1
|
Hsu FLT, Tsai TF. Epidemiological, Genetic, Clinical, and Treatment Differences of Generalized Pustular Psoriasis and Acrodermatitis Continua of Hallopeau Across Ethnicities: A Systematic Review. Am J Clin Dermatol 2025:10.1007/s40257-025-00937-9. [PMID: 40169503 DOI: 10.1007/s40257-025-00937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Ethnic differences of the clinicopathological characteristics in many immune-mediated skin diseases have been reported, including psoriasis vulgaris (PV). However, the ethnic differences of pustular psoriasis have been less studied. OBJECTIVE The aim of this study was to compare the differences in epidemiology, genetic background, clinical manifestations, treatment patterns and responses among Asian and non-Asian patients with pustular psoriasis, including generalized pustular psoriasis (GPP) and acrodermatitis continua of Hallopeau (ACH). METHODS This systematic review was based on a comprehensive search of Cochrane, PubMed, and Embase databases from earliest available date to 31 December 2024, and all studies reporting on patients with either GPP or ACH irrespective of study design. Studies with study size below five patients or those focusing on quality of life or economic aspects were excluded. In each publication, the ethnic composition, demographics information, disease course and manifestation, as well as genetic mutations, treatment type and response were collected if available. RESULTS Of 2187 screened studies, 141 studies were included, with the majority being cohort studies. Compared with other ethnicities, East Asians with GPP carried more null IL36RN mutations, while AP1S3 mutations seemed absent in Asians. Phenotypically, Asians had younger onset age, bimodal age distribution, less family history of PV, and more scalp/nail involvement. In Asians, absence of coexisting PV was associated with severe disease. GPP with PV had shorter pre-pustular duration among Asians than non-Asians. Use of acitretin appeared higher and more effective among East Asians compared with other populations. In ACH, Asians mostly carried homozygous null IL36RN mutations and had younger onset age, more multi-digit involvement, persistent treatment course, and more coexisting GPP than Europeans. Biologics use was less common in Asia in both GPP and ACH than in Europe and the US. CONCLUSIONS This systematic review underscores notable ethnic differences in genetic profiles, clinical features, and therapeutic responses in GPP and ACH. The diagnosis of GPP and ACH may differ across studies and the true impacts of ethnicities on these differences remain to be confirmed. Nonetheless, the results from this study enhance our understanding of the heterogeneous characteristics of GPP and ACH, highlighting the necessity of incorporating ethnic differences into the diagnosis, genetic testing, and management strategies for patients with GPP and ACH.
Collapse
Affiliation(s)
- Francis Li-Tien Hsu
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Dermatology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
2
|
Wang Y, Li M, Hou C, Wang Y, Guo J, Wang X. IL-36RN gene: key insights into its role in pediatric pustular psoriasis pathogenesis and treatment. Front Pediatr 2025; 13:1520804. [PMID: 40176872 PMCID: PMC11964088 DOI: 10.3389/fped.2025.1520804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Pediatric pustular psoriasis (PPP) is an autoimmune skin disease that seriously affects the physical and mental health of children. The IL-36RN (Interleukin-36 Receptor Antagonist) gene plays a key role in the pathogenesis of PPP. This review comprehensively elaborates on the research progress of IL-36RN in the context of the pathogenesis and treatment of PPP, covering the basic structure, function, mutation sites and types, and inheritance patterns of the gene and its role in the pathogenesis of PPP. In addition, we discussed the frequency of IL-36RN mutations in patients with different types of PPP and the treatment methods for these patients, aiming to provide a valuable reference for further research and treatment of this disease.
Collapse
Affiliation(s)
- Ye Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyue Li
- Health Care Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changcheng Hou
- Department of Chinese Medicine Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yueyue Wang
- Department of Chinese Medicine Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xurui Wang
- Department of Chinese Medicine Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Prajapati VH, Lynde CW, Gooderham MJ, Hong HC, Kirchhof MG, Lansang P, Ringuet J, Turchin I, Vender R, Yeung J, Papp KA. Considerations for defining and diagnosing generalized pustular psoriasis. J Eur Acad Dermatol Venereol 2025; 39:487-497. [PMID: 39239977 PMCID: PMC11851258 DOI: 10.1111/jdv.20310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Generalized pustular psoriasis (GPP) is a rare, chronic skin disease, characterized by widespread pustules and erythema, often accompanied with systemic signs and symptoms. GPP flares occur episodically but may be protracted. Left untreated, GPP can be life-threatening. Despite being first reported over 100 years ago, definitions and diagnostic criteria for GPP have been inconsistent and varied due, in part, to its rarity and a limited understanding of its pathogenesis. As such, many patients with GPP face delays in diagnosis and subsequent treatment. This manuscript aims to increase the recognition of GPP and provide foundational considerations to aid in the definition and diagnosis of this disease.
Collapse
Affiliation(s)
- Vimal H. Prajapati
- Division of Dermatology, Department of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Section of Community Pediatrics, Department of PediatricsUniversity of CalgaryCalgaryAlbertaCanada
- Section of Pediatric Rheumatology, Department of PediatricsUniversity of CalgaryCalgaryAlbertaCanada
- Dermatology Research InstituteCalgaryAlbertaCanada
- Skin Health & Wellness CentreCalgaryAlbertaCanada
- Probity Medical Research Inc.CalgaryAlbertaCanada
| | - Charles W. Lynde
- Lynde Dermatology, Probity Medical Research, Markham and Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Melinda J. Gooderham
- SKiN Health, Probity Medical ResearchQueen's UniversityPeterboroughOntarioCanada
| | - H. Chih‐ho Hong
- Division of Dermatology and Skin ScienceUniversity of British ColumbiaSurreyBritish ColumbiaCanada
- Probity Medical Research Inc.SurreyBritish ColumbaCanada
| | - Mark G. Kirchhof
- Division of Dermatology, Faculty of MedicineUniversity of Ottawa, and the Ottawa HospitalOttawaOntarioCanada
| | - Perla Lansang
- Division of Dermatology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Division of Dermatology, Department of Medicine, Sunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
- Division of DermatologyWomen's College HospitalTorontoOntarioCanada
- The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Julien Ringuet
- Centre de Recherche Dermatologique du Québec (CRDQ)QuébecQuebecCanada
| | - Irina Turchin
- Brunswick Dermatology Center and Probity Medical ResearchFrederictonNew BrunswickCanada
- Department of MedicineDalhousie UniversityHalifaxNova ScotiaCanada
| | - Ron Vender
- Division of Dermatology, Department of MedicineMcMaster UniversityHamiltonOntarioCanada
- Dermatrials Research Inc.HamiltonOntarioCanada
| | - Jensen Yeung
- Division of Dermatology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Probity Medical Research Inc.TorontoOntarioCanada
| | - Kim A. Papp
- Division of Dermatology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Probity Medical Research Inc.WaterlooOntarioCanada
- Alliance Clinical TrialsWaterlooOntarioCanada
| |
Collapse
|
4
|
Bespalov D, Pino D, Vidal-Guirao S, Franquesa J, Lopez-Ramajo D, Filgaira I, Wan L, O'Sullivan PA, Ley SC, Forcales SV, Rojas JJ, Izquierdo-Serra M, Soler C, Manils J. Bioinformatic analysis of molecular characteristics and oncogenic features of CARD14 in human cancer. Sci Rep 2024; 14:22972. [PMID: 39362963 PMCID: PMC11452207 DOI: 10.1038/s41598-024-74565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024] Open
Abstract
Aberrant caspase recruitment domain family member 14 (CARD14) signaling has been strongly associated with inflammatory skin conditions. CARD14 acts as a scaffold protein, ultimately activating the transcription factor NF-KB. Although primarily studied in the context of inflammation, recent research has suggested its potential implications in tumorigenesis. In this study, we gathered The Cancer Genome Atlas (TCGA) tumor data to gauge the involvement of CARD14 in cancer, including genetic alterations, expression patterns, survival correlations, immune cell infiltration and functional interactions across diverse cancer types. We found heightened CARD14 expression in most tumors and there was a significant correlation between CARD14 expression and the prognosis of patients for certain tumors. For instance, patients with higher CARD14 expression had a better prognosis in sarcoma, lung, cervix and head and neck cancers. Moreover, CARD14 expression positively correlated with neutrophil infiltration in most of the cancer types analyzed. Finally, enrichment analysis showed that epithelial development and differentiation pathways were involved in the functional mechanism of CARD14. Our results show that CARD14 may have the potential to become a prognostic biomarker in several cancers, hence, further prospective studies will be required for its validation.
Collapse
Affiliation(s)
- Daniil Bespalov
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, 08007, Spain
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907, Spain
| | - Dayana Pino
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, 08007, Spain
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907, Spain
| | - Sònia Vidal-Guirao
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, 08007, Spain
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907, Spain
| | - Júlia Franquesa
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, 08007, Spain
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907, Spain
| | - Daniel Lopez-Ramajo
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, 08007, Spain
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907, Spain
| | - Ingrid Filgaira
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, 08007, Spain
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907, Spain
| | - Li Wan
- Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, 190 Kuaiyuan Avenue, Guangzhou, 510530, China
| | - Paul A O'Sullivan
- MRC Centre for Molecular Bacteriology & Infection, Imperial College London, London, SW7 2AZ, UK
| | - Steven C Ley
- Institute of Immunity & Transplantation, Royal Free Hospital, University College London, London, NW3 2PP, UK
| | - Sonia Vanina Forcales
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, 08007, Spain
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907, Spain
| | - Juan José Rojas
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, 08007, Spain
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907, Spain
| | - Mercè Izquierdo-Serra
- Neurohysiology Group, Department of Biomedicine, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, 08036, Spain
| | - Concepció Soler
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, 08007, Spain
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907, Spain
| | - Joan Manils
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, 08007, Spain.
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907, Spain.
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat, 08907, Spain.
| |
Collapse
|
5
|
O'Sullivan PA, Aidarova A, Afonina IS, Manils J, Thurston TLM, Instrell R, Howell M, Boeing S, Ranawana S, Herpels MB, Chetian R, Bassa M, Flynn H, Frith D, Snijders AP, Howes A, Beyaert R, Bowcock AM, Ley SC. CARD14 signalosome formation is associated with its endosomal relocation and mTORC1-induced keratinocyte proliferation. Biochem J 2024; 481:1143-1171. [PMID: 39145956 PMCID: PMC11555713 DOI: 10.1042/bcj20240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Rare mutations in CARD14 promote psoriasis by inducing CARD14-BCL10-MALT1 complexes that activate NF-κB and MAP kinases. Here, the downstream signalling mechanism of the highly penetrant CARD14E138A alteration is described. In addition to BCL10 and MALT1, CARD14E138A associated with several proteins important in innate immune signalling. Interactions with M1-specific ubiquitin E3 ligase HOIP, and K63-specific ubiquitin E3 ligase TRAF6 promoted BCL10 ubiquitination and were essential for NF-κB and MAP kinase activation. In contrast, the ubiquitin binding proteins A20 and ABIN1, both genetically associated with psoriasis development, negatively regulated signalling by inducing CARD14E138A turnover. CARD14E138A localized to early endosomes and was associated with the AP2 adaptor complex. AP2 function was required for CARD14E138A activation of mTOR complex 1 (mTORC1), which stimulated keratinocyte metabolism, but not for NF-κB nor MAP kinase activation. Furthermore, rapamycin ameliorated CARD14E138A-induced keratinocyte proliferation and epidermal acanthosis in mice, suggesting that blocking mTORC1 may be therapeutically beneficial in CARD14-dependent psoriasis.
