1
|
Pereira P, Panier J, Nater M, Herbst M, Calvanese AL, Köksal H, Castañón H, Cecconi V, Tallón de Lara P, Pascolo S, van den Broek M. Inflammatory cytokines mediate the induction of and awakening from metastatic dormancy. Cell Rep 2025; 44:115388. [PMID: 40023846 DOI: 10.1016/j.celrep.2025.115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/06/2024] [Accepted: 02/11/2025] [Indexed: 03/04/2025] Open
Abstract
Metastases arise from disseminated cancer cells (DCCs) that detach from the primary tumor and seed distant organs. There, quiescent DCCs can survive for an extended time, a state referred to as metastatic dormancy. The mechanisms governing the induction, maintenance, and awakening from metastatic dormancy are unclear. We show that the differentiation of dormancy-inducing CD8+ T cells requires CD4+ T cell help and that interferon (IFN)γ directly induces dormancy in DCCs. The maintenance of metastatic dormancy, however, is independent of T cells. Instead, awakening from dormancy requires an inflammatory signal, and we identified CD4+ T cell-derived interleukin (IL)-17A as an essential wake-up signal for dormant DCCs in the lungs. Thus, the induction of and awakening from metastatic dormancy require an external stimulus, while the maintenance of dormancy does not rely on continuous surveillance by lymphocytes.
Collapse
Affiliation(s)
- Paulo Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Joshua Panier
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Marc Nater
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Michael Herbst
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Hakan Köksal
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Héctor Castañón
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Steve Pascolo
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Maries van den Broek
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Ryanto GRT, Suraya R, Nagano T. The Importance of Lung Innate Immunity During Health and Disease. Pathogens 2025; 14:91. [PMID: 39861052 PMCID: PMC11768135 DOI: 10.3390/pathogens14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The lung is a vital organ for the body as the main source of oxygen input. Importantly, it is also an internal organ that has direct contact with the outside world. Innate immunity is a vital protective system in various organs, whereas, in the case of the lung, it helps maintain a healthy, functioning cellular and molecular environment and prevents any overt damage caused by pathogens or other inflammatory processes. Disturbances in lung innate immunity properties and processes, whether over-responsiveness of the process triggered by innate immunity or lack of responses due to dysfunctions in the immune cells that make up the innate immunity system of the lung, could be correlated to various pathological conditions. In this review, we discuss globally how the components of lung innate immunity are important not only for maintaining lung homeostasis but also during the pathophysiology of notable lung diseases beyond acute pulmonary infections, including chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Gusty Rizky Teguh Ryanto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Ratoe Suraya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
3
|
Wang J, Peng X, Yuan N, Wang B, Chen S, Wang B, Xie L. Interplay between pulmonary epithelial stem cells and innate immune cells contribute to the repair and regeneration of ALI/ARDS. Transl Res 2024; 272:111-125. [PMID: 38897427 DOI: 10.1016/j.trsl.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Mammalian lung is the important organ for ventilation and exchange of air and blood. Fresh air and venous blood are constantly delivered through the airway and vascular tree to the alveolus. Based on this, the airways and alveolis are persistently exposed to the external environment and are easily suffered from toxins, irritants and pathogens. For example, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common cause of respiratory failure in critical patients, whose typical pathological characters are diffuse epithelial and endothelial damage resulting in excessive accumulation of inflammatory fluid in the alveolar cavity. The supportive treatment is the main current treatment for ALI/ARDS with the lack of targeted effective treatment strategies. However, ALI/ARDS needs more targeted treatment measures. Therefore, it is extremely urgent to understand the cellular and molecular mechanisms that maintain alveolar epithelial barrier and airway integrity. Previous researches have shown that the lung epithelial cells with tissue stem cell function have the ability to repair and regenerate after injury. Also, it is able to regulate the phenotype and function of innate immune cells involving in regeneration of tissue repair. Meanwhile, we emphasize that interaction between the lung epithelial cells and innate immune cells is more supportive to repair and regenerate in the lung epithelium following acute lung injury. We reviewed the recent advances in injury and repair of lung epithelial stem cells and innate immune cells in ALI/ARDS, concentrating on alveolar type 2 cells and alveolar macrophages and their contribution to post-injury repair behavior of ALI/ARDS through the latest potential molecular communication mechanisms. This will help to develop new research strategies and therapeutic targets for ALI/ARDS.
Collapse
Affiliation(s)
- Jiang Wang
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Xinyue Peng
- Fu Xing Hospital, Capital Medical University, Beijing 100038, China
| | - Na Yuan
- Department of Pulmonary & Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Bin Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Siyu Chen
- Department of Thoracic Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Bo Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
4
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Piersma SJ. Tissue-specific features of innate lymphoid cells in antiviral defense. Cell Mol Immunol 2024; 21:1036-1050. [PMID: 38684766 PMCID: PMC11364677 DOI: 10.1038/s41423-024-01161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Innate lymphocytes (ILCs) rapidly respond to and protect against invading pathogens and cancer. ILCs include natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTi) cells and include type I, type II, and type III immune cells. While NK cells have been well recognized for their role in antiviral immunity, other ILC subtypes are emerging as players in antiviral defense. Each ILC subset has specialized functions that uniquely impact the antiviral immunity and health of the host depending on the tissue microenvironment. This review focuses on the specialized functions of each ILC subtype and their roles in antiviral immune responses across tissues. Several viruses within infection-prone tissues will be highlighted to provide an overview of the extent of the ILC immunity within tissues and emphasize common versus virus-specific responses.
Collapse
Affiliation(s)
- Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Kageyama T, Ito T, Tanaka S, Nakajima H. Physiological and immunological barriers in the lung. Semin Immunopathol 2024; 45:533-547. [PMID: 38451292 PMCID: PMC11136722 DOI: 10.1007/s00281-024-01003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
The lungs serve as the primary organ for respiration, facilitating the vital exchange of gases with the bloodstream. Given their perpetual exposure to external particulates and pathogens, they possess intricate protective barriers. Cellular adhesion in the lungs is robustly maintained through tight junctions, adherens junctions, and desmosomes. Furthermore, the pulmonary system features a mucociliary clearance mechanism that synthesizes mucus and transports it to the outside. This mucus is enriched with chemical barriers like antimicrobial proteins and immunoglobulin A (IgA). Additionally, a complex immunological network comprising epithelial cells, neural cells, and immune cells plays a pivotal role in pulmonary defense. A comprehensive understanding of these protective systems offers valuable insights into potential pathologies and their therapeutic interventions.
Collapse
Affiliation(s)
- Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan.
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan.
| | - Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba, Japan
| |
Collapse
|
7
|
Ryu S, Lim M, Kim J, Kim HY. Versatile roles of innate lymphoid cells at the mucosal barrier: from homeostasis to pathological inflammation. Exp Mol Med 2023; 55:1845-1857. [PMID: 37696896 PMCID: PMC10545731 DOI: 10.1038/s12276-023-01022-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 09/13/2023] Open
Abstract
Innate lymphoid cells (ILCs) are innate lymphocytes that do not express antigen-specific receptors and largely reside and self-renew in mucosal tissues. ILCs can be categorized into three groups (ILC1-3) based on the transcription factors that direct their functions and the cytokines they produce. Their signature transcription factors and cytokines closely mirror those of their Th1, Th2, and Th17 cell counterparts. Accumulating studies show that ILCs are involved in not only the pathogenesis of mucosal tissue diseases, especially respiratory diseases, and colitis, but also the resolution of such diseases. Here, we discuss recent advances regarding our understanding of the biology of ILCs in mucosal tissue health and disease. In addition, we describe the current research on the immune checkpoints by which other cells regulate ILC activities: for example, checkpoint molecules are potential new targets for therapies that aim to control ILCs in mucosal diseases. In addition, we review approved and clinically- trialed drugs and drugs in clinical trials that can target ILCs and therefore have therapeutic potential in ILC-mediated diseases. Finally, since ILCs also play important roles in mucosal tissue homeostasis, we explore the hitherto sparse research on cell therapy with regulatory ILCs. This review highlights various therapeutic approaches that could be used to treat ILC-mediated mucosal diseases and areas of research that could benefit from further investigation.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Microbiology, Gachon University College of Medicine, Incheon, 21999, South Korea
| | - MinYeong Lim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Jinwoo Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.
