1
|
Wu T, Xiong Y, Wang L, Wu J, Yin Y, Wang M. Accelerated aging mediates the association between rheumatoid arthritis and depression severity. J Affect Disord 2025; 379:861-869. [PMID: 40032139 DOI: 10.1016/j.jad.2025.02.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND This study aimed to investigate the associations among phenotypic age acceleration (PAA), the prevalence of rheumatoid arthritis (RA), and depression severity and to examine the potential mediating role of PAA in the RA-depression relationship. METHODS A retrospective cohort analysis was conducted using data from adult participants in the National Health and Nutrition Examination Survey (2005-2010). Participants with RA were identified on the basis of self-report of RA in personal interviews. Depression was assessed via the Patient Health Questionnaire-9 (PHQ-9). PAA was calculated with 9 clinical biomarkers and chronological age, with a relatively high RAA value indicating the acceleration of aging. Survey-weighted logistic regression models were used to explore the relationship between the prevalence of RA and PAA and the correlation between PAA and depression. Mediation analysis was employed to quantify the indirect effect of RA on depression through PAA. RESULTS A total of 9834 adults aged over 20 years were included. RA prevalence was positively associated with greater PAA (β = 1.60, 95 % confidence interval (CI): 0.86-2.35, P = 0.0002) and depression severity (β = 1.57, 95 % CI: 1.09-2.05, P < 0.0001). Additionally, PAA was correlated with depression severity (β = 0.04, 95 % CI: 0.02-0.06; P = 0.0001). Mediation analysis revealed that PAA significantly mediated the association between RA and depressive severity, explaining 2.26-5.57 % (all p < 0.001) of the total effect. CONCLUSIONS Individuals with RA exhibited accelerated biological aging, as represented by increased PAA, which partially mediated the relationship between RA and depression severity in this population.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou 215006, China
| | - Yue Xiong
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou 215006, China
| | - Lei Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou 215006, China
| | - Jian Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou 215006, China
| | - Yufeng Yin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou 215006, China.
| | - Mingjun Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou 215006, China.
| |
Collapse
|
2
|
Chandra A, Law SF, Pignolo RJ. Changing landscape of hematopoietic and mesenchymal cells and their interactions during aging and in age-related skeletal pathologies. Mech Ageing Dev 2025; 225:112059. [PMID: 40220914 DOI: 10.1016/j.mad.2025.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Aging profoundly impacts mesenchymal and hematopoietic lineage cells, including their progenitors-the skeletal stem cells (SSCs) and hematopoietic stem cells (HSCs), respectively. SSCs are crucial for skeletal development, homeostasis, and regeneration, maintaining bone integrity by differentiating into osteoblasts, adipocytes, and other lineages that contribute to the bone marrow (BM) microenvironment. Meanwhile, HSCs sustain hematopoiesis and immune function. With aging, SSCs and HSCs undergo significant functional decline, partly driven by cellular senescence-a hallmark of aging characterized by irreversible growth arrest, secretion of pro-inflammatory factors (senescence associated secretory phenotype, SASP), and impaired regenerative potential. In SSCs, senescence skews lineage commitment toward adipogenesis at the expense of osteogenesis, contributing to increased bone marrow adiposity (BMAd), reduced bone quality, and osteoporosis. Similarly, aged HSCs exhibit diminished self-renewal, biased differentiation, and heightened inflammation, compromising hematopoietic output and immune function. In this review, we examine the age-related cellular and molecular changes in SSCs and HSCs, their lineage decisions in the aging microenvironment, and the interplay between skeletal and hematopoietic compartments. We also discuss the role of senescence-driven alterations in BM homeostasis and how targeting cellular aging mechanisms may offer therapeutic strategies for mitigating age-related skeletal and hematopoietic decline.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical Engineering; Department of Medicine, Divisions of Hospital Internal Medicine and Section on Geriatric Medicine and Gerontology; Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA.
| | - Susan F Law
- Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert J Pignolo
- Department of Physiology and Biomedical Engineering; Department of Medicine, Divisions of Hospital Internal Medicine and Section on Geriatric Medicine and Gerontology; Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Lu Z, Xiao P, Liu S, Huang C, Li W, Mao Y, Xu Y, Tian Y. Osteoimmunology: Crosstalk Between T Cells and Osteoclasts in Osteoporosis. Clin Rev Allergy Immunol 2025; 68:41. [PMID: 40208457 DOI: 10.1007/s12016-025-09046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Osteoporosis, a common metabolic condition that affects the bones, increases the risk of fractures, thereby diminishing one's quality of life and, in severe cases, can even result in life-threatening conditions. Osteoporosis is becoming increasingly prevalent worldwide as the population ages. Previous research on osteoporosis has focused on skeletal cellular components such as osteoblasts and osteoclasts. The emerging field of "osteoimmunology" has recently been introduced through new research. The concept highlights the critical impact of bone-immune system interactions on osteoporosis progression. The pathogenesis of osteoporosis is significantly influenced by T cells, particularly cytotoxic and helper T cells, which modulate osteoclast differentiation and activity. A crucial aspect of understanding osteoporosis is how T lymphocytes interact with osteoclasts. However, the precise mechanisms underlying T cell-osteoclast crosstalk remain poorly understood. This review systematically examines T cell and osteoclast involvement in osteoimmunology, with a particular focus on their involvement in osteoporosis. It seeks to elucidate the immune mechanisms driving the progression of osteoporosis and identify key molecules involved in T cell-osteoclast interactions. This aims to discover novel molecular targets and intervention strategies to improve early diagnosis and management of osteoporosis. Furthermore, this article will explore the potential of intervening in T cell-osteoclast interactions using conventional therapies, traditional Chinese medicine, immunomodulatory agents, and nanomaterial-based treatments, providing new perspectives for future osteoporosis management.
Collapse
Affiliation(s)
- Zeyao Lu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peilun Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shijia Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chongjun Huang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weishang Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanheng Mao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Hu H, Zhang G, Chen T, Liu Y, Meng L, Holmdahl R, Dai L, Zhao Y. Immunosenescence in autoimmune diseases. Autoimmun Rev 2025; 24:103805. [PMID: 40132774 DOI: 10.1016/j.autrev.2025.103805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Autoimmune diseases (AIDs) are a group of disorders in which the immune system mistakenly attacks the body's own tissues, characterized by the loss of tolerance to self-antigens and destruction of tissues. Aging is a natural process of physiological decline that also alters the immune system, a condition known as immunosenescence. During immunosenescence, the immune system undergoes various changes, including modifications and antigenicity of self-antigens, abnormalities in the quantity, phenotype, and function of lymphocytes and antibodies, as well as a narrowing of the B and T cell receptor repertoire, changes that may increase susceptibility to AIDs. Additionally, senescent immune cells and the senescence-associated secretory phenotype (SASP) contribute to target organ involvement in AIDs, exacerbating chronic inflammation and tissue damage. Mitochondrial dysfunction and metabolic imbalances in AIDs lead to the accumulation of senescent cells, which act as upstream drivers of immunosenescence. In this review, we summarize the bidirectional relationship between AIDs and immunosenescence, as well as its potential mechanisms. Therapeutic approaches targeting immunosenescence in AIDs remain at an early stage. Strategies aimed at resetting or reversing the aging immune system are expected to become a novel direction in the future.
Collapse
Affiliation(s)
- Huifang Hu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Guangyue Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Liesu Meng
- Department of Rheumatology, and National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China.
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Nooh N, Lwin MN, Edwards C. Considerations for the use of biological therapies in elderly patients with rheumatoid arthritis. Expert Opin Biol Ther 2024; 24:1109-1117. [PMID: 39267488 DOI: 10.1080/14712598.2024.2404521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that primarily affects middle-aged individuals but is increasingly prevalent among the elderly due to longer life expectancies. Treating elderly onset RA (EORA) is challenging for clinicians because of unique disease characteristics, comorbidities, polypharmacy, age-related physiological changes, and limited studies on the safety and efficacy of biological therapies in this population. This review aims to evaluate the use of various biological therapies in elderly RA patients. AREAS COVERED This narrative review examines various aspects of RA in the elderly using published literature, randomized control trials, meta-analyses, and recommendations from the National Institute for Health and Care Excellence (NICE) and The European Alliance of Associations for Rheumatology (EULAR). EXPERT OPINION In EORA patients, the initiation of biological therapy is often delayed. Methotrexate remains the first-line treatment for both EORA and young onset RA (YORA). The combination of methotrexate and biological treatment shows comparable safety and efficacy in both EORA and YORA, except for rituximab, which is less effective in patients over 75. For elderly RA patients, biological (b-) disease-modifying antirheumatic drugs (DMARDs) are preferred as the first advanced therapy over targeted synthetic (ts-) DMARDs due to their superior safety profile.
Collapse
Affiliation(s)
- Noor Nooh
- NIHR clinical research facility, Southampton General Hospital, Southampton University Hospitals NHS Trust, Southampton, UK
| | - May N Lwin
- NIHR clinical research facility, Southampton General Hospital, Southampton University Hospitals NHS Trust, Southampton, UK
| | - Christopher Edwards
- NIHR clinical research facility, Southampton General Hospital, Southampton University Hospitals NHS Trust, Southampton, UK
| |
Collapse
|
6
|
Chen J, Sun Q, Wang Y, Yin W. Revealing the key role of cuproptosis in osteoporosis via the bioinformatic analysis and experimental validation of cuproptosis-related genes. Mamm Genome 2024; 35:414-431. [PMID: 38904833 DOI: 10.1007/s00335-024-10049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
The incidence of osteoporosis has rapidly increased owing to the ageing population. Cuproptosis, a novel mechanism that regulates cell death, may be a new therapeutic approach. However, the relevance of cuproptosis in the immune microenvironment and osteoporosis immunotherapy is still unknown. We intersected the differentially expressed genes from osteoporotic samples with 75 cuproptosis-related genes to identify 16 significantly expressed cuproptosis genes. We further explored the connection between the cuproptosis pattern, immune microenvironment, and immunotherapy. The weighted gene co-expression network analysis algorithm was used to identify cuproptosis phenotype-associated genes, and we used quantitative real-time PCR and immunohistochemistry in mouse femur tissues to verify hub gene (MAP2K2, FDX1, COX19, VEGFA, CDKN2A, and NFE2L2) expression. Six hub genes and 59 cuproptosis phenotype-associated genes involved in immunisation were identified among the osteoporosis and control groups, and the majority of these 59 genes were enriched in the inflammatory response, as well as in signal transducers, Janus kinase, and transcription pathway activators. In addition, two different clusters of cuproptosis were found, and immune infiltration analysis showed that gene Cluster 1 had a greater immune score and immune infiltration level. Further analysis revealed that three key genes (COX19, MAP2K2, and FDX1) were highly correlated with immune cell infiltration, and external experiments validated the association of these three genes with the prognosis of osteoporosis. We used the three key mRNAs COX19, MAP2K2, and FDX1 as a classification model that may systematically elucidate the complex connection between cuproptosis and the immune microenvironment of osteoporosis. New insights into osteoporosis pathogenesis and immunotherapy prospects may be gained from this study.
