1
|
Barik P, Mondal S. Immunomodulatory effects of metal nanoparticles: current trends and future prospects. NANOSCALE 2025; 17:10433-10461. [PMID: 40202489 DOI: 10.1039/d5nr01030f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The advent of nanotechnology has steered into a new era of medical advancements, with metal nanoparticles (MNPs) emerging as potent agents for precise regulation of the immune system. This review provides a comprehensive overview of the immunomodulatory roles of MNPs, including gold, silver, and metal oxide nanoparticles, in regulating innate and adaptive immunity. Additionally, we discuss the immunological effects of metal ions and metal complexes, offering a comparative analysis with nanoparticulate systems. We analyse cutting-edge strategies utilising MNPs to optimise vaccine efficacy, achieve targeted delivery to immune cells, and orchestrate inflammatory responses. Additionally, we discuss the therapeutic potential of MNPs in combating autoimmune diseases, cancers, and infectious agents, which is evaluated within the framework of precision medicine. Furthermore, we critically assess challenges such as biocompatibility, potential toxicity, and regulatory hurdles. Finally, we propose future directions for integrating MNPs with advanced delivery systems and other nanomaterials to propel the frontiers of immunotherapy. This review aims to provide a foundational understanding of MNP-mediated immunomodulation, inspiring further research and development in this burgeoning field.
Collapse
Affiliation(s)
- Puspendu Barik
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
- Department of Physics, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Samiran Mondal
- Department of Chemistry, Rammohan College (University of Calcutta), 102/1-Raja Rammohan Sarani, Kolkata 700009, West Bengal, India.
| |
Collapse
|
2
|
Wallis NJ, McClellan A, Mörseburg A, Kentistou KA, Jamaluddin A, Dowsett GKC, Schofield E, Morros-Nuevo A, Saeed S, Lam BYH, Sumanasekera NT, Chan J, Kumar SS, Zhang RM, Wainwright JF, Dittmann M, Lakatos G, Rainbow K, Withers D, Bounds R, Ma M, German AJ, Ladlow J, Sargan D, Froguel P, Farooqi IS, Ong KK, Yeo GSH, Tadross JA, Perry JRB, Gorvin CM, Raffan E. Canine genome-wide association study identifies DENND1B as an obesity gene in dogs and humans. Science 2025; 387:eads2145. [PMID: 40048553 DOI: 10.1126/science.ads2145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/10/2025] [Indexed: 03/29/2025]
Abstract
Obesity is a heritable disease, but its genetic basis is incompletely understood. Canine population history facilitates trait mapping. We performed a canine genome-wide association study for body condition score-a measure of obesity-in 241 Labrador retrievers. Using a cross-species approach, we showed that canine obesity genes are also associated with rare and common forms of obesity in humans. The lead canine association was within the gene DENN domain containing 1B (DENND1B). Each copy of the alternate allele was associated with ~7.5% greater body fat. We demonstrate a role for this gene in regulating signaling and trafficking of melanocortin 4 receptor, a critical controller of energy homeostasis. Thus, canine genetics identified obesity genes and mechanisms relevant to both dogs and humans.
Collapse
Affiliation(s)
- Natalie J Wallis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alyce McClellan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alexander Mörseburg
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Aqfan Jamaluddin
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Georgina K C Dowsett
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Ellen Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Anna Morros-Nuevo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sadia Saeed
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Brian Y H Lam
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Natasha T Sumanasekera
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Justine Chan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sambhavi S Kumar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rey M Zhang
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jodie F Wainwright
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Marie Dittmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Gabriella Lakatos
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Kara Rainbow
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - David Withers
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Rebecca Bounds
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, Cambridge, UK
| | - Marcella Ma
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Alexander J German
- Institute of Life Course and Medical Sciences and School of Veterinary Science, University of Liverpool, Neston, UK
| | - Jane Ladlow
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David Sargan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Philippe Froguel
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - I Sadaf Farooqi
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Giles S H Yeo
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - John A Tadross
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Histopathology and Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Eleanor Raffan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Calhoun JD, Dawood M, Rowlands CF, Fayer S, Radford EJ, McEwen AE, Turnbull C, Spurdle AB, Starita LM, Jagannathan S. Combining multiplexed functional data to improve variant classification. ARXIV 2025:arXiv:2503.18810v1. [PMID: 40196145 PMCID: PMC11975307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
With the surge in the number of variants of uncertain significance (VUS) reported in ClinVar in recent years, there is an imperative to resolve VUS at scale. Multiplexed assays of variant effect (MAVEs), which allow the functional consequence of 100s to 1000s of genetic variants to be measured in a single experiment, are emerging as a source of evidence which can be used for clinical gene variant classification. Increasingly, there are multiple published MAVEs for the same gene, sometimes measuring different aspects of variant impact. Where multiple functional consequences may need to be considered to get a more complete understanding of variant effects for a given gene, combining data from multiple MAVEs may lead to the assignment of increased evidence strength which could impact variant classifications. Here, we provide guidance for combining such multiplexed functional data, incorporating a stepwise process from data curation and collection to model generation and validation. We illustrate the potential of this approach by showing the integration of multiplexed functional data from four MAVEs for the gene TP53. By following these steps, researchers can maximize the value of MAVEs, strengthen the functional evidence for clinical variant classification, reclassify more VUS, and potentially uncover novel mechanisms of pathogenicity for clinically relevant genes.
Collapse
Affiliation(s)
- Jeffrey D. Calhoun
- Ken and Ruth Davee Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Moez Dawood
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Charlie F. Rowlands
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Shawn Fayer
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth J. Radford
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Pediatrics, University of Cambridge, Level 8, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Abbye E. McEwen
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Amanda B. Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4006, Australia
| | - Lea M. Starita
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Carter NM, Hankore WD, Yang YK, Yang C, Hutcherson SM, Fales W, Ghosh A, Mongia P, Mackinnon S, Brennan A, Leone RD, Pomerantz JL. QRICH1 mediates an intracellular checkpoint for CD8 + T cell activation via the CARD11 signalosome. Sci Immunol 2025; 10:eadn8715. [PMID: 40085689 DOI: 10.1126/sciimmunol.adn8715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Antigen receptor signaling pathways that control lymphocyte activation depend on signaling hubs and negative regulatory proteins to fine-tune signaling outputs to ensure host defense and avoid pathogenic responses. Caspase recruitment domain-containing protein 11 (CARD11) is a critical signaling scaffold that translates T cell receptor (TCR) triggering into the activation of nuclear factor κB (NF-κB), c-Jun N-terminal kinase (JNK), mechanistic target of rapamycin (mTOR), and Akt. Here, we identify glutamine-rich protein 1 (QRICH1) as a regulator of CARD11 signaling that mediates an intracellular checkpoint for CD8+ T cell activation. QRICH1 associates with CARD11 after TCR engagement and negatively regulates CARD11 signaling to NF-κB. QRICH1 binding to CARD11 is controlled by an autoregulatory intramolecular interaction between QRICH1 domains of previously uncharacterized function. QRICH1 controls the antigen-induced activation, proliferation, and effector status of CD8+ T cells by regulating numerous genes critical for CD8+ T cell function. Our results define a component of antigen receptor signaling circuitry that fine-tunes effector output in response to antigen recognition.
Collapse
Affiliation(s)
- Nicole M Carter
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wihib D Hankore
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yong-Kang Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chao Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wyatt Fales
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anushka Ghosh
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piyusha Mongia
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophie Mackinnon
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Brennan
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Nishinosono T, Muramatsu H, Wakamatsu M, Yamashita D, Fukasawa T, Shirakawa Y, Sajiki D, Maemura R, Tsumura Y, Yamamori A, Narita K, Kataoka S, Narita A, Nishio N, Miyajima Y, Takahashi Y. Successful Treatment with Sirolimus of a Patient with a Novel CARD11 Germline Mutation in B-Cell Expansion with Nuclear Factor Kappa B and T-Cell Anergy: Case Report and Literature Review. J Clin Immunol 2025; 45:78. [PMID: 39998705 PMCID: PMC11861002 DOI: 10.1007/s10875-025-01872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE B-cell expansion with nuclear factor kappa B and T-cell anergy (BENTA) is an inborn error of immunity characterized by congenital polyclonal B-cell lymphocyte expansion. In this report, we present a case of a girl diagnosed with BENTA carrying a novel CARD11 germline mutation, aiming to clarify the clinical presentation of BENTA by conducting a literature review. METHODS Genetic analysis, including whole-exome sequencing, was performed using genomic DNA extracted from the patient's peripheral blood, oral mucosa, and fingernails. Additionally, a comprehensive literature review of cases with BENTA was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS A p.Leu251Pro germline variant in the CARD11 gene was identified in an 18-month-old girl with a genetic diagnosis of BENTA. She required adenoidectomy and tonsillectomy due to airway obstruction causing wheezing. Her symptoms improved with prednisolone and sirolimus. The literature review we conducted identified a total of 34 cases of BENTA. Among these cases, 15 were either asymptomatic or showed improvement without requiring any specific treatment. However, all six reported deaths were diagnosed before the age of 3 years, with two attributed to refractory hemophagocytic syndrome and four caused by opportunistic infections. CONCLUSION We present a case of BENTA with life-threatening respiratory symptoms caused by a novel CARD11 germline mutation. The patient showed a positive response to immunosuppressive therapy, including sirolimus. While BENTA is typically regarded as a benign disorder, a literature review revealed that infants with BENTA are at high risk of severe outcomes and require therapeutic intervention.
Collapse
Affiliation(s)
- Tsubasa Nishinosono
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan.
| | - Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Daiki Yamashita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | | | | | - Daichi Sajiki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Ryo Maemura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Yusuke Tsumura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Ayako Yamamori
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Kotaro Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Shinsuke Kataoka
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Nobuhiro Nishio
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Yuji Miyajima
- Department of Pediatrics, Anjo Kosei Hospital, Anjo, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan.
| |
Collapse
|
6
|
Chuleerarux N, Makkoukdji N, Satnarine T, Kuhn JE, Nopsopon T, Valyasevi P, Schmidt FB, Kleiner G, Gans M. Inborn Errors of Immunity Presenting with Early-Onset Severe Atopy. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:62. [PMID: 39859044 PMCID: PMC11767231 DOI: 10.3390/medicina61010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025]
Abstract
Inborn errors of immunity (IEIs), also known as primary immunodeficiencies, are a group of genetic disorders affecting the development and function of the immune system. While IEIs traditionally present with recurrent infections, an increasing number of cases manifest with early-onset severe atopy, including atopic dermatitis, food allergies, asthma, and allergic rhinitis-features that are often overlooked. This can lead to delayed diagnosis and treatment, which is crucial for IEI patients due to the risk of severe infections. We conducted a literature search and reviewed all IEIs that can present with early-onset severe atopy. The hallmark features of these disorders often include early-onset, persistent, and severe atopic dermatitis, food allergies, and recurrent episodes of asthma, which may be refractory to treatments. Additionally, we discuss the importance of recognizing such severe atopy as a potential indicator of an underlying immune deficiency, particularly when accompanied by unusual infections, growth failure, or autoimmunity. This review aims to raise awareness of this association and emphasize the need for early diagnosis and genetic testing in patients with atypical or treatment-resistant allergic diseases, allowing for more timely diagnosis of underlying immunodeficiencies and appropriate treatments.
Collapse
Affiliation(s)
- Nipat Chuleerarux
- Department of Internal Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nadia Makkoukdji
- Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Travis Satnarine
- Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jessica Elise Kuhn
- Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tanawin Nopsopon
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Peerada Valyasevi
- Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Fernanda Bellodi Schmidt
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gary Kleiner
- Division of Allergy/Immunology, Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Melissa Gans
- Division of Allergy/Immunology, Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Lee HS, Kim BK, Lee SY, Kwon H, Park HW. Essential role of Card11 in airway hyperresponsiveness in high-fat diet-induced obese mice. Exp Mol Med 2024; 56:2747-2754. [PMID: 39672814 DOI: 10.1038/s12276-024-01367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 12/15/2024] Open
Abstract
A high-fat diet (HFD) can induce airway hyperresponsiveness (AHR) in obese mice, independent of allergic sensitization. This study aimed to identify the key molecules related to AHR in HFD-induced obese mice. In a cluster analysis of time series gene expression in the adipose and lung tissues of HFD-induced obese mice, we identified the Caspase Recruitment Domain Family Member 11 (Card11) gene as an essential molecule. We measured CARD11 expression in peripheral blood mononuclear cells (PBMCs) from obese individuals with asthma and performed Card11 signal inhibition in HFD-induced obese mice via Card11 siRNA. Card11 expression was significantly increased in M1 macrophages (IL-1β+CD11c+CD206- in CD11b+) in adipose tissue and in ILC3s (RORγt+ in IL7R+ of Lin-) in lung tissue from HFD-induced obese mice. In addition, CARD11+ populations among ILC3s and LPS-stimulated IL-1β+CD16+ monocytes from the PBMCs of obese individuals with asthma were significantly greater than those from obese controls or nonobese individuals with asthma. AHR in HFD-induced obese mice disappeared when we inhibited the Card11 signaling pathway by administering Card11 siRNA during the first or last seven weeks of the 13-week HFD feeding. Finally, we confirmed that Card11 siRNA decreased the number of M1 macrophages in adipose tissue and the number of ILC3s in lung tissue in vitro. Card11 significantly contributes to the development of AHR in HFD-induced obese mice by affecting immune cells in both adipose and lung tissues. The middle stage of HFD feeding seemed to be critical for these processes.