- CIRNO, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
8
|
Wang X, Kong Y, Zheng B, Zhao X, Zhao M, Wang B, Liu C, Yan P. Tissue-resident innate lymphoid cells in asthma. J Physiol 2023; 601:3995-4012. [PMID: 37488944 DOI: 10.1113/jp284686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Asthma is a chronic airway inflammatory disease whose global incidence increases annually. The role of innate lymphoid cells (ILCs) is a crucial aspect of asthma research with respect to different endotypes of asthma. Based on its pathological and inflammatory features, asthma is divided into type 2 high and type 2 low endotypes. Type-2 high asthma is distinguished by the activation of type 2 immune cells, including T helper 2 (Th2) cells and ILC2s; the production of cytokines interleukin (IL)-4, IL-5 and IL-13; eosinophilic aggregation; and bronchial hyper-responsiveness. Type-2 low asthma represents a variety of endotypes other than type 2 high endotype such as the IL-1β/ILC3/neutrophil endotype and a paucigranulocytic asthma, which may be insensitive to corticosteroid treatment and/or associated with obesity. The complexity of asthma is due to the involvement of multiple cell types, including tissue-resident ILCs and other innate immune cells including bronchial epithelial cells, dendritic cells, macrophages and eosinophils, which provide immediate defence against viruses, pathogens and allergens. On this basis, innate immune cells and adaptive immune cells combine to induce the pathological condition of asthma. In addition, the plasticity of ILCs increases the heterogeneity of asthma. This review focuses on the phenotypes of tissue-resident ILCs and their roles in the different endotypes of asthma, as well as the mechanisms of tissue-resident ILCs and other immune cells. Based on the phenotypes, roles and mechanisms of immune cells, the therapeutic strategies for asthma are reviewed.
Collapse
Affiliation(s)
- Xiaoxu Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue Kong
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Bingqing Zheng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaomin Zhao
- Department of traditional Chinese medicine, Shandong Traditional Chinese Medicine College, YanTai, China
| | - Mingzhe Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chang Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Garofalo C, Cerantonio A, Muscoli C, Mollace V, Viglietto G, De Marco C, Cristiani CM. Helper Innate Lymphoid Cells-Unappreciated Players in Melanoma Therapy. Cancers (Basel) 2023; 15:cancers15030933. [PMID: 36765891 PMCID: PMC9913873 DOI: 10.3390/cancers15030933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) and targeted therapy have dramatically changed the outcome of metastatic melanoma patients. Although immune checkpoints were developed based on the biology of adaptive T cells, they have subsequently been shown to be expressed by other subsets of immune cells. Similarly, the immunomodulatory properties of targeted therapy have been studied primarily with respect to T lymphocytes, but other subsets of immune cells could be affected. Innate lymphoid cells (ILCs) are considered the innate counterpart of T lymphocytes and include cytotoxic natural killer cells, as well as three helper subsets, ILC1, ILC2 and ILC3. Thanks to their tissue distribution and their ability to respond rapidly to environmental stimuli, ILCs play a central role in shaping immunity. While the role of NK cells in melanoma physiopathology and therapy is well established, little is known about the other helper ILC subsets. In this review, we summarize recent findings on the ability of the melanoma TME to influence the phenotype and functional plasticity of helper ILCs and highlight how this subset may in turn shape the TME. We also discuss changes in the melanoma TME induced by targeted therapy that could affect helper ILC functions, the expression of immune checkpoints on this subset and how their inhibition by ICIs may modulate helper ILC function and contribute to therapeutic efficacy.
Collapse
Affiliation(s)
- Cinzia Garofalo
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Annamaria Cerantonio
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Science, Institute of Research for Food Safety & Health (IRC-FSH), “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Science, Institute of Research for Food Safety & Health (IRC-FSH), “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
10
|
Démoulins T, Schulze K, Ebensen T, Techakriengkrai N, Nedumpun T, Englezou PC, Gerber M, Hlushchuk R, Toledo D, Djonov V, von Gunten S, McCullough KC, Liniger M, Guzmán CA, Suradhat S, Ruggli N. Coatsome-replicon vehicles: Self-replicating RNA vaccines against infectious diseases. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102655. [PMID: 36681171 DOI: 10.1016/j.nano.2023.102655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
Herein, we provide the first description of a synthetic delivery method for self-replicating replicon RNAs (RepRNA) derived from classical swine fever virus (CSFV) using a Coatsome-replicon vehicle based on Coatsome® SS technologies. This results in an unprecedented efficacy when compared to well-established polyplexes, with up to ∼65 fold-increase of the synthesis of RepRNA-encoded gene of interest (GOI). We demonstrated the efficacy of such Coatsome-replicon vehicles for RepRNA-mediated induction of CD8 T-cell responses in mice. Moreover, we provide new insights on physical properties of the RepRNA, showing that the removal of all CSFV structural protein genes has a positive effect on the translation of the GOI. Finally, we successfully engineered RepRNA constructs encoding a porcine reproductive and respiratory syndrome virus (PRRSV) antigen, providing an example of antigen expression with potential application to combat viral diseases. The versatility and simplicity of modifying and manufacturing these Coatsome-replicon vehicle formulations represents a major asset to tackle foreseeable emerging pandemics.
Collapse
Affiliation(s)
- Thomas Démoulins
- Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland; Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand.
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Teerawut Nedumpun
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Pavlos C Englezou
- Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Markus Gerber
- Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Darien Toledo
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | | | - Kenneth C McCullough
- Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matthias Liniger
- Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Schepanski S, Chini M, Sternemann V, Urbschat C, Thiele K, Sun T, Zhao Y, Poburski M, Woestemeier A, Thieme MT, Zazara DE, Alawi M, Fischer N, Heeren J, Vladimirov N, Woehler A, Puelles VG, Bonn S, Gagliani N, Hanganu-Opatz IL, Arck PC. Pregnancy-induced maternal microchimerism shapes neurodevelopment and behavior in mice. Nat Commun 2022; 13:4571. [PMID: 35931682 PMCID: PMC9356013 DOI: 10.1038/s41467-022-32230-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Life-long brain function and mental health are critically determined by developmental processes occurring before birth. During mammalian pregnancy, maternal cells are transferred to the fetus. They are referred to as maternal microchimeric cells (MMc). Among other organs, MMc seed into the fetal brain, where their function is unknown. Here, we show that, in the offspring's developing brain in mice, MMc express a unique signature of sensome markers, control microglia homeostasis and prevent excessive presynaptic elimination. Further, MMc facilitate the oscillatory entrainment of developing prefrontal-hippocampal circuits and support the maturation of behavioral abilities. Our findings highlight that MMc are not a mere placental leak out, but rather a functional mechanism that shapes optimal conditions for healthy brain function later in life.
Collapse
Affiliation(s)
- Steven Schepanski
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veronika Sternemann
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Urbschat
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ting Sun
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yu Zhao
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike Poburski
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie-Theres Thieme
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitra E Zazara
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikita Vladimirov
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andrew Woehler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Victor G Puelles
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Petra C Arck
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
12
|
Roach SN, Fiege JK, Shepherd FK, Wiggen TD, Hunter RC, Langlois RA. Respiratory Influenza Virus Infection Causes Dynamic Tuft Cell and Innate Lymphoid Cell Changes in the Small Intestine. J Virol 2022; 96:e0035222. [PMID: 35446142 PMCID: PMC9093116 DOI: 10.1128/jvi.00352-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza A viruses (IAV) can cause severe disease and death in humans. IAV infection and the accompanying immune response can result in systemic inflammation, leading to intestinal damage and disruption of the intestinal microbiome. Here, we demonstrate that a specific subset of epithelial cells, tuft cells, increase across the small intestine during active respiratory IAV infection. Upon viral clearance, tuft cell numbers return to baseline levels. Intestinal tuft cell increases were not protective against disease, as animals with either increased tuft cells or a lack of tuft cells did not have any change in disease morbidity after infection. Respiratory IAV infection also caused transient increases in type 1 and 2 innate lymphoid cells (ILC1 and ILC2, respectively) in the small intestine. ILC2 increases were significantly blunted in the absence of tuft cells, whereas ILC1s were unaffected. Unlike the intestines, ILCs in the lungs were not altered in the absence of tuft cells. This work establishes that respiratory IAV infection causes dynamic changes to tuft cells and ILCs in the small intestines and that tuft cells are necessary for the infection-induced increase in small intestine ILC2s. These intestinal changes in tuft cell and ILC populations may represent unexplored mechanisms preventing systemic infection and/or contributing to severe disease in humans with preexisting conditions. IMPORTANCE Influenza A virus (IAV) is a respiratory infection in humans that can lead to a wide range of symptoms and disease severity. Respiratory infection can cause systemic inflammation and damage in the intestines. Few studies have explored how inflammation alters the intestinal environment. We found that active infection caused an increase in the epithelial population called tuft cells as well as type 1 and 2 innate lymphoid cells (ILCs) in the small intestine. In the absence of tuft cells, this increase in type 2 ILCs was seriously blunted, whereas type 1 ILCs still increased. These findings indicate that tuft cells are necessary for infection-induced changes in small intestine type 2 ILCs and implicate tuft cells as regulators of the intestinal environment in response to systemic inflammation.