Collapse
Affiliation(s)
- Paul A. O'Sullivan
- The Francis Crick Institute, London NW1 1AT, U.K
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Aigerim Aidarova
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Inna S. Afonina
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joan Manils
- The Francis Crick Institute, London NW1 1AT, U.K
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Teresa L. M. Thurston
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, U.K
| | | | | | | | - Sashini Ranawana
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Melanie B. Herpels
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Riwia Chetian
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Matilda Bassa
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Helen Flynn
- The Francis Crick Institute, London NW1 1AT, U.K
| | - David Frith
- The Francis Crick Institute, London NW1 1AT, U.K
| | | | - Ashleigh Howes
- National Heart and Lung Institute, Imperial College London, London W12 0NN, U.K
| | - Rudi Beyaert
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anne M. Bowcock
- Department of Oncological Science, Dermatology, and Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Steven C. Ley
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| |
Collapse
|
6
|
DeVore SB, Schuetz M, Alvey L, Lujan H, Ochayon DE, Williams L, Chang WC, Filuta A, Ruff B, Kothari A, Hahn JM, Brandt E, Satish L, Roskin K, Herr AB, Biagini JM, Martin LJ, Cagdas D, Keles S, Milner JD, Supp DM, Khurana Hershey GK. Regulation of MYC by CARD14 in human epithelium is a determinant of epidermal homeostasis and disease. Cell Rep 2024; 43:114589. [PMID: 39110589 PMCID: PMC11469028 DOI: 10.1016/j.celrep.2024.114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Caspase recruitment domain family member 14 (CARD14) and its variants are associated with both atopic dermatitis (AD) and psoriasis, but their mechanistic impact on skin barrier homeostasis is largely unknown. CARD14 is known to signal via NF-κB; however, CARD14-NF-κB signaling does not fully explain the heterogeneity of CARD14-driven disease. Here, we describe a direct interaction between CARD14 and MYC and show that CARD14 signals through MYC in keratinocytes to coordinate skin barrier homeostasis. CARD14 directly binds MYC and influences barrier formation in an MYC-dependent fashion, and this mechanism is undermined by disease-associated CARD14 variants. These studies establish a paradigm that CARD14 activation regulates skin barrier function by two distinct mechanisms, including activating NF-κB to bolster the antimicrobial (chemical) barrier and stimulating MYC to bolster the physical barrier. Finally, we show that CARD14-dependent MYC signaling occurs in other epithelia, expanding the impact of our findings beyond the skin.
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Matthew Schuetz
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lauren Alvey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Henry Lujan
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - David E Ochayon
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lindsey Williams
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wan Chi Chang
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Alyssa Filuta
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Brandy Ruff
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Arjun Kothari
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jennifer M Hahn
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Eric Brandt
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Latha Satish
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Krishna Roskin
- Division of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Andrew B Herr
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Immunobiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jocelyn M Biagini
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lisa J Martin
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Medical School, Ihsan Dogramaci Children's Hospital, Institutes of Child Health, Ankara 06230, Turkey
| | - Sevgi Keles
- Division of Pediatric Immunology and Allergy, Necmettin Erbakan University, Konya 42090, Turkey
| | - Joshua D Milner
- Department of Pediatrics, Columbia University, New York, NY 10027, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Scientific Staff, Shriners Children's Ohio, Dayton, OH 45404, USA
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
7
|
Scala E, Mercurio L, Albanesi C, Madonna S. The Intersection of the Pathogenic Processes Underlying Psoriasis and the Comorbid Condition of Obesity. Life (Basel) 2024; 14:733. [PMID: 38929716 PMCID: PMC11204971 DOI: 10.3390/life14060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
In the past decade, our understanding of psoriasis pathogenesis has made significant steps forward, leading to the development of multiple game-changing therapies. While psoriasis primarily affects the skin, it is increasingly recognized as a systemic disease that can have effects beyond the skin. Obesity is associated with more severe forms of psoriasis and can potentially worsen the systemic inflammation and metabolic dysfunction seen in psoriatic patients. The exact mechanisms underlying the link between these two conditions are not fully understood, but it is believed that chronic inflammation and immune dysregulation play a role. In this review, we examine the existing body of knowledge regarding the intersection of pathogenic processes responsible for psoriasis and obesity. The ability of biological therapies to reduce systemic and obesity-related inflammation in patients with psoriasis will be also discussed.
Collapse
|
8
|
Staal J, Driege Y, Van Gaever F, Steels J, Beyaert R. Chimeric and mutant CARD9 constructs enable analyses of conserved and diverged autoinhibition mechanisms in the CARD-CC protein family. FEBS J 2024; 291:1220-1245. [PMID: 38098267 DOI: 10.1111/febs.17035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Caspase recruitment domain-containing protein (CARD)9, CARD10, CARD11, and CARD14 all belong to the CARD-coiled coil (CC) protein family and originated from a single common ancestral protein early in vertebrate evolution. All four proteins form CARD-CC/BCL10/MALT1 (CBM) complexes leading to nuclear factor-kappa-B (NF-κB) activation after upstream phosphorylation by various protein kinase C (PKC) isoforms. CBM complex signaling is critical for innate and adaptive immunity, but aberrant activation can cause autoimmune or autoinflammatory diseases, or be oncogenic. CARD9 shows a superior auto-inhibition compared with other CARD-CC family proteins, with very low spontaneous activity when overexpressed in HEK293T cells. In contrast, the poor auto-inhibition of other CARD-CC family proteins, especially CARD10 (CARMA3) and CARD14 (CARMA2), is hampering characterization of upstream activators or activating mutations in overexpression studies. We grafted different domains from CARD10, 11, and 14 on CARD9 to generate chimeric CARD9 backbones for functional characterization of activating mutants using NF-κB reporter gene activation in HEK293T cells as readout. CARD11 (CARMA1) activity was not further reduced by grafting on CARD9 backbones. The chimeric CARD9 approach was subsequently validated by using several known disease-associated mutations in CARD10 and CARD14, and additional screening allowed us to identify several previously unknown activating natural variants in human CARD9 and CARD10. Using Genebass as a resource of exome-based disease association statistics, we found that activated alleles of CARD9 correlate with irritable bowel syndrome (IBS), constipation, osteoarthritis, fibromyalgia, insomnia, anxiety, and depression, which can occur as comorbidities.
Collapse
Affiliation(s)
- Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Femke Van Gaever
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Jill Steels
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| |
Collapse
|
9
|
Shajil C, Sathishkumar D, Kumar S, Danda S. Homozygous CARD14 variant presenting as infantile erythroderma. BMJ Case Rep 2024; 17:e254090. [PMID: 38233005 PMCID: PMC10806972 DOI: 10.1136/bcr-2022-254090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
A wide range of inherited and acquired conditions can manifest as infantile erythroderma, among which CARD14-associated papulosquamous eruption (CAPE) is a rare cause. An infant boy presented with a psoriasiform rash that progressed to erythroderma and was unresponsive to topical steroids and cyclosporine. The early onset of the disease, its severity and resistance to conventional treatment were suggestive of a genetic cause. Genetic evaluation revealed a homozygous CARD14 variant of uncertain significance establishing the diagnosis of CAPE, and his parents were heterozygous carriers. There was only minimal improvement in the condition with supportive management and treatment with acitretin. Unfortunately, the child succumbed to sepsis and metabolic complications following a sudden worsening of skin disease. This case highlights the significance of genetic studies in diagnosing treatment-refractory cases of infantile erythroderma and emphasises the importance of early recognition of this rare condition.
Collapse
Affiliation(s)
- Chandana Shajil
- Department of Dermatology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Dharshini Sathishkumar
- Department of Dermatology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Sathish Kumar
- Pediatric Rheumatology Unit, Department of Pediatrics, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Sumita Danda
- Department of Clinical Genetics, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| |
Collapse
|
10
|
Blicharz L, Czuwara J, Rudnicka L, Torrelo A. Autoinflammatory Keratinization Diseases-The Concept, Pathophysiology, and Clinical Implications. Clin Rev Allergy Immunol 2023; 65:377-402. [PMID: 38103162 PMCID: PMC10847199 DOI: 10.1007/s12016-023-08971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 12/17/2023]
Abstract
Recent advances in medical genetics elucidated the background of diseases characterized by superficial dermal and epidermal inflammation with resultant aberrant keratosis. This led to introducing the term autoinflammatory keratinization diseases encompassing entities in which monogenic mutations cause spontaneous activation of the innate immunity and subsequent disruption of the keratinization process. Originally, autoinflammatory keratinization diseases were attributed to pathogenic variants of CARD14 (generalized pustular psoriasis with concomitant psoriasis vulgaris, palmoplantar pustulosis, type V pityriasis rubra pilaris), IL36RN (generalized pustular psoriasis without concomitant psoriasis vulgaris, impetigo herpetiformis, acrodermatitis continua of Hallopeau), NLRP1 (familial forms of keratosis lichenoides chronica), and genes of the mevalonate pathway, i.e., MVK, PMVK, MVD, and FDPS (porokeratosis). Since then, endotypes underlying novel entities matching the concept of autoinflammatory keratinization diseases have been discovered (mutations of JAK1, POMP, and EGFR). This review describes the concept and pathophysiology of autoinflammatory keratinization diseases and outlines the characteristic clinical features of the associated entities. Furthermore, a novel term for NLRP1-associated autoinflammatory disease with epithelial dyskeratosis (NADED) describing the spectrum of autoinflammatory keratinization diseases secondary to NLRP1 mutations is proposed.
Collapse
Affiliation(s)
- Leszek Blicharz
- Department of Dermatology, Medical University of Warsaw, 02-008, Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, 02-008, Warsaw, Poland.
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, 02-008, Warsaw, Poland
| | - Antonio Torrelo
- Department of Dermatology, University Children's Hospital Niño Jesús, 28009, Madrid, Spain.
| |
Collapse
|
11
|
Alexeeva E, Shingarova M, Dvoryakovskaya T, Lomakina O, Fetisova A, Isaeva K, Chomakhidze A, Chibisova K, Krekhova E, Kozodaeva A, Savostyanov K, Pushkov A, Zhanin I, Demyanov D, Suspitsin E, Belozerov K, Kostik M. Safety and efficacy of canakinumab treatment for undifferentiated autoinflammatory diseases: the data of a retrospective cohort two-centered study. Front Med (Lausanne) 2023; 10:1257045. [PMID: 38034538 PMCID: PMC10685903 DOI: 10.3389/fmed.2023.1257045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction The blockade of interleukine-1 (anakinra and canakinumab) is a well-known highly effective tool for monogenic autoinflammatory diseases (AIDs), such as familial Mediterranean fever, tumor necrosis factor receptor-associated periodic syndrome, hyperimmunoglobulinaemia D syndrome, and cryopyrin-associated periodic syndrome, but this treatment has not been assessed for patients with undifferentiated AIDs (uAIDs). Our study aimed to assess the safety and efficacy of canakinumab for patients with uAIDs. Methods Information on 32 patients with uAIDs was retrospectively collected and analyzed. Next-generation sequencing and Federici criteria were used for the exclusion of the known monogenic AID. Results The median age of the first episode was 2.5 years (IQR: 1.3; 5.5), that of the disease diagnosis was 5.7 years (IQR: 2.5;12.7), and that of diagnostic delay was 1.1 years (IQR: 0.4; 6.1). Patients had variations in the following genes: IL10, NLRP12, STAT2, C8B, LPIN2, NLRC4, PSMB8, PRF1, CARD14, IFIH1, LYST, NFAT5, PLCG2, COPA, IL23R, STXBP2, IL36RN, JAK1, DDX58, LACC1, LRBA, TNFRSF11A, PTHR1, STAT4, TNFRSF1B, TNFAIP3, TREX1, and SLC7A7. The main clinical features were fever (100%), rash (91%; maculopapular predominantly), joint involvement (72%), splenomegaly (66%), hepatomegaly (59%), lymphadenopathy (50%), myalgia (28%), heart involvement (31%), intestinal involvement (19%); eye involvement (9%), pleuritis (16%), ascites (6%), deafness, hydrocephalia (3%), and failure to thrive (25%). Initial treatment before canakinumab consisted of non-biologic therapies: non-steroidal anti-inflammatory drugs (NSAID) (91%), corticosteroids (88%), methotrexate (38%), intravenous immunoglobulin (IVIG) (34%), cyclosporine A (25%), colchicine (6%) cyclophosphamide (6%), sulfasalazine (3%), mycophenolate mofetil (3%), hydroxychloroquine (3%), and biologic drugs: tocilizumab (62%), sarilumab, etanercept, adalimumab, rituximab, and infliximab (all 3%). Canakinumab induced complete remission in 27 patients (84%) and partial remission in one patient (3%). Two patients (6%) were primary non-responders, and two patients (6%) further developed secondary inefficacy. All patients with partial efficacy or inefficacy were switched to tocilizumab (n = 4) and sarilumab (n = 1). The total duration of canakinumab treatment was 3.6 (0.1; 8.7) years. During the study, there were no reported Serious Adverse Events (SAEs). The patients experienced non-frequent mild respiratory infections at a rate that is similar as before canakinumab is administered. Additionally, one patient developed leucopenia, but it was not necessary to stop canakinumab for this patient. Conclusion The treatment of patients with uAIDs using canakinumab was safe and effective. Further randomized clinical trials are required to confirm the efficacy and safety.