Collapse
Affiliation(s)
- Hyun-Seung Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Keun Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Suh-Young Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyuktae Kwon
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Heung-Woo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Zhao P, Meng Q, Wu Y, Zhang L, Zhang X, Tan L, Ding Y, Lu X, He X. A new-disease-causing dominant-negative variant in CARD11 gene in a Chinese case with recurrent fever. Sci Rep 2024; 14:24247. [PMID: 39414811 PMCID: PMC11484780 DOI: 10.1038/s41598-024-71673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/29/2024] [Indexed: 10/18/2024] Open
Abstract
Immunodeficiency 11B with atopic dermatitis (IMD11B, OMIM:617638) is rare primary immunodeficiency disease caused by germline dominant negative (DN) mutations in the CARD11 gene. Affected patients present with immune dysfunction, recurrent infections and atopic dermatitis. In this study, we sought to identify and characterize the genetic variant in one patient with periodic fever, recurrent infections, and eczema. Trio whole-exome sequencing (WES) was employed in this patient and her parents, and Sanger sequencing validated the potential pathogenic variant. In vitro functional study was performed to evaluate the pathogenicity of genetic variant identified. A very rare missense mutation (c.2324C > T, p.S775L) in CARD11 gene (NM_032415) was identified by WES in the patient but not her parents. Luciferase reporter assays and co-immunoprecipitation demonstrated mutation exerts a dominant-interfering effect on wild-type CARD11, inhibiting the activity of NF-κB. RNA sequencing analysis also confirmed that mutant CARD11 inhibited down-stream transcriptional activity of NF-κB. A review of literature doesn't found significant genotype-phenotype correlation. We identified a vary rare DN CARD11 mutation, expanding the genetic and phenotypic spectrum of CARD11.
Collapse
Affiliation(s)
- Peiwei Zhao
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qingjie Meng
- Department of Clinical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yali Wu
- Department of Rheumatology and Immunology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Lei Zhang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiankai Zhang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Li Tan
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yan Ding
- Department of Rheumatology and Immunology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - XiaoXia Lu
- Department of Respiratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Xuelian He
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
9
|
Wang X, Ma S, Twardowski P, Lau C, Chan YS, Wong K, Xiao S, Wang J, Wu X, Frankel P, Wilson TG, Synold TW, Presant C, Dorff T, Yu J, Sadava D, Chen S. Reduction of myeloid-derived suppressor cells in prostate cancer murine models and patients following white button mushroom treatment. Clin Transl Med 2024; 14:e70048. [PMID: 39390760 PMCID: PMC11467013 DOI: 10.1002/ctm2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND In a previously reported Phase I trial, we observed therapy-associated declines in circulating myeloid-derived suppressor cells (MDSCs) with the administration of white button mushroom (WBM) tablets in prostate cancer (PCa) patients. These observations led us to hypothesise that WBM could mitigate PCa progression by suppressing MDSCs. METHODS We performed bidirectional translational research to examine the immunomodulatory effects of WBM consumption in both syngeneic murine PCa models and patients with PCa participating in an ongoing randomised Phase II trial (NCT04519879). RESULTS In murine models, WBM treatment significantly suppressed tumour growth with a reduction in both the number and function of MDSCs, which in turn promoted antitumour immune responses mediated by T cells and natural killer (NK) cells. In patients, after consumption of WBM tablets for 3 months, we observed a decline in circulating polymorphonuclear MDSCs (PMN-MDSCs), along with an increase in cytotoxic CD8+ T and NK cells. Furthermore, single immune cell profiling of peripheral blood from WBM-treated patients showed suppressed STAT3/IRF1 and TGFβ signalling in circulating PMN-MDSCs. Subclusters of PMN-MDSCs presented transcriptional profiles associated with responsiveness to fungi, neutrophil chemotaxis, leukocyte aggregation, and regulation of inflammatory response. Finally, in mouse models of PCa, we found that WBM consumption enhanced the anticancer activity of anti-PD-1 antibodies, indicating that WBM may be used as an adjuvant therapy with immune checkpoint inhibitors. CONCLUSION Our results from PCa murine models and patients provide mechanistic insights into the immunomodulatory effects of WBM and provide a scientific foundation for WBM as a nutraceutical intervention to delay or prevent PCa progression. HIGHLIGHTS White button mushroom (WBM) treatment resulted in a reduction in pro-tumoural MDSCs, notably polymorphonuclear MDSCs (PMN-MDSCs), along with activation of anti-tumoural T and NK cells. Human single immune cell gene expression profiling shed light on the molecular alterations induced by WBM, specifically on PMN-MDSCs. A proof-of-concept study combining WBM with PD-1 blockade in murine models revealed an additive effect on tumour regression and survival outcomes, highlighting the clinical relevance of WBM in cancer management.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Cancer Biology & Molecular MedicineBeckman Research Institute, City of HopeDuarteCaliforniaUSA
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell TransplantationCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Przemyslaw Twardowski
- Department of Urology and Urologic OncologyProvidence Saint John's Cancer InstituteSanta MonicaCaliforniaUSA
| | - Clayton Lau
- Department of SurgeryCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Yin S. Chan
- Department of Cancer Biology & Molecular MedicineBeckman Research Institute, City of HopeDuarteCaliforniaUSA
| | - Kelly Wong
- Department of Cancer Biology & Molecular MedicineBeckman Research Institute, City of HopeDuarteCaliforniaUSA
| | - Sai Xiao
- Department of Hematology and Hematopoietic Cell TransplantationCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jinhui Wang
- Integrative Genomics CoreBeckman Research Institute, City of HopeMonroviaCaliforniaUSA
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of HopeDuarteCaliforniaUSA
| | - Paul Frankel
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of HopeDuarteCaliforniaUSA
| | - Timothy G. Wilson
- Department of Urology and Urologic OncologyProvidence Saint John's Cancer InstituteSanta MonicaCaliforniaUSA
| | - Timothy W Synold
- Department of Medical Oncology & Therapeutics ResearchCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Cary Presant
- Department of Medical Oncology & Therapeutics ResearchCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Tanya Dorff
- Department of Medical Oncology & Therapeutics ResearchCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell TransplantationCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - David Sadava
- Department of Cancer Biology & Molecular MedicineBeckman Research Institute, City of HopeDuarteCaliforniaUSA
| | - Shiuan Chen
- Department of Cancer Biology & Molecular MedicineBeckman Research Institute, City of HopeDuarteCaliforniaUSA
| |
Collapse
|
10
|
Alhosani F, Ilce BY, Alhamidi RS, Bhamidimarri PM, Hamad AM, Alkhayyal N, Künstner A, Khandanpour C, Busch H, Al-Ramadi B, Sayed K, AlFazari A, Bendardaf R, Hamoudi R. Transcriptome Profiling Associated with CARD11 Overexpression in Colorectal Cancer Implicates a Potential Role for Tumor Immune Microenvironment and Cancer Pathways Modulation via NF-κB. Int J Mol Sci 2024; 25:10367. [PMID: 39408697 PMCID: PMC11476988 DOI: 10.3390/ijms251910367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
The immune system plays a critical role in inflammation by initiating responses to infections or tissue damage. The nuclear factor-κB (NF-κB) pathway plays a key role in inflammation and innate immunity, as well as other cellular activities. Dysregulation of this well-choreographed pathway has been implicated in various diseases, including cancer. CARD11 is a key molecule in the BCL10-MALT1 complex, which is involved in transducing the signal downstream of the NF-κB pathway. This study aims to elucidate how CARD11 overexpression exacerbates the prognosis of colorectal cancer (CRC). To identify the cellular pathways influenced by CARD11, transcriptomic analysis in both CRC cell lines and patients was carried out on CARD11- overexpressed HCT-116 and HT-29 CRC cell lines alongside empty vector-transfected cell lines. Furthermore, a comparison of transcriptomic data from adenoma and carcinoma CRC patients with low- (CARD11-) and high-(CARD11+) CARD11 expression was carried out. Whole transcriptomics and bioinformatics analysis results indicate that CARD11 appears to play a key role in CRC progression. Absolute GSEA (absGSEA) on HCT-116 transcriptomics data revealed that CARD11 overexpression promotes cell growth and tissue remodeling and enhances immune response. Key genes co-expressed with CARD11, such as EP300, KDM5A, HIF1A, NFKBIZ, and DUSP1, were identified as mediators of these processes. In the HT-29 cell line, CARD11 overexpression activated pathways involved in chemotaxis and extracellular matrix (ECM) organization, marked by IL1RN, MDK, SPP1, and chemokines like CXCL1, CXCL3, and CCL22, which were shown to contribute to the more invasive stage of CRC. In patient samples, adenoma patients exhibited increased expression of genes associated with the tumor immune microenvironment, such as IL6ST, collagen family members, and CRC transition markers, such as GLI3 and PIEZO2, in CARD11+ adenoma patients. Carcinoma patients showed a dramatic increase in the expression of MAPK8IP2 in CARD11+ carcinoma patients alongside other cancer-related genes, including EMB, EPHB6, and CPEB4.
Collapse
Affiliation(s)
- Faisal Alhosani
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
- Forensic Laboratory Department, Sharjah Police Headquarters, Sharjah P.O. Box 1965, United Arab Emirates
| | - Burcu Yener Ilce
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Reem Sami Alhamidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Poorna Manasa Bhamidimarri
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Alaa Mohamed Hamad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Noura Alkhayyal
- Oncology Unit, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates; (N.A.); (R.B.)
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
| | - Cyrus Khandanpour
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany;
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Kadria Sayed
- Department of Pathology and Laboratory Medicine, American Hospital Dubai, Dubai P.O. Box 3050, United Arab Emirates;
| | - Ali AlFazari
- Mediclinic Welcare Hospital, Dubai P.O. Box 31500, United Arab Emirates;
| | - Riyad Bendardaf
- Oncology Unit, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates; (N.A.); (R.B.)
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Center of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
11
|
O'Sullivan PA, Aidarova A, Afonina IS, Manils J, Thurston TLM, Instrell R, Howell M, Boeing S, Ranawana S, Herpels MB, Chetian R, Bassa M, Flynn H, Frith D, Snijders AP, Howes A, Beyaert R, Bowcock AM, Ley SC. CARD14 signalosome formation is associated with its endosomal relocation and mTORC1-induced keratinocyte proliferation. Biochem J 2024; 481:1143-1171. [PMID: 39145956 PMCID: PMC11555713 DOI: 10.1042/bcj20240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Rare mutations in CARD14 promote psoriasis by inducing CARD14-BCL10-MALT1 complexes that activate NF-κB and MAP kinases. Here, the downstream signalling mechanism of the highly penetrant CARD14E138A alteration is described. In addition to BCL10 and MALT1, CARD14E138A associated with several proteins important in innate immune signalling. Interactions with M1-specific ubiquitin E3 ligase HOIP, and K63-specific ubiquitin E3 ligase TRAF6 promoted BCL10 ubiquitination and were essential for NF-κB and MAP kinase activation. In contrast, the ubiquitin binding proteins A20 and ABIN1, both genetically associated with psoriasis development, negatively regulated signalling by inducing CARD14E138A turnover. CARD14E138A localized to early endosomes and was associated with the AP2 adaptor complex. AP2 function was required for CARD14E138A activation of mTOR complex 1 (mTORC1), which stimulated keratinocyte metabolism, but not for NF-κB nor MAP kinase activation. Furthermore, rapamycin ameliorated CARD14E138A-induced keratinocyte proliferation and epidermal acanthosis in mice, suggesting that blocking mTORC1 may be therapeutically beneficial in CARD14-dependent psoriasis.
