body of work has identified the colonocyte as the driver of dysbiosis, such that targeting gut epithelial function could provide an alternative to targeting the microbes themselves for the remediation of microbial dysbiosis. The hypothesis discussed herein has evolved over several years and is supported by case studies showing the application of sulforaphane in gastrointestinal disorders, related food intolerance, and several systemic conditions. To the best of our knowledge, this is the first time the effects of sulforaphane have been reported in a clinical environment, with several of its key properties within the gut ecosystem appearing to be related to its nutrigenomic effects on gene expression.
Collapse
Affiliation(s)
- Christine A. Houghton
- Institute for Nutrigenomic Medicine, Cleveland, QLD 4163, Australia; ; Tel.: +617-3488-0385
- Cell-Logic, 132-140 Ross Court, Cleveland, QLD 4163, Australia
| |
Collapse
|
15
|
Zhang L, Wang S, Zhang Y, Li F, Yu C. Sulforaphane alleviates lung ischemia‑reperfusion injury through activating Nrf‑2/HO‑1 signaling. Exp Ther Med 2023; 25:265. [PMID: 37206558 PMCID: PMC10189751 DOI: 10.3892/etm.2023.11964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/10/2023] [Indexed: 05/21/2023] Open
Abstract
Oxidative stress and inflammation are both involved in the pathogenesis of lung ischemia-reperfusion (I/R) injury. Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant properties. The present study hypothesized that SFN may protect against lung I/R injury via the regulation of antioxidant and anti-inflammatory-related pathways. A rat model of lung I/R injury was established, and rats were randomly divided into 3 groups: Sham group, I/R group, and SFN group. It was shown that SFN protected against a pathological inflammatory response via inhibition of neutrophil accumulation and in the reduction of the serum levels of the pro-inflammatory cytokines, IL-6, IL-1β, and TNF-α. SFN treatment also significantly inhibited lung reactive oxygen species production, decreased the levels of 8-OH-dG and malondialdehyde, and reversed the decrease in the antioxidant activities of the enzymes catalase, superoxide dismutase, and glutathione peroxidase in the lungs of the I/R treated rats. In addition, SFN ameliorated I/R-induced lung apoptosis in rats by suppressing Bax and cleaved caspase-3 levels and increased Bcl-2 expression. Furthermore, SFN treatment activated an Nrf2-related antioxidant pathway, as indicated by the increased nuclear transfer of Nrf2 and the downstream HO-1 and NADPH quinone oxidoreductase-1. In conclusion, these findings suggested that SFN protected against I/R-induced lung lesions in rats via activation of the Nrf2/HO-1 pathway and the accompanied anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Respiratory and Critical Care Medicine, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Shuxian Wang
- Department of Respiratory, Yantai Beihai Hospital, Yantai, Shandong 265701, P.R. China
| | - Ying Zhang
- Department of Emergency, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Fenghuan Li
- Department of Respiratory and Critical Care Medicine, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Chaoxiao Yu
- Department of Respiratory and Critical Care Medicine, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
- Correspondence to: Dr Chaoxiao Yu, Department of Respiratory and Critical Care Medicine, Yantaishan Hospital, 10,087 Keji Road, Laishan, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
16
|
Altınöz S, Micili SC, Soy S, Engür D, Baysal B, Kumral A. Impact of Maternal Ketogenic Diet on NLRP3 Inflammasome Response in the Offspring Brain. Nutrients 2023; 15:nu15081994. [PMID: 37111213 PMCID: PMC10144516 DOI: 10.3390/nu15081994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
The effects of maternal diet on the neuroimmune responses of the offspring remain to be elucidated. We investigated the impact of maternal ketogenic diet (KD) on the NLRP3 inflammasome response in the offspring's brain. C57BL/6 female mice were randomly allocated into standard diet (SD) and ketogenic diet (KD) groups for 30 days. After mating, the presence of sperm in the vaginal smear was considered day 0 of pregnancy, and female mice continued their respective diets during pregnancy and the lactation period. Following birth, pups were further allocated into two groups and given either LPS or intraperitoneal saline on postnatal (PN) days 4, 5 and 6; they were sacrificed on PN11 or PN21. Neuronal densities were significantly lower globally in the KD group when compared to the SD group at PN11. Neuronal density in the prefrontal cortex (PFC) and dentate gyrus (DG) regions were also significantly lower in the KD group when compared to the SD group at PN21. Following administration of LPS, the decrease in the neuronal count was more prominent in the SD group when compared to the KD group in the PFC and DG regions at PN11 and PN21. NLRP3 and IL-1β were higher in the KD group than in the SD group at PN21 in the PFC, CA1 and DG regions, and were significantly lower in the DG region of the KD group especially when compared to the SD group following LPS. Results of our study reveal that maternal KD negatively affects the offspring's brain in the mouse model. The effects of KD exhibited regional variations. On the other hand, in the presence of KD exposure, NLRP3 expression after LPS injection was lower in the DG and CA1 areas but not in the PFC when compared to SD group. Further experimental and clinical studies are warranted to elucidate the molecular mechanisms underlying the impact of antenatal KD exposure and regional discrepancies on the developing brain.
Collapse
Affiliation(s)
- Sevsen Altınöz
- Department of Pediatrics, Faculty of Medicine, Dokuz Eylul University, Izmir 35330, Turkey
| | - Serap Cilaker Micili
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir 35330, Turkey
| | - Sıla Soy
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir 35330, Turkey
| | - Defne Engür
- İzmir International Biomedicine and Genome Center, Dokuz Eylul University, Izmir 35330, Turkey
- Division of Neonatology, Department of Pediatrics, Izmir Faculty of Medicine, University of Health Sciences, Izmir 35330, Turkey
| | - Bora Baysal
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Istinye University, Istanbul 34517, Turkey
| | - Abdullah Kumral
- İzmir International Biomedicine and Genome Center, Dokuz Eylul University, Izmir 35330, Turkey
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Dokuz Eylul University, Izmir 35330, Turkey
| |
Collapse
|
17
|
Choe K, Park HY, Ikram M, Lee HJ, Park TJ, Ullah R, Kim MO. Systematic Review of the Common Pathophysiological Mechanisms in COVID-19 and Neurodegeneration: The Role of Bioactive Compounds and Natural Antioxidants. Cells 2022; 11:cells11081298. [PMID: 35455977 PMCID: PMC9031507 DOI: 10.3390/cells11081298] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus (2019-nCoVCOVID-19) belongs to the Beta coronavirus family, which contains MERS-CoV (Middle East respiratory syndrome coronavirus) and SARS-CoV (severe acute respiratory syndrome coronavirus). SARS-CoV-2 activates the innate immune system, thereby activating the inflammatory mechanism, causing the release of inflammatory cytokines. Moreover, it has been suggested that COVID-19 may penetrate the central nervous system, and release inflammatory cytokines in the brains, inducing neuroinflammation and neurodegeneration. Several links connect COVID-19 with Alzheimer’s disease (AD), such as elevated oxidative stress, uncontrolled release of the inflammatory cytokines, and mitochondrial apoptosis. There are severe concerns that excessive immune cell activation in COVID-19 may aggravate the neurodegeneration and amyloid-beta pathology of AD. Here, we have collected the evidence, showing the links between the two diseases. The focus has been made to collect the information on the activation of the inflammation, its contributors, and shared therapeutic targets. Furthermore, we have given future perspectives, research gaps, and overlapping pathological bases of the two diseases. Lastly, we have given the short touch to the drugs that have equally shown rescuing effects against both diseases. Although there is limited information available regarding the exact links between COVID-19 and neuroinflammation, we have insight into the pathological contributors of the diseases. Based on the shared pathological features and therapeutic targets, we hypothesize that the activation of the immune system may induce neurological disorders by triggering oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Hyun Young Park
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht Medical Center, 6229 ER Maastricht, The Netherlands
| | - Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
| | - Hyeon Jin Lee
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, UK;
| | - Rahat Ullah
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
- Alz-Dementia Korea Co., Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
18
|
Membrane Vesicles for Nanoencapsulated Sulforaphane Increased Their Anti-Inflammatory Role on an In Vitro Human Macrophage Model. Int J Mol Sci 2022; 23:ijms23041940. [PMID: 35216054 PMCID: PMC8878270 DOI: 10.3390/ijms23041940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
At present, there is a growing interest in finding new non-toxic anti-inflammatory drugs to treat inflammation, which is a key pathology in the development of several diseases with considerable mortality. Sulforaphane (SFN), a bioactive compound derived from Brassica plants, was shown to be promising due to its anti-inflammatory properties and great potential, though its actual clinical use is limited due to its poor stability and bioavailability. In this sense, the use of nanocarriers could solve stability-related problems. In the current study, sulforaphane loaded into membrane vesicles derived from broccoli plants was studied to determine the anti-inflammatory potential in a human-macrophage-like in vitro cell model under both normal and inflammatory conditions. On the one hand, the release of SFN from membrane vesicles was modeled in vitro, and two release phases were stabilized, one faster and the other slower due to the interaction between SFN and membrane proteins, such as aquaporins. Furthermore, the anti-inflammatory action of sulforaphane-loaded membrane vesicles was demonstrated, as a decrease in interleukins crucial for the development of inflammation, such as TNF-α, IL-1β and IL-6, was observed. Furthermore, these results also showed that membrane vesicles by themselves had anti-inflammatory properties, opening the possibility of new lines of research to study these vesicles, not only as carriers but also as active compounds.