Collapse
Affiliation(s)
- Jianxing Chen
- Department of Joint Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Qifeng Sun
- Department of Joint Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Yi Wang
- Department of Joint Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Wenzhe Yin
- Department of Joint Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
7
|
Daldrup-Link HE, Suryadevara V, Tanyildizi Y, Nernekli K, Tang JH, Meade TJ. Musculoskeletal imaging of senescence. Skeletal Radiol 2024; 53:1879-1887. [PMID: 38329533 PMCID: PMC11303117 DOI: 10.1007/s00256-024-04585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Senescent cells play a vital role in the pathogenesis of musculoskeletal (MSK) diseases, such as chronic inflammatory joint disorders, rheumatoid arthritis (RA), and osteoarthritis (OA). Cellular senescence in articular joints represents a response of local cells to persistent stress that leads to cell-cycle arrest and enhanced production of inflammatory cytokines, which in turn perpetuates joint damage and leads to significant morbidities in afflicted patients. It has been recently discovered that clearance of senescent cells by novel "senolytic" therapies can attenuate the chronic inflammatory microenvironment of RA and OA, preventing further disease progression and supporting healing processes. To identify patients who might benefit from these new senolytic therapies and monitor therapy response, there is an unmet need to identify and map senescent cells in articular joints and related musculoskeletal tissues. To fill this gap, new imaging biomarkers are being developed to detect and characterize senescent cells in human joints and musculoskeletal tissues. This review article will provide an overview of these efforts. New imaging biomarkers for senescence cells are expected to significantly improve the specificity of state-of-the-art imaging technologies for diagnosing musculoskeletal disorders.
Collapse
Affiliation(s)
- Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA.
| | - Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA
| | - Yasemin Tanyildizi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA
| | - Jian-Hong Tang
- Department of Chemistry, Northwestern University, Evanston, USA
| | - Thomas J Meade
- Department of Chemistry, Northwestern University, Evanston, USA
| |
Collapse
|
8
|
Mi B, Xiong Y, Knoedler S, Alfertshofer M, Panayi AC, Wang H, Lin S, Li G, Liu G. Ageing-related bone and immunity changes: insights into the complex interplay between the skeleton and the immune system. Bone Res 2024; 12:42. [PMID: 39103328 DOI: 10.1038/s41413-024-00346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 08/07/2024] Open
Abstract
Ageing as a natural irreversible process inherently results in the functional deterioration of numerous organ systems and tissues, including the skeletal and immune systems. Recent studies have elucidated the intricate bidirectional interactions between these two systems. In this review, we provide a comprehensive synthesis of molecular mechanisms of cell ageing. We further discuss how age-related skeletal changes influence the immune system and the consequent impact of immune system alterations on the skeletal system. Finally, we highlight the clinical implications of these findings and propose potential strategies to promote healthy ageing and reduce pathologic deterioration of both the skeletal and immune systems.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig - Maximilian University Munich, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Hand-, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
9
|
Jiang J, Yang M, Zhu H, Long D, He Z, Liu J, He L, Tan Y, Akbar AN, Reddy V, Zhao M, Long H, Wu H, Lu Q. CD4 +CD57 + senescent T cells as promoters of systemic lupus erythematosus pathogenesis and the therapeutic potential of senolytic BCL-2 inhibitor. Eur J Immunol 2024; 54:e2350603. [PMID: 38752316 DOI: 10.1002/eji.202350603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 07/07/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by persistent activation of immune cells and overproduction of autoantibodies. The accumulation of senescent T and B cells has been observed in SLE and other immune-mediated diseases. However, the exact mechanistic pathways contributing to this process in SLE remain incompletely understood. In this study, we found that in SLE patients: (1) the frequency of CD4+CD57+ senescent T cells was significantly elevated and positively correlated with disease activity; (2) the expression levels of B-lymphoma-2 (BCL-2) family and interferon-induced genes (ISGs) were significantly upregulated; and (3) in vitro, the cytokine IL-15 stimulation increased the frequency of senescent CD4+ T cells and upregulated the expression of BCL-2 family and ISGs. Further, treatment with ABT-263 (a senolytic BCL-2 inhibitor) in MRL/lpr mice resulted in decreased: (1) frequency of CD4+CD44hiCD62L-PD-1+CD153+ senescent CD4+ T cells; (2) frequency of CD19+CD11c+T-bet+ age-related B cells; (3) level of serum antinuclear antibody; (4) proteinuria; (5) frequency of Tfh cells; and (6) renal histopathological abnormalities. Collectively, these results indicated a dominant role for CD4+CD57+ senescent CD4+ T cells in the pathogenesis of SLE and senolytic BCL-2 inhibitor ABT-263 may be the potential treatment in ameliorating lupus phenotypes.
Collapse
Affiliation(s)
- Jiao Jiang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiang Su, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiang Su, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Di Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenghao He
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Juan Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liting He
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yixin Tan
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Arne N Akbar
- Division of Medicine, University College London, London, United Kingdom
| | - Venkat Reddy
- Division of Medicine, University College London, London, United Kingdom
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiang Su, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiang Su, China
| | - Hai Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiang Su, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiang Su, China
| |
Collapse
|
10
|
Hong J, Luo F, Du X, Xian F, Li X. The immune cells in modulating osteoclast formation and bone metabolism. Int Immunopharmacol 2024; 133:112151. [PMID: 38685175 DOI: 10.1016/j.intimp.2024.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Osteoclasts are pivotal in regulating bone metabolism, with immune cells significantly influencing both physiological and pathological processes by modulating osteoclast functions. This is particularly evident in conditions of inflammatory bone resorption, such as rheumatoid arthritis and periodontitis. This review summarizes and comprehensively analyzes the research progress on the regulation of osteoclast formation by immune cells, aiming to unveil the underlying mechanisms and pathways through which diseases, such as rheumatoid arthritis and periodontitis, impact bone metabolism.
Collapse
Affiliation(s)
- Jiale Hong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xingyue Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fa Xian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
11
|
Zhenyu C, Le C, Shiyong Z, Jinding L, Mingzhong L, Haifeng T, Rongdong Z. Application of two-sample Mendelian randomization method to assess the causal relationship between rheumatoid arthritis and osteoporotic fracture. Front Med (Lausanne) 2024; 11:1388968. [PMID: 38799148 PMCID: PMC11116583 DOI: 10.3389/fmed.2024.1388968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Background The association between rheumatoid arthritis (RA) and osteoporotic fracture has garnered considerable attention; however, the causal relationships between diseases remain uncertain. Therefore, this study employed Mendelian randomization (MR) analysis to investigate the causal effects of RA on osteoporotic fracture. Methods The summary data for RA and osteoporotic fracture were extracted from the genome-wide association studies (GWAS) catalog and the Finn Biobank database. The database provides information about diseased and health control subjects. We searched the database for the following conditions: RA, osteoporosis (OP), and osteoporotic fractures. Entries were published by investigating centers, which had established definitions and diagnostic criteria. We downloaded and processed the data to obtain the single-nucleotide polymorphisms (SNPs) strongly associated with RA, OP, and osteoporotic fracture. RA genetic associations were obtained from the GWAS catalog, including 1961 cases and 454,387 controls. The osteoporosis of the GWAS catalog involved 991 cases and 455,357 controls, and the data of the Finn Biobank involved 8,017 cases and 391,037 controls. Genetic associations for osteoporotic fracture were taken from the Finn Biobank of 1822 cases and 311,210 controls. Independent SNPs that are significantly associated with meeting the criteria of p < 5 × 10-8, r2 < 0.001, and kb = 10,000 were selected for MR analysis. The inverse variance-weighted (IVW) method along with other MR methods was employed for analysis, while sensitivity analyses were conducted to assess reliability and stability. Results The results provided strong evidence that RA was causally and positively associated with osteoporosis from the GWAS catalog (OR = 1.16590; 95% CI: 1.04067-1.30619; p = 0.00811) and the Finn Biobank database (OR = 1.07314; 95% CI: 1.03455-1.11317; p = 0.00016). Moreover, a positive causal relationship was detected between RA and osteoporotic fracture (OR = 1.10132; 95% CI: 1.00506-1.20680; p = 0.03863). The results were robust according to sensitivity tests. Conclusion This study showed positive causal relationships between RA and osteoporotic fracture. These results should be considered in further studies and public health measures on osteoporosis prevention strategies.
Collapse
Affiliation(s)
- Cai Zhenyu
- Department of Orthopedics, Quanzhou First Hospital Affiliated of Fujian Medical University, Quanzhou, Fujian, China
| | - Chang Le
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Zeng Shiyong
- Medical Research Center of Quanzhou Medical College, Quanzhou, Fujian, China
| | - Lin Jinding
- Department of Orthopedics, Quanzhou First Hospital Affiliated of Fujian Medical University, Quanzhou, Fujian, China
| | - Liu Mingzhong
- Department of Orthopedics, Quanzhou First Hospital Affiliated of Fujian Medical University, Quanzhou, Fujian, China
| | - Tang Haifeng
- Department of Orthopedics, Quanzhou First Hospital Affiliated of Fujian Medical University, Quanzhou, Fujian, China
| | - Zeng Rongdong
- Department of Orthopedics, Quanzhou First Hospital Affiliated of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
12
|
Ghirardi GM, Delrosso CA, Nerviani A, Boutet MA. Molecular portrait of chronic joint diseases: Defining endotypes toward personalized medicine. Joint Bone Spine 2024; 91:105692. [PMID: 38246575 DOI: 10.1016/j.jbspin.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Joint diseases affect hundreds of millions of people worldwide, and their prevalence is constantly increasing. To date, despite recent advances in the development of therapeutic options for most rheumatic conditions, a significant proportion of patients still lack efficient disease management, considerably impacting their quality of life. Through the spectrum of rheumatoid arthritis (RA), psoriatic arthritis (PsA), and osteoarthritis (OA) as quintessential and common rheumatic diseases, this review first provides an overview of their epidemiological and clinical features before exploring how the better definition of clinical phenotypes has helped their clinical management. It then discusses the recent progress in understanding the diversity of endotypes underlying disease phenotypes. Finally, this review highlights the current challenges of implementing molecular endotypes towards the personalized management of RA, PsA and OA patients in the future.