Collapse
Affiliation(s)
- Shanley N. Roach
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jessica K. Fiege
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frances K. Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Talia D. Wiggen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan C. Hunter
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022; 55:749-780. [PMID: 35545027 PMCID: PMC9087965 DOI: 10.1016/j.immuni.2022.04.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
14
|
Murphy JM, Ngai L, Mortha A, Crome SQ. Tissue-Dependent Adaptations and Functions of Innate Lymphoid Cells. Front Immunol 2022; 13:836999. [PMID: 35359972 PMCID: PMC8960279 DOI: 10.3389/fimmu.2022.836999] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022] Open
Abstract
Tissue-resident immune cells reside in distinct niches across organs, where they contribute to tissue homeostasis and rapidly respond to perturbations in the local microenvironment. Innate lymphoid cells (ILCs) are a family of innate immune cells that regulate immune and tissue homeostasis. Across anatomical locations throughout the body, ILCs adopt tissue-specific fates, differing from circulating ILC populations. Adaptations of ILCs to microenvironmental changes have been documented in several inflammatory contexts, including obesity, asthma, and inflammatory bowel disease. While our understanding of ILC functions within tissues have predominantly been based on mouse studies, development of advanced single cell platforms to study tissue-resident ILCs in humans and emerging patient-based data is providing new insights into this lymphocyte family. Within this review, we discuss current concepts of ILC fate and function, exploring tissue-specific functions of ILCs and their contribution to health and disease across organ systems.
Collapse
Affiliation(s)
- Julia M. Murphy
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
15
|
Tissue-resident immunity in the lung: a first-line defense at the environmental interface. Semin Immunopathol 2022; 44:827-854. [PMID: 36305904 PMCID: PMC9614767 DOI: 10.1007/s00281-022-00964-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
The lung is a vital organ that incessantly faces external environmental challenges. Its homeostasis and unimpeded vital function are ensured by the respiratory epithelium working hand in hand with an intricate fine-tuned tissue-resident immune cell network. Lung tissue-resident immune cells span across the innate and adaptive immunity and protect from infectious agents but can also prove to be pathogenic if dysregulated. Here, we review the innate and adaptive immune cell subtypes comprising lung-resident immunity and discuss their ontogeny and role in distinct respiratory diseases. An improved understanding of the role of lung-resident immunity and how its function is dysregulated under pathological conditions can shed light on the pathogenesis of respiratory diseases.
Collapse
|
16
|
Graalmann T, Borst K, Manchanda H, Vaas L, Bruhn M, Graalmann L, Koster M, Verboom M, Hallensleben M, Guzmán CA, Sutter G, Schmidt RE, Witte T, Kalinke U. B cell depletion impairs vaccination-induced CD8 + T cell responses in a type I interferon-dependent manner. Ann Rheum Dis 2021; 80:1537-1544. [PMID: 34226189 PMCID: PMC8600602 DOI: 10.1136/annrheumdis-2021-220435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The monoclonal anti-CD20 antibody rituximab is frequently applied in the treatment of lymphoma as well as autoimmune diseases and confers efficient depletion of recirculating B cells. Correspondingly, B cell-depleted patients barely mount de novo antibody responses during infections or vaccinations. Therefore, efficient immune responses of B cell-depleted patients largely depend on protective T cell responses. METHODS CD8+ T cell expansion was studied in rituximab-treated rheumatoid arthritis (RA) patients and B cell-deficient mice on vaccination/infection with different vaccines/pathogens. RESULTS Rituximab-treated RA patients vaccinated with Influvac showed reduced expansion of influenza-specific CD8+ T cells when compared with healthy controls. Moreover, B cell-deficient JHT mice infected with mouse-adapted Influenza or modified vaccinia virus Ankara showed less vigorous expansion of virus-specific CD8+ T cells than wild type mice. Of note, JHT mice do not have an intrinsic impairment of CD8+ T cell expansion, since infection with vaccinia virus induced similar T cell expansion in JHT and wild type mice. Direct type I interferon receptor signalling of B cells was necessary to induce several chemokines in B cells and to support T cell help by enhancing the expression of MHC-I. CONCLUSIONS Depending on the stimulus, B cells can modulate CD8+ T cell responses. Thus, B cell depletion causes a deficiency of de novo antibody responses and affects the efficacy of cellular response including cytotoxic T cells. The choice of the appropriate vaccine to vaccinate B cell-depleted patients has to be re-evaluated in order to efficiently induce protective CD8+ T cell responses.
Collapse
Affiliation(s)
- Theresa Graalmann
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
- Department for Rheumatology and Immunology, Hanover Medical School, Hanover, Germany
| | - Katharina Borst
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Himanshu Manchanda
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Lea Vaas
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Matthias Bruhn
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Lukas Graalmann
- Department for Respiratory Medicine, Hanover Medical School, Hanover, Germany
| | - Mario Koster
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Murielle Verboom
- Institute for Transfusion Medicine and Transplant Engineering, Hanover Medical School, Hanover, Germany
| | - Michael Hallensleben
- Institute for Transfusion Medicine and Transplant Engineering, Hanover Medical School, Hanover, Germany
| | - Carlos Alberto Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Reinhold E Schmidt
- Department for Rheumatology and Immunology, Hanover Medical School, Hanover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover, Germany
| | - Torsten Witte
- Department for Rheumatology and Immunology, Hanover Medical School, Hanover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover, Germany
| |
Collapse
|
17
|
Jacquelot N, Ghaedi M, Warner K, Chung DC, Crome SQ, Ohashi PS. Immune Checkpoints and Innate Lymphoid Cells-New Avenues for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5967. [PMID: 34885076 PMCID: PMC8657134 DOI: 10.3390/cancers13235967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoints (IC) are broadly characterized as inhibitory pathways that tightly regulate the activation of the immune system. These molecular "brakes" are centrally involved in the maintenance of immune self-tolerance and represent a key mechanism in avoiding autoimmunity and tissue destruction. Antibody-based therapies target these inhibitory molecules on T cells to improve their cytotoxic function, with unprecedented clinical efficacies for a number of malignancies. Many of these ICs are also expressed on innate lymphoid cells (ILC), drawing interest from the field to understand their function, impact for anti-tumor immunity and potential for immunotherapy. In this review, we highlight ILC specificities at different tissue sites and their migration potential upon inflammatory challenge. We further summarize the current understanding of IC molecules on ILC and discuss potential strategies for ILC modulation as part of a greater anti-cancer armamentarium.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Kathrin Warner
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Douglas C. Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| |
Collapse
|
18
|
Orimo K, Tamari M, Saito H, Matsumoto K, Nakae S, Morita H. Characteristics of tissue-resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy 2021; 76:3332-3348. [PMID: 33866593 DOI: 10.1111/all.14863] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Discovery of innate lymphoid cells (ILCs), which are non-T and non-B lymphocytes that have no antigen-specific receptors, changed the classical concept of the mechanism of allergy, which had been explained mainly as antigen-specific acquired immunity based on IgE and Th2 cells. The discovery led to dramatic improvement in our understanding of the mechanism of non-IgE-mediated allergic inflammation. Numerous studies conducted in the past decade have elucidated the characteristics of each ILC subset in various organs and tissues and their ontogeny. We now know that each ILC subset exhibits heterogeneity. Moreover, the functions and activating/suppressing factors of each ILC subset were found to differ among both organs and types of tissue. Therefore, in this review, we summarize our current knowledge of ILCs by focusing on the organ/tissue-specific features of each subset to understand their roles in various organs. We also discuss ILCs' involvement in human inflammatory diseases in various organs and potential therapeutic/preventive strategies that target ILCs.
Collapse
Affiliation(s)
- Keisuke Orimo
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
- Precursory Research for Embryonic Science and Technology Japan Science and Technology Agency Saitama Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| |
Collapse
|
19
|
Lujan RA, Vrba SM, Hickman HD. Antiviral Activities of Group I Innate Lymphoid Cells. J Mol Biol 2021; 434:167266. [PMID: 34562465 PMCID: PMC8938296 DOI: 10.1016/j.jmb.2021.167266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022]
Abstract
Even before the adaptive immune response initiates, a potent group of innate antiviral cells responds to a wide range of viruses to limit replication and virus-induced pathology. Belonging to a broader family of recently discovered innate lymphoid cells (ILCs), antiviral group I ILCs are composed of conventional natural killer cells (cNK) and tissue-resident ILCs (ILC1s) that can be distinguished based on their location as well as by the expression of key cell surface markers and transcription factors. Functionally, blood-borne cNK cells recirculate throughout the body and are recruited into the tissue at sites of viral infection where they can recognize and lyse virus-infected cells. In contrast, ILC1s are poised in uninfected barrier tissues and respond not through lysis but with the production of antiviral cytokines. From their frontline tissue locations, ILC1s can even induce an antiviral state in uninfected tissue to preempt viral replication. Mounting evidence also suggests that ILC1s may have enhanced secondary responses to viral infection. In this review, we discuss recent findings demonstrating that ILC1s provide several critical layers of innate antiviral immunity and the mechanisms (when known) underlying protection.