Collapse
Affiliation(s)
- Paul A. O'Sullivan
- The Francis Crick Institute, London NW1 1AT, U.K
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Aigerim Aidarova
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Inna S. Afonina
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joan Manils
- The Francis Crick Institute, London NW1 1AT, U.K
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Teresa L. M. Thurston
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, U.K
| | | | | | | | - Sashini Ranawana
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Melanie B. Herpels
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Riwia Chetian
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Matilda Bassa
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Helen Flynn
- The Francis Crick Institute, London NW1 1AT, U.K
| | - David Frith
- The Francis Crick Institute, London NW1 1AT, U.K
| | | | - Ashleigh Howes
- National Heart and Lung Institute, Imperial College London, London W12 0NN, U.K
| | - Rudi Beyaert
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anne M. Bowcock
- Department of Oncological Science, Dermatology, and Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Steven C. Ley
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| |
Collapse
|
12
|
Patel JP, Patel DP, Amin TH, Dave RK, Hardaswani D, Saiyed F, Goswami RJ. Castleman Disease: A Rare Lymphoproliferative Disorder With Diverse Clinical Presentation, Diagnosis, and Treatment Approach. Cureus 2024; 16:e69149. [PMID: 39398672 PMCID: PMC11467764 DOI: 10.7759/cureus.69149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Castleman disease (CD) includes rare and intricate lymphoproliferative disorders characterized by the abnormal growth of lymph nodes and immune system disturbances. It primarily presents in two forms: unicentric Castleman disease (UCD), which affects a single lymph node area, and multicentric Castleman disease (MCD), which involves multiple lymph nodes and systemic manifestations. The disease's underlying mechanisms are often linked to immune system irregularities, especially involving interleukin-6 (IL-6). The condition was first documented by Dr. Benjamin Castleman in 1954, laying the groundwork for understanding this complex disorder. MCD can be further divided into idiopathic MCD (iMCD), which includes thrombocytopenia, ascites, fibrosis, renal impairment, and organ enlargement (TAFRO) syndrome, and human herpesvirus-8 (HHV-8)-associated MCD, which can occur in individuals with or without HIV. The prevalence of CD shows a higher occurrence of UCD, with the disease typically presenting in individuals in their fifth to seventh decades of life and being more common in areas with high HIV prevalence. The clinical presentation of CD can include symptoms such as swollen lymph nodes, fever, anemia, and systemic inflammation. Diagnostic challenges arise due to the disease's rarity, and its symptoms overlap with other conditions. Treatment approaches differ based on the subtype. UCD generally responds favorably to the surgical removal of the affected lymph nodes, while MCD often requires antiviral treatments, interleukin-6 (IL-6) inhibitors, and new biologic therapies. Recent advances in treatment, including innovative biologic agents and combination therapies, offer promising prospects for improving patient outcomes. Accurate diagnosis and customized treatment strategies are essential for the effective management of this complex disease.
Collapse
Affiliation(s)
- Jay P Patel
- Research, Chirayu Medical College and Hospital, Bhopal, IND
| | - Deep P Patel
- Research, Chirayu Medical College and Hospital, Bhopal, IND
| | | | - Rushikesh K Dave
- Radiology, Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPIMSR), Ahmedabad, IND
| | | | | | | |
Collapse
|
13
|
Meshaal S, El Hawary R, Abd Elaziz D, Eldash A, Darwish R, Erfan A, Lotfy S, Saad MM, Chohayeb E, Alkady R, Boutros J, Galal N, Elmarsafy A. Novel homozygous CARD11 variants in two patients with combined immunodeficiency and atopic skin disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:19. [DOI: 10.1186/s43042-024-00489-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/28/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Caspase recruitment domain family, member 11 (CARD11) is an important protein which plays a fundamental role in the activation of NF-κβ pathway in lymphocytes. CARD11 deficiency can be inherited in either autosomal dominant or autosomal recessive forms and present with different phenotypes including combined immunodeficiency, atopic dermatitis, and other variable manifestations. The present report describes clinical phenotypes and immunological defects of two unrelated patients with missense homozygous variants in CARD11 presenting with combined immunodeficiency (CID) and atopic skin disease resembling that reported in dominant negative CARD11 deficiency. The patients underwent next generation sequencing, immunophenotyping of T and B subsets by flow cytometry, T cell stimulation, and evaluation of CARD11 expression.
Results
Both patients had features suggesting CID including repeated pneumoniae with ICU admissions, chronic diarrhea, and itchy atopic skin disease. Patient-1 has homozygous missense variant in the C terminal domain (c.2839G > A, p.Glu947Lys), and patient-2 has homozygous variant in the inhibitory domain (c.1073C > G, p.Pro568Arg). Both have profound defects in Tregs with normal recent thymic emigrants, memory, and naïve CD4+ T cells. However, in response to stimulation, T cells failed to upregulate the expression of CD25. CARD11 expression by flow cytometry was decreased rather than abolished as previously described in patients with autosomal recessive CARD11 deficiency. B cells showed marked deficiency of switched memory and increase in transitional B cells.
Conclusion
Missense variants causing CARD11 deficiency may affect the protein function rather than the expression and can result in a phenotype combining the atopic skin disease and the features of CID.
Collapse
|
14
|
Aggarwal R, Spratt AR, Snow AL, Vignesh P. Epidermodysplasia Verruciformis in CADINS Disease: Expanding the Phenotype. J Clin Immunol 2024; 44:58. [PMID: 38311684 PMCID: PMC11238154 DOI: 10.1007/s10875-024-01663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Affiliation(s)
- Ridhima Aggarwal
- Department of Pediatrics, Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Alison R Spratt
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Room C-2013, Bethesda, MD, 20814, USA
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Room C-2013, Bethesda, MD, 20814, USA.
| | - Pandiarajan Vignesh
- Department of Pediatrics, Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
15
|
Almasmoum HA. Molecular complexity of diffuse large B-cell lymphoma: a molecular perspective and therapeutic implications. J Appl Genet 2024; 65:57-72. [PMID: 38001281 DOI: 10.1007/s13353-023-00804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) stands as a formidable challenge in the landscape of non-Hodgkin's lymphomas. This review illuminates the remarkable strides made in comprehending DLBCL's molecular intricacies and devising targeted treatments. DLBCL, the most prevalent non-Hodgkin's lymphoma, has seen transformative progress in its characterization. Genetic investigations, led by high-throughput sequencing, have unveiled recurrent mutations in genes such as MYC, BCL2, and BCL6, casting light on the underlying genetic chaos propelling DLBCL's aggressiveness. A pivotal facet of this understanding centers on cell signaling pathways. Dysregulation of B-cell receptor (BCR) signaling, NF-κB, PI3K/Akt/mTOR, JAK/STAT, Wnt/β-Catenin, and Toll-like receptor pathways plays a critical role in DLBCL pathogenesis, offering potential therapeutic targets. DLBCL's complex tumor microenvironment (TME) cannot be overlooked. The dynamic interplay among tumor cells, immune cells, stromal components, and the extracellular matrix profoundly influences DLBCL's course and response to therapies. Epigenetic modifications, including DNA methylation and histone changes, add another layer of intricacy. Aberrant epigenetic regulation plays a significant role in lymphomagenesis, offering prospects for epigenetic-based therapies. Promisingly, these molecular insights have spurred the development of personalized treatments. Targeted therapies and immunotherapies, guided by genomic profiling and molecular classification, are emerging as game-changers in DLBCL management. In conclusion, this review underscores the remarkable strides in understanding DLBCL's molecular underpinnings, spanning genetics, cell signaling, the tumor microenvironment, and epigenetics. These advances pave the way for more effective, personalized treatments, renewing hope for DLBCL patients.
Collapse
Affiliation(s)
- Hibah Ali Almasmoum
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
16
|
Zhang Y, Cheng K, Choi J. TCR Pathway Mutations in Mature T Cell Lymphomas. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1450-1458. [PMID: 37931208 PMCID: PMC10715708 DOI: 10.4049/jimmunol.2200682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/06/2023] [Indexed: 11/08/2023]
Abstract
Mature T cell lymphomas are heterogeneous neoplasms that are aggressive and resistant to treatment. Many of these cancers retain immunological properties of their cell of origin. They express cytokines, cytotoxic enzymes, and cell surface ligands normally induced by TCR signaling in untransformed T cells. Until recently, their molecular mechanisms were unclear. Recently, high-dimensional studies have transformed our understanding of their cellular and genetic characteristics. Somatic mutations in the TCR signaling pathway drive lymphomagenesis by disrupting autoinhibitory domains, increasing affinity to ligands, and/or inducing TCR-independent signaling. Collectively, most of these mutations augment signaling pathways downstream of the TCR. Emerging data suggest that these mutations not only drive proliferation but also determine lymphoma immunophenotypes. For example, RHOA mutations are sufficient to induce disease-relevant CD4+ T follicular helper cell phenotypes. In this review, we describe how mutations in the TCR signaling pathway elucidate lymphoma pathophysiology but also provide insights into broader T cell biology.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathleen Cheng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
17
|
Berendsen MR, van Bladel DA, Hesius E, Berganza Irusquieta C, Rijntjes J, van Spriel AB, van der Spek E, Pruijt JF, Kroeze LI, Hebeda KM, Croockewit S, Stevens WB, van Krieken JHJ, Groenen PJ, van den Brand M, Scheijen B. Clonal Relationship and Mutation Analysis in Lymphoplasmacytic Lymphoma/Waldenström Macroglobulinemia Associated With Diffuse Large B-cell Lymphoma. Hemasphere 2023; 7:e976. [PMID: 37928625 PMCID: PMC10621888 DOI: 10.1097/hs9.0000000000000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
Patients with lymphoplasmacytic lymphoma/Waldenström macroglobulinemia (LPL/WM) occasionally develop diffuse large B-cell lymphoma (DLBCL). This mostly results from LPL/WM transformation, although clonally unrelated DLBCL can also arise. LPL/WM is characterized by activating MYD88L265P (>95%) and CXCR4 mutations (~30%), but the genetic drivers of transformation remain to be identified. Here, in thirteen LPL/WM patients who developed DLBCL, the clonal relationship of LPL and DLBCL together with mutations contributing to transformation were investigated. In 2 LPL/WM patients (15%), high-throughput sequencing of immunoglobulin gene rearrangements showed evidence of >1 clonal B-cell population in LPL tissue biopsies. In the majority of LPL/WM patients, DLBCL presentations were clonally related to the dominant clone in LPL, providing evidence of transformation. However, in 3 patients (23%), DLBCL was clonally unrelated to the major malignant B-cell clone in LPL, of which 2 patients developed de novo DLBCL. In this study cohort, LPL displayed MYD88L265P mutation in 8 out of eleven patients analyzed (73%), while CXCR4 mutations were observed in 6 cases (55%). MYD88WT LPL biopsies present in 3 patients (27%) were characterized by CD79B and TNFAIP3 mutations. Upon transformation, DLBCL acquired novel mutations targeting BTG1, BTG2, CD79B, CARD11, TP53, and PIM1. Together, we demonstrate variable clonal B-cell dynamics in LPL/WM patients developing DLBCL, and the occurrence of clonally unrelated DLBCL in about one-quarter of LPL/WM patients. Moreover, we identified commonly mutated genes upon DLBCL transformation, which together with preserved mutations already present in LPL characterize the mutational landscape of DLBCL occurrences in LPL/WM patients.
Collapse
Affiliation(s)
| | - Diede A.G. van Bladel
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Hesius
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jos Rijntjes
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemiek B. van Spriel
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Johannes F.M. Pruijt
- Department of Hematology, Jeroen Bosch Hospital, ‘s-Hertogenbosch, The Netherlands
| | - Leonie I. Kroeze
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandra Croockewit
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wendy B.C. Stevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Loh JT, Teo JKH, Kannan S, Verma CS, Andiappan AK, Lim HH, Lam KP. DOK3 promotes atopic dermatitis by enabling the phosphatase PP4C to inhibit the T cell signaling mediator CARD11. Sci Signal 2023; 16:eadg5171. [PMID: 37906628 DOI: 10.1126/scisignal.adg5171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The scaffolding protein CARD11 is a critical mediator of antigen receptor signaling in lymphocytes. Hypomorphic (partial loss-of-function) mutations in CARD11 are associated with the development of severe atopic dermatitis, in which T cell receptor signaling is reduced and helper T cell differentiation is skewed to an allergy-associated type 2 phenotype. Here, we found that the docking protein DOK3 plays a key role in the pathogenesis of atopic dermatitis by suppressing CARD11 activity. DOK3 interacted with CARD11 and decreased its phosphorylation in T cells by recruiting the catalytic subunit of protein phosphatase 4, thereby dampening downstream signaling. Knocking out Dok3 enhanced the production of the cytokine IFN-γ by T cells, which conferred protection against experimental atopic dermatitis-like skin inflammation in mice. The expression of DOK3 was increased in T cells isolated from patients with atopic dermatitis and inversely correlated with IFNG expression. A subset of hypomorphic CARD11 variants found in patients with atopic dermatitis bound more strongly than wild-type CARD11 to DOK3. Our findings suggest that the strength of the interaction of DOK3 with CARD11 may predispose individuals to developing atopic dermatitis.