Collapse
Affiliation(s)
- Ekaterina Alexeeva
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
- Clinical Institute of Children's Health named after N.F. Filatov, Chair of Pediatrics and Pediatric Rheumatology of the Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Meiri Shingarova
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
- Clinical Institute of Children's Health named after N.F. Filatov, Chair of Pediatrics and Pediatric Rheumatology of the Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Tatyana Dvoryakovskaya
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
- Clinical Institute of Children's Health named after N.F. Filatov, Chair of Pediatrics and Pediatric Rheumatology of the Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Olga Lomakina
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
| | - Anna Fetisova
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
| | - Ksenia Isaeva
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
| | - Aleksandra Chomakhidze
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
| | - Kristina Chibisova
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
| | - Elizaveta Krekhova
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
| | - Aleksandra Kozodaeva
- Clinical Institute of Children's Health named after N.F. Filatov, Chair of Pediatrics and Pediatric Rheumatology of the Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Kirill Savostyanov
- Department of Medical Genetics of the Medical and Genetic Center, National Medical Research Center of Children's Health, Moscow, Russia
| | - Aleksandr Pushkov
- Department of Medical Genetics of the Medical and Genetic Center, National Medical Research Center of Children's Health, Moscow, Russia
| | - Ilya Zhanin
- Department of Medical Genetics of the Medical and Genetic Center, National Medical Research Center of Children's Health, Moscow, Russia
| | - Dmitry Demyanov
- Department of Medical Genetics of the Medical and Genetic Center, National Medical Research Center of Children's Health, Moscow, Russia
| | - Evgeny Suspitsin
- Department of Medical Genetics, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
- Department of Tumor Growth Biology, N.N. Petrov National Research Center of Oncology, Saint-Petersburg, Russia
| | - Konstantin Belozerov
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| | - Mikhail Kostik
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| |
Collapse
|
12
|
Xiao L, Yang X, Sharma VK, Abebe D, Loh YP. Hippocampal delivery of neurotrophic factor-α1/carboxypeptidase E gene prevents neurodegeneration, amyloidosis, memory loss in Alzheimer's Disease male mice. Mol Psychiatry 2023; 28:3332-3342. [PMID: 37369719 PMCID: PMC10618095 DOI: 10.1038/s41380-023-02135-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Alzheimer's Disease (AD) is a prevalent neurodegenerative disease characterized by tau hyperphosphorylation, Aβ1-42 aggregation and cognitive dysfunction. Therapeutic agents directed at mitigating tau aggregation and clearing Aβ1-42, and delivery of growth factor genes (BDNF, FGF2), have ameliorated cognitive deficits, but these approaches did not prevent or stop AD progression. Here we report that viral-(AAV) delivery of Neurotrophic Factor-α1/Carboxypeptidase E (NF-α1/CPE) gene in hippocampus at an early age prevented later development of cognitive deficits as assessed by Morris water maze and novel object recognition assays, neurodegeneration, and tau hyperphosphorylation in male 3xTg-AD mice. Additionally, amyloid precursor protein (APP) expression was reduced to near non-AD levels, and insoluble Aβ1-42 was reduced significantly. Pro-survival proteins: mitochondrial Bcl2 and Serpina3g were increased; and mitophagy inhibitor Plin4 and pro-inflammatory protein Card14 were decreased in AAV-NF-α1/CPE treated versus untreated AD mice. Thus NF-α1/CPE gene therapy targets many regulatory components to prevent cognitive deficits in 3xTg-AD mice and has implications as a new therapy to prevent AD progression by promoting cell survival, inhibiting APP overexpression and tau hyperphosphorylation.
Collapse
Affiliation(s)
- Lan Xiao
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Xuyu Yang
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Vinay Kumar Sharma
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Daniel Abebe
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA.
| |
Collapse
|
13
|
Young KZ, Sarkar MK, Gudjonsson JE. Pathophysiology of generalized pustular psoriasis. Exp Dermatol 2023; 32:1194-1203. [PMID: 36779688 PMCID: PMC10423307 DOI: 10.1111/exd.14768] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Psoriasis is a chronic, immune-mediated skin disease that affects over 3% of adults in the United States. Psoriasis can present in several clinical forms. Of these, generalized pustular psoriasis is an acute, severe form, associated with increased morbidity and mortality. Unlike the more common plaque psoriasis, which is thought to feature dysregulation of the adaptive immune system, generalized pustular psoriasis reflects heightened autoinflammatory responses. Recent advances in genetic and immunological studies highlight a key role of the IL-36 immune axis in the pathogenesis of generalized pustular psoriasis. In this article, we review the psoriatic subtypes and discuss diagnostic criteria of generalized pustular psoriasis, discuss several newly identified genetic variants associated with pustular disease in the skin, and discuss how these mutations shed light on pustular disease mechanisms. Furthermore, we gather insights from recent transcriptomic studies that similarly implicate a pathogenic role of the IL-36 immune axis in generalized pustular psoriasis.
Collapse
Affiliation(s)
| | - Mrinal K. Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
14
|
Fetter T, de Graaf DM, Claus I, Wenzel J. Aberrant inflammasome activation as a driving force of human autoimmune skin disease. Front Immunol 2023; 14:1190388. [PMID: 37325658 PMCID: PMC10266227 DOI: 10.3389/fimmu.2023.1190388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Autoimmune skin diseases are understood as conditions in which the adaptive immune system with autoantigen-specific T cells and autoantibody-producing B cells reacting against self-tissues plays a crucial pathogenic role. However, there is increasing evidence that inflammasomes, which are large multiprotein complexes that were first described 20 years ago, contribute to autoimmune disease progression. The inflammasome and its contribution to the bioactivation of interleukins IL-1β and IL-18 play an essential role in combating foreign pathogens or tissue damage, but may also act as a pathogenic driver of myriad chronic inflammatory diseases when dysfunctionally regulated. Inflammasomes containing the NOD-like receptor family members NLRP1 and NLRP3 as well as the AIM2-like receptor family member AIM2 have been increasingly investigated in inflammatory skin conditions. In addition to autoinflammatory diseases, which are often associated with skin involvement, the aberrant activation of the inflammasome has also been implied in autoimmune diseases that can either affect the skin besides other organs such as systemic lupus erythematosus and systemic sclerosis or are isolated to the skin in humans. The latter include, among others, the T-cell mediated disorders vitiligo, alopecia areata, lichen planus and cutaneous lupus erythematosus as well as the autoantibody-driven blistering skin disease bullous pemphigoid. Some diseases are characterized by both autoinflammatory and autoimmune responses such as the chronic inflammatory skin disease psoriasis. Further insights into inflammasome dysregulation and associated pathways as well as their role in forming adaptive immune responses in human autoimmune skin pathology could potentially offer a new field of therapeutic options in the future.
Collapse
Affiliation(s)
- Tanja Fetter
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | | | - Isabelle Claus
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
15
|
Trompette A, Ubags ND. Skin barrier immunology from early life to adulthood. Mucosal Immunol 2023; 16:194-207. [PMID: 36868478 DOI: 10.1016/j.mucimm.2023.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Our skin has a unique barrier function, which is imperative for the body's protection against external pathogens and environmental insults. Although interacting closely and sharing many similarities with key mucosal barrier sites, such as the gut and the lung, the skin also provides protection for internal tissues and organs and has a distinct lipid and chemical composition. Skin immunity develops over time and is influenced by a multiplicity of different factors, including lifestyle, genetics, and environmental exposures. Alterations in early life skin immune and structural development may have long-term consequences for skin health. In this review, we summarize the current knowledge on cutaneous barrier and immune development from early life to adulthood, with an overview of skin physiology and immune responses. We specifically highlight the influence of the skin microenvironment and other host intrinsic, host extrinsic (e.g. skin microbiome), and environmental factors on early life cutaneous immunity.
Collapse
Affiliation(s)
- Aurélien Trompette
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
16
|
Newly revealed variants of SERPINA3 in generalized pustular psoriasis attenuate inhibition of ACT on cathepsin G. J Hum Genet 2023; 68:419-425. [PMID: 36828876 DOI: 10.1038/s10038-023-01139-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
Generalized pustular psoriasis (GPP) is an autoinflammatory skin disease whose pathogenesis has not yet been fully elucidated. Alpha-1-antichymotrypsin(ACT) is a protein encoded by the SERPINA3 gene and an inhibitor of cathepsin G. One study of a European sample suggested that the loss of ACT function caused by SERPINA3 mutation is implicated in GPP. However, the role of SERPINA3 in the pathogenesis of GPP in other ethnic populations is unclear. To explore this, seventy children with GPP were performed next-generation sequencing to identify rare variants in the SERPINA3 gene. Bioinformatic analysis and functional tests were used to determine the effects of the variants, and a comprehensive analysis was performed to determine the pathogenicity of the variants and whether they are associated with GPP. One rare deletion and three rare missense variants were identified in the SERPINA3 gene in GPP. The deletion variant c.1246_1247del was found to result in a mutant protein with an extension of 10 amino acids and a C-terminal of 20 amino acids that was completely different from the wild-type. This mutant was found to impede secretion of ACT, thus failing to function as an inhibitor of cathepsin G. Two missense variants were found to reduce the ability of ACT to inhibit cathepsin G enzymatic activity. The association analysis suggested that the deletion variant is associated with GPP. This study identified four rare novel mutations of SERPINA3 and demonstrated that three of these mutations result in loss of function, contributing to the pathogenesis of pediatric-onset GPP in the Asian population.
Collapse
|
17
|
Nunettsu Asaba K, Okimura K, Adachi Y, Tokumaru K, Goto Y, Fujii S, Watanabe A, Sakai C, Sakurada E, Amikura K, Aoki T. Discovery of orally bioavailable inhibitors of MALT1 with in vivo activity for psoriasis. Bioorg Med Chem Lett 2023; 82:129155. [PMID: 36720321 DOI: 10.1016/j.bmcl.2023.129155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
We report the design, synthesis, and biological activity of a series of compounds that exhibit potent mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) inhibition. Structural transformation of the substructures of a starting compound gave amidomethyl derivatives and sulfonylguanidine derivatives that exhibited potent inhibition of MALT1. Compound 37 had good oral bioavailability and showed anti-psoriatic activity in an imiquimod-induced psoriasis mouse model after oral administration.
Collapse
Affiliation(s)
- Ken Nunettsu Asaba
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| | - Keiichi Okimura
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Yohei Adachi
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Kazuyuki Tokumaru
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| | - Yasufumi Goto
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Shigeo Fujii
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Akira Watanabe
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Chizuka Sakai
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Eri Sakurada
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Kazutoshi Amikura
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Takumi Aoki
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| |
Collapse
|
18
|
Cutaneous and Developmental Effects of CARD14 Overexpression in Zebrafish. Biomedicines 2022; 10:biomedicines10123192. [PMID: 36551948 PMCID: PMC9775151 DOI: 10.3390/biomedicines10123192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gain-of-function mutations in CARD14 have recently been shown to be involved in the pathogenesis of psoriasis and pityriasis rubra pilaris (PRP). Those mutations were found to activate the NF-kB signaling pathway. OBJECTIVE Zebrafish is often used to model human diseases in general, and in skin disorders more particularly. In the present study, we aimed to examine the effect of CARD14 overexpression in zebrafish with the aim to validate this model for future translational applications. METHODS We used light microscopy, scanning electron microscopy, histological analysis and whole mount in situ hybridization as well as real-time PCR to ascertain the effect of CARD14 overexpression in the developing zebrafish. RESULTS Overexpression of human CARD14 had a marked morphological and developmental effect on the embryos. Light microscopy demonstrated a characteristic cutaneous pattern including a granular surface and a spiky pigment pattern. In situ hybridization revealed keratinocytes of uneven size and shape. Scanning electron microscopy showed aberrant production of actin microridges and a rugged keratinocyte cell surface, reminiscent of the human hyperkeratotic phenotype. Developmentally, overexpression of CARD14 had a variable effect on anterior-posterior axis symmetry. Similar to what has been observed in humans with psoriasis or PRP, NF-kB expression was higher in CARD14-overexpressing embryos compared to controls. CONCLUSIONS Overexpression of CARD14 results in a distinct cutaneous pattern accompanied by hyperactivation of the NF-kB pathway, suggesting that the zebrafish represents a useful system to model CARD14-associated papulosquamous diseases.