Collapse
Affiliation(s)
- Ramon A Lujan
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sophia M Vrba
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather D Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Dhariwal J, Cameron A, Wong E, Paulsen M, Trujillo-Torralbo B, Del Rosario A, Bakhsoliani E, Kebadze T, Almond M, Farne H, Gogsadze L, Aniscenko J, Rana B, Hansel TT, Jackson DJ, Kon OM, Edwards MR, Solari R, Cousins D, Walton RP, Johnston SL. Pulmonary Innate Lymphoid Cell Responses during Rhinovirus-induced Asthma Exacerbations In Vivo: A Clinical Trial. Am J Respir Crit Care Med 2021; 204:1259-1273. [PMID: 34469272 DOI: 10.1164/rccm.202010-3754oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale Type 2 innate lymphoid cells (ILC2s) are significant sources of type 2 cytokines, which are implicated in the pathogenesis of asthma and asthma exacerbations. The role of ILC2s in virus-induced asthma exacerbations is not well-characterized. Objectives To characterize pulmonary ILC responses following experimental rhinovirus challenge in patients with moderate asthma and healthy subjects. Methods Patients with moderate asthma and healthy subjects were inoculated with rhinovirus-16, and underwent bronchoscopy at baseline, day 3 and day 8 post-inoculation. Pulmonary ILC1s and ILC2s were quantified in bronchoalveolar lavage (BAL) using flow cytometry. The ratio of BAL ILC2:ILC1 was assessed to determine their relative contributions to the clinical and immune response to rhinovirus challenge. Measurements and Main Results At baseline, ILC2s were significantly higher in patients with asthma than healthy subjects. At day 8, ILC2s significantly increased from baseline in both groups, which was significantly higher in asthma than in healthy subjects (all comparisons P<0.05). In healthy subjects, ILC1s increased from baseline at day 3 (P=0.001), while in patients with asthma, ILC1s increased from baseline at day 8 (P=0.042). Patients with asthma had significantly higher ILC2:ILC1 ratios at baseline (P=0.024) and day 8 (P=0.005). Increased ILC2:ILC1 ratio in asthma correlated with clinical exacerbation severity and type 2 cytokines in nasal mucosal lining fluid. Conclusions An ILC2-predominant inflammatory profile in asthma was associated with increased severity and duration of rhinovirus infection compared with healthy subjects, supporting the potential role of ILC2s in the pathogenesis of virus-induced asthma exacerbations. Clinical trial registration available at www.clinicaltrials.gov, ID: NCT01773590.
Collapse
Affiliation(s)
- Jaideep Dhariwal
- Guy's and St Thomas' Hospitals NHS Trust, 8945, London, United Kingdom of Great Britain and Northern Ireland;
| | - Aoife Cameron
- Imperial College London, NHLI, London, United Kingdom of Great Britain and Northern Ireland
| | - Ernie Wong
- Imperial College London, NHLI, London, United Kingdom of Great Britain and Northern Ireland
| | - Malte Paulsen
- St Mary's Flow Cytometry Core Facility, London, United Kingdom of Great Britain and Northern Ireland
| | - Belen Trujillo-Torralbo
- National Heart and Lung Institute, Respiratory Science, London, United Kingdom of Great Britain and Northern Ireland
| | - Ajerico Del Rosario
- Imperial College London, 4615, NHLI, London, United Kingdom of Great Britain and Northern Ireland
| | - Eteri Bakhsoliani
- National Heart and Lung Institute, Respiratory Science, London, United Kingdom of Great Britain and Northern Ireland
| | - Tatiana Kebadze
- Imperial College London, 4615, NHLI, London, United Kingdom of Great Britain and Northern Ireland
| | - Mark Almond
- Imperial College London, 4615, NHLI, London, United Kingdom of Great Britain and Northern Ireland
| | - Hugo Farne
- Imperial College, London, Airway Disease Infection Section, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom of Great Britain and Northern Ireland
| | - Leila Gogsadze
- National Heart and Lung Institute, Respiratory Science, London, United Kingdom of Great Britain and Northern Ireland
| | - Julia Aniscenko
- Imperial College London, 4615, Airway Disease Infection, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Batika Rana
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom of Great Britain and Northern Ireland
| | - Trevor T Hansel
- Imperial College London, 4615, ICRRU(Research Unit), London, United Kingdom of Great Britain and Northern Ireland
| | - David J Jackson
- Guy's and St Thomas' NHS Foundation Trust, 8945, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Onn Min Kon
- Imperial College Healthcare NHS Trust, 8946, London, United Kingdom of Great Britain and Northern Ireland
| | - Michael R Edwards
- Imperial College London, Airway Disease Infection, London, United Kingdom of Great Britain and Northern Ireland
| | - Roberto Solari
- National Heart and Lung Institute, Respiratory Science, London, United Kingdom of Great Britain and Northern Ireland
| | - David Cousins
- University of Leicester, Department of Infection, Immunity and Inflammation, Leicester, United Kingdom of Great Britain and Northern Ireland
| | - Ross P Walton
- Imperial College, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Sebastian L Johnston
- National Heart & Lung and Wright Felming Institute of Infection & Immunity, Respiratory Medicine, London, United Kingdom of Great Britain and Northern Ireland
| | | |
Collapse
|
21
|
Duan Z, Liu M, Yuan L, Du X, Wu M, Yang Y, Wang L, Zhou K, Yang M, Zou Y, Xiang Y, Qu X, Liu H, Qin X, Liu C. Innate lymphoid cells are double-edged swords under the mucosal barrier. J Cell Mol Med 2021; 25:8579-8587. [PMID: 34378306 PMCID: PMC8435454 DOI: 10.1111/jcmm.16856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022] Open
Abstract
As the direct contacting site for pathogens and allergens, the mucosal barrier plays a vital role in the lungs and intestines. Innate lymphoid cells (ILCs) are particularly resident in the mucosal barrier and participate in several pathophysiological processes, such as maintaining or disrupting barrier integrity, preventing various pathogenic invasions. In the pulmonary mucosae, ILCs sometimes aggravate inflammation and mucus hypersecretion but restore airway epithelial integrity and maintain lung tissue homeostasis at other times. In the intestinal mucosae, ILCs can increase epithelial permeability, leading to severe intestinal inflammation on the one hand, and assist mucosal barrier in resisting bacterial invasion on the other hand. In this review, we will illustrate the positive and negative roles of ILCs in mucosal barrier immunity.
Collapse
Affiliation(s)
- Zhen Duan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Mandie Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Mengping Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Yu Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Leyuan Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Kai Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,China-Africa Infectious Diseases Research Center, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
22
|
Vertically transferred maternal immune cells promote neonatal immunity against early life infections. Nat Commun 2021; 12:4706. [PMID: 34349112 PMCID: PMC8338998 DOI: 10.1038/s41467-021-24719-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/26/2021] [Indexed: 11/17/2022] Open
Abstract
During mammalian pregnancy, immune cells are vertically transferred from mother to fetus. The functional role of these maternal microchimeric cells (MMc) in the offspring is mostly unknown. Here we show a mouse model in which MMc numbers are either normal or low, which enables functional assessment of MMc. We report a functional role of MMc in promoting fetal immune development. MMc induces preferential differentiation of hematopoietic stem cells in fetal bone marrow towards monocytes within the myeloid compartment. Neonatal mice with higher numbers of MMc and monocytes show enhanced resilience against cytomegalovirus infection. Similarly, higher numbers of MMc in human cord blood are linked to a lower number of respiratory infections during the first year of life. Our data highlight the importance of MMc in promoting fetal immune development, potentially averting the threats caused by early life exposure to pathogens. Maternal immune cells seed into the foetus during mammalian pregnancy, yet the functional role of these cells is unclear. Here the authors show that maternal immune cells in foetal bone marrow stimulate immune development, subsequently reducing the risk or severity of infections in newborns.