Collapse
Affiliation(s)
- Jia Tong Loh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Joey Kay Hui Teo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Singapore 138671, Republic of Singapore
| | - Chandra S Verma
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Singapore 138671, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Hong-Hwa Lim
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Republic of Singapore
| |
Collapse
|
19
|
Ben-Shalom N, Sandbank E, Abramovitz L, Hezroni H, Levine T, Trachtenberg E, Fogel N, Mor M, Yefet R, Stoler-Barak L, Hagin D, Nakai A, Noda M, Suzuki K, Shulman Z, Ben-Eliyahu S, Freund NT. β2-adrenergic signaling promotes higher-affinity B cells and antibodies. Brain Behav Immun 2023; 113:66-82. [PMID: 37369341 DOI: 10.1016/j.bbi.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Stress-induced β2-adrenergic receptor (β2AR) activation in B cells increases IgG secretion; however, the impact of this activation on antibody affinity and the underlying mechanisms remains unclear. In the current study, we demonstrate that stress in mice following ovalbumin (OVA) or SARS-CoV-2 RBD immunization significantly increases both serum and surface-expressed IgG binding to the immunogen, while concurrently reducing surface IgG expression and B cell clonal expansion. These effects were abolished by pharmacological β2AR blocking or when the experiments were conducted in β2AR -/- mice. In the second part of our study, we used single B cell sorting to characterize the monoclonal antibodies (mAbs) generated following β2AR activation in cultured RBD-stimulated B cells from convalescent SARS-CoV-2 donors. Ex vivo β2AR activation increased the affinities of the produced anti-RBD mAbs by 100-fold compared to mAbs produced by the same donor control cultures. Consistent with the mouse experiments, β2AR activation reduced both surface IgG levels and the frequency of expanded clones. mRNA sequencing revealed a β2AR-dependent upregulation of the PI3K pathway and B cell receptor (BCR) signaling through AKT phosphorylation, as well as an increased B cell motility. Overall, our study demonstrates that stress-mediated β2AR activation drives changes in B cells associated with BCR activation and higher affinity antibodies.
Collapse
Affiliation(s)
- Noam Ben-Shalom
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Elad Sandbank
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel
| | - Lilach Abramovitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Hadas Hezroni
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Talia Levine
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel
| | - Estherina Trachtenberg
- The Sagol School of Neurosciences, Gordon Faculty of Social Sciences, Tel Aviv University, Israel
| | - Nadav Fogel
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel
| | - Michael Mor
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Ron Yefet
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Liat Stoler-Barak
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Hagin
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel; Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center, 623906, Israel
| | - Akiko Nakai
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaki Noda
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shamgar Ben-Eliyahu
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel; The Sagol School of Neurosciences, Gordon Faculty of Social Sciences, Tel Aviv University, Israel.
| | - Natalia T Freund
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel.
| |
Collapse
|
20
|
Cros G, Chapdelaine H, Teira P, Fernandez I, Pastore Y, Haddad E, Touzot F. A novel variant in caspase recruitment domain family member 11 highlights the variability of clinical manifestations and management in a three generation family. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3265-3268. [PMID: 37385446 DOI: 10.1016/j.jaip.2023.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Affiliation(s)
- Guilhem Cros
- Department of Immunology and Allergology, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Hugo Chapdelaine
- Department of Immunology and Allergology, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Teira
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Isabel Fernandez
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Québec, Canada
| | - Yves Pastore
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Elie Haddad
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Fabien Touzot
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
21
|
Bende RJ, Slot LM, Kwakkenbos MJ, Wormhoudt TA, Jongejan A, Verstappen GM, van Kampen AC, Guikema JE, Kroese FG, van Noesel CJ. Lymphoma-associated mutations in autoreactive memory B cells of patients with Sjögren's syndrome. J Pathol 2023; 259:264-275. [PMID: 36426826 PMCID: PMC10108009 DOI: 10.1002/path.6039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
We recently demonstrated that normal memory B lymphocytes carry a substantial number of de novo mutations in the genome. Here, we performed exome-wide somatic mutation analyses of bona fide autoreactive rheumatoid factor (RF)-expressing memory B cells retrieved from patients with Sjӧgren's syndrome (SS). The amount and repertoire of the de novo exome mutations of RF B cells were found to be essentially different from those detected in healthy donor memory B cells. In contrast to the mutation spectra of normal B cells, which appeared random and non-selected, the mutations of the RF B cells were greater in number and enriched for mutations in genes also found mutated in B-cell non-Hodgkin lymphomas. During the study, one of the SS patients developed a diffuse large B-cell lymphoma (DLBCL) out of an RF clone that was identified 2 years earlier in an inflamed salivary gland biopsy. The successive oncogenic events in the RF precursor clone and the DLBCL were assessed. In conclusion, our findings of enhanced and selected genomic damage in growth-regulating genes in RF memory B cells of SS patients together with the documented transformation of an RF-precursor clone into DLBCL provide unique novel insight into the earliest stages of B-cell derailment and lymphomagenesis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Richard J Bende
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Linda M Slot
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | | | - Thera Am Wormhoudt
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Epidemiology & Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gwenny M Verstappen
- Department of Rheumatology and Clinical Immunology, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Antoine Cm van Kampen
- Bioinformatics Laboratory, Epidemiology & Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Biosystems Data analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Ej Guikema
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Frans Gm Kroese
- Department of Rheumatology and Clinical Immunology, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Carel Jm van Noesel
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| |
Collapse
|
22
|
Coombes C, Horikawa K, Jain S, Jiang S, Lim JH, Saxena K, Shadbolt B, Smyth L, Tobin J, Talaulikar D. Diffuse large B-cell lymphoma and red cell autoimmunity: clinical role and pathogenesis. Pathology 2023; 55:104-112. [PMID: 36420560 DOI: 10.1016/j.pathol.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 01/09/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common form of B-cell non-Hodgkin lymphoma (B-NHL) with significant morbidity and mortality despite advancements in treatment. Lymphoma and autoimmune disease both result from breakdowns in normal cell regulatory pathways, and epidemiological studies have confirmed both that B-NHL is more likely to develop in the setting of autoimmune diseases and vice versa. Red cell immunity, as evidenced by direct antiglobulin test (DAT) positivity, has been linked to DLBCL and more recently the pathogenic causes of this association have begun to be better understood using molecular techniques. This project aimed to explore the relationship between red cell autoimmunity and DLBCL. DAT positivity was more common in DLBCL as compared to healthy controls (20.4% vs 3.7%, p=0.0005). Univariate analysis found a non-significant trend towards poorer overall survival in the DAT positive (DAT+) compared to the DAT negative (DAT-) groups (p=0.087). High throughput sequencing was used to compare mutations in DLBCL from DAT+ and DAT- patients. The most frequently mutated genes in 15 patient samples were KMT2D (n=13), MYOM2 (n=9), EP300 (n=8), SPEN (n=7), and ADAMTSL3 (n=7), which were mutated in both DAT+ and DAT- groups. BIRC3 (n=3), FOXO1 (n=3) and CARD11 (n=2) were found to be mutated only in samples from the DAT+ group. These gene mutations may be involved in disease development and progression, and potentially represent targets for future therapy. The immunoglobulin genotype IGHV4-34 is seen more frequently in DLBCL clones than in normal B cells and has intrinsic autoreactivity to self-antigens on red cells, which is largely mediated by two motifs within the first framework region (FR1); Q6W7 and A24V25Y.26 These motifs form a hydrophobic patch which determines red cell antigen binding and are frequently mutated away from self-reactivity in normal B cells. If this does not occur this may provide constant B cell receptor signalling which encourages lymphoma development, a theory known as antigen driven lymphomagenesis. As with previous studies, IGHV4-34 was over-represented (15.6%) in our DLBCL cohort. Furthermore, of 6 IGHV4-34-expressing DLBCL samples five had unmutated hydrophobic patch mutations providing further evidence for antigen-driven lymphomagenesis. Mutation analysis of these five samples demonstrated high frequency of mutations in several genes, including CREBBP and NCOR2. Further research could explore if mutations in CREBBP and NCOR2 work in conjunction with the preserved QW and AVY motifs to promote lymphomagenesis in IGHV4-34-expressing B cells, and if so, could guide future targeted therapy.
Collapse
Affiliation(s)
- Caitlin Coombes
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; Haematology Translational Research Unit, Haematology Department, Canberra Health Services, Canberra, ACT, Australia
| | - Keisuke Horikawa
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Sanjiv Jain
- Anatomical Pathology Department, Canberra Health Services, Canberra, ACT, Australia
| | - Simon Jiang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia; Renal Medicine Department, Canberra Health Services, Canberra, ACT, Australia
| | - Jun Hee Lim
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Kartik Saxena
- Haematology Translational Research Unit, Haematology Department, Canberra Health Services, Canberra, ACT, Australia
| | - Bruce Shadbolt
- Centre for Advances in Epidemiology and IT, Canberra Health Services, Canberra, ACT, Australia
| | - Lillian Smyth
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Joshua Tobin
- Princess Alexandra Hospital, Brisbane, Qld, Australia; Diamantina Institute, University of Queensland, Brisbane, Qld, Australia
| | - Dipti Talaulikar
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; Haematology Translational Research Unit, Haematology Department, Canberra Health Services, Canberra, ACT, Australia; Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
23
|
Wang W, Zhang Y, Xiao S, Liu X, Yan P, Fu C, Yang Z. The brain-specific upregulation of CARD11 in response to avian brain-neurotropic virus infection serves as a potential biomarker. Poult Sci 2023; 102:102539. [PMID: 36805399 PMCID: PMC9969321 DOI: 10.1016/j.psj.2023.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Avian neurotropic viruses are critical problems in poultry industry causing severe central nervous system (CNS) damage with neuroinvasive and neurovirulence properties. Biomarker of neurotropic viral intracranial invasion is of great application value for the diagnosis, but that of avian neurotropic viruses remains elusive. Previously, we found that chicken caspase recruitment domain family, member 11 (CARD11) was only upregulated in virulent Newcastle disease virus-infected chickens and in chicken primary neuronal cells. In this study, CARD11 was systemically expressed in chickens and pigeons detected by absolute qPCR and immunohistochemical (IHC) assay. After virus challenging, only avian neurotropic viruses (avian encephalomyelitis virus [AEV] and pigeon paramyxovirus type 1 [PPMV-1]) except Marek's disease virus (MDV) can invade brain and cause pathological changes. The relative mRNA expression of CARD11 was brain-upregulated in AEV- or PPMV-1-infected animals, rather than MDV and non-neurotropic viruses (fowl adenovirus serotype 4 [FAdV-4] and infectious bronchitis virus [IBV]). Similarly, the protein expression of CARD11 was only upregulated in the cerebra and cerebella infected by avian brain-neurotropic virus using IHC assay. And there were no correlations between the change level of CARD11 and viral load. Our preliminary data suggested that avian CARD11 may be a potential brain biomarker for avian brain-neurotropic virus invasion.
Collapse
Affiliation(s)
- Wenbin Wang
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China.
| | - Yajie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuelan Liu
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Peipei Yan
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Chunyan Fu
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
24
|
Pomerantz JL, Milner JD, Snow AL. Elevated IgE from attenuated CARD11 signaling: lessons from atopic mice and humans. Curr Opin Immunol 2022; 79:102255. [PMID: 36334349 PMCID: PMC10424059 DOI: 10.1016/j.coi.2022.102255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
CARD11 encodes a large scaffold protein responsible for integrating antigen-receptor engagement with downstream signaling to NF-kB and other outputs in lymphocytes. Over the past 10 years, several human-inborn errors of immunity have been linked to pathogenic CARD11 mutations. Most recently, severe atopic patients were discovered that carried heterozygous dominant-negative CARD11 mutations. Here, we review the mechanistic connections between attenuated CARD11 signaling, elevated IgE, and atopy, comparing and contrasting key insights from both human patients and murine models. Continued investigation of abnormal CARD11 signaling in both contexts should inform novel therapeutic strategies to combat allergic pathogenesis.