Collapse
|
19
|
TPNA10168, an Nrf-2 activator, attenuates inflammatory responses independently of Nrf2 in microglial BV-2 cells: Involvement of the extracellular-signal-regulated kinase pathway. J Pharmacol Sci 2022; 149:1-10. [DOI: 10.1016/j.jphs.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
|
20
|
Kamal RM, Abdull Razis AF, Mohd Sukri NS, Perimal EK, Ahmad H, Patrick R, Djedaini-Pilard F, Mazzon E, Rigaud S. Beneficial Health Effects of Glucosinolates-Derived Isothiocyanates on Cardiovascular and Neurodegenerative Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030624. [PMID: 35163897 PMCID: PMC8838317 DOI: 10.3390/molecules27030624] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Neurodegenerative diseases (NDDs) and cardiovascular diseases (CVDs) are illnesses that affect the nervous system and heart, all of which are vital to the human body. To maintain health of the human body, vegetable diets serve as a preventive approach and particularly Brassica vegetables have been associated with lower risks of chronic diseases, especially NDDs and CVDs. Interestingly, glucosinolates (GLs) and isothiocyanates (ITCs) are phytochemicals that are mostly found in the Cruciferae family and they have been largely documented as antioxidants contributing to both cardio- and neuroprotective effects. The hydrolytic breakdown of GLs into ITCs such as sulforaphane (SFN), phenylethyl ITC (PEITC), moringin (MG), erucin (ER), and allyl ITC (AITC) has been recognized to exert significant effects with regards to cardio- and neuroprotection. From past in vivo and/or in vitro studies, those phytochemicals have displayed the ability to mitigate the adverse effects of reactive oxidation species (ROS), inflammation, and apoptosis, which are the primary causes of CVDs and NDDs. This review focuses on the protective effects of those GL-derived ITCs, featuring their beneficial effects and the mechanisms behind those effects in CVDs and NDDs.
Collapse
Affiliation(s)
- Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Pharmacology, Federal University Dutse, Dutse 720101, Jigawa State, Nigeria
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Nurul Syafuhah Mohd Sukri
- Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia;
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Rollin Patrick
- Université d’Orléans et CNRS, ICOA, UMR 7311, BP 6759, CEDEX 02, F-45067 Orléans, France;
| | - Florence Djedaini-Pilard
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| | - Emanuela Mazzon
- Laboratorio di Neurologia Sperimentale, IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy;
| | - Sébastien Rigaud
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| |
Collapse
|
21
|
MiR-200c-3p inhibits LPS-induced M1 polarization of BV2 cells by targeting RIP2. Genes Genomics 2022; 44:477-486. [PMID: 35013887 PMCID: PMC8921044 DOI: 10.1007/s13258-021-01210-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Microglia are important immune cells, which can be induced by lipopolysaccharide (LPS) into M1 phenotype that express pro-inflammatory cytokines. Some studies have shown that microRNAs play critical roles in microglial activation. OBJECTIVE This study was designed to investigate the role of miR-200c-3p in regulating inflammatory responses of LPS-treated BV2 cells. METHODS The expression of miR-200c-3p in BV2 cells was detected by real-time PCR. Receptor-interacting protein 2 (RIP2) was predicted as a target gene of miR-200c-3p. Their relationship was verified by dual-luciferase reporter assay. The function of miR-200c-3p and RIP2 in microglial polarization and NF-κB signaling was further evaluated. RESULTS LPS treatment reduced miR-200c-3p expression in a dose-dependent and time-dependent manner in BV2 cells. LPS treatment increased the expression of M1 phenotype markers inducible nitric oxide synthase (iNOS) and major histocompatibility complex class (MHC)-II, promoted the release of pro-inflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, and enhanced the nuclear translocation and phosphorylation of nuclear factor-kappaB (NF-κB) p65. Reversely, miR-200c-3p mimics down-regulated the levels of these inflammatory factors. Furthermore, RIP2 was identified to be a direct target of miR-200c-3p. RIP2 knockdown had a similar effect to miR-200c-3p mimics. Overexpression of RIP2 eliminated the inhibitory effect of miR-200c-3p on LPS-induced M1 polarization and NF-κB activation in BV2 cells. CONCLUSIONS MiR-200c-3p mimics suppressed LPS-induced microglial M1 polarization and NF-κB activation by targeting RIP2. MiR-200c-3p/RIP2 might be a potential therapeutic target for the treatment of neuroinflammation-associated diseases.
Collapse
|
22
|
Tastan B, Arioz BI, Tufekci KU, Tarakcioglu E, Gonul CP, Genc K, Genc S. Dimethyl Fumarate Alleviates NLRP3 Inflammasome Activation in Microglia and Sickness Behavior in LPS-Challenged Mice. Front Immunol 2021; 12:737065. [PMID: 34858398 PMCID: PMC8631454 DOI: 10.3389/fimmu.2021.737065] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
NLRP3 inflammasome activation contributes to several pathogenic conditions, including lipopolysaccharide (LPS)-induced sickness behavior characterized by reduced mobility and depressive behaviors. Dimethyl fumarate (DMF) is an immunomodulatory and anti-oxidative molecule commonly used for the symptomatic treatment of multiple sclerosis and psoriasis. In this study, we investigated the potential use of DMF against microglial NLRP3 inflammasome activation both in vitro and in vivo. For in vitro studies, LPS- and ATP-stimulated N9 microglial cells were used to induce NLRP3 inflammasome activation. DMF’s effects on inflammasome markers, pyroptotic cell death, ROS formation, and Nrf2/NF-κB pathways were assessed. For in vivo studies, 12–14 weeks-old male BALB/c mice were treated with LPS, DMF + LPS and ML385 + DMF + LPS. Behavioral tests including open field, forced swim test, and tail suspension test were carried out to see changes in lipopolysaccharide-induced sickness behavior. Furthermore, NLRP3 and Caspase-1 expression in isolated microglia were determined by immunostaining. Here we demonstrated that DMF ameliorated LPS and ATP-induced NLRP3 inflammasome activation by reducing IL-1β, IL-18, caspase-1, and NLRP3 levels, reactive oxygen species formation and damage, and inhibiting pyroptotic cell death in N9 murine microglia via Nrf2/NF-κB pathways. DMF also improved LPS-induced sickness behavior in male mice and decreased caspase-1/NLRP3 levels via Nrf2 activation. Additionally, we showed that DMF pretreatment decreased miR-146a and miR-155 both in vivo and in vitro. Our results proved the effectiveness of DMF on the amelioration of microglial NLRP3 inflammasome activation. We anticipate that this study will provide the foundation consideration for further studies aiming to suppress NLRP3 inflammasome activation associated with in many diseases and a better understanding of its underlying mechanisms.