Collapse
Affiliation(s)
- Giulia Maria Ghirardi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | | | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Marie-Astrid Boutet
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK; Nantes Université, Oniris, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France.
| |
Collapse
|
13
|
Umeda A, Murata K, Murotani Y, Fujii T, Onishi A, Murakami K, Onizawa H, Otsuki B, Shimizu T, Tanaka M, Morinobu A, Matsuda S. Low Hounsfield unit values on computed tomography as a potential predictor of vertebral fracture in patients with rheumatoid arthritis: The KURAMA cohort study. Int J Rheum Dis 2024; 27:e15146. [PMID: 38661342 DOI: 10.1111/1756-185x.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Hounsfield units (HU) measured using computed tomography (CT) have gained considerable attention for the detection of osteoporosis. This study aimed to investigate whether opportunistic CT could predict vertebral fractures in patients with rheumatoid arthritis (RA). METHODS A total of 233 patients with RA who underwent chest CT were included in this study. The HU values of the anterior 1/3 of the vertebral bodies based on the sagittal plane at T11-L2 after reconstruction were measured. The incidence of vertebral fractures was investigated with respect to the HU value. RESULTS Vertebral fractures were identified in 32 patients during a mean follow-up period of 3.8 years. In patients who experienced vertebral fractures within 2 years of CT imaging, the HU values of the vertebral bodies (T11-L2) were lower than those in patients who did not experience fractures. Receiver operating characteristic curve analysis identified that a T11 HU value of <125 was a risk factor for vertebral fracture within 2 years. Multivariate analysis showed that a T11 HU value of <125 and the existence of prevalent vertebral fractures were significant risk factors for fracture. CONCLUSION HU measurements of the anterior 1/3 of the vertebral body are a potential predictor for vertebral fractures in patients with RA.
Collapse
Affiliation(s)
- Akane Umeda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichi Murata
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Murotani
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Fujii
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Onishi
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kosaku Murakami
- Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideo Onizawa
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bungo Otsuki
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayoshi Shimizu
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
14
|
Yang M, Zhu L. Osteoimmunology: The Crosstalk between T Cells, B Cells, and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2024; 25:2688. [PMID: 38473934 DOI: 10.3390/ijms25052688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is an ongoing inflammatory condition that affects the joints and can lead to severe damage to cartilage and bones, resulting in significant disability. This condition occurs when the immune system becomes overactive, causing osteoclasts, cells responsible for breaking down bone, to become more active than necessary, leading to bone breakdown. RA disrupts the equilibrium between osteoclasts and osteoblasts, resulting in serious complications such as localized bone erosion, weakened bones surrounding the joints, and even widespread osteoporosis. Antibodies against the receptor activator of nuclear factor-κB ligand (RANKL), a crucial stimulator of osteoclast differentiation, have shown great effectiveness both in laboratory settings and actual patient cases. Researchers are increasingly focusing on osteoclasts as significant contributors to bone erosion in RA. Given that RA involves an overactive immune system, T cells and B cells play a pivotal role by intensifying the immune response. The imbalance between Th17 cells and Treg cells, premature aging of T cells, and excessive production of antibodies by B cells not only exacerbate inflammation but also accelerate bone destruction. Understanding the connection between the immune system and osteoclasts is crucial for comprehending the impact of RA on bone health. By delving into the immune mechanisms that lead to joint damage, exploring the interactions between the immune system and osteoclasts, and investigating new biomarkers for RA, we can significantly improve early diagnosis, treatment, and prognosis of this condition.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
15
|
Cai WW, Gao Y, Cheng JW, Yu Y, Zong SY, Li YH, Wang Y, Song YN, Mao XT, Guan J, Xu L, Zhang DY, Li K, Wei F. Berberine modulates the immunometabolism and differentiation of CD4 + T cells alleviating experimental arthritis by suppression of M1-exo-miR155. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155255. [PMID: 38181528 DOI: 10.1016/j.phymed.2023.155255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The inflammatory cascade mediated by macrophages and T cells is considered to be an important factor in promoting the progression of rheumatoid arthritis (RA). Our previous study found that berberine (BBR) can therapeutically impact adjuvant arthritis (AA) in rats through the regulation of macrophage polarization and the balance of Th17/Treg. However, whether BBR's effects on CD4+T cells response are related to its suppression of M1 macrophage still unclear. PURPOSE The study aimed to estimate the mechanism of BBR in regulating the immunometabolism and differentiation of CD4+T cells are related to exosome derived from M1-macrophage (M1-exo). STUDY-DESIGN/METHODS Mice model of collagen-induced arthritis (CIA) was established to investigate the antiarthritic effect of BBR was related with regulation of M1-exo to balance T cell subsets. Bioinformatics analysis using the GEO database and meta-analysis. In vitro, we established the co-culture system involving M1-exo and CD4+ T cells to examine whether BBR inhibits CD4+T cell activation and differentiation by influencing M1-exo-miR155. Exosome was characterized using transmission electron microscopy and western blot analysis, macrophage and CD4+T cell subpopulation were detected by flow cytometry. Further, the metabolic profiles of CD4+T cells were assessed by ECAR, OCR, and the level of glucose, lactate, intracellular ATP. RESULT BBR reinstates CD4+ T cell homeostasis and reduces miR155 levels in both M1-exo and CD4+ T cells obtained from mice with CIA. In vitro, we found exosomes are indispensable for M1-CM on T lymphocyte activation and differentiation. BBR reversed M1-exo facilitating the activation and differentiation of CD4+T cells. Furthermore, BBR reversed glycolysis reprogramming of CD4+T cells induced by M1-exo, while these regulation effects were significantly weakened by miR155 mimic. CONCLUSION The delivery of miR-155 by M1-exo contributes to CD4+ T cell immunometabolism dysfunction, a process implicated in the development of RA. The anti-arthritic effect of BBR is associated with the suppression of glycolysis and the disruption of CD4+ T cell subsets balance, achieved by reducing the transfer of M1-exo-miR155 into T cells.
Collapse
Affiliation(s)
- Wei-Wei Cai
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yi Gao
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Jing-Wen Cheng
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yun Yu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Shi-Ye Zong
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yu-Hui Li
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Yi-Ning Song
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Xiao-Ting Mao
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Jie Guan
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Long Xu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Die-Yu Zhang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Kai Li
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China.
| |
Collapse
|
16
|
Pascual-García S, Martínez-Peinado P, Pujalte-Satorre C, Navarro-Sempere A, Esteve-Girbés J, López-Jaén AB, Javaloyes-Antón J, Cobo-Velacoracho R, Navarro-Blasco FJ, Sempere-Ortells JM. Exosomal Osteoclast-Derived miRNA in Rheumatoid Arthritis: From Their Pathogenesis in Bone Erosion to New Therapeutic Approaches. Int J Mol Sci 2024; 25:1506. [PMID: 38338785 PMCID: PMC10855630 DOI: 10.3390/ijms25031506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation, pain, and ultimately, bone erosion of the joints. The causes of this disease are multifactorial, including genetic factors, such as the presence of the human leukocyte antigen (HLA)-DRB1*04 variant, alterations in the microbiota, or immune factors including increased cytotoxic T lymphocytes (CTLs), neutrophils, or elevated M1 macrophages which, taken together, produce high levels of pro-inflammatory cytokines. In this review, we focused on the function exerted by osteoclasts on osteoblasts and other osteoclasts by means of the release of exosomal microRNAs (miRNAs). Based on a thorough revision, we classified these molecules into three categories according to their function: osteoclast inhibitors (miR-23a, miR-29b, and miR-214), osteoblast inhibitors (miR-22-3p, miR-26a, miR-27a, miR-29a, miR-125b, and miR-146a), and osteoblast enhancers (miR-20a, miR-34a, miR-96, miR-106a, miR-142, miR-199a, miR-324, and miR-486b). Finally, we analyzed potential therapeutic targets of these exosomal miRNAs, such as the use of antagomiRs, blockmiRs, agomiRs and competitive endogenous RNAs (ceRNAs), which are already being tested in murine and ex vivo models of RA. These strategies might have an important role in reestablishing the regulation of osteoclast and osteoblast differentiation making progress in the development of personalized medicine.