Collapse
Affiliation(s)
- Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
25
|
Urdinez L, Erra L, Palma AM, Mercogliano MF, Fernandez JB, Prieto E, Goris V, Bernasconi A, Sanz M, Villa M, Bouso C, Caputi L, Quesada B, Solis D, Aguirre Bruzzo A, Katsicas MM, Galluzzo L, Weyersberg C, Bocian M, Bujan MM, Oleastro M, Almejun MB, Danielian S. Expanding spectrum, intrafamilial diversity, and therapeutic challenges from 15 patients with heterozygous CARD11-associated diseases: A single center experience. Front Immunol 2022; 13:1020927. [PMID: 36405754 PMCID: PMC9668901 DOI: 10.3389/fimmu.2022.1020927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2023] Open
Abstract
CARD11-associated diseases are monogenic inborn errors of immunity involving immunodeficiency, predisposition to malignancy and immune dysregulation such as lymphoproliferation, inflammation, atopic and autoimmune manifestations. Defects in CARD11 can present as mutations that confer a complete or a partial loss of function (LOF) or contrarily, a gain of function (GOF) of the affected gene product. We report clinical characteristics, immunophenotypes and genotypes of 15 patients from our center presenting with CARD11-associated diseases. Index cases are pediatric patients followed in our immunology division who had access to next generation sequencing studies. Variant significance was defined by functional analysis in cultured cells transfected with a wild type and/or with mutated hCARD11 constructs. Cytoplasmic aggregation of CARD11 products was evaluated by immunofluorescence. Nine index patients with 9 unique heterozygous CARD11 variants were identified. At the time of the identification, 7 variants previously unreported required functional validation. Altogether, four variants showed a GOF effect as well a spontaneous aggregation in the cytoplasm, leading to B cell expansion with NF-κB and T cell anergy (BENTA) diagnosis. Additional four variants showing a LOF activity were considered as causative of CARD11-associated atopy with dominant interference of NF-kB signaling (CADINS). The remaining variant exhibited a neutral functional assay excluding its carrier from further analysis. Family segregation studies expanded to 15 individuals the number of patients presenting CARD11-associated disease. A thorough clinical, immunophenotypical, and therapeutic management evaluation was performed on these patients (5 BENTA and 10 CADINS). A remarkable variability of disease expression was clearly noted among BENTA as well as in CADINS patients, even within multiplex families. Identification of novel CARD11 variants required functional studies to validate their pathogenic activity. In our cohort BENTA phenotype exhibited a more severe and expanded clinical spectrum than previously reported, e.g., severe hematological and extra hematological autoimmunity and 3 fatal outcomes. The growing number of patients with dysmorphic facial features strengthen the inclusion of extra-immune characteristics as part of the CADINS spectrum. CARD11-associated diseases represent a challenging group of disorders from the diagnostic and therapeutic standpoint, especially BENTA cases that can undergo a more severe progression than previously described.
Collapse
Affiliation(s)
- Luciano Urdinez
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Lorenzo Erra
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro M. Palma
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - María F. Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Belén Fernandez
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emma Prieto
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Verónica Goris
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Andrea Bernasconi
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Marianela Sanz
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Mariana Villa
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Carolina Bouso
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Lucia Caputi
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Belen Quesada
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Daniel Solis
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Anabel Aguirre Bruzzo
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Maria Martha Katsicas
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Laura Galluzzo
- Servicio de Anatomía Patológica, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Christian Weyersberg
- Servicio de Gastroenterología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Marcela Bocian
- Servicio de Dermatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Maria Marta Bujan
- Servicio de Dermatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Matías Oleastro
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - María B. Almejun
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Danielian
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| |
Collapse
|
26
|
DeVore SB, Khurana Hershey GK. The role of the CBM complex in allergic inflammation and disease. J Allergy Clin Immunol 2022; 150:1011-1030. [PMID: 35981904 PMCID: PMC9643607 DOI: 10.1016/j.jaci.2022.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
The caspase activation and recruitment domain-coiled-coil (CARD-CC) family of proteins-CARD9, CARD10, CARD11, and CARD14-is collectively expressed across nearly all tissues of the body and is a crucial mediator of immunologic signaling as part of the CARD-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (CBM) complex. Dysfunction or dysregulation of CBM proteins has been linked to numerous clinical manifestations known as "CBM-opathies." The CBM-opathy spectrum encompasses diseases ranging from mucocutaneous fungal infections and psoriasis to combined immunodeficiency and lymphoproliferative diseases; however, there is accumulating evidence that the CARD-CC family members also contribute to the pathogenesis and progression of allergic inflammation and allergic diseases. Here, we review the 4 CARD-CC paralogs, as well as B-cell lymphoma/leukemia 10 and mucosa-associated lymphoid tissue lymphoma translocation protein 1, and their individual and collective roles in the pathogenesis and progression of allergic inflammation and 4 major allergic diseases (allergic asthma, atopic dermatitis, food allergy, and allergic rhinitis).
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
27
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
28
|
Gao J, Huo S, Zhang Y, Zhao Z, Pan H, Liu X. Construction of ovarian metastasis-related immune signature predicting prognosis of gastric cancer patients. Cancer Med 2022; 12:913-929. [PMID: 35621244 PMCID: PMC9844635 DOI: 10.1002/cam4.4857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Ovarian metastasis (OM) results in poor survival of gastric cancer (GC) patients. While immunotherapy has emerged as a promising approach for late-stage GC, validated immune-related prognostic signatures still remain in need. In this study, we constructed an ovarian metastasis- and immune-related prognostic signature (OMIRPS), characterized the molecular and immune features of OMIRPS-categorized subgroups and predicted their potential response to immunotherapy. METHODS Three individual cohorts were used to construct and evaluate OMIRPS: RNA-seq of matched primary GC and OM from Fudan University Shanghai Cancer Center (FUSCC) (discovery cohort, n = 4), The Cancer Genome Atlas (TCGA) (training cohort, n = 544) and GSE84437 (validation cohort, n = 433). Differentially expressed genes (DEGs) identified between primary GC and OM and immune-related genes (IRGs) from the ImmPort and InnateDB databases were used to identify immune-related prognostic hub genes, which were further used to construct OMIRPS by using LASSO regression analysis. Prognosis, molecular characteristics, immune features, and differential immunotherapy efficacy between different OMIRPS subgroups were analyzed. RESULTS Functional analyses of DEGs revealed the significance of immune-related signatures and pathways in the OM. Immune-related prognostic hub genes including TNFRSF18, CARD11, BCL11B, NRP1, BNIP3L, and ATF3 were utilized to construct OMIRPS, which was identified as an independent prognostic factor. Comprehensive analyses unveiled the distinctive molecular and immune characteristics of OMIRPS-high and -low subgroup in regard to enriched pathways, mutation rate, tumor mutation burden, microsatellite instability status, infiltrated immune cell, immune exclusion score, and the prediction of immunotherapy efficacy. Additionally, OMIRPS was associated with Immune Subtypes with borderline significance. CONCLUSIONS RNA-seq of paired primary and ovarian metastatic tumors unveiled the significance of immune-related pathways and tumor immune microenvironment in OM. OMIRPS served as a promising biomarker to predict the prognosis of GC patients and distinguish the molecular features, immune characteristics, and efficacy of immunotherapy between different subgroups.
Collapse
Affiliation(s)
- Jianpeng Gao
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shiying Huo
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yu Zhang
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Zhenxiong Zhao
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Hongda Pan
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xiaowen Liu
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
29
|
Carter NM, Pomerantz JL. CARD11 signaling in regulatory T cell development and function. Adv Biol Regul 2022; 84:100890. [PMID: 35255409 PMCID: PMC9149070 DOI: 10.1016/j.jbior.2022.100890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 05/03/2023]
Abstract
Regulatory T cells (Tregs) are a critical subset of CD4 T cells that modulate the immune response to prevent autoimmunity and chronic inflammation. CARD11, a signaling hub and scaffold protein that links antigen receptor engagement to activation of NF-κB and other downstream signaling pathways, is essential for the development and function of thymic Tregs. Mouse models with deficiencies in CARD11 and CARD11-associated signaling components generally have Treg defects, but some mouse models develop overt autoimmunity and inflammatory disease whereas others do not. Inhibition of CARD11 signaling in Tregs within the tumor microenvironment can potentially promote anti-tumor immunity. In this review, we summarize evidence for the involvement of CARD11 signaling in Treg development and function and discuss key unanswered questions and future research opportunities.
Collapse
Affiliation(s)
- Nicole M Carter
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
30
|
Kutzner K, Woods S, Karayel O, Gehring T, Yin H, Flatley A, Graß C, Wimberger N, Tofaute MJ, Seeholzer T, Feederle R, Mann M, Krappmann D. Phosphorylation of serine-893 in CARD11 suppresses the formation and activity of the CARD11-BCL10-MALT1 complex in T and B cells. Sci Signal 2022; 15:eabk3083. [PMID: 35230873 DOI: 10.1126/scisignal.abk3083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
CARD11 acts as a gatekeeper for adaptive immune responses after T cell or B cell antigen receptor (TCR/BCR) ligation on lymphocytes. PKCθ/β-catalyzed phosphorylation of CARD11 promotes the assembly of the CARD11-BCL10-MALT1 (CBM) complex and lymphocyte activation. Here, we demonstrated that PKCθ/β-dependent CARD11 phosphorylation also suppressed CARD11 functions in T or B cells. Through mass spectrometry-based proteomics analysis, we identified multiple constitutive and inducible CARD11 phosphorylation sites in T cells. We demonstrated that a single TCR- or BCR-inducible phosphorylation on Ser893 in the carboxyl terminus of CARD11 prevented the activation of the transcription factor NF-κB, the kinase JNK, and the protease MALT1. Moreover, CARD11 Ser893 phosphorylation sensitized BCR-addicted lymphoma cells to toxicity induced by Bruton's tyrosine kinase (BTK) inhibitors. Phosphorylation of Ser893 in CARD11 by PKCθ controlled the strength of CARD11 scaffolding by impairing the formation of the CBM complex. Thus, PKCθ simultaneously catalyzes both stimulatory and inhibitory CARD11 phosphorylation events, which shape the strength of CARD11 signaling in lymphocytes.
Collapse
Affiliation(s)
- Kerstin Kutzner
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Simone Woods
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Torben Gehring
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Hongli Yin
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Carina Graß
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Nicole Wimberger
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Marie J Tofaute
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Thomas Seeholzer
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
31
|
Tian T, Fu J, Li D, Liu Y, Sun H, Wang X, Zhang X, Zhang D, Zheng T, Zhao Y, Pang D. Methylation of Immune-Related Genes in Peripheral Blood Leukocytes and Breast Cancer. Front Oncol 2022; 12:817565. [PMID: 35223499 PMCID: PMC8867609 DOI: 10.3389/fonc.2022.817565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal DNA methylation contributes to breast cancer (BC). Immune-related genes play crucial roles in BC development and progression. This study aims to investigate the effect of methylation of immune-related genes in peripheral blood leukocytes (PBLs) on BC risk. GSE51032 and GSE104942 datasets were used to identify significantly differentially methylated CpG sites (DMCs) of immune-related genes. A case-control study was conducted using MethylTarget sequencing to validate the relationship between the methylation levels of the screened genes and BC risk. We also evaluated the association between methylation haplotypes of screened genes and BC risk. Moreover, we sorted the blood leukocytes into T cells, B cells, and monocytes to detect the difference of DNA methylation in different cell subtypes. A total of five DMCs were screened from GEO datasets, including cg01760846 (PSMC1), cg07141527 (SPPL3), cg15658543 (CARD11), cg21568368 (PSMB8), and cg24045276 (NCF2). In the case-control study, there were significant associations between methylation of the CpG sites in the five genes and BC risk. Methylation haplotype burdens of PSMC1, CARD11, and PSMB8 were associated with reduced BC risk. Moreover, there were heterogeneities in the methylation levels of the genes in different cell subtypes. In conclusion, methylation of PSMC1, SPPL3, CARD11, PSMB8, and NCF2 in PBLs were associated with BC risk. The five-gene methylation could be the potential biomarkers for predicting BC risk.