Collapse
Affiliation(s)
- Bora Tastan
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Burak I Arioz
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Kemal Ugur Tufekci
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Department of Healthcare Services, Vocational School of Health Services, Izmir Democracy University, Izmir, Turkey
| | - Emre Tarakcioglu
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ceren Perihan Gonul
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
23
|
Inhibitory effects of sulforaphane on NLRP3 inflammasome activation. Mol Immunol 2021; 140:175-185. [PMID: 34717147 DOI: 10.1016/j.molimm.2021.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023]
Abstract
SFN, a dietary phytochemical, is a significant member of isothiocyanates present in cruciferous vegetables at high levels in broccoli. It is a well-known activator of the Nrf2/ARE antioxidant pathway. Long since, the therapeutic effects of SFN have been widely studied in several different diseases. Other than the antioxidant effect, SFN also exhibits an anti-inflammatory effect through suppression of various mechanisms, including inflammasome activation. Considerably, SFN has been demonstrated to inhibit multiple inflammasomes, including NLRP3 inflammasome. NLRP3 inflammasome induces secretion of pro-inflammatory cytokines and promotes inflammatory cell death. The release of pro-inflammatory cytokines enhances the inflammatory response, in turn leading to tissue damage. These self-propelling inflammatory responses would need modulation with exogenous therapeutic agents to suppress them. SFN is a promising candidate molecule for the mitigation of NLRP3 inflammasome activation, which has been related to the pathogenesis of numerous disorders. In this review, we have provided fundamental knowledge about Sulforaphane, elaborated its characteristics, and evidentially focused on its mechanisms of action with regard to its anti-inflammatory, anti-oxidative, and neuroprotective features. Thereafter, we have summarized both in vitro and in vivo studies regarding SFN effect on NLRP3 inflammasome activation.
Collapse
|
24
|
Dexmedetomidine reduces the apoptosis of rat hippocampal neurons via mediating ERK1/2 signal pathway by targeting miR-155. Acta Histochem 2021; 123:151734. [PMID: 34048989 DOI: 10.1016/j.acthis.2021.151734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022]
Abstract
Rat hippocampal neurons were isolated and divided into Normal, oxygen glucose deprivation/reoxygenation (OGD/R), OGD/R + DEX, OGD/R + NC mimic, OGD/R + miR-155 mimic and OGD/R + DEX + miR-155 mimic groups. In OGD/R group, LDH, ROS and MDA levels and apoptosis rate was increased, with up-regulations of miR-155, Cyt c and Bax/Bcl-2 ratio, but decreases of SOD, GSH-Px and MMP levels, as well as down-regulations of p-ERK1/2/ERK1/2. As compared to the OGD/R group, parameters above in the OGD/R + DEX group were ameliorated evidently, while OGD/R + miR-155 mimic group manifested the opposite changes. Besides, miR-155 mimic could abolish the protective effect of DEX on the hippocampal neurons under OGD/R. DEX, via down-regulating the expression of miR-155, could activate the ERK1/2 pathway, thereby mitigating the apoptosis and oxidative stress injury and increasing the MMP, thereby protecting hippocampal cells from OGD/R injury.
Collapse
|
25
|
Qu X, Neuhoff C, Cinar MU, Pröll M, Tholen E, Tesfaye D, Hölker M, Schellander K, Uddin MJ. Epigenetic Modulation of TLR4 Expression by Sulforaphane Increases Anti-Inflammatory Capacity in Porcine Monocyte-Derived Dendritic Cells. BIOLOGY 2021; 10:biology10060490. [PMID: 34072812 PMCID: PMC8227201 DOI: 10.3390/biology10060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Epigenetic modifications of the genes regulate the inflammation process that includes the DNA methylation and histone acetylation. Sulforaphane is well known for its immunomodulatory properties. Notably, the mechanism of its anti-inflammatory functions involving epigenetic modifications is unclear. This study highlighted the regulatory mechanism of sulforaphane in the innate immunity responses in an acute inflammatory state employ in vivo cell culture model. Porcine monocyte-derived dendritic cells were exposed to LPS with or without sulforaphane pre-treatment for these purposes. Epigenetics modulations of the important genes and regulatory factors were studies as well as the immune responses of the cells were vigorously studied over the period of time. This study deciphers the mechanism of SFN in restricting the excessive inflammatory reactions, thereby, exerting its protective and anti-inflammatory function though epigenetic mechanism. Abstract Inflammation is regulated by epigenetic modifications, including DNA methylation and histone acetylation. Sulforaphane (SFN), a histone deacetylase (HDAC) inhibitor, is also a potent immunomodulatory agent, but its anti-inflammatory functions through epigenetic modifications remain unclear. Therefore, this study aimed to investigate the epigenetic effects of SFN in maintaining the immunomodulatory homeostasis of innate immunity during acute inflammation. For this purpose, SFN-induced epigenetic changes and expression levels of immune-related genes in response to lipopolysaccharide (LPS) stimulation of monocyte-derived dendritic cells (moDCs) were analyzed. These results demonstrated that SFN inhibited HDAC activity and caused histone H3 and H4 acetylation. SFN treatment also induced DNA demethylation in the promoter region of the MHC-SLA1 gene, resulting in the upregulation of Toll-like receptor 4 (TLR4), MHC-SLA1, and inflammatory cytokines’ expression at 6 h of LPS stimulation. Moreover, the protein levels of cytokines in the cell culture supernatants were significantly inhibited by SFN pre-treatment followed by LPS stimulation in a time-dependent manner, suggesting that inhibition of HDAC activity and DNA methylation by SFN may restrict the excessive inflammatory cytokine availability in the extracellular environment. We postulate that SFN may exert a protective and anti-inflammatory function by epigenetically influencing signaling pathways in experimental conditions employing porcine moDCs.
Collapse
Affiliation(s)
- Xueqi Qu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
- Correspondence: (X.Q.); (C.N.)
| | - Christiane Neuhoff
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
- Correspondence: (X.Q.); (C.N.)
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, 38039 Kayseri, Turkey;
| | - Maren Pröll
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
| | - Ernst Tholen
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
| | - Michael Hölker
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
| | - Muhammad Jasim Uddin
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
- Department of Medicine, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
26
|
Park HS, Hwang ES, Choi GY, Kim HB, Park KS, Sul JY, Hwang Y, Choi GW, Kim BI, Park H, Maeng S, Park JH. Sulforaphane enhances long-term potentiation and ameliorate scopolamine-induced memory impairment. Physiol Behav 2021; 238:113467. [PMID: 34033847 DOI: 10.1016/j.physbeh.2021.113467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
Increases in human life expectancy have led to increases in the prevalence of senile dementia and neurodegenerative diseases. This is a major problem because there are no curative treatments for these diseases, and patients with unmanaged cognitive and neurodegenerative symptoms experience many social problems. Sulforaphane is a type of organosulfur compound known as an isothiocyanate. It is derived from glucoraphanin, a compound found in cruciferous vegetables such as broccoli, brussels sprouts, and cabbages, via an enzymatic reaction that is triggered by plant damage (e.g., chewing). Sulforaphane exhibits activity against cancer, inflammation, depression, and severe cardiac diseases. It can also alleviate oxidative stress and neural dysfunction in the brain. However, there is insufficient knowledge about the electrophysiological and behavioral basis of the effects of sulforaphane on learning and memory. Therefore, we evaluated whether acute sulforaphane administration affected long-term potentiation (LTP) in organotypic cultured rat hippocampal tissues. We also measured the effect of sulforaphane on the performance of three behavioral tests, the Y-maze test, the passive avoidance test, and the Morris water maze, which assess short-term memory, avoidance memory, and short and long-term spatial memory, respectively. We found that sulforaphane increased the total field excitatory postsynaptic potential (fEPSP) in a dose-dependent manner after high frequency stimulation and attenuated scopolamine-induced interference of the fEPSP in the hippocampal CA1 area. Sulforaphane also restored cognitive function and inhibited memory impairment as indicated by the alleviation of the negative neurological effects of scopolamine, i.e, a lowered ratio of spontaneous alternation in the Y-maze, a reduced step-through latency in the passive avoidance test, and an increased navigation time in the Morris water maze. These results indicate that sulforaphane can effectively prevent the attenuation of LTP and cognitive abilities induced by cholinergic and muscarinic receptor blockade. Further research is warranted to explore the potential therapeutic and prophylactic utility of sulforaphane for improving learning and memory, especially in those suffering from neurodegenerative disorders.