Collapse
|
23
|
Poonpanichakul T, Chan-In W, Opasawatchai A, Loison F, Matangkasombut O, Charoensawan V, Matangkasombut P. Innate Lymphoid Cells Activation and Transcriptomic Changes in Response to Human Dengue Infection. Front Immunol 2021; 12:599805. [PMID: 34079535 PMCID: PMC8165392 DOI: 10.3389/fimmu.2021.599805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background Dengue virus (DENV) infection has a global impact on public health. The clinical outcomes (of DENV) can vary from a flu-like illness called dengue fever (DF), to a more severe form, known as dengue hemorrhagic fever (DHF). The underlying innate immune mechanisms leading to protective or detrimental outcomes have not been fully elucidated. Helper innate lymphoid cells (hILCs), an innate lymphocyte recently discovered, functionally resemble T-helper cells and are important in inflammation and homeostasis. However, the role of hILCs in DENV infection had been unexplored. Methods We performed flow cytometry to investigate the frequency and phenotype of hILCs in peripheral blood mononuclear cells from DENV-infected patients of different disease severities (DF and DHF), and at different phases (febrile and convalescence) of infection. Intracellular cytokine staining of hILCs from DF and DHF were also evaluated by flow cytometry after ex vivo stimulation. Further, the hILCs were sorted and subjected to transcriptome analysis using RNA sequencing. Differential gene expression analysis was performed to compare the febrile and convalescent phase samples in DF and DHF. Selected differentially expressed genes were then validated by quantitative PCR. Results Phenotypic analysis showed marked activation of all three hILC subsets during the febrile phase as shown by higher CD69 expression when compared to paired convalescent samples, although the frequency of hILCs remained unchanged. Upon ex vivo stimulation, hILCs from febrile phase DHF produced significantly higher IFN-γ and IL-4 when compared to those of DF. Transcriptomic analysis showed unique hILCs gene expression in DF and DHF, suggesting that divergent functions of hILCs may be associated with different disease severities. Differential gene expression analysis indicated that hILCs function both in cytokine secretion and cytotoxicity during the febrile phase of DENV infection. Conclusions Helper ILCs are activated in the febrile phase of DENV infection and display unique transcriptomic changes as well as cytokine production that correlate with severity. Targeting hILCs during early innate response to DENV might help shape subsequent immune responses and potentially lessen the disease severity in the future.
Collapse
Affiliation(s)
- Tiraput Poonpanichakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand.,Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Wilawan Chan-In
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Anunya Opasawatchai
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Fabien Loison
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Oranart Matangkasombut
- Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Varodom Charoensawan
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.,Integrative Computational BioScience Center (ICBS), Mahidol University, Nakhon Pathom, Thailand
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
24
|
Watzenboeck ML, Drobits B, Zahalka S, Gorki AD, Farhat A, Quattrone F, Hladik A, Lakovits K, Richard GM, Lederer T, Strobl B, Versteeg GA, Boon L, Starkl P, Knapp S. Lipocalin 2 modulates dendritic cell activity and shapes immunity to influenza in a microbiome dependent manner. PLoS Pathog 2021; 17:e1009487. [PMID: 33905460 PMCID: PMC8078786 DOI: 10.1371/journal.ppat.1009487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
Lipocalin 2 (LCN2) is a secreted glycoprotein with roles in multiple biological processes. It contributes to host defense by interference with bacterial iron uptake and exerts immunomodulatory functions in various diseases. Here, we aimed to characterize the function of LCN2 in lung macrophages and dendritic cells (DCs) using Lcn2-/- mice. Transcriptome analysis revealed strong LCN2-related effects in CD103+ DCs during homeostasis, with differential regulation of antigen processing and presentation and antiviral immunity pathways. We next validated the relevance of LCN2 in a mouse model of influenza infection, wherein LCN2 protected from excessive weight loss and improved survival. LCN2-deficiency was associated with enlarged mediastinal lymph nodes and increased lung T cell numbers, indicating a dysregulated immune response to influenza infection. Depletion of CD8+ T cells equalized weight loss between WT and Lcn2-/- mice, proving that LCN2 protects from excessive disease morbidity by dampening CD8+ T cell responses. In vivo T cell chimerism and in vitro T cell proliferation assays indicated that improved antigen processing by CD103+ DCs, rather than T cell intrinsic effects of LCN2, contribute to the exacerbated T cell response. Considering the antibacterial potential of LCN2 and that commensal microbes can modulate antiviral immune responses, we speculated that LCN2 might cause the observed influenza phenotype via the microbiome. Comparing the lung and gut microbiome of WT and Lcn2-/- mice by 16S rRNA gene sequencing, we observed profound effects of LCN2 on gut microbial composition. Interestingly, antibiotic treatment or co-housing of WT and Lcn2-/- mice prior to influenza infection equalized lung CD8+ T cell counts, suggesting that the LCN2-related effects are mediated by the microbiome. In summary, our results highlight a novel regulatory function of LCN2 in the modulation of antiviral immunity.
Collapse
Affiliation(s)
- Martin L. Watzenboeck
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Barbara Drobits
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Sophie Zahalka
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Anna-Dorothea Gorki
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Asma Farhat
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Federica Quattrone
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Anastasiya Hladik
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Karin Lakovits
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Gabriel M. Richard
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Therese Lederer
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gijs A. Versteeg
- Department of Microbiology, Immunobiology, and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Louis Boon
- Polpharma Biologics, Utrecht, The Netherlands
| | - Philipp Starkl
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Sylvia Knapp
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| |
Collapse
|
25
|
Démoulins T, Ruggli N, Gerber M, Thomann-Harwood LJ, Ebensen T, Schulze K, Guzmán CA, McCullough KC. Self-Amplifying Pestivirus Replicon RNA Encoding Influenza Virus Nucleoprotein and Hemagglutinin Promote Humoral and Cellular Immune Responses in Pigs. Front Immunol 2021; 11:622385. [PMID: 33584723 PMCID: PMC7877248 DOI: 10.3389/fimmu.2020.622385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Self-amplifying replicon RNA (RepRNA) promotes expansion of mRNA templates encoding genes of interest through their replicative nature, thus providing increased antigen payloads. RepRNA derived from the non-cytopathogenic classical swine fever virus (CSFV) targets monocytes and dendritic cells (DCs), potentially promoting prolonged antigen expression in the DCs, contrasting with cytopathogenic RepRNA. We engineered pestivirus RepRNA constructs encoding influenza virus H5N1 (A/chicken/Yamaguchi/7/2004) nucleoprotein (Rep-NP) or hemagglutinin (Rep-HA). The inherent RNase-sensitivity of RepRNA had to be circumvented to ensure efficient delivery to DCs for intracellular release and RepRNA translation; we have reported how only particular synthetic delivery vehicle formulations are appropriate. The question remained concerning RepRNA packaged in virus replicon particles (VRPs); we have now compared an efficient polyethylenimine (PEI)-based formulation (polyplex) with VRP-delivery as well as naked RepRNA co-administered with the potent bis-(3’,5’)-cyclic dimeric adenosine monophosphate (c-di-AMP) adjuvant. All formulations contained a Rep-HA/Rep-NP mix, to assess the breadth of both humoral and cell-mediated defences against the influenza virus antigens. Assessment employed pigs for their close immunological relationship to humans, and as natural hosts for influenza virus. Animals receiving the VRPs, as well as PEI-delivered RepRNA, displayed strong humoral and cellular responses against both HA and NP, but with VRPs proving to be more efficacious. In contrast, naked RepRNA plus c-di-AMP could induce only low-level immune responses, in one out of five pigs. In conclusion, RepRNA encoding different influenza virus antigens are efficacious for inducing both humoral and cellular immune defences in pigs. Comparisons showed that packaging within VRP remains the most efficacious for delivery leading to induction of immune defences; however, this technology necessitates employment of expensive complementing cell cultures, and VRPs do not target human cells. Therefore, choosing the appropriate synthetic delivery vehicle still offers potential for rapid vaccine design, particularly in the context of the current coronavirus pandemic.
Collapse
Affiliation(s)
- Thomas Démoulins
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Markus Gerber
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lisa J Thomann-Harwood
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Kenneth C McCullough
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Shannon JP, Vrba SM, Reynoso GV, Wynne-Jones E, Kamenyeva O, Malo CS, Cherry CR, McManus DT, Hickman HD. Group 1 innate lymphoid-cell-derived interferon-γ maintains anti-viral vigilance in the mucosal epithelium. Immunity 2021; 54:276-290.e5. [PMID: 33434494 DOI: 10.1016/j.immuni.2020.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/10/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
The oropharyngeal mucosa serves as a perpetual pathogen entry point and a critical site for viral replication and spread. Here, we demonstrate that type 1 innate lymphoid cells (ILC1s) were the major immune force providing early protection during acute oral mucosal viral infection. Using intravital microscopy, we show that ILC1s populated and patrolled the uninfected labial mucosa. ILC1s produced interferon-γ (IFN-γ) in the absence of infection, leading to the upregulation of key antiviral genes, which were downregulated in uninfected animals upon genetic ablation of ILC1s or antibody-based neutralization of IFN-γ. Thus, tonic IFN-γ production generates increased oral mucosal viral resistance even before infection. Our results demonstrate barrier-tissue protection through tissue surveillance in the absence of rearranged-antigen receptors and the induction of an antiviral state during homeostasis. This aspect of ILC1 biology raises the possibility that these cells do not share true functional redundancy with other tissue-resident lymphocytes.