Collapse
Affiliation(s)
- Sandra Pascual-García
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | | | | | - Alicia Navarro-Sempere
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Jorge Esteve-Girbés
- Department of Legal Studies of the State, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Ana B. López-Jaén
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Juan Javaloyes-Antón
- Department of Physics, Systems Engineering and Signal Theory, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Raúl Cobo-Velacoracho
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Francisco J. Navarro-Blasco
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Rheumatology Unit, University General Hospital of Elche, 03203 Elche, Spain
| | | |
Collapse
|
17
|
Elam RE, Bůžková P, Delaney JAC, Fink HA, Barzilay JI, Carbone LD, Saha R, Robbins JA, Mukamal KJ, Valderrábano RJ, Psaty BM, Tracy RP, Olson NC, Huber SA, Doyle MF, Landay AL, Cauley JA. Association of Immune Cell Subsets with Incident Hip Fracture: The Cardiovascular Health Study. Calcif Tissue Int 2023; 113:581-590. [PMID: 37650930 PMCID: PMC11229516 DOI: 10.1007/s00223-023-01126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
In this study, we aimed to evaluate the association of innate and adaptive immune cell subsets in peripheral blood mononuclear cells (PBMCs) with hip fracture. To conduct this study, we used data from the Cardiovascular Health Study (CHS), a U.S. multicenter observational cohort of community-dwelling men and women aged ≥ 65 years. Twenty-five immune cell phenotypes were measured by flow cytometry from cryopreserved PBMCs of CHS participants collected in 1998-1999. The natural killer (NK), γδ T, T helper 17 (Th17), and differentiated/senescent CD4+CD28- T cell subsets were pre-specified as primary subsets of interest. Hip fracture incidence was assessed prospectively by review of hospitalization records. Multivariable Cox hazard models evaluated associations of immune cell phenotypes with incident hip fracture in sex-stratified and combined analyses. Among 1928 persons, 259 hip fractures occurred over a median 9.7 years of follow-up. In women, NK cells were inversely associated with hip fracture [hazard ratio (HR) 0.77, 95% confidence interval (CI) 0.60-0.99 per one standard deviation higher value] and Th17 cells were positively associated with hip fracture [HR 1.18, 95% CI 1.01-1.39]. In men, γδ T cells were inversely associated with hip fracture [HR 0.60, 95% CI 0.37-0.98]. None of the measured immune cell phenotypes were significantly associated with hip fracture incidence in combined analyses. In this large prospective cohort of older adults, potentially important sex differences in the associations of immune cell phenotypes and hip fracture were identified. However, immune cell phenotypes had no association with hip fracture in analyses combining men and women.
Collapse
Affiliation(s)
- Rachel E Elam
- Division of Rheumatology, Department of Medicine, Augusta University, Augusta, GA, USA.
- Charlie Norwood Veterans Affairs Medical Center, Veterans Affairs Health Care System, Augusta, GA, USA.
| | - Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Joseph A C Delaney
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Howard A Fink
- Geriatric Research Education and Clinical Center, Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Joshua I Barzilay
- Division of Endocrinology, Kaiser Permanente of Georgia, Emory University School of Medicine, Atlanta, GA, USA
| | - Laura D Carbone
- Division of Rheumatology, Department of Medicine, Augusta University, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Veterans Affairs Health Care System, Augusta, GA, USA
| | - Rick Saha
- Department of Internal Medicine, New York University Langone, New York, NY, USA
| | - John A Robbins
- Department of Medicine, University of California Davis, Davis, CA, USA
| | - Kenneth J Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Brookline, MA, USA
| | - Rodrigo J Valderrábano
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Biochemistry, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | - Nels C Olson
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | - Sally A Huber
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | - Margaret F Doyle
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Jane A Cauley
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Alamino VA, Onofrio LI, Acosta CDV, Ferrero PV, Zacca ER, Cadile II, Mussano ED, Onetti LB, Montes CL, Gruppi A, Acosta Rodriguez EV. Tofacitinib treatment of rheumatoid arthritis increases senescent T cell frequency in patients and limits T cell function in vitro. Eur J Immunol 2023; 53:e2250353. [PMID: 37179252 PMCID: PMC10524217 DOI: 10.1002/eji.202250353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Unraveling the immune signatures in rheumatoid arthritis (RA) patients receiving various treatment regimens can aid in comprehending the immune mechanisms' role in treatment efficacy and side effects. Given the critical role of cellular immunity in RA pathogenesis, we sought to identify T-cell profiles characterizing RA patients under specific treatments. We compared 75 immunophenotypic and biochemical variables in healthy donors (HD) and RA patients, including those receiving different treatments as well as treatment-free patients. Additionally, we conducted in vitro experiments to evaluate the direct effect of tofacitinib on purified naïve and memory CD4+ and CD8+ T cells. Multivariate analysis revealed that tofacitinib-treated patients segregated from HD at the expense of T-cell activation, differentiation, and effector function-related variables. Additionally, tofacitinib led to an accumulation of peripheral senescent memory CD4+ and CD8+ T cells. In vitro, tofacitinib impaired the activation, proliferation, and effector molecules expression and triggered senescence pathways in T-cell subsets upon TCR-engagement, with the most significant impact on memory CD8+ T cells. Our findings suggest that tofacitinib may activate immunosenescence pathways while simultaneously inhibiting effector functions in T cells, both effects likely contributing to the high clinical success and reported side effects of this JAK inhibitor in RA.
Collapse
Affiliation(s)
- Vanina A Alamino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Luisina I Onofrio
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | | | - Paola V Ferrero
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Estefanía R Zacca
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Isaac I Cadile
- Servicio de Reumatología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Eduardo D Mussano
- Servicio de Reumatología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Laura B Onetti
- Servicio de Reumatología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Eva V Acosta Rodriguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
19
|
Yang YL, Li XF, Song B, Wu S, Wu YY, Huang C, Li J. The Role of CCL3 in the Pathogenesis of Rheumatoid Arthritis. Rheumatol Ther 2023; 10:793-808. [PMID: 37227653 PMCID: PMC10326236 DOI: 10.1007/s40744-023-00554-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 05/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of unexplained causes. Its pathological features include synovial tissue hyperplasia, inflammatory cell infiltration in joint cavity fluid, cartilage bone destruction, and joint deformation. C-C motif chemokine ligand 3 (CCL3) belongs to inflammatory cell chemokine. It is highly expressed in inflammatory immune cells. Increasingly, studies have shown that CCL3 can promote the migration of inflammatory factors to synovial tissue, the destruction of bone and joint, angiogenesis, and participate in the pathogenesis of RA. These symptoms indicate that the expression of CCL3 is highly correlated with RA disease. Therefore, this paper reviews the possible mechanism of CCL3 in the pathogenesis of RA, which may provide some new insights for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Ying-Li Yang
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Feng Li
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Biao Song
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Sha Wu
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Yuan Wu
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
20
|
Mitrović J, Hrkač S, Tečer J, Golob M, Ljilja Posavec A, Kolar Mitrović H, Grgurević L. Pathogenesis of Extraarticular Manifestations in Rheumatoid Arthritis-A Comprehensive Review. Biomedicines 2023; 11:biomedicines11051262. [PMID: 37238933 DOI: 10.3390/biomedicines11051262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is among the most prevalent and debilitating autoimmune inflammatory chronic diseases. Although it is primarily characterized by destructive peripheral arthritis, it is a systemic disease, and RA-related extraarticular manifestations (EAMs) can affect almost every organ, exhibit a multitude of clinical presentations, and can even be asymptomatic. Importantly, EAMs largely contribute to the quality of life and mortality of RA patients, particularly substantially increased risk of cardiovascular disease (CVD) which is the leading cause of death in RA patients. In spite of known risk factors related to EAM development, a more in-depth understanding of its pathophysiology is lacking. Improved knowledge of EAMs and their comparison to the pathogenesis of arthritis in RA could lead to a better understanding of RA inflammation overall and its initial phases. Taking into account that RA is a disorder that has many faces and that each person experiences it and responds to treatments differently, gaining a better understanding of the connections between the joint and extra-joint manifestations could help to create new treatments and improve the overall approach to the patient.
Collapse
Affiliation(s)
- Joško Mitrović
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Internal Medicine, Dubrava University Hospital, School of Medicine and Faculty of Pharmacy and Biochemistry, University of Zagreb, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia
| | - Stela Hrkač
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Internal Medicine, Dubrava University Hospital, School of Medicine and Faculty of Pharmacy and Biochemistry, University of Zagreb, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia
| | - Josip Tečer
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Internal Medicine, Dubrava University Hospital, School of Medicine and Faculty of Pharmacy and Biochemistry, University of Zagreb, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia
| | - Majda Golob
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Internal Medicine, Dubrava University Hospital, School of Medicine and Faculty of Pharmacy and Biochemistry, University of Zagreb, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia
| | - Anja Ljilja Posavec
- Polyclinic for the Respiratory Tract Diseases, Prilaz Baruna Filipovića 11, 10000 Zagreb, Croatia
| | - Helena Kolar Mitrović
- Department of Rheumatology and Rehabilitation, Zagreb University Hospital Center, University of Zagreb School of Medicine, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Lovorka Grgurević
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Anatomy, "Drago Perovic", School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
21
|
Abstract
T helper 17 (Th17) cells are IL-17-producing CD4 T cells that play a crucial role in autoimmune diseases. IL-17 is a key cytokine for host protection against mucosal and skin infection but is also one of the major pathogenic cytokines. IL-1 and IL-23 are requisite for stimulating pathogenic Th17 cell differentiation and proliferation. Therapeutics targeting the IL-17/IL-23 pathway are widely used clinically for the treatment of autoimmune diseases. Besides IL-17, pathogenic Th17 cells produce granulocyte-macrophage colony-stimulating factor, tumor necrosis factor α, interferon γ, IL-21 and IL-22. However, Th17-targeted therapy has not yet been established. T cell metabolism orchestrates T cell survival, cell differentiation, epigenetic change and function and each T cell subset favors a particular metabolic pathway. Recent studies have provided novel insights into the role of T cell metabolism in the pathogenesis of autoimmune diseases. The current review focuses on the role of Th17 cell metabolism in autoimmune diseases, particularly glycolysis, amino acid metabolism, lipid metabolism, as well as the regulators of these processes, including mTORC1. Therapeutics targeting T cell metabolism in autoimmune diseases could serve as a possible treatment option for patients who are refractory to or unresponsive to conventional therapy.