Collapse
Affiliation(s)
- Ho-Sub Park
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin 446-701, Korea
| | - Eun-Sang Hwang
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin 446-701, Korea
| | - Ga-Young Choi
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Hyun-Bum Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Kyun-Seob Park
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Jai-Yoon Sul
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; PENN Program in Single Cell Biology, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Yoonjin Hwang
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Geun Wook Choi
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Byung Il Kim
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Hyunwoo Park
- Health Park Co., Ltd., #2502, Gangnam-dae-Ro 305, Sucho-gu, Seoul 06628, Korea
| | - Sungho Maeng
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin 446-701, Korea.
| | - Ji-Ho Park
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea; Research Institute of Medical Nutrition, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si 446-701, Korea.
| |
Collapse
|
27
|
Saleh HA, Yousef MH, Abdelnaser A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front Immunol 2021; 12:606069. [PMID: 33868227 PMCID: PMC8044831 DOI: 10.3389/fimmu.2021.606069] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Innate immune response induces positive inflammatory transducers and regulators in order to attack pathogens, while simultaneously negative signaling regulators are transcribed to maintain innate immune homeostasis and to avoid persistent inflammatory immune responses. The gene expression of many of these regulators is controlled by different epigenetic modifications. The remarkable impact of epigenetic changes in inducing or suppressing inflammatory signaling is being increasingly recognized. Several studies have highlighted the interplay of histone modification, DNA methylation, and post-transcriptional miRNA-mediated modifications in inflammatory diseases, and inflammation-mediated tumorigenesis. Targeting these epigenetic alterations affords the opportunity of attenuating different inflammatory dysregulations. In this regard, many studies have identified the significant anti-inflammatory properties of distinct naturally-derived phytochemicals, and revealed their regulatory capacity. In the current review, we demonstrate the signaling cascade during the immune response and the epigenetic modifications that take place during inflammation. Moreover, we also provide an updated overview of phytochemicals that target these mechanisms in macrophages and other experimental models, and go on to illustrate the effects of these phytochemicals in regulating epigenetic mechanisms and attenuating aberrant inflammation.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed H. Yousef
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Public Health, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
28
|
Tufekci KU, Ercan I, Isci KB, Olcum M, Tastan B, Gonul CP, Genc K, Genc S. Sulforaphane inhibits NLRP3 inflammasome activation in microglia through Nrf2-mediated miRNA alteration. Immunol Lett 2021; 233:20-30. [PMID: 33711331 DOI: 10.1016/j.imlet.2021.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Abstract
The NLRP3 inflammasome is a multiprotein complex that activates caspase-1 and triggers the release of the proinflammatory cytokines IL-1β and IL-18 in response to diverse signals. Although inflammasome activation plays critical roles against various pathogens in host defense, overactivation of inflammasome contributes to the pathogenesis of inflammatory diseases, including acute CNS injuries and chronic neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In the current study, we demonstrated that Sulforaphane (SFN), a dietary natural product, inhibits NLRP3 inflammasome mediated IL-1β and IL-18 secretion and pyroptosis in murine microglial cells. SFN decreased the secretion of IL-1β and IL-18, and their mRNA levels in LPS primed microglia triggered by ATP. SFN suppressed the overexpression of cleaved caspase-1 and NLRP3 protein expressions as measured by caspase activity assay and western blot, respectively. SFN also prevented caspase-1 dependent pyroptotic cell death in microglia. Our data indicate that SFN suppresses NLRP3 inflammasome via the inhibition of NF-κB nuclear translocation and Nrf2 mediated miRNAs expression modulation in murine microglia.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey; Vocational School of Health Services, Izmir Democracy University, Izmir, Turkey
| | - Ilkcan Ercan
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Kamer Burak Isci
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey; Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | - Melis Olcum
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey
| | - Bora Tastan
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ceren Perihan Gonul
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
29
|
Comparing the protective effects of resveratrol, curcumin and sulforaphane against LPS/IFN-γ-mediated inflammation in doxorubicin-treated macrophages. Sci Rep 2021; 11:545. [PMID: 33436962 PMCID: PMC7803961 DOI: 10.1038/s41598-020-80804-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Doxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.
Collapse
|
30
|
Li T, Pang Q, Liu Y, Bai M, Peng Y, Zhang Z. Sulforaphane protects human umbilical vein endothelial cells from oxidative stress via the miR-34a/SIRT1 axis by upregulating nuclear factor erythroid-2-related factor 2. Exp Ther Med 2021; 21:186. [PMID: 33488795 PMCID: PMC7812584 DOI: 10.3892/etm.2021.9617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress-induced vascular endothelial cell dysfunction serves an essential role in the initiation and development of atherosclerosis. Sulforaphane (SFN), a naturally occurring antioxidant, has previously demonstrated to exert protective effects on the endothelium against oxidative stress. However, further studies are required to determine its underlying molecular mechanism prior to clinical application. Accumulating evidence suggests that alterations in the microRNA (miRNA/miR)-34a/sirtuin-1 (SIRT1) axis occur with oxidative stress. Therefore, the present study aimed to investigate if SFN exerts a protective role against oxidative stress in vascular endothelial cells through regulation of the miR-34a/SIRT1 axis. Human umbilical vein endothelial cells (HUVECs) were treated with H2O2 in the presence or absence of SFN pretreatment. Cell viability and apoptosis were analyzed using CellTiter-Blue and flow cytometry, respectively. Reverse transcription-quantitative PCR and western blot analyses were performed to determine changes in the expression levels of miR-34a and SIRT1. The expression levels of miR-34a and SIRT1 were artificially regulated following transfection with miR-34a mimic and inhibitor or SIRT1expression plasmid and small interfering RNA, respectively. Subsequently, the effect of the expression changes of miR-34 and SIRT1 on oxidative stress-induced cell injury was investigated. Dual-luciferase reporter assay was used to confirm the targeted binding of miR-34a to SIRT1. SFN was found to ameliorate cellular damage caused by H2O2 and inhibited intracellular reactive oxygen species production. In addition, miR-34a upregulation was accompanied with reduced SIRT1 expression in HUVECs, following H2O2 treatment. miR-34a was revealed to directly target SIRT1 by binding to its 3'-untranslated region. Down-regulation of miR-34a and up-regulation of SIRT1 increased the survival of HUVECs under oxidative stress. Taken together, the results of the present study suggest that SFN may protect HUVECs from oxidative stress by inducing changes in the miR-34a/SIRT1 axis via upregulation of nuclear factor erythroid-2-related factor 2 expression.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Qi Pang
- Department of Traditional Chinese Medicine, The Gansu Gem Flower Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yongbin Liu
- Department of Cardiology, The Gansu Gem Flower Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Ming Bai
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yu Peng
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zheng Zhang
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
31
|
Lian L, Zhang Y, Liu L, Yang L, Cai Y, Zhang J, Xu S. Neuroinflammation in Ischemic Stroke: Focus on MicroRNA-mediated Polarization of Microglia. Front Mol Neurosci 2021; 13:612439. [PMID: 33488360 PMCID: PMC7817943 DOI: 10.3389/fnmol.2020.612439] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke is one of the most common causes of death and disability worldwide. Neuroinflammation is a major pathological event involved in the process of ischemic injury and repair. In particular, microglia play a dual role in neuroinflammation. During the acute phase of stroke onset, M2 microglia are the dominant phenotype and exert protective effects on neuronal cells, whereas permanent M1 microglia contribute to prolonged inflammation and are detrimental to brain tissue. Emerging evidence indicates that microRNAs (miRNAs) may have regulatory effects on microglia-associated inflammation. Thus, we briefly reviewed the dynamic response of microglia after a stroke and assessed how specific miRNAs affect the behavior of reactive microglia. We concluded that miRNAs may be useful novel therapeutic targets to improve stroke outcomes and modulate neuroinflammation.
Collapse
Affiliation(s)
- Lu Lian
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Liu
- Binhai New Area Hospital of TCM. Tian Jin, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liji Yang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yichen Cai
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| |
Collapse
|
32
|
Choi JW, Kim S, Yoo JS, Kim HJ, Kim HJ, Kim BE, Lee EH, Lee YS, Park JH, Park KD. Development and optimization of halogenated vinyl sulfones as Nrf2 activators for the treatment of Parkinson's disease. Eur J Med Chem 2020; 212:113103. [PMID: 33387904 DOI: 10.1016/j.ejmech.2020.113103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
The Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway plays a pivotal role in the cellular defense system against oxidative stress by inducing antioxidant and anti-inflammatory effects. We previously developed Nrf2 activators that potentially protect the death of dopaminergic (DAergic) neuronal cells against oxidative stress in Parkinson's disease (PD). In this study, we designed and synthesized a class of halogenated vinyl sulfones by inserting halogens and pyridine to maximize Nrf2 activation efficacy. Among the synthesized compounds, (E)-3-chloro-2-(2-((2-chlorophenyl)sulfonyl)vinyl)pyridine (9d) significantly exhibited potent Nrf2 activating efficacy (9d: EC50 = 26 nM) at least 10-fold compared with the previous developed compounds (1 and 2). Furthermore, treating with 9d remarkably increased Nrf2 nuclear translocation and Nrf2 protein levels in microglial BV-2 cells. 9d was shown to induce the expression of antioxidant response genes HO-1, GCLC, GCLM, and SOD-1 at both the mRNA and protein levels and suppress proinflammatory cytokines and enzymes. Also, 9d remarkably protected DAergic neurons and restored the PD-associated motor dysfunction in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model.