Collapse
|
19
|
Chong AC, Visitsunthorn K, Ong PY. Genetic/Environmental Contributions and Immune Dysregulation in Children with Atopic Dermatitis. J Asthma Allergy 2022; 15:1681-1700. [PMID: 36447957 PMCID: PMC9701514 DOI: 10.2147/jaa.s293900] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 08/01/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common skin conditions in humans. AD affects up to 20% of children worldwide and results in morbidity for both patients and their caregivers. The basis of AD is an interplay between genetics and the environment characterized by immune dysregulation. A myriad of mutations that compromise the skin barrier and/or immune function have been linked to AD. Of these, filaggrin gene (FLG) mutations are the most evidenced. Many other mutations have been implicated in isolated studies that are often unreplicated, creating an archive of genes with potential but unconfirmed relevance to AD. Harnessing big data, polygenic risk scores (PRSs) and genome-wide association studies (GWAS) may provide a more practical strategy for identifying the genetic signatures of AD. Epigenetics may also play a role. Staphylococcus aureus is the most evidenced microbial contributor to AD. Cutaneous dysbiosis may result in over-colonization by pathogenic strains and aberrant skin immunity and inflammation. Aeroallergens, air pollution, and climate are other key environmental contributors to AD. The right climate and/or commensals may improve AD for some patients.
Collapse
Affiliation(s)
- Albert C Chong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Peck Y Ong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Division of Clinical Immunology and Allergy, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
DeVore SB, Khurana Hershey GK. The role of the CBM complex in allergic inflammation and disease. J Allergy Clin Immunol 2022; 150:1011-1030. [PMID: 35981904 PMCID: PMC9643607 DOI: 10.1016/j.jaci.2022.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
The caspase activation and recruitment domain-coiled-coil (CARD-CC) family of proteins-CARD9, CARD10, CARD11, and CARD14-is collectively expressed across nearly all tissues of the body and is a crucial mediator of immunologic signaling as part of the CARD-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (CBM) complex. Dysfunction or dysregulation of CBM proteins has been linked to numerous clinical manifestations known as "CBM-opathies." The CBM-opathy spectrum encompasses diseases ranging from mucocutaneous fungal infections and psoriasis to combined immunodeficiency and lymphoproliferative diseases; however, there is accumulating evidence that the CARD-CC family members also contribute to the pathogenesis and progression of allergic inflammation and allergic diseases. Here, we review the 4 CARD-CC paralogs, as well as B-cell lymphoma/leukemia 10 and mucosa-associated lymphoid tissue lymphoma translocation protein 1, and their individual and collective roles in the pathogenesis and progression of allergic inflammation and 4 major allergic diseases (allergic asthma, atopic dermatitis, food allergy, and allergic rhinitis).
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
21
|
Msafiri Makene A, Liu JL. Association between CARD14 gene polymorphisms and psoriasis vulgaris in Hainan Han population based on exon sequencing: A case-control study. Medicine (Baltimore) 2022; 101:e30890. [PMID: 36221432 PMCID: PMC9542912 DOI: 10.1097/md.0000000000030890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Psoriasis is a serious non-communicable, chronic immune-inflammatory mediated disease affecting about 125 million people worldwide. Its effects go beyond skin manifestation. Through genome-wide association studies, the caspase recruitment domain family member 14 (CARD14) gene and other gene variants have been implicated to have an association with Psoriasis, and as we move towards individualized therapy the discovery of single nucleotide polymorphism (SNP) is of great importance. This study aimed to determine whether the CARD14 gene is a susceptible gene for psoriasis vulgaris. In this study, 101 psoriasis patients and 79 healthy controls were subjected to exome sequencing. The CARD14 gene regions upstream and downstream of 1kb were sequenced. SNP-based association analysis and haplotype-based association analysis were performed in SNPs with minimum allele frequency (MAF) greater than 1%. Bioinformatic methods were used to predict the impact of risk loci on gene function. A total of 32 polymorphisms were identified in this study, of which 3 SNPs (1 in exon and 2 in intron) were susceptible to psoriasis (P < .05, OR = 0.19~0.53, 95%CI = 0.05~0.70). Bioinformatics analysis showed that rs144475004 located on the exon led to an amino acid change from aspartate to histidine. On the other hand, results of haplotype-based association analysis showed that 2 haplotypes (CARD14-1 and CARD14-2) were protective haplotypes of the disease (P < .05, OR = 0.18~0.38, 95%CI = 0.05~0.88), the frequencies in healthy controls and patients was 6.96% and 1.49%, respectively. CARD14 gene is associated with susceptibility to psoriasis vulgaris in the Hainan Han population.
Collapse
Affiliation(s)
- Antonia Msafiri Makene
- Department of Dermatology and Venereology. The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jun-lin Liu
- Department of Dermatology and Venereology. The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- *Correspondence: Jun-lin Liu, The Second Affiliated Hospital of Hainan Medical University No.368, Yehai Av., Haikou, Hainan 570311, China (e-mail: )
| |
Collapse
|
22
|
Shmarov F, Smith GR, Weatherhead SC, Reynolds NJ, Zuliani P. Individualised computational modelling of immune mediated disease onset, flare and clearance in psoriasis. PLoS Comput Biol 2022; 18:e1010267. [PMID: 36178923 PMCID: PMC9524682 DOI: 10.1371/journal.pcbi.1010267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Despite increased understanding about psoriasis pathophysiology, currently there is a lack of predictive computational models. We developed a personalisable ordinary differential equations model of human epidermis and psoriasis that incorporates immune cells and cytokine stimuli to regulate the transition between two stable steady states of clinically healthy (non-lesional) and disease (lesional psoriasis, plaque) skin. In line with experimental data, an immune stimulus initiated transition from healthy skin to psoriasis and apoptosis of immune and epidermal cells induced by UVB phototherapy returned the epidermis back to the healthy state. Notably, our model was able to distinguish disease flares. The flexibility of our model permitted the development of a patient-specific “UVB sensitivity” parameter that reflected subject-specific sensitivity to apoptosis and enabled simulation of individual patients’ clinical response trajectory. In a prospective clinical study of 94 patients, serial individual UVB doses and clinical response (Psoriasis Area Severity Index) values collected over the first three weeks of UVB therapy informed estimation of the “UVB sensitivity” parameter and the prediction of individual patient outcome at the end of phototherapy. An important advance of our model is its potential for direct clinical application through early assessment of response to UVB therapy, and for individualised optimisation of phototherapy regimes to improve clinical outcome. Additionally by incorporating the complex interaction of immune cells and epidermal keratinocytes, our model provides a basis to study and predict outcomes to biologic therapies in psoriasis. We present a new computer model for psoriasis, an immune-mediated disabling skin disease which presents with red, raised scaly plaques that can appear over the whole body. Psoriasis affects millions of people in the UK alone and causes significant impairment to quality of life, and currently has no cure. Only a few treatments (including UVB phototherapy) can induce temporary remission. Despite our increased understanding about psoriasis, treatments are still given on a ‘trial and error’ basis and there are no reliable computer models that can a) elucidate the mechanisms behind psoriasis onset or flare and b) predict a patient’s response to a course of treatment (e.g., phototherapy) and the likelihood of inducing a period of remission. Our computer model addresses both these needs. First, it explicitly describes the interaction between the immune system and skin cells. Second, our model captures response to therapy at the individual patient level and enables personalised prediction of clinical outcomes. Notably, our model also supports prediction of amending individual UVB phototherapy regimes based on the patient’s initial response that include for example personalised delivery schedules (i.e., 3x weekly vs. 5x weekly phototherapy). Therefore, our work is a crucial step towards precision medicine for psoriasis treatment.
Collapse
Affiliation(s)
- Fedor Shmarov
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Graham R. Smith
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sophie C. Weatherhead
- Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Nick J. Reynolds
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (NJR); (PZ)
| | - Paolo Zuliani
- Department of Computer Science, University of Manchester, Manchester, United Kingdom
- * E-mail: (NJR); (PZ)
| |
Collapse
|
23
|
Trai NN, Van Em D, Van BT, My LH, Van Tro C, Hao NT, Vu HA, Tram DB, Van Thuong N, Doanh LH. Correlation of IL36RN and CARD14 mutations with clinical manifestations and laboratory findings in patients with generalised pustular psoriasis. Indian J Dermatol Venereol Leprol 2022; 89:378-384. [DOI: 10.25259/ijdvl_1054_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/01/2022] [Indexed: 11/04/2022]
Abstract
Background
Generalized pustular psoriasis (GPP) is a chronic disease associated with genetic factors related to mutations of the interleukin 36 receptor antagonist gene (IL36RN) and the caspase recruitment domain 14 gene (CARD14). However, the relevance of these mutations to the clinical features and severity of GPP remains unclear.
Aims
Our objective was to correlate the presence of IL36RN and CARD14 mutations with the clinical and laboratory findings in patients with GPP.
Methods
This cross-sectional descriptive study was conducted in 64 subjects with GPP. Clinical manifestations were recorded and the severity was graded as mild, moderate, or severe. Routine laboratory tests were performed and blood samples were collected for Sanger sequencing. The clinical data of patients were compared among the different mutation groups.
Results
The two main variants of IL36RN were c.115+6T > C (p.Arg10ArgfsX1) and c.227C > T (p.Pro76Leu). The major CARD14 mutations were c.2458C > T (p.Arg820Trp), c.1641C > T (p.Arg547Ser), and c.1753G > A transitions.
Provocative factors were uncommon in the group with both IL36RN and CARD14 mutations. Drugs (unspecified), especially herbals, were the most common triggers. A history of psoriasis was frequent in patients with only CARD14 mutations, but fever was uncommon. The c.1641C > T mutation was associated with leukocytosis > 15000/mm3 and the c.1753G > A mutation was associated with hypoalbuminemia <3.8g/dL.
Both the c.115+6T > C and c.227C > T variants of IL36RN were associated with fever ≥38.5°C while the c.115+6T > C variant was also associated with geographic tongue.
No gene mutations were associated with the total severity and severity grades.
Limitations
Four patients without the two major IL36RN mutations were excluded from the study.
Conclusion
The presence of IL36RN and CARD14 mutations were associated with a history of psoriasis, various provocative factors, fever, leukocytosis, hypoalbuminemia, and geographic tongue. Further studies to explore the role of these mutations in therapeutic efficacy and disease outcomes are necessary.
Collapse
Affiliation(s)
| | - Dang Van Em
- Department of Dermatology, Institute of Clinical Research and Medicine, Hanoi, Vietnam
| | - Bui Thi Van
- Department of Dermatology, Institute of Clinical Research and Medicine, Hanoi, Vietnam
| | - Le Huyen My
- Department of Dermatology, Hanoi Central Institute of Dermatology, Dong Da, Hanoi, Vietnam
| | | | - Nguyen Trong Hao
- Department of Dermatology, Ho Chi Minh City Hospital of Dermato Venereology, Ho Chi Minh City, Vietnam
| | - Hoang Anh Vu
- Center for Molecular Biomedicine, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Duong Bich Tram
- Center for Molecular Biomedicine, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Nguyen Van Thuong
- Department of Dermatology, Hanoi Central Institute of Dermatology, Dong Da, Hanoi, Vietnam
| | - Le Huu Doanh
- Department of Dermatology, Hanoi Central Institute of Dermatology, Dong Da, Hanoi, Vietnam
| |
Collapse
|
24
|
Atschekzei F, Dubrowinskaja N, Anim M, Thiele T, Witte T, Sogkas G. Identification of variants in genes associated with autoinflammatory disorders in a cohort of patients with psoriatic arthritis. RMD Open 2022; 8:rmdopen-2022-002561. [PMID: 36113963 PMCID: PMC9486391 DOI: 10.1136/rmdopen-2022-002561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives Besides adaptive immunity genes, genetic risk factors for psoriatic arthritis (PsA) include innate immunity loci, which suggests an autoinflammatory disease mechanism, at least in a subset of patients. Here, we aimed at investigating the autoinflammatory genetic background of PsA. Methods A total of 120 patients with PsA visiting the outpatient clinics of the Hannover University hospital underwent targeted next-generation sequencing, searching for variations in genes linked with inborn errors of immunity classified as autoinflammatory disorders (AIDs). Deleteriousness of rare variants was evaluated through in silico analysis. Results We found 45 rare predicted deleterious variants in 37 out of 120 (30.8%) patients with PsA. Relatively common were variants in AP1S3, PLCG2, NOD2 and NLRP12. All 45 variants were monoallelic and 25 of them, identified in 20 out of 120 (16.7%) patients, were localised in genes associated with autosomal dominant (AD) disorders. Detection of those variants is associated with pustular psoriasis or a coexisting inflammatory bowel disease (IBD). Conclusions Approximately 30% of patients with PsA harboured at least one variant in a gene associated with an AID, suggesting an autoinflammatory disease mechanism. Detection of variants in genes linked to AD-AIDs may explain extra-articular manifestations of PsA, such as pustular psoriasis and IBD.