Collapse
Affiliation(s)
- Michihito Kono
- Faculty of Medicine, Department of Rheumatology, Endocrinology and Nephrology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Lu Y, Ruan Y, Hong P, Rui K, Liu Q, Wang S, Cui D. T-cell senescence: A crucial player in autoimmune diseases. Clin Immunol 2023; 248:109202. [PMID: 36470338 DOI: 10.1016/j.clim.2022.109202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Senescent T cells are proliferative disabled lymphocytes that lack antigen-specific responses. The development of T-cell senescence in autoimmune diseases contributes to immunological disorders and disease progression. Senescent T cells lack costimulatory markers with the reduction of T cell receptor repertoire and the uptake of natural killer cell receptors. Senescent T cells exert cytotoxic effects through the expression of perforin, granzymes, tumor necrosis factor, and other molecules without the antigen-presenting process. DNA damage accumulation, telomere damage, and limited DNA repair capacity are important features of senescent T cells. Impaired mitochondrial function and accumulation of reactive oxygen species contribute to T cell senescence. Alleviation of T-cell senescence could provide potential targets for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yinyun Lu
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| | - Yongchun Ruan
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| | - Pan Hong
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, China
| | - Ke Rui
- Department of Transfusion, Shaoxing People's Hospital, Shaoxing, China
| | - Qi Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Dawei Cui
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
23
|
Elsayed R, Elashiry M, Liu Y, Morandini AC, El-Awady A, Elashiry MM, Hamrick M, Cutler CW. Microbially-Induced Exosomes from Dendritic Cells Promote Paracrine Immune Senescence: Novel Mechanism of Bone Degenerative Disease in Mice. Aging Dis 2023; 14:136-151. [PMID: 36818565 PMCID: PMC9937696 DOI: 10.14336/ad.2022.0623] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
As the aging population grows, chronic age-related bone degenerative diseases become more prevalent and severe. One such disease, periodontitis (PD), rises to 70.1% prevalence in Americans 65 years and older. PD has been linked to increased risk of other age-related diseases with more serious mortality and morbidity profiles such as Alzheimer's disease and cardiovascular disease, but the cellular and biological mechanisms remain unclear. Recent in vitro studies from our group indicate that murine dendritic cells (DCs) and T cells are vulnerable to immune senescence. This occurs through a distinct process involving invasion of DCs by dysbiotic pathogen Porphyromonas gingivalis (Pg) activating the senescence associated secretory phenotype (SASP). Exosomes of the Pg-induced SASP transmit senescence to normal bystander DC and T cells, ablating antigen presentation. The biological significance of these findings in vivo and the mechanisms involved were examined in the present study using young (4-5mo) or old (22-24mo) mice subjected to ligature-induced PD, with or without dysbiotic oral pathogen and injection of Pg-induced DC exosomes. Senescence profiling of gingiva and draining lymph nodes (LN) corroborates role of advanced age and PD in elevation of senescence biomarkers beta galactosidase (SA-β-Gal), p16 INK4A p21Waf1/Clip1, IL6, TNFα, and IL1β, with attendant increase in alveolar bone loss, reversed by senolytic agent rapamycin. Immunophenotyping of gingiva and LN revealed that myeloid CD11c+ DCs and T cells are particularly vulnerable to senescence in vivo under these conditions. Moreover, Pg-induced DC exosomes were the most potent inducers of alveolar bone loss and immune senescence, and capable of overcoming senescence resistance of LN T cells in young mice. We conclude that immune senescence, compounded by advanced age, and accelerated by oral dysbiosis and its induced SASP exosomes, plays a pivotal role in the pathophysiology of experimental periodontitis.
Collapse
Affiliation(s)
- Ranya Elsayed
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, GA, USA.
| | - Ana C. Morandini
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, GA, USA.
| | - Ahmed El-Awady
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
| | - Mohamed M. Elashiry
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo Egypt.
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Augusta University, GA, USA.
| | - Christopher W. Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
| |
Collapse
|
24
|
Wu J, Yang F, Ma X, Lin J, Chen W. Elderly-onset rheumatoid arthritis vs. polymyalgia rheumatica: Differences in pathogenesis. Front Med (Lausanne) 2023; 9:1083879. [PMID: 36714116 PMCID: PMC9879490 DOI: 10.3389/fmed.2022.1083879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease that mainly affects the facet joints. Elderly-onset rheumatoid arthritis appears to exhibit symptoms similar to those of polymyalgia rheumatica, characterized by morning stiffness and pain in the shoulder and hip joints. Both diseases develop in the elderly, and it is sometimes challenging to distinguish them. Here, we identify the differences in pathogenesis between elderly-onset rheumatoid arthritis and polymyalgia rheumatica to assist with a clear differential diagnosis and effective early intervention.
Collapse
|
25
|
Wu D, Luo Y, Li T, Zhao X, Lv T, Fang G, Ou P, Li H, Luo X, Huang A, Pang Y. Systemic complications of rheumatoid arthritis: Focus on pathogenesis and treatment. Front Immunol 2022; 13:1051082. [PMID: 36618407 PMCID: PMC9817137 DOI: 10.3389/fimmu.2022.1051082] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
As a systemic autoimmune disease, rheumatoid arthritis (RA) usually causes damage not only to joints, but also to other tissues and organs including the heart, kidneys, lungs, digestive system, eyes, skin, and nervous system. Excessive complications are closely related to the prognosis of RA patients and even lead to increased mortality. This article summarizes the serious complications of RA, focusing on its incidence, pathogenesis, clinical features, and treatment methods, aiming to provide a reference for clinicians to better manage the complications of RA.
Collapse
Affiliation(s)
- Di Wu
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yehao Luo
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tong Li
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xinyi Zhao
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ting Lv
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Gang Fang
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Peiqi Ou
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hongyi Li
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaofan Luo
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - An Huang
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China,*Correspondence: An Huang, ; Yuzhou Pang,
| | - Yuzhou Pang
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China,*Correspondence: An Huang, ; Yuzhou Pang,
| |
Collapse
|
26
|
Alsaleh G, Richter FC, Simon AK. Age-related mechanisms in the context of rheumatic disease. Nat Rev Rheumatol 2022; 18:694-710. [PMID: 36329172 DOI: 10.1038/s41584-022-00863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Ageing is characterized by a progressive loss of cellular function that leads to a decline in tissue homeostasis, increased vulnerability and adverse health outcomes. Important advances in ageing research have now identified a set of nine candidate hallmarks that are generally considered to contribute to the ageing process and that together determine the ageing phenotype, which is the clinical manifestation of age-related dysfunction in chronic diseases. Although most rheumatic diseases are not yet considered to be age related, available evidence increasingly emphasizes the prevalence of ageing hallmarks in these chronic diseases. On the basis of the current evidence relating to the molecular and cellular ageing pathways involved in rheumatic diseases, we propose that these diseases share a number of features that are observed in ageing, and that they can therefore be considered to be diseases of premature or accelerated ageing. Although more data are needed to clarify whether accelerated ageing drives the development of rheumatic diseases or whether it results from the chronic inflammatory environment, central components of age-related pathways are currently being targeted in clinical trials and may provide a new avenue of therapeutic intervention for patients with rheumatic diseases.
Collapse
Affiliation(s)
- Ghada Alsaleh
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, UK.
| | - Felix C Richter
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Anna K Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Chin KY, Ng BN, Rostam MKI, Muhammad Fadzil NFD, Raman V, Mohamed Yunus F, Syed Hashim SA, Ekeuku SO. A Mini Review on Osteoporosis: From Biology to Pharmacological Management of Bone Loss. J Clin Med 2022; 11:6434. [PMID: 36362662 PMCID: PMC9657533 DOI: 10.3390/jcm11216434] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Osteoporosis refers to excessive bone loss as reflected by the deterioration of bone mass and microarchitecture, which compromises bone strength. It is a complex multifactorial endocrine disease. Its pathogenesis relies on the presence of several endogenous and exogenous risk factors, which skew the physiological bone remodelling to a more catabolic process that results in net bone loss. This review aims to provide an overview of osteoporosis from its biology, epidemiology and clinical aspects (detection and pharmacological management). The review will serve as an updated reference for readers to understand the basics of osteoporosis and take action to prevent and manage this disease.
Collapse
|
28
|
Gao Y, Cai W, Zhou Y, Li Y, Cheng J, Wei F. Immunosenescence of T cells: a key player in rheumatoid arthritis. Inflamm Res 2022; 71:1449-1462. [DOI: 10.1007/s00011-022-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
|
29
|
Mechanisms of Systemic Osteoporosis in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23158740. [PMID: 35955873 PMCID: PMC9368786 DOI: 10.3390/ijms23158740] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid arthritis (RA), an autoimmune disease, is characterized by the presence of symmetric polyarthritis predominantly of the small joints that leads to severe cartilage and bone destruction. Based on animal and human data, the pathophysiology of osteoporosis, a frequent comorbidity in conjunction with RA, was delineated. Autoimmune inflammatory processes, which lead to a systemic upregulation of inflammatory and osteoclastogenic cytokines, the production of autoantibodies, and Th cell senescence with a presumed disability to control the systemic immune system's and osteoclastogenic status, may play important roles in the pathophysiology of osteoporosis in RA. Consequently, osteoclast activity increases, osteoblast function decreases and bone metabolic and mechanical properties deteriorate. Although a number of disease-modifying drugs to treat joint inflammation are available, data on the ability of these drugs to prevent fragility fractures are limited. Thus, specific treatment of osteoporosis should be considered in patients with RA and an associated increased risk of fragility fractures.
Collapse
|
30
|
Sobh MM, Abdalbary M, Elnagar S, Nagy E, Elshabrawy N, Abdelsalam M, Asadipooya K, El-Husseini A. Secondary Osteoporosis and Metabolic Bone Diseases. J Clin Med 2022; 11:2382. [PMID: 35566509 PMCID: PMC9102221 DOI: 10.3390/jcm11092382] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Fragility fracture is a worldwide problem and a main cause of disability and impaired quality of life. It is primarily caused by osteoporosis, characterized by impaired bone quantity and or quality. Proper diagnosis of osteoporosis is essential for prevention of fragility fractures. Osteoporosis can be primary in postmenopausal women because of estrogen deficiency. Secondary forms of osteoporosis are not uncommon in both men and women. Most systemic illnesses and organ dysfunction can lead to osteoporosis. The kidney plays a crucial role in maintaining physiological bone homeostasis by controlling minerals, electrolytes, acid-base, vitamin D and parathyroid function. Chronic kidney disease with its uremic milieu disturbs this balance, leading to renal osteodystrophy. Diabetes mellitus represents the most common secondary cause of osteoporosis. Thyroid and parathyroid disorders can dysregulate the osteoblast/osteoclast functions. Gastrointestinal disorders, malnutrition and malabsorption can result in mineral and vitamin D deficiencies and bone loss. Patients with chronic liver disease have a higher risk of fracture due to hepatic osteodystrophy. Proinflammatory cytokines in infectious, autoimmune, and hematological disorders can stimulate osteoclastogenesis, leading to osteoporosis. Moreover, drug-induced osteoporosis is not uncommon. In this review, we focus on causes, pathogenesis, and management of secondary osteoporosis.