Collapse
Affiliation(s)
- Ji Won Choi
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Siwon Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jong Seok Yoo
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyeon Ji Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Byung Eun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Elijah Hwejin Lee
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yong Sup Lee
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Cardozo LFMF, Alvarenga LA, Ribeiro M, Dai L, Shiels PG, Stenvinkel P, Lindholm B, Mafra D. Cruciferous vegetables: rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutr Rev 2020; 79:1204-1224. [DOI: 10.1093/nutrit/nuaa129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Sulforaphane (SFN) is a sulfur-containing isothiocyanate found in cruciferous vegetables (Brassicaceae) and a well-known activator of nuclear factor-erythroid 2-related factor 2 (Nrf2), considered a master regulator of cellular antioxidant responses. Patients with chronic diseases, such as diabetes, cardiovascular disease, cancer, and chronic kidney disease (CKD) present with high levels of oxidative stress and a massive inflammatory burden associated with diminished Nrf2 and elevated nuclear transcription factor-κB-κB expression. Because it is a common constituent of dietary vegetables, the salutogenic properties of sulforaphane, especially it’s antioxidative and anti-inflammatory properties, have been explored as a nutritional intervention in a range of diseases of ageing, though data on CKD remain scarce. In this brief review, the effects of SFN as a senotherapeutic agent are described and a rationale is provided for studies that aim to explore the potential benefits of SFN-rich foods in patients with CKD.
Collapse
Affiliation(s)
- Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Livia A Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lu Dai
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Brassica Bioactives Could Ameliorate the Chronic Inflammatory Condition of Endometriosis. Int J Mol Sci 2020; 21:ijms21249397. [PMID: 33321760 PMCID: PMC7763502 DOI: 10.3390/ijms21249397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a chronic, inflammatory, hormone-dependent disease characterized by histological lesions produced by the presence of endometrial tissue outside the uterine cavity. Despite the fact that an estimated 176 million women are affected worldwide by this gynecological disorder, risk factors that cause endometriosis have not been properly defined and current treatments are not efficient. Although the interaction between diet and human health has been the focus of many studies, little information about the correlation of foods and their bioactive derivates with endometriosis is available. In this framework, Brassica crops have emerged as potential candidates for ameliorating the chronic inflammatory condition of endometriosis, due to their abundant content of health-promoting compounds such as glucosinolates and their hydrolysis products, isothiocyanates. Several inflammation-related signaling pathways have been included among the known targets of isothiocyanates, but those involving aquaporin water channels have an important role in endometriosis. Therefore, the aim of this review is to highlight the promising effects of the phytochemicals present in Brassica spp. as major candidates for inclusion in a dietary approach aiming to improve the inflammatory condition of women affected with endometriosis. This review points out the potential roles of glucosinolates and isothiocyanates from Brassicas as anti-inflammatory compounds, which might contribute to a reduction in endometriosis symptoms. In view of these promising results, further investigation of the effect of glucosinolates on chronic inflammatory diseases, either as diet coadjuvants or as therapeutic molecules, should be performed. In addition, we highlight the involvement of aquaporins in the maintenance of immune homeostasis. In brief, glucosinolates and the modulation of cellular water by aquaporins could shed light on new approaches to improve the quality of life for women with endometriosis.
Collapse
|
35
|
Latronico T, Larocca M, Milella S, Fasano A, Rossano R, Liuzzi GM. Neuroprotective potential of isothiocyanates in an in vitro model of neuroinflammation. Inflammopharmacology 2020; 29:561-571. [PMID: 33196947 PMCID: PMC7997826 DOI: 10.1007/s10787-020-00772-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Isothiocyanates (ITCs), present as glucosinolate precursors in cruciferous vegetables, have shown anti-inflammatory, antioxidant and anticarcinogenic activities. Here, we compared the effects of three different ITCs on ROS production and on the expression of matrix metalloproteinase (MMP)-2 and -9, which represent important pathogenetic factors of various neurological diseases. Primary cultures of rat astrocytes were activated by LPS and simultaneously treated with different doses of Allyl isothiocyanate (AITC), 2-Phenethyl isothiocyanate (PEITC) and 2-Sulforaphane (SFN). Results showed that SFN and PEITC were able to counteract ROS production induced by H2O2. The zymographic analysis of cell culture supernatants evidenced that PEITC and SFN were the most effective inhibitors of MMP-9, whereas, only SFN significantly inhibited MMP-2 activity. PCR analysis showed that all the ITCs used significantly inhibited both MMP-2 and MMP-9 expression. The investigation on the mitogen-activated protein kinase (MAPK) signaling pathway demonstrated that ITCs modulate MMP transcription by inhibition of extracellular-regulated protein kinase (ERK) activity. Results of this study suggest that ITCs could be promising nutraceutical agents for the prevention and complementary treatment of neurological diseases associated with MMP involvement.
Collapse
Affiliation(s)
- Tiziana Latronico
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy.
| | - Marilena Larocca
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Serafina Milella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Fasano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
36
|
Wang Y, Petrikova E, Gross W, Sticht C, Gretz N, Herr I, Karakhanova S. Sulforaphane Promotes Dendritic Cell Stimulatory Capacity Through Modulation of Regulatory Molecules, JAK/STAT3- and MicroRNA-Signaling. Front Immunol 2020; 11:589818. [PMID: 33193420 PMCID: PMC7661638 DOI: 10.3389/fimmu.2020.589818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction The broccoli isothiocyanate sulforaphane was shown to inhibit inflammation and tumor progression, also in pancreatic cancer, while its effect on tumor immunity is poorly understood. We investigated the immunoregulatory effect of sulforaphane on human dendritic cells alone and in presence of pancreatic tumor antigens, as well as underlying molecular mechanisms. Methods Sulforaphane-treated human dendritic cells were matured in vitro with a cytokine cocktail, and the expression of regulatory molecules was examined by flow cytometry. The subsequent T-cell response was analyzed by T-cell proliferation assay and CD25 expression. To confirm the findings, dendritic cells pulsed with pancreatic cancer-derived tumor antigens were used. To identify the involved pathway- and microRNA-signaling in sulforaphane-treated dendritic cells, inhibitors of various signaling pathways, western blot analysis, microRNA array, and bioinformatic analysis were applied. Results Sulforaphane modulated the expression of the costimulatory CD80, CD83 and the suppressive B7-H1 molecules on dendritic cells and thereby promoted activation of T cells. The effect was verified in presence of pancreatic tumor antigens. Phosphorylation of STAT3 in dendritic cells was diminished by sulforaphane, and the inhibition of JAK/STAT3 led to downregulation of B7-H1 expression. Among the identified top 100 significant microRNA candidates, the inhibition of miR-155-5p, important for the expression of costimulatory molecules, and the induction of miR-194-5p, targeting the B7-H1 gene, were induced by sulforaphane. Conclusion Our findings demonstrate that sulforaphane promotes T-cell activation by dendritic cells through the modulation of regulatory molecules, JAK/STAT3- and microRNA-signaling in healthy conditions and in context of pancreatic cancer-derived antigens. They explore the immunoregulatory properties of sulforaphane and justify further research on nutritional strategies in the co-treatment of cancer.