Collapse
Affiliation(s)
| | | | - Manfred Anim
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Thea Thiele
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Torsten Witte
- Clinical Immunology, Hannover Medical School, Hannover, Germany
| | - Georgios Sogkas
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Suleman S, Chhabra G, Raza R, Hamid A, Qureshi JA, Ahmad N. Association of CARD14 Single-Nucleotide Polymorphisms with Psoriasis. Int J Mol Sci 2022; 23:9336. [PMID: 36012602 PMCID: PMC9409305 DOI: 10.3390/ijms23169336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Psoriasis is an immune-mediated chronic and painful disease characterized by red raised patches of inflamed skin that may have desquamation, silvery-white scales, itching and cracks. The susceptibility of developing psoriasis depends on multiple factors, with a complex interplay between genetic and environmental factors. Studies have suggested an association between autosomal dominant CARD14 (caspase recruitment domain-containing protein 14) gain-of-function mutations with the pathophysiology of psoriasis. In this study, non-synonymous single-nucleotide polymorphisms (nsSNPs) of CARD14 gene were assessed to determine their association with psoriasis in Pakistani population. A total of 123 subjects (63 patients with psoriasis and 60 normal controls) were included in this study. DNA was extracted from blood, and PCR analysis was performed followed by Sanger sequencing for 18 CARD14 specific nsSNPs (14 previously reported and the 4 most pathogenic nsSNPs identified using bioinformatics analysis). Among the 18 tested SNPs, only 2 nsSNP, rs2066965 (R547S) and rs34367357 (V585I), were found to be associated with psoriasis. Furthermore, rs2066965 heterozygous genotype was found to be more prevalent in patients with joint pain. Additionally, the 3D structure of CARD14 protein was predicted using alpha-fold2. NMSim web server was used to perform coarse grind simulations of wild-type CARD14 and two mutated structures. R547S increases protein flexibility, whereas V353I is shown to promote CARD14-induced NF-kappa B activation. This study confirms the association between two CARD14 nsSNPs, rs2066965 and rs34367357 with psoriasis in a Pakistani population, and could be helpful in identifying the role of CARD14 gene variants as potential genetic markers in patients with psoriasis.
Collapse
Affiliation(s)
- Saima Suleman
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA
- Center for Research in Molecular Medicine, Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54000, Pakistan
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA
| | - Rubab Raza
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 15320, Pakistan
| | - Arslan Hamid
- The Life & Medical Sciences Institute (LIMES), University of Bonn, 53113 Bonn, Germany
| | - Javed Anver Qureshi
- Center for Research in Molecular Medicine, Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54000, Pakistan
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA
- William S. Middleton VA Medical Center, Madison, WI 53705, USA
| |
Collapse
|
26
|
Long SQ, Fang J, Shu HL, Xia DM, Wang ZQ, Mi WY, Zhang XL, Li CQ. Correlation of catecholamine content and clinical influencing factors in depression among psoriasis patients: a case-control study. Biopsychosoc Med 2022; 16:17. [PMID: 35948962 PMCID: PMC9364537 DOI: 10.1186/s13030-022-00245-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Our study sought to investigate the clinical influencing factors of psoriasis patients with depression, and analyze whether the content of monoamine neurotransmitters in plasma was correlated with depression incidence among psoriasis patients. Methods Ninety patients with psoriasis and 40 healthy volunteers (aged from18 to 60) were recruited and interviewed with a piloted questionnaire in both groups to obtain relevant information. The catecholamine in plasma from the two groups was analyzed by radioimmunoassay. The data were analyzed by SPSS statistical software. Results The mean Hamilton Depression Scale (HAMD) and mean Athens Insomnia Scale (AIS) scores of the psoriasis patients were higher than the control group. Dopamine content in the plasma was lower (comparing psoriasis patients without depression and the control group, and was negatively correlated with HAMD, AIS, and Psoriasis Area and Severity Index (PASI) scores in the psoriasis patients with depression. There was no significant difference in the epinephrine and norepinephrine contents in all groups. PASI scores were positively correlated with HAMD scores in psoriasis patients. The low dopamine content, Dermatology Life Quality Index, and high PASI scores were the risk factors for depression among the psoriasis patients. Conclusion Psoriasis patients have a significantly higher risk of depression than healthy people, and higher PASI scores were linked to a higher incidence of depression. The dopamine levels of patients were influenced by both psoriasis and depression. The risk factors for depression in psoriasis patients are low dopamine levels in the plasma, severe skin lesions, and lower quality of life.
Collapse
Affiliation(s)
- Si-Qi Long
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, LuZhou, 646000, China
| | - Jing Fang
- Department of Dermatology, Qingbaijiang District People's Hospital of Chengdu, No.9 Fenghuang East Fourth Road, Chengdu, 610300, China
| | - Hui-Ling Shu
- Department of Dermatology, People's Hospital of Chongzhou, No.318 Yongkang East Road, Chongzhou, 611230, China
| | - Deng-Mei Xia
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, LuZhou, 646000, China
| | - Zheng-Qun Wang
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, LuZhou, 646000, China
| | - Wen-Yao Mi
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, LuZhou, 646000, China
| | - Xue-Li Zhang
- Department of psychiatry, Affiliated Hospital of Southwest Medical University, No.25 Taiping Road, LuZhou, 646000, China
| | - Chang-Qiang Li
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, LuZhou, 646000, China.
| |
Collapse
|
27
|
Broderick L, Hoffman HM. IL-1 and autoinflammatory disease: biology, pathogenesis and therapeutic targeting. Nat Rev Rheumatol 2022; 18:448-463. [PMID: 35729334 PMCID: PMC9210802 DOI: 10.1038/s41584-022-00797-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 11/21/2022]
Abstract
Over 20 years ago, it was first proposed that autoinflammation underpins a handful of rare monogenic disorders characterized by recurrent fever and systemic inflammation. The subsequent identification of novel, causative genes directly led to a better understanding of how the innate immune system is regulated under normal conditions, as well as its dysregulation associated with pathogenic mutations. Early on, IL-1 emerged as a central mediator for these diseases, based on data derived from patient cells, mutant mouse models and definitive clinical responses to IL-1 targeted therapy. Since that time, our understanding of the mechanisms of autoinflammation has expanded beyond IL-1 to additional innate immune processes. However, the number and complexity of IL-1-mediated autoinflammatory diseases has also multiplied to include additional monogenic syndromes with expanded genotypes and phenotypes, as well as more common polygenic disorders seen frequently by the practising clinician. In order to increase physician awareness and update rheumatologists who are likely to encounter these patients, this review discusses the general pathophysiological concepts of IL-1-mediated autoinflammation, the epidemiological and clinical features of specific diseases, diagnostic challenges and approaches, and current and future perspectives for therapy.
Collapse
Affiliation(s)
- Lori Broderick
- Division of Allergy, Immunology & Rheumatology, Department of Paediatrics, University of California, San Diego, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
| | - Hal M Hoffman
- Division of Allergy, Immunology & Rheumatology, Department of Paediatrics, University of California, San Diego, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
28
|
Koker O, Aktay Ayaz N. Autoimmune and autoinflammatory diseases with mucocutaneous manifestations: A pediatric rheumatology perspective. Int J Dermatol 2022; 62:723-736. [PMID: 35843911 DOI: 10.1111/ijd.16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/25/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022]
Abstract
The presence of mucocutaneous manifestations has clinical significance, as it may be a part of the initial presentation or activation stage of both autoimmune and autoinflammatory rheumatic diseases. The cutaneous signs may display a particular morphological and topographic distribution according to taxonomy, whereas heterogeneity is likely observed among the individuals. The review aims to cluster and systematically approach the mucocutaneous manifestations met in autoimmune and autoinflammatory rheumatic diseases of childhood. The search strategy involved a comprehensive inquiry on Web of Science, PubMed, MEDLINE, and Embase databases using relevant search terms such as "dermatologic, cutaneous, mucocutaneous, skin, rash" for each disease and category. The awareness of the distinctive mucocutaneous manifestations and their correlation with rheumatic diseases provides a convenient definition, well-timed control of the underlying condition, and prevention of cosmetic issues. In the management of rheumatic diseases, planning the pertinent differential diagnosis and determining the requirement of histopathological assessment are essential with a multidisciplinary approach to rheumatology, dermatology, and allergy-immunology specialties.
Collapse
Affiliation(s)
- Oya Koker
- Istanbul Faculty of Medicine, Department of Pediatric Rheumatology, Istanbul University, Istanbul, Turkey
| | - Nuray Aktay Ayaz
- Istanbul Faculty of Medicine, Department of Pediatric Rheumatology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
29
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
30
|
Gambichler T, Scheel CH, Arafat Y, Kautz O, Boms S. Erythrodermic pityriasis rubra pilaris after SASRS-CoV-2 vaccination with concomitant COVID-19 infection. J Eur Acad Dermatol Venereol 2022; 36:e675-e676. [PMID: 35536694 PMCID: PMC9347623 DOI: 10.1111/jdv.18214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
Affiliation(s)
- T Gambichler
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - C H Scheel
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Y Arafat
- Department of Dermatology, Christian Hospital Unna, Unna, Germany
| | - O Kautz
- NordWestHisto, Westerstede, Germany
| | - S Boms
- Department of Dermatology, Christian Hospital Unna, Unna, Germany
| |
Collapse
|
31
|
DeVore SB, Stevens ML, He H, Biagini JM, Kroner JW, Martin LJ, Hershey GKK. Novel role for caspase recruitment domain family member 14 and its genetic variant rs11652075 in skin filaggrin homeostasis. J Allergy Clin Immunol 2022; 149:708-717. [PMID: 34271060 PMCID: PMC9119145 DOI: 10.1016/j.jaci.2021.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Low epidermal filaggrin (FLG) is a risk factor for atopic dermatitis (AD) and allergic comorbidity. FLG mutations do not fully explain the variation in epidermal FLG levels, highlighting that other genetic loci may also regulate FLG expression. OBJECTIVE We sought to identify genetic loci that regulate FLG expression and elucidate their functional and mechanistic consequences. METHODS A genome-wide association study of quantified skin FLG expression in lesional and baseline non(never)-lesional skin of children with AD in the Mechanisms of Progression of Atopic Dermatitis to Asthma in Children cohort was conducted. Clustered regularly interspaced short palindromic repeat approaches were used to create isogenic human keratinocytes differing only at the identified variant rs11652075, and caspase recruitment domain family member 14 (CARD14)-deficient keratinocytes for subsequent mechanistic studies. RESULTS The genome-wide association study identified the CARD14 rs11652075 variant to be associated with FLG expression in non(never)-lesional skin of children with AD. Rs11652075 is a CARD14 expression quantitative trait locus in human skin and primary human keratinocytes. The T variant destroys a functional cytosine-phosphate-guanine site, resulting in reduced cytosine-phosphate-guanine methylation at this site (but not neighboring sites) in TT and CT compared with CC primary human keratinocytes and Mechanisms of Progression of Atopic Dermatitis to Asthma in Children children's skin samples, and rs11652075 increases CARD14 expression in an allele-specific fashion. Furthermore, studies in clustered regularly interspaced short palindromic repeat-generated CC and TT isogenic keratinocytes, as well as CARD14-haplosufficient and deficient keratinocytes, reveal that IL-17A regulates FLG expression via CARD14, and that the underlying mechanisms are dependent on the rs11652075 genotype. CONCLUSIONS Our study identifies CARD14 as a novel regulator of FLG expression in the skin of children with AD. Furthermore, CARD14 regulates skin FLG homeostasis in an rs11652075-dependent fashion.