Collapse
Affiliation(s)
- Tian Tian
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - JinMing Fu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - DaPeng Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - YuPeng Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - HongRu Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - Xuan Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - XianYu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ding Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - Ting Zheng
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
32
|
Bedsaul JR, Shah N, Hutcherson SM, Pomerantz JL. Mechanistic impact of oligomer poisoning by dominant-negative CARD11 variants. iScience 2022; 25:103810. [PMID: 35198875 PMCID: PMC8844825 DOI: 10.1016/j.isci.2022.103810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/10/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
The CARD11 scaffold controls antigen receptor signaling to NF-κB, JNK, and mTOR. Three classes of germline mutations in CARD11 cause Primary Immunodeficiency, including homozygous loss-of-function (LOF) mutations in CARD11 deficiency, heterozygous gain-of-function (GOF) mutations in BENTA disease, and heterozygous dominant-negative LOF mutations in CADINS. Here, we characterize LOF CARD11 mutants with a range of dominant-negative activities to identify the mechanistic properties that cause these variants to exert dominant effects when heterozygous. We find that strong dominant negatives can poison signaling from mixed wild-type:mutant oligomers at two steps in the CARD11 signaling cycle, at the Opening Step and at the Cofactor Association Step. Our findings provide evidence that CARD11 oligomer subunits cooperate in at least two steps during antigen receptor signaling and reveal how different LOF mutations in the same oligomeric signaling hub may cause disease with different inheritance patterns.
Collapse
Affiliation(s)
- Jacquelyn R. Bedsaul
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neha Shah
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shelby M. Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Dang R, Qu B, Guo K, Zhou S, Sun H, Wang W, Han J, Feng K, Lin J, Hu Y. Weighted Co-Expression Network Analysis Identifies RNF181 as a Causal Gene of Coronary Artery Disease. Front Genet 2022; 12:818813. [PMID: 35222523 PMCID: PMC8867041 DOI: 10.3389/fgene.2021.818813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Coronary artery disease (CAD) exerts a global challenge to public health. Genetic heritability is one of the most vital contributing factors in the pathophysiology of CAD. Co-expression network analysis is an applicable and robust method for the interpretation of biological interaction from microarray data. Previous CAD studies have focused on peripheral blood samples since the processes of CAD may vary from tissue to blood. It is therefore necessary to find biomarkers for CAD in heart tissues; their association also requires further illustration. Materials and Methods: To filter for causal genes, an analysis of microarray expression profiles, GSE12504 and GSE22253, was performed with weighted gene co-expression network analysis (WGCNA). Co-expression modules were constructed after batch effect removal and data normalization. The results showed that 7 co-expression modules with 8,525 genes and 1,210 differentially expressed genes (DEGs) were identified. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted. Four major pathways in CAD tissue and hub genes were addressed in the Hybrid Mouse Diversity Panel (HMDP) and Human Protein Atlas (HPA), and isoproterenol (ISO)/doxycycline (DOX)-induced heart toxicity models were used to validate the hub genes. Lastly, the hub genes and risk variants were verified in the CAD cohort and in genome-wide association studies (GWAS). Results: The results showed that RNF181 and eight other hub genes are perturbed during CAD in heart tissues. Additionally, the expression of RNF181 was validated using RT-PCR and immunohistochemistry (IHC) staining in two cardiotoxicity mouse models. The association was further verified in the CAD patient cohort and in GWAS. Conclusion: Our findings illustrated for the first time that the E3 ubiquitination ligase protein RNF181 may serve as a potential biomarker in CAD, but further in vivo validation is warranted.
Collapse
Affiliation(s)
- Ruoyu Dang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Bojian Qu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Pharmaceutical Intelligence Platform, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Kaimin Guo
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Shuiping Zhou
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin, China
| | - He Sun
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Wenjia Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Jihong Han
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Ke Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Pharmaceutical Intelligence Platform, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- *Correspondence: Jianping Lin, ; Yunhui Hu,
| | - Yunhui Hu
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
- *Correspondence: Jianping Lin, ; Yunhui Hu,
| |
Collapse
|
34
|
Fazil MHUT, Prasannan P, Wong BHS, Kottaiswamy A, Salim NSBM, Sze SK, Verma NK. GSK3β Interacts With CRMP2 and Notch1 and Controls T-Cell Motility. Front Immunol 2021; 12:680071. [PMID: 34975828 PMCID: PMC8718691 DOI: 10.3389/fimmu.2021.680071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022] Open
Abstract
The trafficking of T-cells through peripheral tissues and into afferent lymphatic vessels is essential for immune surveillance and an adaptive immune response. Glycogen synthase kinase 3β (GSK3β) is a serine/threonine kinase and regulates numerous cell/tissue-specific functions, including cell survival, metabolism, and differentiation. Here, we report a crucial involvement of GSK3β in T-cell motility. Inhibition of GSK3β by CHIR-99021 or siRNA-mediated knockdown augmented the migratory behavior of human T-lymphocytes stimulated via an engagement of the T-cell integrin LFA-1 with its ligand ICAM-1. Proteomics and protein network analysis revealed ongoing interactions among GSK3β, the surface receptor Notch1 and the cytoskeletal regulator CRMP2. LFA-1 stimulation in T-cells reduced Notch1-dependent GSK3β activity by inducing phosphorylation at Ser9 and its nuclear translocation accompanied by the cleaved Notch1 intracellular domain and decreased GSK3β-CRMP2 association. LFA-1-induced or pharmacologic inhibition of GSK3β in T-cells diminished CRMP2 phosphorylation at Thr514. Although substantial amounts of CRMP2 were localized to the microtubule-organizing center in resting T-cells, this colocalization of CRMP2 was lost following LFA-1 stimulation. Moreover, the migratory advantage conferred by GSK3β inhibition in T-cells by CHIR-99021 was lost when CRMP2 expression was knocked-down by siRNA-induced gene silencing. We therefore conclude that GSK3β controls T-cell motility through interactions with CRMP2 and Notch1, which has important implications in adaptive immunity, T-cell mediated diseases and LFA-1-targeted therapies.
Collapse
Affiliation(s)
| | - Praseetha Prasannan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Brandon Han Siang Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Interdisciplinary Graduate Programme, NTU Institute for Health Technologies (HealthTech NTU), Nanyang Technological University Singapore, Singapore, Singapore
| | - Amuthavalli Kottaiswamy
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- *Correspondence: Navin Kumar Verma,
| |
Collapse
|
35
|
Lu HY, Sharma M, Sharma AA, Lacson A, Szpurko A, Luider J, Dharmani-Khan P, Shameli A, Bell PA, Guilcher GMT, Lewis VA, Vasquez MR, Desai S, McGonigle L, Murguia-Favela L, Wright NAM, Sergi C, Wine E, Overall CM, Suresh S, Turvey SE. Mechanistic understanding of the combined immunodeficiency in complete human CARD11 deficiency. J Allergy Clin Immunol 2021; 148:1559-1574.e13. [PMID: 33872653 DOI: 10.1016/j.jaci.2021.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Germline pathogenic variants impairing the caspase recruitment domain family member 11 (CARD11)-B cell chronic lymphocytic leukemia/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) (CBM) complex are associated with diverse human diseases including combined immunodeficiency (CID), atopy, and lymphoproliferation. However, the impact of CARD11 deficiency on human B-cell development, signaling, and function is incompletely understood. OBJECTIVES This study sought to determine the cellular, immunological, and biochemical basis of disease for 2 unrelated patients who presented with profound CID associated with viral and fungal respiratory infections, interstitial lung disease, and severe colitis. METHODS Patients underwent next-generation sequencing, immunophenotyping by flow cytometry, signaling assays by immunoblot, and transcriptome profiling by RNA-sequencing. RESULTS Both patients carried identical novel pathogenic biallelic loss-of-function variants in CARD11 (c.2509C>T; p.Arg837∗) leading to undetectable protein expression. This variant prevented CBM complex formation, severely impairing the activation of nuclear factor-κB, c-Jun N-terminal kinase, and MALT1 paracaspase activity in B and T cells. This functional defect resulted in a developmental block in B cells at the naive and type 1 transitional B-cell stage and impaired circulating T follicular helper cell (cTFH) development, which was associated with impaired antibody responses and absent germinal center structures on lymph node histology. Transcriptomics indicated that CARD11-dependent signaling is essential for immune signaling pathways involved in the development of these cells. Both patients underwent hematopoietic stem cell transplantations, which led to functional normalization. CONCLUSIONS Complete human CARD11 deficiency causes profound CID by impairing naive/type 1 B-cell and cTFH cell development and abolishing activation of MALT1 paracaspase, NF-κB, and JNK activity. Hematopoietic stem cell transplantation functionally restores impaired signaling pathways.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mehul Sharma
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ashish A Sharma
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, Emory University, Atlanta, Ga
| | - Atilano Lacson
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Ashley Szpurko
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Joanne Luider
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Poonam Dharmani-Khan
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Afshin Shameli
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Peter A Bell
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregory M T Guilcher
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Victor A Lewis
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Marta Rojas Vasquez
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Sunil Desai
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Lyle McGonigle
- Department of Pediatrics, Division of General and Community Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Luis Murguia-Favela
- Section of Pediatric Hematology-Immunology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Nicola A M Wright
- Section of Pediatric Hematology-Immunology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher M Overall
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sneha Suresh
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
36
|
Shankland SJ, Wang Y, Shaw AS, Vaughan JC, Pippin JW, Wessely O. Podocyte Aging: Why and How Getting Old Matters. J Am Soc Nephrol 2021; 32:2697-2713. [PMID: 34716239 PMCID: PMC8806106 DOI: 10.1681/asn.2021050614] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/26/2021] [Indexed: 02/04/2023] Open
Abstract
The effects of healthy aging on the kidney, and how these effects intersect with superimposed diseases, are highly relevant in the context of the population's increasing longevity. Age-associated changes to podocytes, which are terminally differentiated glomerular epithelial cells, adversely affect kidney health. This review discusses the molecular and cellular mechanisms underlying podocyte aging, how these mechanisms might be augmented by disease in the aged kidney, and approaches to mitigate progressive damage to podocytes. Furthermore, we address how biologic pathways such as those associated with cellular growth confound aging in humans and rodents.
Collapse
Affiliation(s)
- Stuart J. Shankland
- Division of Nephrology, University of Washington, Seattle, Washington
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | - Yuliang Wang
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Andrey S. Shaw
- Department of Research Biology, Genentech, South San Francisco, California
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Jeffrey W. Pippin
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Oliver Wessely
- Lerner Research Institute, Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
37
|
Zhao P, Meng Q, Huang Y, Zhang L, Luo S, Zhang X, Tan L, Zhou A, Xiong H, He X. Identification and Characterization of a Germline Mutation in CARD11 From a Chinese Case of B Cell Expansion With NF-κB and T Cell Anergy. Front Immunol 2021; 12:676386. [PMID: 34557185 PMCID: PMC8453161 DOI: 10.3389/fimmu.2021.676386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
B cell expansion with NF-κB and T cell anergy (BENTA) is a rare primary immunodeficiency disorder caused by gain-of-function (GOF) mutations in the CARD11 gene. Affected patients present with persistent B cell lymphocytosis in early childhood paired with lymphadenopathy and splenomegaly. Until now only six activating mutations from 14 patients have been reported in CARD11. Here we report a patient from China with polyclonal B cell lymphocytosis and frequent infections in early life. A heterozygous mutation (c.377G>A, G126D) in exon 5 of CARD11 gene (NM_032415) was identified by whole exome sequencing. In vitro functional studies showed that the G126D mutation is associated with increased expression of CARD11 and NF-κB activation in Hela cells. Flow cytometry analysis indicated NK cell activity and CD107a degranulation of the patient were decreased. RNA sequencing analysis showed that a number of genes in NF-κB pathway increased while those involved in NK cell activity and degranulation were down-regulated. In summary, our work identified a de novo germline GOF mutation in CARD11 with functional evidence of BENTA.
Collapse
Affiliation(s)
- Peiwei Zhao
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qingjie Meng
- Department of Clinical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yufeng Huang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Lei Zhang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Sukun Luo
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiankai Zhang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Li Tan
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Aifen Zhou
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hao Xiong
- Department of Hematology & Oncology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xuelian He
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
38
|
Ghallab A, Myllys M, Friebel A, Duda J, Edlund K, Halilbasic E, Vucur M, Hobloss Z, Brackhagen L, Begher-Tibbe B, Hassan R, Burke M, Genc E, Frohwein LJ, Hofmann U, Holland CH, González D, Keller M, Seddek AL, Abbas T, Mohammed ESI, Teufel A, Itzel T, Metzler S, Marchan R, Cadenas C, Watzl C, Nitsche MA, Kappenberg F, Luedde T, Longerich T, Rahnenführer J, Hoehme S, Trauner M, Hengstler JG. Spatio-Temporal Multiscale Analysis of Western Diet-Fed Mice Reveals a Translationally Relevant Sequence of Events during NAFLD Progression. Cells 2021; 10:cells10102516. [PMID: 34685496 PMCID: PMC8533774 DOI: 10.3390/cells10102516] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mouse models of non-alcoholic fatty liver disease (NAFLD) are required to define therapeutic targets, but detailed time-resolved studies to establish a sequence of events are lacking. Here, we fed male C57Bl/6N mice a Western or standard diet over 48 weeks. Multiscale time-resolved characterization was performed using RNA-seq, histopathology, immunohistochemistry, intravital imaging, and blood chemistry; the results were compared to human disease. Acetaminophen toxicity and ammonia metabolism were additionally analyzed as functional readouts. We identified a sequence of eight key events: formation of lipid droplets; inflammatory foci; lipogranulomas; zonal reorganization; cell death and replacement proliferation; ductular reaction; fibrogenesis; and hepatocellular cancer. Functional changes included resistance to acetaminophen and altered nitrogen metabolism. The transcriptomic landscape was characterized by two large clusters of monotonously increasing or decreasing genes, and a smaller number of 'rest-and-jump genes' that initially remained unaltered but became differentially expressed only at week 12 or later. Approximately 30% of the genes altered in human NAFLD are also altered in the present mouse model and an increasing overlap with genes altered in human HCC occurred at weeks 30-48. In conclusion, the observed sequence of events recapitulates many features of human disease and offers a basis for the identification of therapeutic targets.