Collapse
Affiliation(s)
- Yangyi Wang
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Emilia Petrikova
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Gross
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ingrid Herr
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Svetlana Karakhanova
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
37
|
Sulforaphane Inhibits MGO-AGE-Mediated Neuroinflammation by Suppressing NF-κB, MAPK, and AGE-RAGE Signaling Pathways in Microglial Cells. Antioxidants (Basel) 2020; 9:antiox9090792. [PMID: 32859007 PMCID: PMC7554773 DOI: 10.3390/antiox9090792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022] Open
Abstract
Advanced glycation end products (AGEs) are produced through the binding of glycated protein or lipid with sugar, and they are known to be involved in the pathogenesis of both age-dependent and independent neurological complications. Among dicarbonyl compounds, methylglyoxal (MGO), which is produced from glucose breakdown, is a key precursor of AGE formation and neurotoxicity. Several studies have shown the toxic effects of bovine serum albumin (BSA)-AGE (prepared with glucose, sucrose or fructose) both in in vitro and in vivo. In fact, MGO-derived AGEs (MGO-AGEs) are highly toxic to neurons and other cells of the central nervous system. Therefore, we aimed to investigate the role of MGO-AGEs in microglial activation, a key inflammatory event, or secondary brain damage in neuroinflammatory diseases. Interestingly, we found that sulforaphane (SFN) as a potential candidate to downregulate neuroinflammation induced by MGO-AGEs in BV2 microglial cells. SFN not only inhibited the formation of MGO-AGEs, but it did not show breaking activity on the MGO-mediated AGEs cross-links with protein, indicating that SFN could potentially trap MGO or inhibit toxic AGE damage. In addition, SFN significantly attenuated the production of neuroinflammatory mediators induced by MGO-AGEs in BV2 microglial cells. SFN also lowered the expression levels of AGE receptor (RAGE) in microglial cells, suggesting that SFN could downregulate MGO-AGE-mediated neurotoxicity at the receptor activation level. Altogether, our current study revealed that SFN might show neuropharmacological potential for downregulating MGO-AGEs-mediated neuronal complications thorough attenuating AGE formation and neuroinflammatory responses induced by MGO-AGEs in vitro.
Collapse
|
38
|
Olcum M, Tastan B, Ercan I, Eltutan IB, Genc S. Inhibitory effects of phytochemicals on NLRP3 inflammasome activation: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 75:153238. [PMID: 32507349 DOI: 10.1016/j.phymed.2020.153238] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/12/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The NLRP3 inflammasome formation and following cytokine secretion is a crucial step in innate immune responses. Internal and external factors may trigger inflammasome activation and result in inflammatory cytokine secretion. Inflammasome formation and activity play critical roles in several disease pathologies such as cardiovascular, metabolic, renal, digestive, and CNS diseases. Underlying pathways are not yet clear, but phytochemicals as alternative therapies have been extensively used for suppression of inflammatory responses. PURPOSE In this review, we aimed to summarize in vivo and in vitro effects on NLRP3 inflammasome activation of selected phytochemicals. METHOD Three phytochemicals; Sulforaphane, Curcumin, and Resveratrol were selected, and studies were reviewed to clarify their intracellular signaling mechanism in NLRP3 inflammasome activity. PubMed and Scopus databases are used for the search. For sulforaphane, 8 articles, for curcumin, 25 articles, and for resveratrol, 41 articles were included in the review. CONCLUSION In vitro and in vivo studies pointed out that the selected phytochemicals have inhibitory properties on NLRP3 inflammasome activity. However, neither the mechanism is clear, nor the study designs and doses are standardized.
Collapse
Affiliation(s)
- Melis Olcum
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Bora Tastan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ilkcan Ercan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Irem B Eltutan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
39
|
Liu JZ, Hu YL, Feng Y, Jiang Y, Guo YB, Liu YF, Chen X, Yang JL, Chen YY, Mao QS, Xue WJ. BDH2 triggers ROS-induced cell death and autophagy by promoting Nrf2 ubiquitination in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:123. [PMID: 32605589 PMCID: PMC7325376 DOI: 10.1186/s13046-020-01620-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Background 3-Hydroxy butyrate dehydrogenase 2 (BDH2) is a short-chain dehydrogenase/reductase family member that plays a key role in the development and pathogenesis of human cancers. However, the role of BDH2 in gastric cancer (GC) remains largely unclear. Our study aimed to ascertain the regulatory mechanisms of BDH2 in GC, which could be used to develop new therapeutic strategies. Methods Western blotting, immunohistochemistry, and RT-PCR were used to investigate the expression of BDH2 in GC specimens and cell lines. Its correlation with the clinicopathological characteristics and prognosis of GC patients was analysed. Functional assays, such as CCK-8 and TUNEL assays, transmission electron microscopy, and an in vivo tumour growth assay, were performed to examine the proliferation, apoptosis, and autophagy of GC cells. Related molecular mechanisms were clarified by luciferase reporter, coimmunoprecipitation, and ubiquitination assays. Results BDH2 was markedly downregulated in GC tissues and cells, and the low expression of BDH2 was associated with poor survival of GC patients. Functionally, BDH2 overexpression significantly induced apoptosis and autophagy in vitro and in vivo. Mechanistically, BDH2 promoted Keap1 interaction with Nrf2 to increase the ubiquitination level of Nrf2. Ubiquitination/degradation of Nrf2 inhibited the activity of ARE to increase accumulation of reactive oxygen species (ROS), thereby inhibiting the phosphorylation levels of AktSer473 and mTORSer2448. Conclusions Our study indicates that BDH2 is an important tumour suppressor in GC. BDH2 regulates intracellular ROS levels to mediate the PI3K/Akt/mTOR pathway through Keap1/Nrf2/ARE signalling, thereby inhibiting the growth of GC.
Collapse
Affiliation(s)
- Jia-Zhou Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, Jiangsu, China
| | - Yi-Lin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, Jiangsu, China
| | - Ying Feng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, Jiangsu, China
| | - Yun Jiang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, China
| | - Yi-Bing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, China
| | - Yi-Fei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, China
| | - Xi Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, China
| | - Jun-Ling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, China
| | - Yu-Yan Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, China
| | - Qin-Sheng Mao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, Jiangsu, China.
| | - Wan-Jiang Xue
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, Jiangsu, China. .,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, China.
| |
Collapse
|
40
|
Fu X, He HD, Li CJ, Li N, Jiang SY, Ge HW, Wang R, Wang XL. MicroRNA-155 deficiency attenuates inflammation and oxidative stress in experimental autoimmune prostatitis in a TLR4-dependent manner. Kaohsiung J Med Sci 2020; 36:712-720. [PMID: 32436368 DOI: 10.1002/kjm2.12229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/03/2020] [Accepted: 04/19/2020] [Indexed: 12/26/2022] Open
Abstract
To explore the mechanism of microRNA-155 (miR-155) deficiency, protecting against experimental autoimmune prostatitis (EAP) in a toll-like receptor 4 (TLR4)-dependent manner. After wild-type (WT) and miR-155-/- mice were injected with complete Freund's adjuvant and prostate antigen to establish EAP model, half were randomly selected for injection with lipopolysaccharide (LPS, a TLR4 ligand). The following experiments were then performed: von Frey filaments, hematoxylin-eosin (HE) staining, real time quantitative polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). And the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the level of Malondialdehyde (MDA) were detected by corresponding kits.miR-155-/- mice with prostatitis exhibited the attenuated pelvic tactile allodynia/hyperalgesia and the suppressed TLR4/nuclear factor-kappa B (NF-κB) pathway as compared with the WT mice with prostatitis. In addition, LPS enhanced the upregulation of miR-155 and the activation of the TLR4/NF-κB pathway in the prostatic tissues of WT mice with EAP. Furthermore, prostatitis mice had aggravated inflammation scores accompanying the increased interleukin (IL)-1β, tumor necrosis factor-α, IL-6, interferon-γ, IL-12, and MDA in prostatic tissues with the decreased IL-10, SOD and GSH-Px, and the unaltered IL-4. Compared with the mice from the WT + EAP group and the miR-155-/- + EAP + LPS group, mice from the miR-155-/- + EAP group had decreased inflammation and oxidative stress. miR-155 deficiency ameliorated pelvic tactile allodynia/hyperalgesia in EAP mice and improved inflammation and oxidative stress in prostatic tissues in a TLR4-dependent manner involving NF-κB activation, thereby exerting a therapeutic effect in chronic prostatitis treatment.