Collapse
Affiliation(s)
- John P Shannon
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophia M Vrba
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glennys V Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erica Wynne-Jones
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, NIAID, NIH, Bethesda, MD 20892, USA
| | - Courtney S Malo
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian R Cherry
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel T McManus
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Castleman MJ, Dillon SM, Purba C, Cogswell AC, McCarter M, Barker E, Wilson C. Enteric bacteria induce IFNγ and Granzyme B from human colonic Group 1 Innate Lymphoid Cells. Gut Microbes 2020; 12:1667723. [PMID: 31583949 PMCID: PMC7524156 DOI: 10.1080/19490976.2019.1667723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Group 1 Innate Lymphoid Cells (which include Natural Killer cells and ILC1s) aid in gut anti-bacterial defense through the production of IFNγ, which is critical for mobilizing protective responses against enteric pathogens. When intestinal epithelial barrier integrity is compromised, commensal bacteria are likely to translocate from the gut lumen into the lamina propria. Few studies have addressed the mechanisms by which commensal bacteria impact the function of gut Group 1 ILCs, especially ILC1s. Utilizing an in vitro human colonic lamina propria mononuclear cell (LPMC) model, we evaluated Group 1 ILC cytokine and cytolytic protein production in response to a panel of enteric Gram-positive and Gram-negative commensal and pathogenic bacteria. IFNγ-production by NK cells and ILC1s was significantly increased after LPMC exposure to Gram-negative commensal or pathogenic bacteria, but not after exposure to the Gram-positive bacteria commensals tested. Stimulation of IFNγ production from Group 1 ILCs was not through direct recognition of bacteria by NK cells or ILC1s, but rather required accessory cells within the LPMC population. Myeloid dendritic cells generated IL-12p70, IL-18, and IL-1β upon exposure to enteric bacteria and these cytokines contributed to Group 1 ILC production of IFNγ. Furthermore, Gram-negative commensal or pathogenic bacteria induced significant expression of Granzyme B in NK cells and ILC1s. Overall, these data demonstrate that some enteric commensal bacteria indirectly induce inflammatory cytokine production and cytolytic protein expression from human colonic Group 1 ILCs, a process which could contribute to inflammation in the setting of microbial translocation.
Collapse
Affiliation(s)
- Moriah J. Castleman
- Department of Medicine, Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie M. Dillon
- Department of Medicine, Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christine Purba
- Department of Medicine, Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew C. Cogswell
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Martin McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Cara Wilson
- Department of Medicine, Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,CONTACT Cara Wilson Department of Medicine, Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
28
|
Seo GY, Giles DA, Kronenberg M. The role of innate lymphoid cells in response to microbes at mucosal surfaces. Mucosal Immunol 2020; 13:399-412. [PMID: 32047273 PMCID: PMC7186215 DOI: 10.1038/s41385-020-0265-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 02/04/2023]
Abstract
Innate lymphoid cells (ILCs) are a lymphocyte population that is mostly resident at mucosal surfaces. They help to induce an appropriate immune response to the microbiome at homeostasis. In healthy people, the mucosal immune system works symbiotically with organisms that make up the microbiota. ILCs play a critical role in orchestrating this balance, as they can both influence and in turn be influenced by the microbiome. ILCs also are important regulators of the early response to infections by diverse types of pathogenic microbes at mucosal barriers. Their rapid responses initiate inflammatory programs, production of antimicrobial products and repair processes. This review will focus on the role of ILCs in response to the microbiota and to microbial infections of the lung and intestine.
Collapse
Affiliation(s)
- Goo-Young Seo
- Division of Developmental Immunology, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA, 92037, USA
| | - Daniel A Giles
- Division of Developmental Immunology, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA, 92037, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA, 92037, USA,Division of Biology, University of California San Diego, La Jolla, CA 92037, USA,Correspondence:
| |
Collapse
|
29
|
Li J, Wu J, Zhang M, Zheng Y. Dynamic changes of innate lymphoid cells in acute ST-segment elevation myocardial infarction and its association with clinical outcomes. Sci Rep 2020; 10:5099. [PMID: 32198366 PMCID: PMC7083894 DOI: 10.1038/s41598-020-61903-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/03/2020] [Indexed: 12/28/2022] Open
Abstract
An increasing body of evidence has implicated the innate immune system in the causation of acute ST-segment elevation myocardial infarction (STEMI). Innate lymphoid cells (ILCs) are newly identified members of the lymphoid lineage that are important effectors of innate immunity. The role of ILCs in STEMI has not been explored. We characterized the ILCs present in peripheral blood of 176 STEMI patients and 52 controls. Patients were followed up for up to 23 months. Flow cytometry showed that the proportion of total ILCs and ILC1s were significantly increased compared with controls; contrary to ILC1s, the proportion of ILC2s among total ILCs decreased significantly during the acute phase of STEMI. ILC1s percentage was an independent predictor of major adverse cardiovascular events (MACE). On multivariate Cox regression, the 3rd tertile of ILC1s was associated with a higher MACE rate compared with the 1st tertile (hazard ratio: 2.26; 95% confidence interval 1.56–3.27; P = 0.014). RNA-sequencing (RNA-Seq) revealed increased expressions of interferon-γ, tumor necrosis factor-α, vascular cell adhesion molecule 1 (VCAM1), and matrix metallopeptidase 9. Moreover, as active factors secreted by ILC1s, levels of interleukin (IL)−12 and IL-18 were significantly increased in STEMI patients. Increased ILC1s in patients with STEMI was associated with poor outcomes. Our findings suggest that ILC1s may play an important role in STEMI.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiovascular disease, The First Hospital, Jilin University, Changchun, China
| | - Jing Wu
- Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Mingyou Zhang
- Department of Cardiovascular disease, The First Hospital, Jilin University, Changchun, China.
| | - Yang Zheng
- Department of Cardiovascular disease, The First Hospital, Jilin University, Changchun, China.
| |
Collapse
|
30
|
Benam KH, Denney L, Ho LP. How the Respiratory Epithelium Senses and Reacts to Influenza Virus. Am J Respir Cell Mol Biol 2019; 60:259-268. [PMID: 30372120 DOI: 10.1165/rcmb.2018-0247tr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human lung is constantly exposed to the environment and potential pathogens. As the interface between host and environment, the respiratory epithelium has evolved sophisticated sensing mechanisms as part of its defense against pathogens. In this review, we examine how the respiratory epithelium senses and responds to influenza A virus, the biggest cause of respiratory viral deaths worldwide.
Collapse
Affiliation(s)
- Kambez H Benam
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado.,2 Department of Bioengineering, University of Colorado Denver, Aurora, Colorado; and
| | - Laura Denney
- 3 Translational Lung Immunology Programme, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ling-Pei Ho
- 3 Translational Lung Immunology Programme, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
31
|
Zaghi E, Calvi M, Di Vito C, Mavilio D. Innate Immune Responses in the Outcome of Haploidentical Hematopoietic Stem Cell Transplantation to Cure Hematologic Malignancies. Front Immunol 2019; 10:2794. [PMID: 31849972 PMCID: PMC6892976 DOI: 10.3389/fimmu.2019.02794] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
In the context of allogeneic transplant platforms, human leukocyte antigen (HLA)-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) represents one of the latest and most promising curative strategies for patients affected by high-risk hematologic malignancies. Indeed, this platform ensures a suitable stem cell source immediately available for virtually any patents in need. Moreover, the establishment in recipients of a state of immunologic tolerance toward grafted hematopoietic stem cells (HSCs) remarkably improves the clinical outcome of this transplant procedure in terms of overall and disease free survival. However, the HLA-mismatch between donors and recipients has not been yet fully exploited in order to optimize the Graft vs. Leukemia effect. Furthermore, the efficacy of haplo-HSCT is currently hampered by several life-threatening side effects including the onset of Graft vs. Host Disease (GvHD) and the occurrence of opportunistic viral infections. In this context, the quality and the kinetic of the immune cell reconstitution (IR) certainly play a major role and several experimental efforts have been greatly endorsed to better understand and accelerate the post-transplant recovery of a fully competent immune system in haplo-HSCT. In particular, the IR of innate immune system is receiving a growing interest, as it recovers much earlier than T and B cells and it is able to rapidly exert protective effects against both tumor relapses, GvHD and the onset of life-threatening opportunistic infections. Herein, we review our current knowledge in regard to the kinetic and clinical impact of Natural Killer (NK), γδ and Innate lymphoid cells (ILCs) IRs in both allogeneic and haplo-HSCT. The present paper also provides an overview of those new therapeutic strategies currently being implemented to boost the alloreactivity of the above-mentioned innate immune effectors in order to ameliorate the prognosis of patients affected by hematologic malignancies and undergone transplant procedures.