Collapse
Affiliation(s)
- Stanley B. DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, Ohio 45267, USA.,Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Mariana L. Stevens
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Hua He
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Jocelyn M. Biagini
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, Ohio 45267, USA.,Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - John W. Kroner
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Lisa J. Martin
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, Ohio 45267, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Gurjit K. Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, Ohio 45267, USA.,Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA.,Corresponding Author Information Gurjit Khurana Hershey, MD, PhD, 3333 Burnet Avenue, MLC 7037, Cincinnati, OH 45229, USA, Phone 513-636-7054, Fax 513-636-1657,
| |
Collapse
|
32
|
Dhar S, Srinivas SM. Psoriasis in Pediatric Age Group. Indian J Dermatol 2022; 67:374-380. [PMID: 36578742 PMCID: PMC9792015 DOI: 10.4103/ijd.ijd_570_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Psoriasis is a common, chronic, immune-mediated, multisystem, inflammatory disorder. It affects all age groups, including infancy. In one-third of the cases, the onset of the disease is in the first and second decades of life. Childhood psoriasis significantly affects the quality of life of the child as well as that of the entire family. Pediatric psoriasis has distinct clinical presentations and evolves with time. Like in adults, chronic plaque psoriasis has been found to be the most common type of childhood psoriasis. Psoriatic plaques in children are less pruritic, smaller and thinner with less prominent scaling. In pigmented skin, the erythema is less prominent and plaques appear violaceous or hyperpigmented. Pediatric psoriasis can be associated with arthritis, metabolic syndrome, depression and anxiety. Hence all children should be screened routinely for associated comorbidities. Management of pediatric psoriasis is challenging owing to the limitation of approved therapies. 'Proactive therapy' is a recent approach in childhood-onset psoriasis that would help to prevent the severity of flare-ups, thus improving the quality of life.
Collapse
Affiliation(s)
- Sandipan Dhar
- From the Departments of Pediatric Dermatology, Institute of Child Health, Kolkata, West Bengal, India,Address for correspondence: Dr. Sandipan Dhar, Flat 9C, Palazzo, 35, Panditia Road, Kolkata - 700 029, West Bengal, India. E-mail:
| | - Sahana M. Srinivas
- Department of Pediatric Dermatology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| |
Collapse
|
33
|
Jain A, Bhoyar RC, Pandhare K, Mishra A, Sharma D, Imran M, Senthivel V, Divakar MK, Rophina M, Jolly B, Batra A, Sharma S, Siwach S, Jadhao AG, Palande NV, Jha GN, Ashrafi N, Mishra PK, A K V, Jain S, Dash D, Kumar NS, Vanlallawma A, Sarma RJ, Chhakchhuak L, Kalyanaraman S, Mahadevan R, Kandasamy S, B M P, Rajagopal RE, Ramya J E, Devi P N, Bajaj A, Gupta V, Mathew S, Goswami S, Mangla M, Prakash S, Joshi K, Meyakumla, S S, Gajjar D, Soraisham R, Yadav R, Devi YS, Gupta A, Mukerji M, Ramalingam S, B K B, Scaria V, Sivasubbu S. Genetic epidemiology of autoinflammatory disease variants in Indian population from 1029 whole genomes. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2021; 19:183. [PMID: 34905135 PMCID: PMC8671593 DOI: 10.1186/s43141-021-00268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Background Autoinflammatory disorders are the group of inherited inflammatory disorders caused due to the genetic defect in the genes that regulates innate immune systems. These have been clinically characterized based on the duration and occurrence of unprovoked fever, skin rash, and patient’s ancestry. There are several autoinflammatory disorders that are found to be prevalent in a specific population and whose disease genetic epidemiology within the population has been well understood. However, India has a limited number of genetic studies reported for autoinflammatory disorders till date. The whole genome sequencing and analysis of 1029 Indian individuals performed under the IndiGen project persuaded us to perform the genetic epidemiology of the autoinflammatory disorders in India. Results We have systematically annotated the genetic variants of 56 genes implicated in autoinflammatory disorder. These genetic variants were reclassified into five categories (i.e., pathogenic, likely pathogenic, benign, likely benign, and variant of uncertain significance (VUS)) according to the American College of Medical Genetics and Association of Molecular pathology (ACMG-AMP) guidelines. Our analysis revealed 20 pathogenic and likely pathogenic variants with significant differences in the allele frequency compared with the global population. We also found six causal founder variants in the IndiGen dataset belonging to different ancestry. We have performed haplotype prediction analysis for founder mutations haplotype that reveals the admixture of the South Asian population with other populations. The cumulative carrier frequency of the autoinflammatory disorder in India was found to be 3.5% which is much higher than reported. Conclusion With such frequency in the Indian population, there is a great need for awareness among clinicians as well as the general public regarding the autoinflammatory disorder. To the best of our knowledge, this is the first and most comprehensive population scale genetic epidemiological study being reported from India. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00268-2.
Collapse
Affiliation(s)
- Abhinav Jain
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Rahul C Bhoyar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Kavita Pandhare
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Anushree Mishra
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Disha Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Mohamed Imran
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vigneshwar Senthivel
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mohit Kumar Divakar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mercy Rophina
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Bani Jolly
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Arushi Batra
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sumit Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Sanjay Siwach
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Arun G Jadhao
- Department of Zoology, RTM Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Nikhil V Palande
- Department of Zoology, Shri Mathuradas Mohota College of Science, Nagpur, Maharashtra, 440009, India
| | - Ganga Nath Jha
- Department of Anthropology, Vinoba Bhave University, Hazaribag, Jharkhand, 825301, India
| | - Nishat Ashrafi
- Department of Anthropology, Vinoba Bhave University, Hazaribag, Jharkhand, 825301, India
| | - Prashant Kumar Mishra
- Department of Biotechnology, Vinoba Bhave University, Hazaribag, Jharkhand, 825301, India
| | - Vidhya A K
- Department of Biochemistry, Dr. Kongu Science and Art College, Erode, Tamil Nadu, 638107, India
| | - Suman Jain
- Thalassemia and Sickle Cell Society, Hyderabad, Telangana, 500052, India
| | - Debasis Dash
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | | | - Andrew Vanlallawma
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Ranjan Jyoti Sarma
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | | | - Radha Mahadevan
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | - Sunitha Kandasamy
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | - Pabitha B M
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | | | - Ezhil Ramya J
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | - Nirmala Devi P
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | - Anjali Bajaj
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vishu Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Samatha Mathew
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sangam Goswami
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mohit Mangla
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Savinitha Prakash
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Kandarp Joshi
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Meyakumla
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Sreedevi S
- Department of Microbiology, St.Pious X Degree & PG College for Women, Hyderabad, Telangana, 500076, India
| | - Devarshi Gajjar
- Department of Microbiology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Ronibala Soraisham
- Department of Dermatology, Venereology and Leprology, Regional Institute of Medical Sciences, Imphal, Manipur, 795004, India
| | - Rohit Yadav
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Yumnam Silla Devi
- CSIR- North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Aayush Gupta
- Department of Dermatology, Dr. D.Y. Patil Medical College, Pune, Maharashtra, 411018, India
| | - Mitali Mukerji
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sivaprakash Ramalingam
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Binukumar B K
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
34
|
Kurgyis Z, Vornholz L, Pechloff K, Kemény LV, Wartewig T, Muschaweckh A, Joshi A, Kranen K, Hartjes L, Möckel S, Steiger K, Hameister E, Volz T, Mellett M, French LE, Biedermann T, Korn T, Ruland J. Keratinocyte-intrinsic BCL10/MALT1 activity initiates and amplifies psoriasiform skin inflammation. Sci Immunol 2021; 6:eabi4425. [PMID: 34826258 DOI: 10.1126/sciimmunol.abi4425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zsuzsanna Kurgyis
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Konstanze Pechloff
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Lajos V Kemény
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Venereology, and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tim Wartewig
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Andreas Muschaweckh
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Abhinav Joshi
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Katja Kranen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Lara Hartjes
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Sigrid Möckel
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany.,Institute of Pathology, Universität Würzburg, Würzburg, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Erik Hameister
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Thomas Volz
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Mark Mellett
- Department of Dermatology, University Hospital of Zürich, University of Zurich (UZH), Zürich, Switzerland
| | - Lars E French
- Department of Dermatology, University Hospital of Zürich, University of Zurich (UZH), Zürich, Switzerland.,Department of Dermatology and Allergy, University Hospital, LMU Munich Munich, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Thomas Korn
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Center for Infection Research (DZIF), Munich partner site, Munich Germany
| |
Collapse
|
35
|
Shao S, Chen J, Swindell WR, Tsoi LC, Xing X, Ma F, Uppala R, Sarkar MK, Plazyo O, Billi AC, Wasikowski R, Smith KM, Honore P, Scott VE, Maverakis E, Kahlenberg JM, Wang G, Ward NL, Harms PW, Gudjonsson JE. Phospholipase A2 enzymes represent a shared pathogenic pathway in psoriasis and pityriasis rubra pilaris. JCI Insight 2021; 6:e151911. [PMID: 34491907 PMCID: PMC8564909 DOI: 10.1172/jci.insight.151911] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/03/2021] [Indexed: 02/02/2023] Open
Abstract
Altered epidermal differentiation along with increased keratinocyte proliferation is a characteristic feature of psoriasis and pityriasis rubra pilaris (PRP). However, despite this large degree of overlapping clinical and histologic features, the molecular signatures these skin disorders share are unknown. Using global transcriptomic profiling, we demonstrate that plaque psoriasis and PRP skin lesions have high overlap, with all differentially expressed genes in PRP relative to normal skin having complete overlap with those in psoriasis. The major common pathway shared between psoriasis and PRP involves the phospholipases PLA2G2F, PLA2G4D, and PLA2G4E, which were found to be primarily expressed in the epidermis. Gene silencing each of the 3 PLA2s led to reduction in immune responses and epidermal thickness both in vitro and in vivo in a mouse model of psoriasis, establishing their proinflammatory roles. Lipidomic analyses demonstrated that PLA2s affect mobilization of a phospholipid-eicosanoid pool, which is altered in psoriatic lesions and functions to promote immune responses in keratinocytes. Taken together, our results highlight the important role of PLA2s as regulators of epidermal barrier homeostasis and inflammation, identify PLA2s as a shared pathogenic mechanism between PRP and psoriasis, and as potential therapeutic targets for both diseases.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China.,Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - William R Swindell
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, the Jewish Hospital, Cincinnati, Ohio, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Feiyang Ma
- Department of Dermatology, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Ranjitha Uppala
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Prisca Honore
- AbbVie Dermatology Discovery, North Chicago, Illinois, USA
| | | | - Emanual Maverakis
- Department of Dermatology, UC Davis School of Medicine, Sacramento, California, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Nicole L Ward
- Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
36
|
Schwab JD, Ikonomi N, Werle SD, Weidner FM, Geiger H, Kestler HA. Reconstructing Boolean network ensembles from single-cell data for unraveling dynamics in the aging of human hematopoietic stem cells. Comput Struct Biotechnol J 2021; 19:5321-5332. [PMID: 34630946 PMCID: PMC8487005 DOI: 10.1016/j.csbj.2021.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 09/12/2021] [Indexed: 01/08/2023] Open
Abstract
Regulatory dependencies in molecular networks are the basis of dynamic behaviors affecting the phenotypical landscape. With the advance of high throughput technologies, the detail of omics data has arrived at the single-cell level. Nevertheless, new strategies are required to reconstruct regulatory networks based on populations of single-cell data. Here, we present a new approach to generate populations of gene regulatory networks from single-cell RNA-sequencing (scRNA-seq) data. Our approach exploits the heterogeneity of single-cell populations to generate pseudo-timepoints. This allows for the first time to uncouple network reconstruction from a direct dependency on time series measurements. The generated time series are then fed to a combined reconstruction algorithm. The latter allows a fast and efficient reconstruction of ensembles of gene regulatory networks. Since this approach does not require knowledge on time-related trajectories, it allows us to model heterogeneous processes such as aging. Applying the approach to the aging-associated NF-κB signaling pathway-based scRNA-seq data of human hematopoietic stem cells (HSCs), we were able to reconstruct eight ensembles, and evaluate their dynamic behavior. Moreover, we propose a strategy to evaluate the resulting attractor patterns. Interaction graph-based features and dynamic investigations of our model ensembles provide a new perspective on the heterogeneity and mechanisms related to human HSCs aging.