Collapse
Affiliation(s)
- Mahmoud M. Sobh
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Mohamed Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40506, USA
| | - Sherouk Elnagar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Eman Nagy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Nehal Elshabrawy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Mostafa Abdelsalam
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Kamyar Asadipooya
- Division of Endocrinology, University of Kentucky, Lexington, KY 40506, USA;
| | - Amr El-Husseini
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
31
|
CD8 + T Cell Senescence: Lights and Shadows in Viral Infections, Autoimmune Disorders and Cancer. Int J Mol Sci 2022; 23:ijms23063374. [PMID: 35328795 PMCID: PMC8955595 DOI: 10.3390/ijms23063374] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
CD8+ T lymphocytes are a heterogeneous class of cells that play a crucial role in the adaptive immune response against pathogens and cancer. During their lifetime, they acquire cytotoxic functions to ensure the clearance of infected or transformed cells and, in addition, they turn into memory lymphocytes, thus providing a long-term protection. During ageing, the thymic involution causes a reduction of circulating T cells and an enrichment of memory cells, partially explaining the lowering of the response towards novel antigens with implications in vaccine efficacy. Moreover, the persistent stimulation by several antigens throughout life favors the switching of CD8+ T cells towards a senescent phenotype contributing to a low-grade inflammation that is a major component of several ageing-related diseases. In genetically predisposed young people, an immunological stress caused by viral infections (e.g., HIV, CMV, SARS-CoV-2), autoimmune disorders or tumor microenvironment (TME) could mimic the ageing status with the consequent acceleration of T cell senescence. This, in turn, exacerbates the inflamed conditions with dramatic effects on the clinical progression of the disease. A better characterization of the phenotype as well as the functions of senescent CD8+ T cells can be pivotal to prevent age-related diseases, to improve vaccine strategies and, possibly, immunotherapies in autoimmune diseases and cancer.
Collapse
|
32
|
González-Osuna L, Sierra-Cristancho A, Cafferata EA, Melgar-Rodríguez S, Rojas C, Carvajal P, Cortez C, Vernal R. Senescent CD4 +CD28 - T Lymphocytes as a Potential Driver of Th17/Treg Imbalance and Alveolar Bone Resorption during Periodontitis. Int J Mol Sci 2022; 23:ijms23052543. [PMID: 35269683 PMCID: PMC8910032 DOI: 10.3390/ijms23052543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Senescent cells express a senescence-associated secretory phenotype (SASP) with a pro-inflammatory bias, which contributes to the chronicity of inflammation. During chronic inflammatory diseases, infiltrating CD4+ T lymphocytes can undergo cellular senescence and arrest the surface expression of CD28, have a response biased towards T-helper type-17 (Th17) of immunity, and show a remarkable ability to induce osteoclastogenesis. As a cellular counterpart, T regulatory lymphocytes (Tregs) can also undergo cellular senescence, and CD28− Tregs are able to express an SASP secretome, thus severely altering their immunosuppressive capacities. During periodontitis, the persistent microbial challenge and chronic inflammation favor the induction of cellular senescence. Therefore, senescence of Th17 and Treg lymphocytes could contribute to Th17/Treg imbalance and favor the tooth-supporting alveolar bone loss characteristic of the disease. In the present review, we describe the concept of cellular senescence; particularly, the one produced during chronic inflammation and persistent microbial antigen challenge. In addition, we detail the different markers used to identify senescent cells, proposing those specific to senescent T lymphocytes that can be used for periodontal research purposes. Finally, we discuss the existing literature that allows us to suggest the potential pathogenic role of senescent CD4+CD28− T lymphocytes in periodontitis.
Collapse
Affiliation(s)
- Luis González-Osuna
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (A.S.-C.); (E.A.C.); (S.M.-R.); (C.R.)
- Correspondence: (L.G.-O.); (R.V.)
| | - Alfredo Sierra-Cristancho
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (A.S.-C.); (E.A.C.); (S.M.-R.); (C.R.)
- Faculty of Dentistry, Universidad Andres Bello, Santiago 8370035, Chile
| | - Emilio A. Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (A.S.-C.); (E.A.C.); (S.M.-R.); (C.R.)
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima 15067, Peru
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (A.S.-C.); (E.A.C.); (S.M.-R.); (C.R.)
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile;
| | - Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (A.S.-C.); (E.A.C.); (S.M.-R.); (C.R.)
| | - Paola Carvajal
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile;
| | - Cristian Cortez
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile;
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (A.S.-C.); (E.A.C.); (S.M.-R.); (C.R.)
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile;
- Correspondence: (L.G.-O.); (R.V.)
| |
Collapse
|
33
|
Lee HR, Yoo SJ, Kim J, Park CK, Kang SW. Reduction of Oxidative Stress in Peripheral Blood Mononuclear Cells Attenuates the Inflammatory Response of Fibroblast-like Synoviocytes in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222212411. [PMID: 34830290 PMCID: PMC8624216 DOI: 10.3390/ijms222212411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
The production and oxidation mechanism of reactive oxygen species (ROS) are out of balance in rheumatoid arthritis (RA). However, the correlation between ROS and T cell subsets in RA remains unclear. Peripheral blood mononuclear cells (PBMCs) from patients with RA (n = 40) and healthy controls (n = 10) were isolated from whole blood samples. Synovial tissues (n = 3) and synovial fluid (n = 10) were obtained from patients with RA. The repartition of T cell subsets and expression of ROS and cytokines were examined according to RA severity. Fibroblast-like synoviocytes (FLSs) from patients with RA were stimulated with PBMCs and the expression of inflammation-related molecules were measured by RT-PCR and cytokine array. Regulatory T cells from patients with moderate (5.1 > DAS28 ≥ 3.2) RA showed the highest expression of mitochondrial ROS among the groups based on disease severity. Although ROS levels steadily increased with RA severity, there was a slight decline in severe RA (DAS28 ≥ 5.1) compared with moderate RA. The expression of inflammatory cytokines in RA FLSs were significantly inhibited when FLSs were co-cultured with PBMCs treated with ROS inhibitor. These findings provide a novel approach to suppress inflammatory response of FLSs through ROS regulation in PBMCs.
Collapse
Affiliation(s)
- Ha-Reum Lee
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon 35015, Korea; (H.-R.L.); (S.-J.Y.); (J.K.)
- Research Institute for Medical Sciences, School of Medicine, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
| | - Su-Jin Yoo
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon 35015, Korea; (H.-R.L.); (S.-J.Y.); (J.K.)
| | - Jinhyun Kim
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon 35015, Korea; (H.-R.L.); (S.-J.Y.); (J.K.)
| | - Chan Keol Park
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Sejong Hospital, 20 Bodeum-7-ro, Sejong 30099, Korea;
| | - Seong Wook Kang
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon 35015, Korea; (H.-R.L.); (S.-J.Y.); (J.K.)
- Research Institute for Medical Sciences, School of Medicine, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
- Correspondence: ; Tel.: +82-42-338-2428
| |
Collapse
|
34
|
González-Osuna L, Sierra-Cristancho A, Rojas C, Cafferata EA, Melgar-Rodríguez S, Cárdenas AM, Vernal R. Premature Senescence of T-cells Favors Bone Loss During Osteolytic Diseases. A New Concern in the Osteoimmunology Arena. Aging Dis 2021; 12:1150-1161. [PMID: 34341698 PMCID: PMC8279535 DOI: 10.14336/ad.2021.0110] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is a biological process triggered in response to time-accumulated DNA damage, which prioritizes cell survival over cell function. Particularly, senescent T lymphocytes can be generated prematurely during chronic inflammatory diseases regardless of chronological aging. These senescent T lymphocytes are characterized by the loss of CD28 expression, a co-stimulatory receptor that mediates antigen presentation and effective T-cell activation. An increased number of premature senescent CD4+CD28- T lymphocytes has been frequently observed in osteolytic diseases, including rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, osteopenia, osteoporosis, and osteomyelitis. Indeed, CD4+CD28- T lymphocytes produce higher levels of osteoclastogenic molecular mediators directly related to pathologic bone loss, such as tumor necrosis factor (TNF)-α, interleukin (IL)-17A, and receptor-activator of nuclear factor κB ligand (RANKL), as compared with regular CD4+CD28+ T lymphocytes. In addition, premature senescent CD8+CD28- T lymphocytes have been negatively associated with bone healing and regeneration by inhibiting osteoblast differentiation and mesenchymal stromal cell survival. Therefore, accumulated evidence supports the role of senescent T lymphocytes in osteoimmunology. Moreover, premature senescence of T-cells seems to be associated with the functional imbalance between the osteolytic T-helper type-17 (Th17) and bone protective T regulatory (Treg) lymphocytes, as well as the phenotypic instability of Treg lymphocytes responsible for its trans-differentiation into RANKL-producing exFoxp3Th17 cells, a key cellular phenomenon directly related to bone loss. Herein, we present a framework for the understanding of the pathogenic characteristics of T lymphocytes with a premature senescent phenotype; and particularly, we revise and discuss their role in the osteoimmunology of osteolytic diseases.
Collapse
Affiliation(s)
- Luis González-Osuna
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| | - Alfredo Sierra-Cristancho
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
- Faculty of Dentistry, Universidad Andres Bello, Santiago, Chile.
| | - Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| | - Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú.
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| | - Angélica M Cárdenas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
- Health Sciences Division, Faculty of Dentistry, Universidad Santo Tomás, Bucaramanga, Colombia.
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
35
|
Age-related expansion and increased osteoclastogenic potential of myeloid-derived suppressor cells. Mol Immunol 2021; 137:187-200. [PMID: 34274794 DOI: 10.1016/j.molimm.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 01/24/2023]
Abstract
Aging is associated with excessive bone loss that is not counteracted with the development of new bone. However, the mechanisms underlying age-related bone loss are not completely clear. Myeloid-derived suppressor cells (MDSCs) are a population of heterogenous immature myeloid cells with immunosuppressive functions that are known to stimulate tumor-induced bone lysis. In this study, we investigated the association of MDSCs and age-related bone loss in mice. Our results shown that aging increased the accumulation of MDSCs in the bone marrow and spleen, while in the meantime potentiated the osteoclastogenic activity of the CD11b+Ly6ChiLy6G+ monocytic subpopulation of MDSCs. In addition, CD11b+Ly6ChiLy6G+ MDSCs from old mice exhibited increased expression of c-fms compared to young mice, and were more sensitive to RANKL-induced osteoclast gene expression. On the other hand, old mice showed elevated production of IL-6 and receptor activator of nuclear factor kappa-B ligand (RANKL) in the circulation. Furthermore, IL-6 and RANKL were able to induce the proliferation of CD11b+Ly6ChiLy6G+ MDSCs and up-regulate c-fms expression. Moreover, CD11b+Ly6ChiLy6G+ MDSCs obtained from old mice showed increased antigen-specific T cell suppressive function, pStat3 expression, and cytokine production in response to inflammatory stimulation, compared to those cells obtained from young mice. Our findings suggest that CD11b+Ly6ChiLy6G+ MDSCs are a source of osteoclast precursors that together with the presence of persistent, low-grade inflammation, contribute to age-associated bone loss in mice.