Collapse
Affiliation(s)
- Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
32
|
Ardain A, Marakalala MJ, Leslie A. Tissue-resident innate immunity in the lung. Immunology 2019; 159:245-256. [PMID: 31670391 DOI: 10.1111/imm.13143] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
The lung is a unique organ that must protect against inhaled pathogens and toxins, without mounting a disproportionate response against harmless particulate matter and without compromising its vital function. Tissue-resident immune cells within the lung provide local immunity and protection from infection but are also responsible for causing disease when dysregulated. There is a growing appreciation of the importance of tissue-resident memory T cells to lung immunity, but non-recirculating, tissue-resident, innate immune cells also exist. These cells provide the first line of defence against pulmonary infection and are essential for co-ordinating the subsequent adaptive response. In this review, we discuss the main lung-resident innate immune subsets and their functions in common pulmonary diseases, such as influenza, bacterial pneumonia, asthma and inflammatory disorders.
Collapse
Affiliation(s)
- Amanda Ardain
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohlopheni J Marakalala
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,Department of Infection and Immunity, University College London, London, UK
| | - Alasdair Leslie
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,Department of Infection and Immunity, University College London, London, UK
| |
Collapse
|
33
|
Batyrova B, Luwaert F, Maravelia P, Miyabayashi Y, Vashist N, Stark JM, Soori SY, Tibbitt CA, Riese P, Coquet JM, Chambers BJ. PD-1 expression affects cytokine production by ILC2 and is influenced by peroxisome proliferator-activated receptor-γ. IMMUNITY INFLAMMATION AND DISEASE 2019; 8:8-23. [PMID: 31742928 PMCID: PMC7016838 DOI: 10.1002/iid3.279] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022]
Abstract
Introduction Innate lymphoid cells (ILCs) can provide early cytokine help against a variety of pathogens in the lungs and gastrointestinal tract. Type 2 ILC (ILC2) are comparable to T helper 2 cells found in the adaptive immune system, which secrete cytokines such as interleukin 5 (IL‐5) and IL‐13 and have been found to play roles in host defense against helminth infections and in allergic responses. Recent studies have identified that programmed cell death protein 1 (PD‐1) and peroxisome proliferator activated receptor‐γ (PPAR‐γ) are highly expressed by ILC2. We examined whether PD‐1 plays a role in ILC2 function and whether there was any connection between PD‐1 and PPAR‐γ Methods To ensure that only innate immune cells were present, ILC2 cells were examined from RAG1−/− and PD‐1−/−xRAG1−/− mice under steady‐state or following inoculation with IL‐33. We also tested ILC2 generated from bone marrow of RAG1−/− and PD‐1−/−xRAG1−/− mice for their production of cytokines. These in vitro‐derived ILC2 were also exposed to agonist and antagonist of PPAR‐γ. Results We found that ILC2 from PD‐1−/−xRAG1−/− mice had reduced frequencies of IL‐5 and IL‐13 producing cells both in vitro upon IL‐33 stimulation and in vivo following intraperitoneal administration of IL‐33 when compared with ILC2 from RAG1−/− mice. However, by adding IL‐2, IL‐25, and thymic stromal lymphopoietin to the in vitro cultures, the frequency of IL‐5 and IL‐13 expressing ILC2 from PD‐1−/−xRAG1−/− mice became similar to the frequency observed for ILC2 from RAG1−/− mice. In addition, PPAR‐γ agonists and antagonists were found to increase and decrease PD‐1 expression on ILC2 respectively. Conclusions These findings illustrate that chronic loss of PD‐1 plays a role in ILC2 function and PD‐1 expression can be modulated by PPAR‐γ.
Collapse
Affiliation(s)
- Banu Batyrova
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Fien Luwaert
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Panagiota Maravelia
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yuria Miyabayashi
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Neha Vashist
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Sara Y Soori
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Christopher A Tibbitt
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Benedict J Chambers
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
34
|
Trittel S, Vashist N, Ebensen T, Chambers BJ, Guzmán CA, Riese P. Invariant NKT Cell-Mediated Modulation of ILC1s as a Tool for Mucosal Immune Intervention. Front Immunol 2019; 10:1849. [PMID: 31440243 PMCID: PMC6692890 DOI: 10.3389/fimmu.2019.01849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/23/2019] [Indexed: 11/18/2022] Open
Abstract
Non-NK group 1 innate lymphoid cells (ILC1s), mainly investigated in the mucosal areas of the intestine, are well-known to contribute to anti-parasitic and anti-bacterial immune responses. Recently, our group revealed that lung ILC1s become activated during murine influenza infection, thereby contributing to viral clearance. In this context, worldwide seasonal influenza infections often result in severe disease outbreaks leading to high morbidity and mortality. Therefore, new immune interventions are urgently needed. In contrast to NK cells, the potential of non-NK ILC1s to become functionally tailored by immune modulators to contribute to the combat against mucosal-transmitted viral pathogens has not yet been addressed. The present study aimed at assessing the potential of ILC1s to become modulated by iNKT cells activated through the CD1d agonist αGalCerMPEG. Our results demonstrate an improved functional responsiveness of murine lung and splenic ILC1s following iNKT cell stimulation by the mucosal route, as demonstrated by enhanced surface expression of TNF-related apoptosis-inducing ligand (TRAIL), CD49a and CD28, and increased secretion of IFNγ. Interestingly, iNKT cell stimulation also induced the expression of the immune checkpoint molecules GITR and CTLA-4, which represent crucial points of action for immune regulation. An in vivo influenza infection model revealed that intranasal activation of ILC1s by αGalCerMPEG contributed to increased viral clearance as shown by reduced viral loads in the lungs. The findings that ILC1s can become modulated by mucosally activated iNKT cells in a beneficial manner emphasize their up to now underestimated potential and renders them to be considered as targets for novel immune interventions.
Collapse
Affiliation(s)
- Stephanie Trittel
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Neha Vashist
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Benedict J Chambers
- Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
35
|
Cytomegalovirus Evades TRAIL-Mediated Innate Lymphoid Cell 1 Defenses. J Virol 2019; 93:JVI.00617-19. [PMID: 31142671 DOI: 10.1128/jvi.00617-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/19/2019] [Indexed: 12/14/2022] Open
Abstract
Cytomegalovirus (CMV) establishes a lifelong infection facilitated, in part, by circumventing immune defenses mediated by tumor necrosis factor (TNF)-family cytokines. An example of this is the mouse CMV (MCMV) m166 protein, which restricts expression of the TNF-related apoptosis-inducing ligand (TRAIL) death receptors, promoting early-phase replication. We show here that replication of an MCMV mutant lacking m166 is also severely attenuated during viral persistence in the salivary glands (SG). Depleting group I innate lymphoid cells (ILCs) or infecting Trail-/- mice completely restored persistent replication of this mutant. Group I ILCs are comprised of two subsets, conventional natural killer cells (cNK) and tissue-resident cells often referred to as innate lymphoid type I cells (ILC1). Using recently identified phenotypic markers to discriminate between these two cell types, their relative expression of TRAIL and gamma interferon (IFN-γ) was assessed during both early and persistent infection. ILC1 were found to be the major TRAIL expressers during both of these infection phases, with cNK expressing very little, indicating that it is ILC1 that curtail replication via TRAIL in the absence of m166-imposed countermeasures. Notably, despite high TRAIL expression by SG-resident ILC1, IFN-γ production by both ILC1 and cNK was minimal at this site of viral persistence. Together these results highlight TRAIL as a key ILC1-utilized effector molecule that can operate in defense against persistent infection at times when other innate control mechanisms may be muted and highlight the importance for the evolution of virus-employed countermeasures.IMPORTANCE Cytomegalovirus (a betaherpesvirus) is a master at manipulating immune responses to promote its lifelong persistence, a result of millions of years of coevolution with its host. Using a one-of-a-kind MCMV mutant unable to restrict expression of the TNF-related apoptosis-inducing ligand death receptors (TRAIL-DR), we show that TRAIL-DR signaling significantly restricts both early and persistent viral replication. Our results also reveal that these defenses are employed by TRAIL-expressing innate lymphoid type I cells (ILC1) but not conventional NK cells. Overall, our results are significant because they show the key importance of viral counterstrategies specifically neutralizing TRAIL effector functions mediated by a specific, tissue-resident subset of group I ILCs.