Collapse
Affiliation(s)
- Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Silke D Werle
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Felix M Weidner
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
37
|
Barnabei L, Laplantine E, Mbongo W, Rieux-Laucat F, Weil R. NF-κB: At the Borders of Autoimmunity and Inflammation. Front Immunol 2021; 12:716469. [PMID: 34434197 PMCID: PMC8381650 DOI: 10.3389/fimmu.2021.716469] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory response. In the first part of this review, we discuss the NF-κB inducers, signaling pathways, and regulators involved in immune homeostasis as well as detail the importance of post-translational regulation by ubiquitination in NF-κB function. We also indicate the stages of central and peripheral tolerance where NF-κB plays a fundamental role. With respect to central tolerance, we detail how NF-κB regulates medullary thymic epithelial cell (mTEC) development, homeostasis, and function. Moreover, we elaborate on its role in the migration of double-positive (DP) thymocytes from the thymic cortex to the medulla. With respect to peripheral tolerance, we outline how NF-κB contributes to the inactivation and destruction of autoreactive T and B lymphocytes as well as the differentiation of CD4+-T cell subsets that are implicated in immune tolerance. In the latter half of the review, we describe the contribution of NF-κB to the pathogenesis of autoimmunity and autoinflammation. The recent discovery of mutations involving components of the pathway has both deepened our understanding of autoimmune disease and informed new therapeutic approaches to treat these illnesses.
Collapse
Affiliation(s)
- Laura Barnabei
- INSERM UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Emmanuel Laplantine
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| | - William Mbongo
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| | - Frédéric Rieux-Laucat
- INSERM UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Robert Weil
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| |
Collapse
|
38
|
Mori M, Tobita R, Egusa C, Maeda T, Abe N, Kawakami H, Mae K, Matsumoto Y, Kawachi Y, Okubo Y. Clinical background of patients with psoriasiform skin lesions due to tumor necrosis factor antagonist administration at a single center. J Dermatol 2021; 48:1745-1753. [PMID: 34409641 DOI: 10.1111/1346-8138.16103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Paradoxical reaction (PR) occurs when a drug elicits a reaction contrary to what was expected. To clarify the clinical features and genetic background of individuals susceptible to PR, we analyzed the clinical course of patients in whom psoriatic eruptions worsened or newly developed during tumor necrosis factor (TNF) antagonist administration and the role of focal infections and genetic variations. Of 125 patients who received TNF antagonist therapy for psoriasis, acrodermatitis continua of Hallopeau (ACH), generalized pustular psoriasis (GPP), or palmoplantar pustular psoriasis (PPP), eight patients with PR were surveyed at our hospital Dermatology Department between 2010 and 2021. A survey was also done on six patients who received TNF antagonist therapy for Crohn's disease, rheumatoid arthritis, ankylosing spondylitis, and hidradenitis suppurativa and were referred to our department due to PR. Additionally, Sanger sequencing analysis was performed for all exons and flanking introns of IL36RN (interleukin 36 receptor antagonist), CARD14 (caspase recruitment domain-containing protein 14), and AP1S3 (adaptor-related protein complex 1 subunit sigma 3). The clinical assessment of the 14 patients demonstrated an average age at PR onset of 48.4 years, a male : female ratio of 5:9, and a mean administration period until onset of 9.2 months. The clinical types of PR were plaque psoriasis, PPP, GPP, pustulosis, acne, ACH, hair loss, and exacerbation of arthralgia. Histopathology revealed psoriasiform dermatitis in three patients. One patient continued TNF antagonist therapy. All of the patients with psoriasis and GPP had dental infections, suggesting that focal infection may be a risk factor of the development of PR following TNF antagonist therapy. Gene analysis demonstrated CARD14 gene variants associated with RA, CD, AS, or PPP in four patients. In addition, all of the patients with ACH and PPP experienced PR, suggesting that these diseases may predispose patients to PR to TNF antagonist therapy.
Collapse
Affiliation(s)
- Miho Mori
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Rie Tobita
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Chizu Egusa
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Tatsuo Maeda
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Namiko Abe
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi Kawakami
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Kenichiro Mae
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Yuka Matsumoto
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Yasuhiro Kawachi
- Department of Dermatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Yukari Okubo
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
39
|
Simionescu AA, Danciu BM, Stanescu AMA. State-of-the-Art Review of Pregnancy-Related Psoriasis. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:804. [PMID: 34441010 PMCID: PMC8402069 DOI: 10.3390/medicina57080804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022]
Abstract
Psoriasis is a chronic immunologic disease involving inflammation that can target internal organs, the skin, and joints. The peak incidence occurs between the age of 30 and 40 years, which overlaps with the typical reproductive period of women. Because of comorbidities that can accompany psoriasis, including metabolic syndrome, cardiovascular involvement, and major depressive disorders, the condition is a complex one. The role of hormones during pregnancy in the lesion dynamics of psoriasis is unclear, and it is important to resolve the implications of this pathology during pregnancy are. Furthermore, treating pregnant women who have psoriasis represents a challenge as most drugs generally prescribed for this pathology are contraindicated in pregnancy because of teratogenic effects. This review covers the state of the art in psoriasis associated with pregnancy. Careful pregnancy monitoring in moderate-to-severe psoriasis vulgaris is required given the high risk of related complications in pregnancy, including pregnancy-induced hypertensive disorders, low birth weight for gestational age, and gestational diabetes. Topical corticosteroids are safe during pregnancy but effective only for localised forms of psoriasis. Monoclonal antibodies targeting cytokines specifically upregulated in psoriasis, such as ustekinumab (IL-12/23 inhibitor), secukinumab (IL-17 inhibitor) can be effective for the severe form of psoriasis during pregnancy. A multidisciplinary team must choose optimal treatment, taking into account fetal and maternal risks and benefits.
Collapse
Affiliation(s)
- Anca Angela Simionescu
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bianca Mihaela Danciu
- Department of Obstetrics, Gynecology and Neonatology, “Dr. Alfred Rusescu” National Institute for Maternal and Child Health, 127715 Bucharest, Romania;
| | | |
Collapse
|
40
|
Riachi M, Polubothu S, Stadnik P, Hughes C, Martin SB, Charman CR, Cheng IL, Gholam K, Ogunbiyi O, Paige DG, Sebire NJ, Pittman A, Di WL, Kinsler VA. Molecular Genetic Dissection of Inflammatory Linear Verrucous Epidermal Naevus Leads to Successful Targeted Therapy. J Invest Dermatol 2021; 141:2979-2983.e1. [PMID: 34116062 PMCID: PMC8631607 DOI: 10.1016/j.jid.2021.02.765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/05/2022]
Affiliation(s)
- Melissa Riachi
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Satyamaanasa Polubothu
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, United Kingdom; Paediatric Dermatology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Paulina Stadnik
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Connor Hughes
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sara Barberan Martin
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Carolyn R Charman
- Dermatology, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Iek Leng Cheng
- Pharmacy, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Karolina Gholam
- Paediatric Dermatology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Olumide Ogunbiyi
- Paediatric Pathology, Department of Histopathology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - David G Paige
- Dermatology, Royal London Hospital, London, United Kingdom
| | - Neil J Sebire
- Paediatric Pathology, Department of Histopathology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Alan Pittman
- Bioinformatics, St George's University of London, London, United Kingdom
| | - Wei-Li Di
- Immunobiology Section, Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Veronica A Kinsler
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, United Kingdom; Paediatric Dermatology, Great Ormond Street Hospital for Children, London, United Kingdom.
| |
Collapse
|
41
|
Zwain A, Aldiwani M, Taqi H. The Association Between Psoriasis and Cardiovascular Diseases. Eur Cardiol 2021; 16:e19. [PMID: 34040653 PMCID: PMC8145074 DOI: 10.15420/ecr.2020.15.r2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases and psoriasis have been well established as separate entities, however, there is uncertainty with regards to a link between the two diseases. A few environmental, psychological and social factors have been implicated as potential common risk factors that may exacerbate the two diseases, and an array of complex immune and non-immune inflammatory mediators can potentially explain a plausible link. Pharmacotherapy has also played a role in establishing a potential association, especially with the advent of biological agents which directly act on inflammatory factors shared by the two diseases. This review will look at existing evidence and ascertain a potential correlation between the two.
Collapse
Affiliation(s)
- Ahmed Zwain
- North West Deanery, Aintree University Hospital Liverpool, UK
| | - Mohanad Aldiwani
- East Midlands Deanery, University Hospitals of Leicester NHS Trust Leicester, UK
| | - Hussein Taqi
- East Midlands Deanery, Royal Derby Hospital Derby, UK
| |
Collapse
|
42
|
Aksentijevich I, Schnappauf O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat Rev Rheumatol 2021; 17:405-425. [PMID: 34035534 DOI: 10.1038/s41584-021-00614-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Monogenic autoinflammatory diseases are a group of rheumatologic disorders caused by dysregulation in the innate immune system. The molecular mechanisms of these disorders are linked to defects in inflammasome-mediated, NF-κB-mediated or interferon-mediated inflammatory signalling pathways, cytokine receptors, the actin cytoskeleton, proteasome complexes and various enzymes. As with other human disorders, disease-causing variants in a single gene can present with variable expressivity and incomplete penetrance. In some cases, pathogenic variants in the same gene can be inherited either in a recessive or dominant manner and can cause distinct and seemingly unrelated phenotypes, although they have a unifying biochemical mechanism. With an enhanced understanding of protein structure and functionality of protein domains, genotype-phenotype correlations are beginning to be unravelled. Many of the mutated proteins are primarily expressed in haematopoietic cells, and their malfunction leads to systemic inflammation. Disease presentation is also defined by a specific effect of the mutant protein in a particular cell type and, therefore, the resulting phenotype might be more deleterious in one tissue than in another. Many patients present with the expanded immunological disease continuum that includes autoinflammation, immunodeficiency, autoimmunity and atopy, which necessitate genetic testing.
Collapse
Affiliation(s)
- Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Oskar Schnappauf
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Cagdas D, Mayr D, Baris S, Worley L, Langley DB, Metin A, Aytekin ES, Atan R, Kasap N, Bal SK, Dmytrus J, Heredia RJ, Karasu G, Torun SH, Toyran M, Karakoc-Aydiner E, Christ D, Kuskonmaz B, Uçkan-Çetinkaya D, Uner A, Oberndorfer F, Schiefer AI, Uzel G, Deenick EK, Keller B, Warnatz K, Neven B, Durandy A, Sanal O, Ma CS, Özen A, Stepensky P, Tezcan I, Boztug K, Tangye SG. Genomic Spectrum and Phenotypic Heterogeneity of Human IL-21 Receptor Deficiency. J Clin Immunol 2021; 41:1272-1290. [PMID: 33929673 PMCID: PMC8086229 DOI: 10.1007/s10875-021-01031-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023]
Abstract
Biallelic inactivating mutations in IL21R causes a combined immunodeficiency that is often complicated by cryptosporidium infections. While eight IL-21R-deficient patients have been reported previously, the natural course, immune characteristics of disease, and response to hematopoietic stem cell transplantation (HSCT) remain to be comprehensively examined. In our study, we have collected clinical histories of 13 patients with IL-21R deficiency from eight families across seven centers worldwide, including five novel patients identified by exome or NGS panel sequencing. Eight unique mutations in IL21R were identified in these patients, including two novel mutations. Median age at disease onset was 2.5 years (0.5–7 years). The main clinical manifestations were recurrent bacterial (84.6%), fungal (46.2%), and viral (38.5%) infections; cryptosporidiosis-associated cholangitis (46.2%); and asthma (23.1%). Inflammatory skin diseases (15.3%) and recurrent anaphylaxis (7.9%) constitute novel phenotypes of this combined immunodeficiency. Most patients exhibited hypogammaglobulinemia and reduced proportions of memory B cells, circulating T follicular helper cells, MAIT cells and terminally differentiated NK cells. However, IgE levels were elevated in 50% of IL-21R-deficient patients. Overall survival following HSCT (6 patients, mean follow-up 1.8 year) was 33.3%, with pre-existing organ damage constituting a negative prognostic factor. Mortality of non-transplanted patients (n = 7) was 57.1%. Our detailed analysis of the largest cohort of IL-21R-deficient patients to date provides in-depth clinical, immunological and immunophenotypic features of these patients, thereby establishing critical non-redundant functions of IL-21/IL-21R signaling in lymphocyte differentiation, humoral immunity and host defense against infection, and mechanisms of disease pathogenesis due to IL-21R deficiency. Outcome following HSCT depends on prior chronic infections and organ damage, which should thus be considered as early as possible following molecular diagnosis.