Collapse
Affiliation(s)
- Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
- Correspondence: (A.G.); (J.G.H.); Tel.: +49-0231-1084-356 (A.G.); +49-0231-1084-348 (J.G.H.)
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Adrian Friebel
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstr. 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Julia Duda
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Emina Halilbasic
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (E.H.); (M.T.)
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty at Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Dusseldorf, Germany; (M.V.); (T.L.)
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Lisa Brackhagen
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Michael Burke
- MRI Unit, Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.B.); (E.G.)
| | - Erhan Genc
- MRI Unit, Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.B.); (E.G.)
| | | | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Auerbachstr. 112, 70376 Stuttgart, Germany;
| | - Christian H. Holland
- Institute of Computational Biomedicine, Heidelberg University, Faculty of Medicine, Bioquant—Im Neuenheimer Feld 267, 69120 Heidelberg, Germany;
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Magdalena Keller
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Abdel-latif Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Tahany Abbas
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Elsayed S. I. Mohammed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Andreas Teufel
- Department of Medicine I, University Hospital, 93053 Regensburg, Germany; (A.T.); (T.I.)
| | - Timo Itzel
- Department of Medicine I, University Hospital, 93053 Regensburg, Germany; (A.T.); (T.I.)
| | - Sarah Metzler
- Leibniz Research Centre for Working Environment and Human Factors, Department of Immunology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (S.M.); (C.W.)
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Cristina Cadenas
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors, Department of Immunology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (S.M.); (C.W.)
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany;
| | - Franziska Kappenberg
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty at Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Dusseldorf, Germany; (M.V.); (T.L.)
| | - Thomas Longerich
- Translational Gastrointestinal Pathology, Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany;
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Stefan Hoehme
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstr. 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (E.H.); (M.T.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Correspondence: (A.G.); (J.G.H.); Tel.: +49-0231-1084-356 (A.G.); +49-0231-1084-348 (J.G.H.)
| |
Collapse
|
39
|
Shi X, Xia S, Chu Y, Yang N, Zheng J, Chen Q, Fen Z, Jiang Y, Fang S, Lin J. CARD11 is a prognostic biomarker and correlated with immune infiltrates in uveal melanoma. PLoS One 2021; 16:e0255293. [PMID: 34370778 PMCID: PMC8351993 DOI: 10.1371/journal.pone.0255293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UVM), the most common primary intraocular malignancy, has a high mortality because of a high propensity to metastasize. Our study analyzed prognostic value and immune-related characteristics of CARD11 in UVM, hoping to provide a potential management and research direction. The RNA-sequence data of 80 UVM patients were downloaded from The Cancer Genome Atlas database and divided them into high- and low-expression groups. We analyzed the differentially expressed genes, enrichment analyses and the infiltration of immune cells using the R package and Gene-Set Enrichment Analysis. A clinical prediction nomogram and protein-protein interaction network were constructed and the first 8 genes were considered as the hub-genes. Finally, we constructed a competing endogenous RNA (ceRNA) network by Cytoscape and analyzed the statistical data via the R software. Here we found that CARD11 expression had notable correlation with UVM clinicopathological features, which was also an independent predictor for overall survival (OS). Intriguingly, CARD11 had a positively correlation to autophagy, cellular senescence and apoptosis. Infiltration of monocytes was significantly higher in low CARD11 expression group, and infiltration of T cells regulatory was lower in the same group. Functional enrichment analyses revealed that CARD11 was positively related to T cell activation pathways and cell adhesion molecules. The expressions of hub-genes were all increased in the high CARD11 expression group and the ceRNA network showed the interaction among mRNA, miRNA and lncRNA. These findings show that high CARD11 expression in UVM is associated with poor OS, indicating that CARD11 may serve as a potential biomarker for the diagnosis and prognosis of the UVM.
Collapse
Affiliation(s)
- Xueying Shi
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yingming Chu
- Department of Integrated Traditional Chinese Medicine, Peking University First Hospital, Beijing, China
| | - Nan Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingyuan Zheng
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Qianyi Chen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Zeng Fen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Yuankuan Jiang
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shifeng Fang
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingrong Lin
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
40
|
Hutcherson SM, Bedsaul JR, Pomerantz JL. Pathway-Specific Defects in T, B, and NK Cells and Age-Dependent Development of High IgE in Mice Heterozygous for a CADINS-Associated Dominant Negative CARD11 Allele. THE JOURNAL OF IMMUNOLOGY 2021; 207:1150-1164. [PMID: 34341167 DOI: 10.4049/jimmunol.2001233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/19/2021] [Indexed: 12/13/2022]
Abstract
CARD11 is a multidomain scaffold protein required for normal activation of NF-κB, JNK, and mTOR during Ag receptor signaling. Germline CARD11 mutations cause at least three types of primary immunodeficiency including CARD11 deficiency, B cell expansion with NF-κB and T cell anergy (BENTA), and CARD11-associated atopy with dominant interference of NF-κB signaling (CADINS). CADINS is uniquely caused by heterozygous loss-of-function CARD11 alleles that act as dominant negatives. CADINS patients present with frequent respiratory and skin infections, asthma, allergies, and atopic dermatitis. However, precisely how a heterozygous dominant negative CARD11 allele leads to the development of this CADINS-specific cluster of symptoms remains poorly understood. To address this, we generated mice expressing the CARD11 R30W allele originally identified in patients. We find that CARD11R30W/+ mice exhibit impaired signaling downstream of CARD11 that leads to defects in T, B, and NK cell function and immunodeficiency. CARD11R30W/+ mice develop elevated serum IgE levels with 50% penetrance that becomes more pronounced with age, but do not develop spontaneous atopic dermatitis. CARD11R30W/+ mice display reduced regulatory T cell numbers, but not the Th2 expansion observed in other mice with diminished CARD11 activity. Interestingly, the presence of mixed CARD11 oligomers in CARD11R30W/+ mice causes more severe signaling defects in T cells than in B cells, and specifically impacts IFN-γ production by NK cells, but not NK cell cytotoxicity. Our findings help explain the high susceptibility of CADINS patients to infection and suggest that the development of high serum IgE is not sufficient to induce overt atopic symptoms.
Collapse
Affiliation(s)
- Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jacquelyn R Bedsaul
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
41
|
Sogkas G, Atschekzei F, Adriawan IR, Dubrowinskaja N, Witte T, Schmidt RE. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity. Cell Mol Immunol 2021; 18:1122-1140. [PMID: 33795850 PMCID: PMC8015752 DOI: 10.1038/s41423-020-00626-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023] Open
Abstract
In addition to susceptibility to infections, conventional primary immunodeficiency disorders (PIDs) and inborn errors of immunity (IEI) can cause immune dysregulation, manifesting as lymphoproliferative and/or autoimmune disease. Autoimmunity can be the prominent phenotype of PIDs and commonly includes cytopenias and rheumatological diseases, such as arthritis, systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS). Recent advances in understanding the genetic basis of systemic autoimmune diseases and PIDs suggest an at least partially shared genetic background and therefore common pathogenic mechanisms. Here, we explore the interconnected pathogenic pathways of autoimmunity and primary immunodeficiency, highlighting the mechanisms breaking the different layers of immune tolerance to self-antigens in selected IEI.
Collapse
Affiliation(s)
- Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany.
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany.
| | - Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Ignatius Ryan Adriawan
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Natalia Dubrowinskaja
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Reinhold Ernst Schmidt
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| |
Collapse
|
42
|
Narita Y, Nagane M, Mishima K, Terui Y, Arakawa Y, Yonezawa H, Asai K, Fukuhara N, Sugiyama K, Shinojima N, Kitagawa J, Aoi A, Nishikawa R. Phase I/II study of tirabrutinib, a second-generation Bruton's tyrosine kinase inhibitor, in relapsed/refractory primary central nervous system lymphoma. Neuro Oncol 2021; 23:122-133. [PMID: 32583848 PMCID: PMC7850159 DOI: 10.1093/neuonc/noaa145] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The safety, tolerability, efficacy, and pharmacokinetics of tirabrutinib, a second-generation, highly selective oral Bruton’s tyrosine kinase inhibitor, were evaluated for relapsed/refractory primary central nervous system lymphoma (PCNSL). Methods Patients with relapsed/refractory PCNSL, Karnofsky performance status ≥70, and normal end-organ function received tirabrutinib 320 and 480 mg once daily (q.d.) in phase I to evaluate dose-limiting toxicity (DLT) within 28 days using a 3 + 3 dose escalation design and with 480 mg q.d. under fasted conditions in phase II. Results Forty-four patients were enrolled; 20, 7, and 17 received tirabrutinib at 320, 480, and 480 mg under fasted conditions, respectively. No DLTs were observed, and the maximum tolerated dose was not reached at 480 mg. Common grade ≥3 adverse events (AEs) were neutropenia (9.1%), lymphopenia, leukopenia, and erythema multiforme (6.8% each). One patient with 480 mg q.d. had grade 5 AEs (pneumocystis jirovecii pneumonia and interstitial lung disease). Independent review committee assessed overall response rate (ORR) at 64%: 60% with 5 complete responses (CR)/unconfirmed complete responses (CRu) at 320 mg, 100% with 4 CR/CRu at 480 mg, and 53% with 6 CR/CRu at 480 mg under fasted conditions. Median progression-free survival was 2.9 months: 2.1, 11.1, and 5.8 months at 320, 480, and 480 mg under fasted conditions, respectively. Median overall survival was not reached. ORR was similar among patients harboring CARD11, MYD88, and CD79B mutations, and corresponding wild types. Conclusion These data indicate favorable efficacy of tirabrutinib in patients with relapsed/refractory PCNSL. Trial registration JapicCTI-173646.
Collapse
Affiliation(s)
- Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Kazuhiko Mishima
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yasuhito Terui
- Department of Hematology and Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Kagoshima University Hospital, Kagoshima, Japan
| | - Katsunori Asai
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Japan
| | - Noriko Fukuhara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuhiko Sugiyama
- Department of Medical Oncology, Hiroshima University Hospital, Hiroshima, Japan
| | - Naoki Shinojima
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | | | - Arata Aoi
- Ono Pharmaceutical Co, Ltd, Osaka, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| |
Collapse
|
43
|
A Review of Genetic Abnormalities in Unicentric and Multicentric Castleman Disease. BIOLOGY 2021; 10:biology10040251. [PMID: 33804823 PMCID: PMC8063830 DOI: 10.3390/biology10040251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Castleman disease (CD) is a rare lymphoproliferative disorder known to represent at least four distinct clinicopathologic subtypes. Large advancements in our clinical and histopathologic description of these diverse diseases have been made, resulting in subtyping based on number of enlarged lymph nodes (unicentric versus multicentric), according to viral infection by human herpes virus 8 (HHV-8) and human immunodeficiency virus (HIV), and with relation to clonal plasma cells (POEMS). In recent years, significant molecular and genetic abnormalities associated with CD have been described. However, we continue to lack a foundational understanding of the biological mechanisms driving this disease process. Here, we review all cases of CD with molecular abnormalities described in the literature to date, and correlate cytogenetic, molecular, and genetic abnormalities with disease subtypes and phenotypes. Our review notes complex karyotypes in subsets of cases, specific mutations in PDGFRB N666S in 10% of unicentric CD (UCD) and NCOA4 L261F in 23% of idiopathic multicentric CD (iMCD) cases. Genes affecting chromatin organization and abnormalities in methylation are seen more commonly in iMCD while abnormalities within the mitogen-activated protein kinase (MAPK) and interleukin signaling pathways are more frequent in UCD. Interestingly, there is a paucity of genetic studies evaluating HHV-8 positive multicentric CD (HHV-8+ MCD) and POEMS-associated CD. Our comprehensive review of genetic and molecular abnormalities in CD identifies subtype-specific and novel pathways which may allow for more targeted treatment options and unique biologic therapies.