Collapse
|
36
|
Zhu L, Zhang J, Wang J, Lv X, Pu D, Wang Y, Men Q, He L. Uncoupled bone remodeling is characteristic of bone damage in premenopausal women with new-onset systemic lupus erythematosus. Lupus 2021; 30:1116-1123. [PMID: 33832361 DOI: 10.1177/09612033211005067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate the mechanism underlying systemic lupus erythematosus (SLE)-related bone loss by evaluating the bone mineral density (BMD) and bone turnover markers (BTMs) in premenopausal patients with new-onset SLE without any treatment. METHODS BMD and BTMs of 106 premenopausal patients with new-onset SLE and 64 gender-, age- and body mass index (BMI)-matched healthy controls were analyzed. BMD was determined using dual energy X-ray absorptiometry (DXA). Serum BTMs were measured. RESULTS Hip and lumbar spine BMD in premenopausal patients with new-onset SLE was significantly decreased compared with healthy controls. Higher rate of osteoporosis was observed in new-onset SLE patients (25% vs. 1%). Moreover, uncoupled bone remodeling evidenced by an increase in bone resorption marker β-CTX (685.9 ± 709.6 pg/mL vs. 395.4 ± 326.0 pg/mL, P < 0.05) and decrease in bone formation markers PINP (37.4 ± 33.0 ng/mL vs. 46.1 ± 20.9 ng/mL, P < 0.05) and OC (11.4 ± 9.8 ng/mL vs. 18.2 ± 8.6 ng/mL, P < 0.05) was observed in premenopausal patients with new-onset SLE compared with healthy controls. Univariate correlation analyses showed negative correlations between OC and SLE Disease Activity Index (SLEDAI), and positive correlations between β-CTX and SLEDAI. SLE patients positive for dsDNA, nucleosome showed lower OC and higher β-CTX. CONCLUSION Premenopausal patients with new-onset SLE had decreased BMD and abnormal bone metabolism with increased β-CTX and decreased OC and P1NP levels, indicating uncoupled bone remodeling in new-onset SLE patients. Disease activity and abnormal immunity, especially the amount of antibodies in SLE patients, were strongly associated with abnormality of bone metabolism.
Collapse
Affiliation(s)
- Li Zhu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| | - Jing Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| | - Jing Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| | - Xiaohong Lv
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| | - Dan Pu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| | - Yanhua Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| | - Qian Men
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| | - Lan He
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| |
Collapse
|
37
|
Sahbani K, Shultz LC, Cardozo CP, Bauman WA, Tawfeek HA. Absence of αβ T cells accelerates disuse bone loss in male mice after spinal cord injury. Ann N Y Acad Sci 2021; 1487:43-55. [PMID: 33107070 DOI: 10.1111/nyas.14518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022]
Abstract
Whether T cells promote bone loss following immobilization after spinal cord injury (SCI) remains undetermined. Therefore, wild-type (WT) and T cell-deficient (Tcrb-/- ) male mice underwent sham or contusion SCI to cause hindlimb paralysis. Femurs were isolated and distal and midshaft regions were evaluated by microcomputed tomography scanning. Bone marrow (BM) levels of bone turnover markers, as well as receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG), were measured by ELISA. At 2 weeks post-SCI, immobilization resulted in marked reduction in trabecular fractional bone volume (55%), thickness (40%), connectivity, and cortical thickness only in the Tcrb-/- animals (interaction with P < 0.05). BM analysis revealed lower bone formation (procollagen type 1 intact N-terminal propeptide), higher bone resorption (tartrate-resistant acid phosphatase-5b), and a higher RANKL/OPG ratio in the Tcrb-/- SCI animals. At 5 weeks post-SCI, while both WT and Tcrb-/- paralyzed animals showed deterioration of all indices of bone structure, they were more severe in Tcrb-/- animals. In summary, unlike other skeletal disorders, loss of αβ T cells compromises, rather than preserves, skeletal integrity under conditions of immobilization.
Collapse
MESH Headings
- Animals
- Bone Density/genetics
- Bone Density/immunology
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/immunology
- Bone Diseases, Metabolic/metabolism
- Bone Diseases, Metabolic/pathology
- Bone Resorption/genetics
- Bone Resorption/immunology
- Bone Resorption/metabolism
- Cell Count
- Genes, T-Cell Receptor beta/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Spinal Cord Injuries/complications
- Spinal Cord Injuries/genetics
- Spinal Cord Injuries/immunology
- Spinal Cord Injuries/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- X-Ray Microtomography
Collapse
Affiliation(s)
- Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters Veterans Affairs Medical Center, Bronx, New York
- Bronx Veterans Medical Research Foundation Inc., Bronx, New York
| | - Laura C Shultz
- Veterinary Medical Unit, James J Peters Veterans Affairs Medical Center, Bronx, New York
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters Veterans Affairs Medical Center, Bronx, New York
- Bronx Veterans Medical Research Foundation Inc., Bronx, New York
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Rehabilitation Medicine and Human Performance, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters Veterans Affairs Medical Center, Bronx, New York
- Bronx Veterans Medical Research Foundation Inc., Bronx, New York
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters Veterans Affairs Medical Center, Bronx, New York
- Bronx Veterans Medical Research Foundation Inc., Bronx, New York
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
38
|
Comparative Study of Senescent Th Biomarkers in Healthy Donors and Early Arthritis Patients. Analysis of VPAC Receptors and Their Influence. Cells 2020; 9:cells9122592. [PMID: 33291545 PMCID: PMC7761848 DOI: 10.3390/cells9122592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Pro-inflammatory CD4+CD28− T cells are characteristic of immunosenescence, but also of several autoimmune/inflammatory diseases. Vasoactive intestinal peptide (VIP) acts as an anti-inflammatory and immunomodulatory mediator on these cells. Our objective was to study the mutual influence between senescent Th cells and VIP axis in early arthritis (EA), comparing with non-EA donors. We characterized the correlation between senescent Th cells and clinic parameters of EA as well as the behavior of senescent Th biomarkers by real-time PCR. Clinical data were systematically recorded at baseline and after 6 months of follow-up. The number of CD4+CD28− T cells measured by sorting is higher in patients who initially meet ACR classification criteria for rheumatoid arthritis (RA) compared to those who were classified as undifferentiated arthritis (UA). A slight positive correlation between EA CD4+CD28− T cells and CRP or ESR and a negative correlation with bone mineral density were found. Th senescent biomarkers in EA CD4+CD28− T cells were similar to donors, however some of them increased after 6 months of follow-up. VPAC receptors were analyzed by real-time PCR and immunofluorescence, and CD4+CD28− T cells showed higher expression of VPAC2 and lower of VPAC1, VPAC2 showing a significant increased expression in EA cells. Sorted CD4+CD28− T cells were in vitro expanded in presence of VIP, wherein VIP increased senescent biomarker CD27, while it diminished CD57 or NKG2 senescent biomarkers. Our study demonstrates for the first time the existence of a link between senescent Th cells and the VIP axis.
Collapse
|
39
|
Rotta D, Fassio A, Rossini M, Giollo A, Viapiana O, Orsolini G, Bertoldo E, Gatti D, Adami G. Osteoporosis in Inflammatory Arthritides: New Perspective on Pathogenesis and Treatment. Front Med (Lausanne) 2020; 7:613720. [PMID: 33335907 PMCID: PMC7736072 DOI: 10.3389/fmed.2020.613720] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a skeletal disorder characterized by impaired bone strength and increased risk of fragility fracture and is among the most relevant comorbidities of rheumatic diseases. The purpose of the present review is to discuss the pathogenesis of local and systemic bone involvement in inflammatory arthritides, especially Rheumatoid Arthritis, Psoriatic Arthritis, and Spondyloarthritides, as well as the effect of anti-rheumatic treatments and anti-osteoporotic medication on bone health and fracture incidence, including recent data on novel therapeutic perspective.