Collapse
|
36
|
Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol 2019; 19:599-613. [PMID: 31350531 PMCID: PMC6982279 DOI: 10.1038/s41577-019-0194-8] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
Innate lymphoid cells (ILCs) are enriched at barrier surfaces of the mammalian body where they rapidly respond to host, microbial or environmental stimuli to promote immunity or tissue homeostasis. Furthermore, ILCs are dysregulated in multiple human diseases. Over the past decade, substantial advances have been made in identifying the heterogeneity and functional diversity of ILCs, which have revealed striking similarities to T cell subsets. However, emerging evidence indicates that ILCs also have a complex role in directly influencing the adaptive immune response in the context of development, homeostasis, infection or inflammation. In turn, adaptive immunity reciprocally regulates ILCs, which indicates that these interactions are a crucial determinant of immune responses within tissues. Here, we summarize our current understanding of functional interactions between ILCs and the adaptive immune system, discuss limitations and future areas of investigation, and consider the potential for these interactions to be therapeutically harnessed to benefit human health.
Collapse
|
37
|
Borger JG, Lau M, Hibbs ML. The Influence of Innate Lymphoid Cells and Unconventional T Cells in Chronic Inflammatory Lung Disease. Front Immunol 2019; 10:1597. [PMID: 31354734 PMCID: PMC6637857 DOI: 10.3389/fimmu.2019.01597] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
The lungs are continuously subjected to environmental insults making them susceptible to infection and injury. They are protected by the respiratory epithelium, which not only serves as a physical barrier but also a reactive one that can release cytokines, chemokines, and other defense proteins in response to danger signals, and can undergo conversion to protective mucus-producing goblet cells. The lungs are also guarded by a complex network of highly specialized immune cells and their mediators to support tissue homeostasis and resolve integrity deviation. This review focuses on specialized innate-like lymphocytes present in the lung that act as key sensors of lung insults and direct the pulmonary immune response. Included amongst these tissue-resident lymphocytes are innate lymphoid cells (ILCs), which are classified into five distinct subsets (natural killer, ILC1, ILC2, ILC3, lymphoid tissue-inducer cells), and unconventional T cells including natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, and γδ-T cells. While ILCs and unconventional T cells together comprise only a small proportion of the total immune cells in the lung, they have been found to promote lung homeostasis and are emerging as contributors to a variety of chronic lung diseases including pulmonary fibrosis, allergic airway inflammation, and chronic obstructive pulmonary disease (COPD). A particularly intriguing trait of ILCs that has recently emerged is their plasticity and ability to alter their gene expression profiles and adapt their function in response to environmental cues. The malleable nature of these cells may aid in rapid responses to pathogen but may also have downstream pathological consequences. The role of ILC2s in Th2 allergic airway responses is becoming apparent but the contribution of other ILCs and unconventional T cells during chronic lung inflammation is poorly described. This review presents an overview of our current understanding of the involvement of ILCs and unconventional T cells in chronic pulmonary diseases.
Collapse
Affiliation(s)
- Jessica G Borger
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Maverick Lau
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, Lung Health Research Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Abstract
The lungs, a special site that is frequently challenged by tumors, pathogens and other environmental insults, are populated by large numbers of innate immune cells. Among these, natural killer (NK) cells are gaining increasing attention. Recent studies have revealed that NK cells are heterogeneous populations consisting of distinct subpopulations with diverse characteristics, some of which are determined by their local tissue microenvironment. Most current information about NK cells comes from studies of NK cells from the peripheral blood of humans and NK cells from the spleen and bone marrow of mice. However, the functions and phenotypes of lung NK cells differ from those of NK cells in other tissues. Here, we provide an overview of human and mouse lung NK cells in the context of homeostasis, pathogenic infections, asthma, chronic obstructive pulmonary disease (COPD) and lung cancer, mainly focusing on their phenotype, function, frequency, and their potential role in pathogenesis or immune defense. A comprehensive understanding of the biology of NK cells in the lungs will aid the development of NK cell-based immunotherapies for the treatment of lung diseases.
Collapse
Affiliation(s)
- Jingjing Cong
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institue of Immunology, University of Science and Technology of China, Hefei, China
- Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institue of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
39
|
Stehle C, Hernández DC, Romagnani C. Innate lymphoid cells in lung infection and immunity. Immunol Rev 2019; 286:102-119. [PMID: 30294964 DOI: 10.1111/imr.12712] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022]
Abstract
In recent years, innate lymphoid cells (ILCs) have emerged as key mediators of protection and repair of mucosal surfaces during infection. The lung, a dynamic mucosal tissue that is exposed to a plethora of microbes, is a playground for respiratory infection-causing pathogens which are not only a major cause of fatalities worldwide, but are also associated with comorbidities and decreased quality of life. The lung provides a rich microenvironment to study ILCs in the context of innate protection mechanisms within the airways, unraveling their distinct functions not only in health but also in disease. In this review, we discuss how pulmonary ILCs play a role in protection against viral, parasitic, bacterial, and fungal challenge, along with the mechanisms underlying this ILC-mediated immunity.
Collapse
Affiliation(s)
- Christina Stehle
- Innate Immunity, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | | | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum, Berlin, Germany.,Medical Department I, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
40
|
Hildreth AD, O'Sullivan TE. Tissue-Resident Innate and Innate-Like Lymphocyte Responses to Viral Infection. Viruses 2019; 11:v11030272. [PMID: 30893756 PMCID: PMC6466361 DOI: 10.3390/v11030272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Infection is restrained by the concerted activation of tissue-resident and circulating immune cells. Recent discoveries have demonstrated that tissue-resident lymphocyte subsets, comprised of innate lymphoid cells (ILCs) and unconventional T cells, have vital roles in the initiation of primary antiviral responses. Via direct and indirect mechanisms, ILCs and unconventional T cell subsets play a critical role in the ability of the immune system to mount an effective antiviral response through potent early cytokine production. In this review, we will summarize the current knowledge of tissue-resident lymphocytes during initial viral infection and evaluate their redundant or nonredundant contributions to host protection or virus-induced pathology.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| |
Collapse
|
41
|
Ali A, Gyurova IE, Waggoner SN. Mutually assured destruction: the cold war between viruses and natural killer cells. Curr Opin Virol 2019; 34:130-139. [PMID: 30877885 DOI: 10.1016/j.coviro.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells play a multitude of antiviral roles that are significant enough to provoke viral counterefforts to subvert their activity. As innate lymphocytes, NK cells provide a rapid source of pro-inflammatory antiviral cytokines and bring to bear cytolytic activities that are collectively meant to constrain viral replication and dissemination. Additionally, NK cells participate in adaptive immunity both by shaping virus-specific T-cell responses and by developing adaptive features themselves, including enhanced antibody-dependent effector functions. The relative importance of different functional activities of NK cells are poorly understood, thereby obfuscating clinical use of these cells. Here we focus on opposing efforts of NK cells and viruses to gain tactical superiority during infection.
Collapse
Affiliation(s)
- Ayad Ali
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Medical Scientist Training Program, University of Cincinnati College of Medicine, United States; Immunology Graduate Training Program, University of Cincinnati College of Medicine, United States
| | - Ivayla E Gyurova
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, United States
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Medical Scientist Training Program, University of Cincinnati College of Medicine, United States; Immunology Graduate Training Program, University of Cincinnati College of Medicine, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, United States; Department of Pediatrics, University of Cincinnati College of Medicine, United States.
| |
Collapse
|
42
|
Ng SS, Engwerda CR. Innate Lymphocytes and Malaria - Players or Spectators? Trends Parasitol 2018; 35:154-162. [PMID: 30579700 DOI: 10.1016/j.pt.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
Malaria remains an important global disease. Despite significant advances over the past decade in reducing disease morbidity and mortality, new measures are needed if malaria is to be eliminated. Significant advances in our understanding about host immune responses during malaria have been made, opening up opportunities to generate long-lasting antiparasitic immunity through vaccination or immune therapy. However, there is still much debate over which immune cell populations contribute to immunity to malaria, including innate lymphocytes that comprise recently identified innate lymphoid cells (ILCs) and better known innate-like T cell subsets. Here, we review research on these immune cell subsets and discuss whether they have any important roles in immunity to malaria or if they are redundant.
Collapse
Affiliation(s)
- Susanna S Ng
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, QLD, Australia; School of Environment and Science, Griffith University, QLD, Australia
| | - Christian R Engwerda
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, QLD, Australia.
| |
Collapse
|
43
|
Riccardi C, Ronchetti S, Nocentini G. Glucocorticoid-induced TNFR-related gene (GITR) as a therapeutic target for immunotherapy. Expert Opin Ther Targets 2018; 22:783-797. [DOI: 10.1080/14728222.2018.1512588] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Carlo Riccardi
- Department of Medicine, University of Perugia, Perugia, Italy
| | | | | |
Collapse
|