Collapse
|
44
|
Large-Scale Proteomic Analysis of Follicular Lymphoma Reveals Extensive Remodeling of Cell Adhesion Pathway and Identifies Hub Proteins Related to the Lymphomagenesis. Cancers (Basel) 2021; 13:cancers13040630. [PMID: 33562532 PMCID: PMC7915278 DOI: 10.3390/cancers13040630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Follicular lymphoma represents the major subtype of indolent B-cell non-Hodgkin lymphomas, ranging from about 20 to 30% of all B-NHLs cases in western countries. Yet, the global proteome profile of follicular lymphoma remains largely undocumented; thus, we aimed to employ for the first time a comprehensive proteomic analysis to outline its molecular landscape. A total of 15 lymphoma fine-needle aspiration biopsy samples and 14 controls were evaluated by label-free quantitative proteomics. Among the 7673 proteins identified in our dataset, 1186 proteins were differentially expressed between lymphoma and control samples. Importantly, dysregulated proteins were enriched in biological processes such as B-cell receptor signaling pathway, cellular adhesion molecules pathway, or membrane trafficking. Additionally, we identified several novel hub proteins related to lymphomagenesis. To summarize, we have determined the molecular characteristics of follicular lymphoma and discovered proteins which may hold potential for biomarkers or therapeutic targets. Abstract Follicular lymphoma (FL) represents the major subtype of indolent B-cell non-Hodgkin lymphomas (B-NHLs) and results from the malignant transformation of mature B-cells in lymphoid organs. Although gene expression and genomic studies have identified multiple disease driving gene aberrations, only a few proteomic studies focused on the protein level. The present work aimed to examine the proteomic profiles of follicular lymphoma vs. normal B-cells obtained by fine-needle aspiration biopsy (FNAB) to gain deep insight into the most perturbed pathway of FL. The cells of interest were purified by magnetic-activated cell sorting (MACS). High-throughput proteomic profiling was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and allowed to identify of 6724 proteins in at least 75% of each group of samples. The ‘Total Protein Approach’ (TPA) was applied to the absolute quantification of proteins in this study. We identified 1186 differentially abundant proteins (DAPs) between FL and control samples, causing an extensive remodeling of several molecular pathways, including the B-cell receptor signaling pathway, cellular adhesion molecules, and PPAR pathway. Additionally, the construction of protein–protein interactions networks (PPINs) and identification of hub proteins allowed us to indicate the key player proteins for FL pathology. Finally, ICAM1, CD9, and CD79B protein expression was validated in an independent cohort by flow cytometry (FCM), and the results were consistent with the mass spectrometry (MS) data.
Collapse
|
45
|
Wang W, Wei Q, Hao Q, Zhang Y, Li Y, Bi Y, Jin Z, Liu H, Liu X, Yang Z, Xiao S. Cellular CARD11 Inhibits the Fusogenic Activity of Newcastle Disease Virus via CBM Signalosome-Mediated Furin Reduction in Chicken Fibroblasts. Front Microbiol 2021; 12:607451. [PMID: 33603723 PMCID: PMC7884349 DOI: 10.3389/fmicb.2021.607451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
Newcastle disease virus (NDV) causes an infectious disease that poses a major threat to poultry health. Our previous study identified a chicken brain-specific caspase recruitment domain-containing protein 11 (CARD11) that was upregulated in chicken neurons and inhibited NDV replication. This raises the question of whether CARD11 plays a role in inhibiting viruses in non-neural cells. Here, chicken fibroblasts were used as a non-neural cell model to investigate the role. CARD11 expression was not significantly upregulated by either velogenic or lentogenic NDV infection in chicken fibroblasts. Viral replication was decreased in DF-1 cells stably overexpressing CARD11, while viral growth was significantly increased in the CARD11-knockdown DF-1 cell line. Moreover, CARD11 colocalized with the viral P protein and aggregated around the fibroblast nucleus, suggesting that an interaction existed between CARD11 and the viral P protein; this interaction was further examined by suppressing viral RNA polymerase activity by using a minigenome assay. Viral replication was inhibited by CARD11 in fibroblasts, and this result was consistent with our previous report in chicken neurons. Importantly, CARD11 was observed to reduce the syncytia induced by either velogenic virus infection or viral haemagglutinin-neuraminidase (HN) and F cotransfection in fibroblasts. We found that CARD11 inhibited the expression of the host protease furin, which is essential for cleavage of the viral F protein to trigger fusogenic activity. Furthermore, the CARD11-Bcl10-MALT1 (CBM) signalosome was found to suppress furin expression, which resulted in a reduction in the cleavage efficiency of the viral F protein to further inhibit viral syncytia. Taken together, our findings mainly demonstrated a novel CARD11 inhibitory mechanism for viral fusogenic activity in chicken fibroblasts, and this mechanism explains the antiviral roles of this molecule in NDV pathogenesis.
Collapse
Affiliation(s)
- Wenbin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Poultry Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Qiaolin Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiqi Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yajie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongshan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Youkun Bi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhongyuan Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuelan Liu
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
46
|
Si Y, Lin A, Ding W, Meng H, Luo P, Zhang J. CARD11 alteration as a candidate biomarker of skin cutaneous melanoma treated with immune checkpoint blockade. Am J Transl Res 2021; 13:286-300. [PMID: 33527024 PMCID: PMC7847528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) can be problematic, including a lack of sustained clinical response, in the treatment of skin cutaneous melanoma (SKCM) patients; therefore, predictive biomarkers are urgently needed. Recently, gene mutations identified by melanoma genomic analysis have shown great predictive potential. METHODS We collected an immunotherapy cohort and The Cancer Genome Atlas (TCGA)-SKCM cohort from published studies and tested the predictive function of the CARD11 mutation. We then further studied the association between the CARD11 mutation and tumor immunogenicity by studying related genes and pathways in the tumor microenvironment (TME). RESULTS In the immunotherapy and TCGA-SKCM cohorts, patients with CARD11-mutant (MT) tumors had longer overall survival (OS) and a better prognosis than those with CARD11-wild-type (WT) tumors. CARD11-MT tumors had higher immunogenicity, and gene expression related to immunosuppression was significantly downregulated in CARD11-MT tumors. We found that immunosuppression-related pathways were significantly downregulated in CARD11-MT tumors, while immune activation-related pathways were significantly upregulated. Additionally, CARD11-MT tumors had more DNA damage response and repair (DDR) pathway mutations. CONCLUSIONS CARD11 mutation is associated with longer OS and a better prognosis after ICI treatment. Therefore, the CARD11 gene can be used as a biomarker for predicting the efficacy of ICIs in SKCM patients.
Collapse
Affiliation(s)
- Yutian Si
- Department of Oncology, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510282, China
- Southern Medical UniversityGuangzhou 510282, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510282, China
| | - Weimin Ding
- Department of Oncology, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510282, China
| | - Hui Meng
- Department of Oncology, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510282, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510282, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510282, China
| |
Collapse
|
47
|
Pomerantz JL. Reconsidering phosphorylation in the control of inducible CARD11 scaffold activity during antigen receptor signaling. Adv Biol Regul 2021; 79:100775. [PMID: 33358178 PMCID: PMC7920944 DOI: 10.1016/j.jbior.2020.100775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/01/2022]
Abstract
Protein phosphorylation is a commonly used regulatory step that controls signal transduction pathways in a wide array of biological contexts. The finding that a residue is phosphorylated, coupled with the observation that mutation of that residue impacts signaling, often forms the basis for concluding that the phosphorylation of that residue is a key signaling step. However, in certain cases, the situation is more complicated and warrants further study to obtain a clear mechanistic understanding of whether and how the kinase-mediated modification in question is important. CARD11 is a multi-domain signaling scaffold that functions as a hub in lymphocytes to transmit the engagement of antigen receptors into the activation of NF-κB, JNK and mTOR. The phosphorylation of the CARD11 autoinhibitory Inhibitory Domain in response to antigen receptor triggering has been proposed to control the signal-induced conversion of CARD11 from an inactive to an active scaffold in a step required for lymphocyte activation. In this review, I discuss recent data that suggests that this model should be reconsidered for certain phosphorylation events in CARD11 and propose possible experimental avenues for resolution of raised issues.
Collapse
Affiliation(s)
- Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Miller Research Building, Room 623, 733 N Broadway, Baltimore, MD, 21205, USA.
| |
Collapse
|
48
|
Methods to Study CARD11-BCL10-MALT1 Dependent Canonical NF-κB Activation in Jurkat T Cells. Methods Mol Biol 2021; 2366:125-143. [PMID: 34236636 DOI: 10.1007/978-1-0716-1669-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Jurkat T cells have been of central importance for the discovery of signalling mediators driving NF-κB activation in response to T cell antigen receptor (TCR)/CD28 co-stimulation. The critical function of the key regulators identified in Jurkat T cells has subsequently been verified in primary murine and human T cells. CRISPR/Cas9-mediated genomic editing techniques in combination with viral reconstitution are powerful tools that now enable the investigation of the exact molecular mechanisms that govern T cell signalling, especially the impact of protein-protein interactions, protein modifications, or cancer-associated gain- or loss-of-function mutations. As exemplified by the CARD11 gene encoding a key regulator of NF-κB signalling in T cells, we describe here the detailed workflow for the generation of CRISPR/Cas9 knockout (KO) Jurkat T cells and the subsequent reconstitution using a lentiviral transduction protocol. In addition, we explain the use of a stable NF-κB-dependent EGFP reporter system that enables a reliable quantification of NF-κB transcriptional activation in the reconstituted KO Jurkat T cells.
Collapse
|
49
|
Meitlis I, Allenspach EJ, Bauman BM, Phan IQ, Dabbah G, Schmitt EG, Camp ND, Torgerson TR, Nickerson DA, Bamshad MJ, Hagin D, Luthers CR, Stinson JR, Gray J, Lundgren I, Church JA, Butte MJ, Jordan MB, Aceves SS, Schwartz DM, Milner JD, Schuval S, Skoda-Smith S, Cooper MA, Starita LM, Rawlings DJ, Snow AL, James RG. Multiplexed Functional Assessment of Genetic Variants in CARD11. Am J Hum Genet 2020; 107:1029-1043. [PMID: 33202260 PMCID: PMC7820631 DOI: 10.1016/j.ajhg.2020.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022] Open
Abstract
Genetic testing has increased the number of variants identified in disease genes, but the diagnostic utility is limited by lack of understanding variant function. CARD11 encodes an adaptor protein that expresses dominant-negative and gain-of-function variants associated with distinct immunodeficiencies. Here, we used a "cloning-free" saturation genome editing approach in a diploid cell line to simultaneously score 2,542 variants for decreased or increased function in the region of CARD11 associated with immunodeficiency. We also described an exon-skipping mechanism for CARD11 dominant-negative activity. The classification of reported clinical variants was sensitive (94.6%) and specific (88.9%), which rendered the data immediately useful for interpretation of seven coding and splicing variants implicated in immunodeficiency found in our clinic. This approach is generalizable for variant interpretation in many other clinically actionable genes, in any relevant cell type.
Collapse
Affiliation(s)
- Iana Meitlis
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Eric J Allenspach
- Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Bradly M Bauman
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Isabelle Q Phan
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Gina Dabbah
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Erica G Schmitt
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, MO 63130, USA
| | - Nathan D Camp
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | | | - Deborah A Nickerson
- Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, University of Tel Aviv, Tel Aviv 62919, Israel
| | - Christopher R Luthers
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jeffrey R Stinson
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jessica Gray
- Divisions of Immunobiology, and Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | - Joseph A Church
- Department of Pediatrics, Keck School of Medicine, University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA 90404, USA
| | - Mike B Jordan
- Divisions of Immunobiology, and Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Seema S Aceves
- Division of Allergy Immunology, Departments of Pediatrics and Medicine, University of California, San Diego, and Rady Children's Hospital, San Diego, CA 92123, USA
| | | | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Susan Schuval
- Department of Pediatrics, Stonybrook University, Stony Brook, NY 11794, USA
| | - Suzanne Skoda-Smith
- Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, MO 63130, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - David J Rawlings
- Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Richard G James
- Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
50
|
Zhang Y, Li R, Wang X. Monogenetic causes of fungal disease: recent developments. Curr Opin Microbiol 2020; 58:75-86. [DOI: 10.1016/j.mib.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 01/12/2023]
|