Collapse
Affiliation(s)
- Xian Fu
- Department of Urology, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Hua-Dong He
- Department of Urology, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Chang-Jiu Li
- Department of Urology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Li
- Department of Urology, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Shu-Yuan Jiang
- Department of Urology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong-Wei Ge
- Department of Urology, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Rui Wang
- Department of Urology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu-Liang Wang
- Department of Urology, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
41
|
Liu P, Kerins MJ, Tian W, Neupane D, Zhang DD, Ooi A. Differential and overlapping targets of the transcriptional regulators NRF1, NRF2, and NRF3 in human cells. J Biol Chem 2019; 294:18131-18149. [PMID: 31628195 PMCID: PMC6885608 DOI: 10.1074/jbc.ra119.009591] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear factor (erythroid 2)-like (NRF) transcription factors are a subset of cap'n'collar transcriptional regulators. They consist of three members, NRF1, NRF2, and NRF3, that regulate the expression of genes containing antioxidant-response elements (AREs) in their promoter regions. Although all NRF members regulate ARE-containing genes, each is associated with distinct roles. A comprehensive study of differential and overlapping DNA-binding and transcriptional activities of the NRFs has not yet been conducted. Here, we performed chromatin immunoprecipitation (ChIP)-exo sequencing, an approach that combines ChIP with exonuclease treatment to pinpoint regulatory elements in DNA with high precision, in conjunction with RNA-sequencing to define the transcriptional targets of each NRF member. Our approach, done in three U2OS cell lines, identified 31 genes that were regulated by all three NRF members, 27 that were regulated similarly by all three, and four genes that were differentially regulated by at least one NRF member. We also found genes that were up- or down-regulated by only one NRF member, with 84, 84, and 22 genes that were regulated by NRF1, NRF2, and NRF3, respectively. Analysis of the ARE motifs identified in ChIP peaks revealed that NRF2 prefers binding to AREs flanked by GC-rich regions and that NRF1 prefers AT-rich flanking regions. Thus, sequence preference, likely in combination with upstream signaling events, determines NRF member activation under specific cellular contexts. Our analysis provides a comprehensive description of differential and overlapping gene regulation by the transcriptional regulators NRF1, NRF2, and NRF3.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Michael J. Kerins
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Wang Tian
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Durga Neupane
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
42
|
Houghton CA. Sulforaphane: Its "Coming of Age" as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2716870. [PMID: 31737167 PMCID: PMC6815645 DOI: 10.1155/2019/2716870] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/24/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022]
Abstract
A growing awareness of the mechanisms by which phytochemicals can influence upstream endogenous cellular defence processes has led to intensified research into their potential relevance in the prevention and treatment of disease. Pharmaceutical medicine has historically looked to plants as sources of the starting materials for drug development; however, the focus of nutraceutical medicine is to retain the plant bioactive in as close to its native state as possible. As a consequence, the potency of a nutraceutical concentrate or an extract may be lower than required for significant gene expression. The molecular structure of bioactive phytochemicals to a large extent determines the molecule's bioavailability. Polyphenols are abundant in dietary phytochemicals, and extensive in vitro research has established many of the signalling mechanisms involved in favourably modulating human biochemical pathways. Such pathways are associated with core processes such as redox modulation and immune modulation for infection control and for downregulating the synthesis of inflammatory cytokines. Although the relationship between oxidative stress and chronic disease continues to be affirmed, direct-acting antioxidants such as vitamins A, C, and E, beta-carotene, and others have not yielded the expected preventive or therapeutic responses, even though several large meta-analyses have sought to evaluate the potential benefit of such supplements. Because polyphenols exhibit poor bioavailability, few of their impressive in vitro findings have been replicated in vivo. SFN, an aliphatic isothiocyanate, emerges as a phytochemical with comparatively high bioavailability. A number of clinical trials have demonstrated its ability to produce favourable outcomes in conditions for which there are few satisfactory pharmaceutical solutions, foreshadowing the potential for SFN as a clinically relevant nutraceutical. Although myrosinase-inert broccoli sprout extracts are widely available, there now exist myrosinase-active broccoli sprout supplements that yield sufficient SFN to match the doses used in clinical trials.
Collapse
|
43
|
Sulforaphane-Induced Klf9/Prdx6 Axis Acts as a Molecular Switch to Control Redox Signaling and Determines Fate of Cells. Cells 2019; 8:cells8101159. [PMID: 31569690 PMCID: PMC6829349 DOI: 10.3390/cells8101159] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022] Open
Abstract
Sulforaphane (SFN), an activator of transcription factor Nrf2 (NFE2-related factor), modulates antioxidant defense by Nrf2-mediated regulation of antioxidant genes like Peroxiredoxin 6 (Prdx6) and affects cellular homeostasis. We previously observed that dose levels of SFN are crucial in determining life or death of lens epithelial cells (LECs). Herein, we demonstrated that higher doses of SFN (>6 μM) activated death signaling by overstimulation of Nrf2/ARE (antioxidant response element)-mediated Kruppel-like factor (Klf9) repression of Prdx6 expression, which increased reactive oxygen species (ROS) load and cell death. Mechanistically, Klf9 bound to its repressive Klf9 binding elements (RKBE; 5-CA/GCCC-3) in the Prdx6 promoter, and repressed Prdx6 transcription. Under the condition of higher dose of SFN, excessive Nrf2 abundance caused death signaling by enforcing Klf9 activation through ARE (5-RTGAYnnnGC-3) in Klf9 promoter that suppress antioxidant genes such as Prdx6 via a Klf9-dependent fashion. Klf9-depletion showed that Klf9 independently caused ROS reduction and subsequent cell survival, demonstrating that Klf9 upregulation caused cell death. Our work revealed the molecular mechanism of dose-dependent altered activity of SFN in LECs, and demonstrated that SFN activity was linked to levels of Nrf2/Klf9/Prdx6 axis. We proposed that in the development of therapeutic interventions for aging/oxidative disorders, combinations of Klf9-ShRNA and Nrf2 inducers may prove to be a promising strategy.
Collapse
|
44
|
Melrose J. The Glucosinolates: A Sulphur Glucoside Family of Mustard Anti-Tumour and Antimicrobial Phytochemicals of Potential Therapeutic Application. Biomedicines 2019; 7:biomedicines7030062. [PMID: 31430999 PMCID: PMC6784281 DOI: 10.3390/biomedicines7030062] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
This study reviewed aspects of the biology of two members of the glucosinolate family, namely sinigrin and glucoraphanin and their anti-tumour and antimicrobial properties. Sinigrin and glucoraphanin are converted by the β-sulphoglucosidase myrosinase or the gut microbiota into their bioactive forms, allyl isothiocyanate (AITC) and sulphoraphanin (SFN) which constitute part of a sophisticated defence system plants developed over several hundred million years of evolution to protect them from parasitic attack from aphids, ticks, bacteria or nematodes. Delivery of these components from consumption of cruciferous vegetables rich in the glucosinolates also delivers many other members of the glucosinolate family so the dietary AITCs and SFN do not act in isolation. In vitro experiments with purified AITC and SFN have demonstrated their therapeutic utility as antimicrobials against a range of clinically important bacteria and fungi. AITC and SFN are as potent as Vancomycin in the treatment of bacteria listed by the World Health Organisation as antibiotic-resistant “priority pathogens” and also act as anti-cancer agents through the induction of phase II antioxidant enzymes which inactivate potential carcinogens. Glucosinolates may be useful in the treatment of biofilms formed on medical implants and catheters by problematic pathogenic bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus and are potent antimicrobials against a range of clinically important bacteria and fungi. The glucosinolates have also been applied in the prevention of bacterial and fungal spoilage of food products in advanced atmospheric packaging technology which improves the shelf-life of these products.
Collapse
Affiliation(s)
- James Melrose
- Honorary Senior Research Associate, Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW 2065, Australia.
- Adjunct Professor, Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Sydney Medical School, Northern, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| |
Collapse
|
45
|
Tavakkoli A, Iranshahi M, Hasheminezhad SH, Hayes AW, Karimi G. The neuroprotective activities of natural products through the Nrf2 upregulation. Phytother Res 2019; 33:2256-2273. [DOI: 10.1002/ptr.6427] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/28/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Tavakkoli
- Department of Pharmacognosy, School of PharmacyMashhad University of Medical Sciences Mashhad Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, School of PharmacyMashhad University of Medical Sciences Mashhad Iran
| | - S. Hossein Hasheminezhad
- Student Research Committee, School of PharmacyMashhad University of Medical Sciences Mashhad Iran
| | - A. Wallace Hayes
- Institute for Integrative ToxicologyUniversity of South Florida Tampa Florida
- Institute for Integrative ToxicologyMichigan State University East Lansing Michigan
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology InstituteMashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School PharmacyMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
46
|
Microglia as possible therapeutic targets for autism spectrum disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:223-245. [PMID: 31601405 DOI: 10.1016/bs.pmbts.2019.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malfunctions of the nervous and immune systems are now recognized to be fundamental causes of autism spectrum disorders (ASDs). Studies have suggested that the brain's resident immune cells, microglia are possible key players in ASDs. Specifically, deficits in synaptic pruning by microglia may underlie the pathogenesis of ASDs, in which excess synapses are occasionally reported. This idea has driven researchers to investigate causal links between microglial dysfunction and ASDs. In this review, we first introduce the characteristics of microglia in ASD brains and discuss their possible roles in the pathogenesis of ASDs. We also refer to immunomodulatory agents that could be potentially used as symptomatic therapies for ASDs in light of their ability to modify microglial functions. Finally, we will mention a possible strategy to radically cure some of the symptoms reported in ASDs through reorganizing neural circuits via microglia-dependent synaptic pruning.