Collapse
Affiliation(s)
- Denise Rotta
- Rheumatology Unit, University of Verona, Verona, Italy
| | - Angelo Fassio
- Rheumatology Unit, University of Verona, Verona, Italy
| | | | | | | | | | | | - Davide Gatti
- Rheumatology Unit, University of Verona, Verona, Italy
| | | |
Collapse
|
40
|
Zhang X, Zhang D, Wang Q, Guo X, Chen J, Jiang J, Li M, Liu W, Gao Y, Zhang Q, Bao G, Cui Z. Sprouty2 Inhibits Migration and Invasion of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis by Down-regulating ATF2 Expression and Phosphorylation. Inflammation 2020; 44:91-103. [PMID: 32789554 DOI: 10.1007/s10753-020-01311-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activating transcription factor 2(ATF2), a transcription factor belonging to the AP-1 family, plays an important role in inflammation. However, its biological functions and underlying molecular mechanisms in rheumatoid arthritis (RA) remain unclear. Western blot and immunohistochemistry were used to identify the expression of ATF2 and Sprouty2(SPRY2) in RA synovial tissues. SW982 cells were stimulated by TNF-α to establish an in vitro RA fibroblast-like synoviocyte (RA-FLS) model. Transwell and monolayer wound-healing were used to detect cell migration and invasion. RNA interference (si-ATF2) and adenovirus vector (Ad-SPRY2) methods were employed to manipulate ATF2 or SPRY2 expression in SW982 cells. The protein expression and phosphorylation levels in SW982 cells were evaluated by western blot. ATF2 expression and phosphorylation were upregulated in the RA synovial tissues. In RA-FLS model, ATF2 expression and phosphorylation were increased in a time-dependent manner. ATF2 knockdown inhibited the migration and invasion of RA-FLS model, reducing the inflammatory factors, which was consistent with the influence on cell behaviors caused by SPRY2 overexpression. Moreover, SPRY2 overexpression inhibited the TNF-α-induced phosphorylation of ERK and ATF2 in SW982 cells. The high expression and phosphorylation of ATF2 promoted migration and invasion of RA-FLSs. SPRY2 might inhibited the inflammatory responses of RA-FLSs via suppressing ERK-ATF2 pathway.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Qinyu Wang
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xiaofeng Guo
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jiajia Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jiawei Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Mengmeng Li
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Wei Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yingying Gao
- Department of Rheumatology, The Second Affiliated Hospital of Nantong University, 226001, Jiangsu Province, Nantong, People's Republic of China
| | - Qi Zhang
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Guofeng Bao
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Zhiming Cui
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
41
|
Bauer ME. Accelerated immunosenescence in rheumatoid arthritis: impact on clinical progression. IMMUNITY & AGEING 2020; 17:6. [PMID: 32190092 PMCID: PMC7068869 DOI: 10.1186/s12979-020-00178-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Patients with rheumatoid arthritis (RA) develop features of accelerated ageing, including immunosenescence. These changes include decreased thymic functionality, expansion of late-differentiated effector T cells, increased telomeric attrition, and excessive production of cytokines (senescence-associated secretory phenotype). The progression of RA has been associated with the early development of age-related co-morbidities, including osteoporosis, cardiovascular complications, and cognitive impairment. Here I review data supporting the hypothesis that immune-senescence contributes to the aggravation of both articular and extra-articular manifestations. Of note, poor cognitive functions in RA were associated with senescent CD28- T cells, inflammaging, and autoantibodies against brain antigens. The pathways of immune-to-brain communication are discussed and provide the rationale for the cognitive impairment reported in RA.
Collapse
Affiliation(s)
- Moisés E Bauer
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS 90619-900 Brazil
| |
Collapse
|
42
|
Adami G, Fassio A, Rossini M, Caimmi C, Giollo A, Orsolini G, Viapiana O, Gatti D. Osteoporosis in Rheumatic Diseases. Int J Mol Sci 2019; 20:E5867. [PMID: 31766755 PMCID: PMC6928928 DOI: 10.3390/ijms20235867] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a chronic disease characterized by an increased risk of fragility fracture. Patients affected by rheumatic diseases are at greater risk of developing osteoporosis. The purpose of the present review is to discuss the pathogenesis, epidemiology, and treatment of osteoporosis in patients affected by rheumatic diseases with special focus for rheumatoid arthritis, psoriatic arthritis, spondyloarthritis, systemic lupus erythematosus, systemic sclerosis, vasculitides, Sjogren syndrome, and crystal-induced arthritis.
Collapse
Affiliation(s)
- Giovanni Adami
- Rheumatology Unit, University of Verona, Policlinico Borgo Roma, Pz Scuro 10, 37134 Verona, Italy; (A.F.); (M.R.); (C.C.); (A.G.); (G.O.); (O.V.); (D.G.)
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Xia S, Chen Q, Niu B. CD28: A New Drug Target for Immune Disease. Curr Drug Targets 2019; 21:589-598. [PMID: 31729942 DOI: 10.2174/1389450120666191114102830] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND CD28, a cell surface glycoprotein receptor, predominantly expressed on activated T cells, belongs to the Ig superfamily and provides a critical co-stimulatory signal. CTLA-4 has sequence homology to CD28, and is expressed on T cells after activation. It provides an inhibition signal coordinated with CD28 to regulate T cell activation. Both of them regulate T cell proliferation and differentiation and play an important role in the immune response pathway in vivo. OBJECTIVE We studied the special role of different structural sites of CD28 in producing costimulatory signals. METHODS We reviewed the relevant literature, mainly regarding the structure of CD28 to clarify its biological function, and its role in the immune response. RESULTS In recent years, increasingly attention has been paid to CD28, which is considered as a key therapeutic target for many modern diseases, especially some immune diseases. CONCLUSION In this paper, we mainly introduce the structure of CD28 and its related biological functions, as well as the application of costimulatory pathways targeting CD28 in disease treatment.
Collapse
Affiliation(s)
- Sijing Xia
- College of Life Science, Shanghai University, Shanghai, China
| | - Qin Chen
- College of Life Science, Shanghai University, Shanghai, China
| | - Bing Niu
- College of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
44
|
Shikama Y, Kurosawa M, Furukawa M, Ishimaru N, Matsushita K. Involvement of adiponectin in age-related increases in tear production in mice. Aging (Albany NY) 2019; 11:8329-8346. [PMID: 31596727 PMCID: PMC6814586 DOI: 10.18632/aging.102322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/21/2019] [Indexed: 11/25/2022]
Abstract
Common age-related changes in the human eye contribute to the development of dry eye, including decreases in aqueous tear production. Although the infiltration of lymphocytes into the lacrimal glands occurs with age, age-related increases in tear production have also been observed in mice; however, the mechanisms underlying this increase remain unclear. We herein demonstrated that increases in tear production were not dependent on body weight gain or systemic conditions, such as insulin resistance, using aged mice and high-fat diet-fed mice. The results obtained also showed that senescence-associated T (SA-T) cells accumulated in the lacrimal glands of aged mice, particularly females. Expression levels of the nuclear transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) in whole lacrimal glands and epithelial cells isolated from lacrimal glands were significantly higher in aged mice than in young mice. The expression levels of adiponectin and one of its receptors, AdipoR2, also increased in the lacrimal glands of aged mice, but not in those of high-fat diet-fed mice. Collectively, the present results indicate that PPARγ and adiponectin-mediated signaling contribute to age-related increases in tear production in mice and have potential as therapeutic targets for the treatment of dry eye in humans.
Collapse
Affiliation(s)
- Yosuke Shikama
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Mie Kurosawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Masae Furukawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| |
Collapse
|
45
|
Kulinski JM, Eisch R, Young ML, Rampertaap S, Stoddard J, Monsale J, Romito K, Lyons JJ, Rosenzweig SD, Metcalfe DD, Komarow HD. Skewed Lymphocyte Subpopulations and Associated Phenotypes in Patients with Mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:292-301.e2. [PMID: 31319217 DOI: 10.1016/j.jaip.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mastocytosis is a clonal mast cell disorder associated with elevated mast cell mediators, which themselves have been reported to affect lymphocyte function. However, the impact of an expanded mast cell compartment on lymphocyte subpopulations, and their correlation with clinical phenotypes in patients with indolent systemic mastocytosis (ISM), has not been explored. OBJECTIVE To examine the immunophenotype of circulating lymphocytes in patients with ISM compared with healthy adult controls and examine relationships with aspects of clinical disease. METHODS We examined lymphocyte subsets in 20 adult patients with ISM and 40 healthy adult volunteers by multiparameter flow cytometry. Results were correlated with clinical characteristics. RESULTS Patients with ISM exhibited a significantly lower median frequency and absolute cell count of both circulating CD8+ T cells and natural killer cells accompanying a significantly increased ratio of CD4+/CD8+ T cells when compared with healthy volunteers. Stratification of our ISM patient cohort according to clinical manifestations revealed that CD19+CD21lowCD38low B cells were significantly higher in patients with a history of autoimmune disease and counts of terminally differentiated CD4+ T cells were significantly higher in patients with osteoporosis or osteopenia. CONCLUSIONS Several circulating lymphocyte subpopulations in patients with ISM were significantly different when compared with healthy controls; in specific lymphocyte subsets, this lymphocyte skewing correlated with clinical observations including osteoporosis and autoimmune disease. These data suggest the need for further studies on abnormalities in lymphocyte subsets and the attendant clinical consequences in both mast cell proliferative and activation disorders.
Collapse
Affiliation(s)
- Joseph M Kulinski
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Robin Eisch
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael L Young
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Md
| | - Shakuntala Rampertaap
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Joseph Monsale
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Kimberly Romito
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hirsh D Komarow
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
46
|
Adami G, Saag KG. Osteoporosis Pathophysiology, Epidemiology, and Screening in Rheumatoid Arthritis. Curr Rheumatol Rep 2019; 21:34. [DOI: 10.1007/s11926-019-0836-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front Immunol 2018; 9:586. [PMID: 29686666 PMCID: PMC5900450 DOI: 10.3389/fimmu.2018.00586] [Citation(s) in RCA: 801] [Impact Index Per Article: 114.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Cytokine dysregulation is believed to play a key role in the remodeling of the immune system at older age, with evidence pointing to an inability to fine-control systemic inflammation, which seems to be a marker of unsuccessful aging. This reshaping of cytokine expression pattern, with a progressive tendency toward a pro-inflammatory phenotype has been called "inflamm-aging." Despite research there is no clear understanding about the causes of "inflamm-aging" that underpin most major age-related diseases, including atherosclerosis, diabetes, Alzheimer's disease, rheumatoid arthritis, cancer, and aging itself. While inflammation is part of the normal repair response for healing, and essential in keeping us safe from bacterial and viral infections and noxious environmental agents, not all inflammation is good. When inflammation becomes prolonged and persists, it can become damaging and destructive. Several common molecular pathways have been identified that are associated with both aging and low-grade inflammation. The age-related change in redox balance, the increase in age-related senescent cells, the senescence-associated secretory phenotype (SASP) and the decline in effective autophagy that can trigger the inflammasome, suggest that it may be possible to delay age-related diseases and aging itself by suppressing pro-inflammatory molecular mechanisms or improving the timely resolution of inflammation. Conversely there may be learning from molecular or genetic pathways from long-lived cohorts who exemplify good quality aging. Here, we will discuss some of the current ideas and highlight molecular pathways that appear to contribute to the immune imbalance and the cytokine dysregulation, which is associated with "inflammageing" or parainflammation. Evidence of these findings will be drawn from research in cardiovascular disease, cancer, neurological inflammation and rheumatoid arthritis.
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, United Kingdom
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
- Care of Elderly Medicine, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - David S. Gibson
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Susan E. McNerlan
- Regional Genetics Service, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - H. Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|