Collapse
Affiliation(s)
- Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children's Hospital, Hacettepe University Medical Faculty, Ankara, Turkey.
- Section of Pediatric Immunology, Institutes of Child Health, Health Science Institute, Hacettepe University, Ankara, Turkey.
| | - Daniel Mayr
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Safa Baris
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, İstanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Lisa Worley
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - David B Langley
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Ayse Metin
- Department of Pediatric Immunology, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Elif Soyak Aytekin
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children's Hospital, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Raziye Atan
- Department of Pediatrics, Hacettepe University Medical Faculty, 1031, Ankara, Turkey
| | - Nurhan Kasap
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, İstanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Köstel Bal
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jasmin Dmytrus
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Gulsun Karasu
- School of Medicine, Goztepe Medicalpark Hospital, Pediatric stem Cell Transplantation Unit, İstinye University, İstanbul, Turkey
| | - Selda Hancerli Torun
- İstanbul Medical Faculty, Pediatric Infectious Disease, Istanbul University, İstanbul, Turkey
| | - Muge Toyran
- Department of Pediatric Immunology, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Elif Karakoc-Aydiner
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, İstanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Baris Kuskonmaz
- Department of Pediatrics, Division of Pediatric Hematology, Hacettepe University Medical School, Ankara, Turkey
| | - Duygu Uçkan-Çetinkaya
- Department of Pediatrics, Division of Pediatric Hematology, Hacettepe University Medical School, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Hacettepe University Medical School, Ankara, Turkey
| | | | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elissa K Deenick
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bénédicte Neven
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker Children Hospital, Paris, France
| | - Anne Durandy
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Ozden Sanal
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children's Hospital, Hacettepe University Medical Faculty, Ankara, Turkey
- Section of Pediatric Immunology, Institutes of Child Health, Health Science Institute, Hacettepe University, Ankara, Turkey
| | - Cindy S Ma
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Ahmet Özen
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, İstanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Polina Stepensky
- Department of Bone Marrow Transplantation, Hadassah Medical Center and Faculty of Medicine Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilhan Tezcan
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children's Hospital, Hacettepe University Medical Faculty, Ankara, Turkey
- Section of Pediatric Immunology, Institutes of Child Health, Health Science Institute, Hacettepe University, Ankara, Turkey
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.
| | - Stuart G Tangye
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia.
| |
Collapse
|
44
|
Srivastava AK, Chand Yadav T, Khera HK, Mishra P, Raghuwanshi N, Pruthi V, Prasad R. Insights into interplay of immunopathophysiological events and molecular mechanistic cascades in psoriasis and its associated comorbidities. J Autoimmun 2021; 118:102614. [PMID: 33578119 DOI: 10.1016/j.jaut.2021.102614] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Psoriasis is an inflammatory skin disease with complex pathogenesis and multiple etiological factors. Besides the essential role of autoreactive T cells and constellation of cytokines, the discovery of IL-23/Th17 axis as a central signaling pathway has unraveled the mechanism of accelerated inflammation in psoriasis. This has provided insights into psoriasis pathogenesis and revolutionized the development of effective biological therapies. Moreover, genome-wide association studies have identified several candidate genes and susceptibility loci associated with this disease. Although involvement of cellular innate and adaptive immune responses and dysregulation of immune cells have been implicated in psoriasis initiation and maintenance, there is still a lack of unifying mechanism for understanding the pathogenesis of this disease. Emerging evidence suggests that psoriasis is a high-mortality disease with additional burden of comorbidities, which adversely affects the treatment response and overall quality of life of patients. Furthermore, changing trends of psoriasis-associated comorbidities and shared patterns of genetic susceptibility, risk factors and pathophysiological mechanisms manifest psoriasis as a multifactorial systemic disease. This review highlights the recent progress in understanding the crucial role of different immune cells, proinflammatory cytokines and microRNAs in psoriasis pathogenesis. In addition, we comprehensively discuss the involvement of various complex signaling pathways and their interplay with immune cell markers to comprehend the underlying pathophysiological mechanism, which may lead to exploration of new therapeutic targets and development of novel treatment strategies to reduce the disastrous nature of psoriasis and associated comorbidities.
Collapse
Affiliation(s)
- Amit Kumar Srivastava
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Tara Chand Yadav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Harvinder Kour Khera
- Tata Institute for Genetics and Society, Centre at InStem, Bangalore, 560065, Karnataka, India; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Purusottam Mishra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Navdeep Raghuwanshi
- Vaccine Formulation & Research Center, Gennova (Emcure) Biopharmaceuticals Limited, Pune, 411057, Maharashtra, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ramasare Prasad
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
45
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 1126] [Impact Index Per Article: 225.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
46
|
Mellett M. Regulation and dysregulation of CARD14 signalling and its physiological consequences in inflammatory skin disease. Cell Immunol 2020; 354:104147. [DOI: 10.1016/j.cellimm.2020.104147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/17/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
|
47
|
Rigante D. Phenotype variability of autoinflammatory disorders in the pediatric patient: A pictorial overview. J Evid Based Med 2020; 13:227-245. [PMID: 32627322 DOI: 10.1111/jebm.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
Disruption of innate immunity leading to systemic inflammation and multi-organ dysfunction is the basilar footprint of autoinflammatory disorders (AIDs), ranging from rare hereditary monogenic diseases to a large number of common chronic inflammatory conditions in which there is a simultaneous participation of multiple genetic components and environmental factors, sometimes combined with autoimmune phenomena and immunodeficiency. Whatever their molecular mechanism, hereditary AIDs are caused by mutations in regulatory molecules or sensors proteins leading to dysregulated production of proinflammatory cytokines or cytokine-inducing transcription factors, fever, elevation of acute phase reactants, and a portfolio of manifold inflammatory signs which might occur in a stereotyped manner, mostly with overactivity or misactivation of different inflammasomes. Symptoms might overlap in the pediatric patient, obscuring the final diagnosis of AIDs and delaying the most appropriate treatment. Actually, the fast-paced evolution of scientific knowledge has led to recognize or reclassify an overgrowing number of multifactorial diseases, which share the basic pathogenetic mechanisms with AIDs. The wide framework of classic hereditary periodic fevers, AIDs with prominent skin involvement, disorders of the ubiquitin-proteasome system, defects of actin cytoskeleton dynamics, and also idiopathic nonhereditary febrile syndromes occurring in children is herein presented. Interleukin-1 dependence of these diseases or involvement of other predominating molecules is also discussed.
Collapse
Affiliation(s)
- Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
- Periodic Fever and Rare Diseases Research Centre, Università Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
48
|
Wei L, Fang Y, Cao G, Zhang S, Tian M, Shen Q, Xu H, Liu C, Rao J. Genetic and pathological findings in a boy with psoriasis and C3 glomerulonephritis: A case report and literature review. Mol Genet Genomic Med 2020; 8:e1430. [PMID: 32725812 PMCID: PMC7549556 DOI: 10.1002/mgg3.1430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/20/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Psoriasis is a chronic inflammatory dermatosis with complex genetic basis supported by family investigation. Renal involvement in psoriasis is sparsely studied and its pathogenesis is still unclear. Methods and Results We describe the case of a 7‐year‐old boy presented new onset of nephropathy two weeks after a flare‐up of psoriasis. His mother had a long history of psoriasis without abnormal urinalysis records. The case showed non‐nephrotic range proteinuria, microscopic hematuria without any other abnormal results including renal function, complement cascade, and ultrasound. Renal pathological demonstrated the diagnosis of C3 glomerulonephritis (C3GN) showing mesangial proliferative glomerulonephritis with C3 staining only, effacement of podocyte process and intramembranous electron dense deposit by electric microscopy. Parent‐child trio WES performed to screening the common variants of psoriasis susceptibility locus and also the rare variants associated with C3GN. We identified a missense single nucleotide polymorphism of CARD14 (*607211, rs34367357, p.Val585Ile) carried by the proband and his mother. Meta‐analysis proved the association of rs34367357 and psoriasis (p = 0.006, OR = 1.23). A hemizygouse mutation of CLCN5 (*300008, c.1904A>G,p.Asn635Ser) was identified for diagnosis of Dent disease (*300009). Conclusion The case highlights the genetic study is necessary to facilitate disease differentiation in new onset of nephropathy with psoriasis in children.
Collapse
Affiliation(s)
- Lei Wei
- Department of Nephrology and Rheumatology, Children's Hospital of Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Ye Fang
- Department of Nephrology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Guanghai Cao
- Department of Nephrology and Rheumatology, Children's Hospital of Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Shufeng Zhang
- Department of Nephrology and Rheumatology, Children's Hospital of Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Ming Tian
- Department of Nephrology and Rheumatology, Children's Hospital of Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Cuihua Liu
- Department of Nephrology and Rheumatology, Children's Hospital of Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
49
|
Chiramel MJ, Sathishkumar D, Edison ES, George R. Two cases of CARD14-associated papulosquamous eruption from India. Pediatr Dermatol 2020; 37:692-694. [PMID: 32323375 DOI: 10.1111/pde.14172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Identification of CARD14-associated papulosquamous eruption (CAPE) is important as it helps in determining prognosis and management of those affected. We report two siblings with genetically confirmed CAPE presenting with treatment-resistant erythroderma in one patient and patterned psoriatic plaques with facial predominance in the other.
Collapse
Affiliation(s)
- Minu Jose Chiramel
- Department of Dermatology, Christian Medical College Vellore, Tamil Nadu, India
| | | | | | - Renu George
- Department of Dermatology, Christian Medical College Vellore, Tamil Nadu, India
| |
Collapse
|
50
|
Manils J, Webb LV, Howes A, Janzen J, Boeing S, Bowcock AM, Ley SC. CARD14 E138A signalling in keratinocytes induces TNF-dependent skin and systemic inflammation. eLife 2020; 9:e56720. [PMID: 32597759 PMCID: PMC7351492 DOI: 10.7554/elife.56720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
To investigate how the CARD14E138A psoriasis-associated mutation induces skin inflammation, a knock-in mouse strain was generated that allows tamoxifen-induced expression of the homologous Card14E138A mutation from the endogenous mouse Card14 locus. Heterozygous expression of CARD14E138A rapidly induced skin acanthosis, immune cell infiltration and expression of psoriasis-associated pro-inflammatory genes. Homozygous expression of CARD14E138A induced more extensive skin inflammation and a severe systemic disease involving infiltration of myeloid cells in multiple organs, temperature reduction, weight loss and organ failure. This severe phenotype resembled acute exacerbations of generalised pustular psoriasis (GPP), a rare form of psoriasis that can be caused by CARD14 mutations in patients. CARD14E138A-induced skin inflammation and systemic disease were independent of adaptive immune cells, ameliorated by blocking TNF and induced by CARD14E138A signalling only in keratinocytes. These results suggest that anti-inflammatory therapies specifically targeting keratinocytes, rather than systemic biologicals, might be effective for GPP treatment early in disease progression.
Collapse
Affiliation(s)
- Joan Manils
- The Francis Crick InstituteLondonUnited Kingdom
- Department of Immunology & Inflammation, Imperial College LondonLondonUnited Kingdom
| | | | - Ashleigh Howes
- National Heart & Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Julia Janzen
- Department of Immunology & Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Stefan Boeing
- The Francis Crick InstituteLondonUnited Kingdom
- Bioinformatics and Biostatistics, The Francis Crick InstituteLondonUnited Kingdom
- Crick Scientific Computing - Digital Development Team, The Francis Crick InstituteLondonUnited Kingdom
| | - Anne M Bowcock
- National Heart & Lung Institute, Imperial College LondonLondonUnited Kingdom
- Departments of Oncological Science, Dermatology, and Genetics & Genome Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Steven C Ley
- Department of Immunology & Inflammation, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|