Collapse
|
47
|
Sulforaphane-Enriched Broccoli Sprouts Pretreated by Pulsed Electric Fields Reduces Neuroinflammation and Ameliorates Scopolamine-Induced Amnesia in Mouse Brain through Its Antioxidant Ability via Nrf2-HO-1 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3549274. [PMID: 31049133 PMCID: PMC6458888 DOI: 10.1155/2019/3549274] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023]
Abstract
Activated microglia-mediated neuroinflammation plays a key pathogenic role in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and ischemia. Sulforaphane is an active compound produced after conversion of glucoraphanin by the myrosinase enzyme in broccoli (Brassica oleracea var) sprouts. Dietary broccoli extract as well as sulforaphane has previously known to mitigate inflammatory conditions in aged models involving microglial activation. Here, we produced sulforaphane-enriched broccoli sprouts through the pretreatment of pulsed electric fields in order to trigger the biological role of normal broccoli against lipopolysaccharide-activated microglia. The sulforaphane-enriched broccoli sprouts showed excellent potency against neuroinflammation conditions, as evidenced by its protective effects in both 6 and 24 h of microglial activation in vitro. We further postulated the underlying mechanism of action of sulforaphane in broccoli sprouts, which was the inhibition of an inflammatory cascade via the downregulation of mitogen-activated protein kinase (MAPK) signaling. Simultaneously, sulforaphane-enriched broccoli sprouts inhibited the LPS-induced activation of the NF-κB signaling pathway and the secretions of inflammatory proteins (iNOS, COX-2, TNF-α, IL-6, IL-1β, PGE2, etc.), which are responsible for the inflammatory cascades in both acute and chronic inflammation. It also upregulated the expression of Nrf2 and HO-1 in normal and activated microglia followed by the lowered neuronal apoptosis induced by activated microglia. Based on these results, it may exhibit anti-inflammatory effects via the NF-κB and Nrf2 pathways. Interestingly, sulforaphane-enriched broccoli sprouts improved the scopolamine-induced memory impairment in mice through Nrf2 activation, inhibiting neuronal apoptosis particularly through inhibition of caspase-3 activation which could lead to the neuroprotection against neurodegenerative disorders. The present study suggests that sulforaphane-enriched broccoli sprouts might be a potential nutraceutical with antineuroinflammatory and neuroprotective activities.
Collapse
|
48
|
Mazarakis N, Snibson K, Licciardi PV, Karagiannis TC. The potential use of l-sulforaphane for the treatment of chronic inflammatory diseases: A review of the clinical evidence. Clin Nutr 2019; 39:664-675. [PMID: 30954362 DOI: 10.1016/j.clnu.2019.03.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 12/15/2022]
Abstract
According to the World Health Organisation, 70% of all deaths globally can be attributed to chronic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, respiratory conditions, cardiovascular diseases, diabetes and cancer. Chronic inflammation has a significant impact on the quality of life of affected individuals with an increased risk of developing other chronic inflammatory diseases. Given the limitations of current pharmaceuticals, there is an intense research interest in identifying novel dietary interventions that can regulate and alleviate inflammation. A diet rich in cruciferous vegetables has been extensively studied for its immediate and long-term health benefits, particularly in the context of cardiovascular disease and cancer. Cruciferous vegetables contain the precursor glucoraphanin, which is hydrolysed upon consumption to form l-sulforaphane (LSF), the primary active compound that mediates potential cardio-protective and anti-carcinogenic effects. LSF has been shown to have beneficial effects in vitro and in animal studies through its classical antioxidant and anti-inflammatory properties, and more recently its chromatin modifying effects. This review discusses the clinical evidence to date in relation to the use of LSF in the context of chronic inflammatory diseases as well as provide key mechanistic insights for these effects.
Collapse
Affiliation(s)
- Nadia Mazarakis
- Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Kenneth Snibson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Paul V Licciardi
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Tom C Karagiannis
- Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, Melbourne, VIC, Australia.
| |
Collapse
|
49
|
Huang C, Wu J, Chen D, Jin J, Wu Y, Chen Z. Effects of sulforaphane in the central nervous system. Eur J Pharmacol 2019; 853:153-168. [PMID: 30858063 DOI: 10.1016/j.ejphar.2019.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
Sulforaphane (SFN) is an active component extracted from vegetables like cauliflower and broccoli. Activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling is a common mechanism for the anti-oxidative and anti-inflammatory activity of some herb-derived compounds, such as icariin and berberine. However, due to its peculiar ability in Nrf2 activation, SFN is recognized as an activator of Nrf2 and recommended as a supplementation for prevention and/or treatment of disorders like neoplasm and heart failure. In the central nervous system (CNS), the prophylactic and/or therapeutic effects of SFN have been revealed in recent years. For example, it has been reported to prevent the progression of Alzheimer's disease, Parkinson's disease, cerebral ischemia, Huntington's disease, multiple sclerosis, epilepsy, and psychiatric disorders via promotion of neurogenesis or inhibition of oxidative stress and neuroinflammation. SFN is also implicated in reversing cognition, learning, and memory impairment in rodents induced by scopolamine, lipopolysaccharide, okadaic acid, and diabetes. In models of neurotoxicity, SFN has been shown to suppress neurotoxicity induced by a wide range of toxic factors, such as hydrogen peroxide, prion protein, hyperammonemia, and methamphetamine. To date, no consolidated source of knowledge about the pharmacological effects of SFN in the CNS has been presented in the literature. In this review, we summarize and discuss the pharmacological effects of SFN as well as their possible mechanisms in prevention and/or therapy of disorders afflicting the CNS, aiming to get a further insight into how SFN affects the pathophysiological process of CNS disorders.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Jie Jin
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Yue Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China.
| |
Collapse
|
50
|
Subedi L, Lee JH, Yumnam S, Ji E, Kim SY. Anti-Inflammatory Effect of Sulforaphane on LPS-Activated Microglia Potentially through JNK/AP-1/NF-κB Inhibition and Nrf2/HO-1 Activation. Cells 2019; 8:cells8020194. [PMID: 30813369 PMCID: PMC6406309 DOI: 10.3390/cells8020194] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022] Open
Abstract
Sulforaphane (SFN), a potent nuclear factor erythroid 2-related factor 2 (Nrf2) activator, is present in the species of the Brassicaceae, especially in broccoli sprouts. In this study, the effects of SFN against microglial activation and inflammation, and the potential mechanisms involved, were analyzed. As mitogen-activated protein kinase (MAPK) signaling plays a key role in microglial activation and inflammation, we focused on the role of SFN in regulating the MAPK signaling regulation of the inflammatory and anti-inflammatory cascades in lipopolysaccharide (LPS)-activated microglia. The anti-inflammatory and immunomodulatory effects of SFN were explored by evaluating the expression and secretion of inflammatory proteins, cytokines, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and activator protein-1 (AP-1) under pre- and post-treatment conditions. Under the SFN pre- and post-treatment conditions, the MAPK phosphorylation levels were significantly reduced in both acutely and chronically activated microglial cells. SFN also reduced the c-Jun N-terminal kinase (JNK) phosphorylation levels, which subsequently reduced NF-κB and AP-1 signaling. As a result, the expression of the inflammatory mediators (iNOS, COX-2, NO, and PGE2) and proinflammatory cytokines (TNF-α, IL-6, and IL-1β) was decreased. At the same time, SFN increased the expression of Nrf2 and heme oxygenase-1 (HO-1) as well as the production of the anti-inflammatory cytokines IL-10 and IL-4. In conclusion, this study demonstrated that SFN exerts an anti-neuroinflammatory effect on microglia through JNK/AP-1/NF-κB pathway inhibition and Nrf2/HO-1 pathway activation.
Collapse
Affiliation(s)
- Lalita Subedi
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Jae Hyuk Lee
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Silvia Yumnam
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Eunhee Ji
- Laboratory of Clinical Pharmacy, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Sun Yeou Kim
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
- Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
- Gachon Medical Research Institute, Gil Medical Center, Incheon 21565, Korea.
| |
Collapse
|