1
|
Kalaga P, Ray SK. Mental Health Disorders Due to Gut Microbiome Alteration and NLRP3 Inflammasome Activation After Spinal Cord Injury: Molecular Mechanisms, Promising Treatments, and Aids from Artificial Intelligence. Brain Sci 2025; 15:197. [PMID: 40002529 PMCID: PMC11852823 DOI: 10.3390/brainsci15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Aside from its immediate traumatic effects, spinal cord injury (SCI) presents multiple secondary complications that can be harmful to those who have been affected by SCI. Among these secondary effects, gut dysbiosis (GD) and the activation of the NOD (nucleotide-binding oligomerization domain) like receptor-family pyrin-domain-containing three (NLRP3) inflammasome are of special interest for their roles in impacting mental health. Studies have found that the state of the gut microbiome is thrown into disarray after SCI, providing a chance for GD to occur. Metabolites such as short-chain fatty acids (SCFAs) and a variety of neurotransmitters produced by the gut microbiome are hampered by GD. This disrupts healthy cognitive processes and opens the door for SCI patients to be impacted by mental health disorders. Additionally, some studies have found an increased presence and activation of the NLRP3 inflammasome and its respective parts in SCI patients. Preclinical and clinical studies have shown that NLRP3 inflammasome plays a key role in the maturation of pro-inflammatory cytokines that can initiate and eventually aggravate mental health disorders after SCI. In addition to the mechanisms of GD and the NLRP3 inflammasome in intensifying mental health disorders after SCI, this review article further focuses on three promising treatments: fecal microbiome transplants, phytochemicals, and melatonin. Studies have found these treatments to be effective in combating the pathogenic mechanisms of GD and NLRP3 inflammasome, as well as alleviating the symptoms these complications may have on mental health. Another area of focus of this review article is exploring how artificial intelligence (AI) can be used to support treatments. AI models have already been developed to track changes in the gut microbiome, simulate drug-gut interactions, and design novel anti-NLRP3 inflammasome peptides. While these are promising, further research into the applications of AI for the treatment of mental health disorders in SCI is needed.
Collapse
Affiliation(s)
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA;
| |
Collapse
|
2
|
Bosáková V, Papatheodorou I, Kafka F, Tomášiková Z, Kolovos P, Hortová Kohoutková M, Frič J. Serotonin attenuates tumor necrosis factor-induced intestinal inflammation by interacting with human mucosal tissue. Exp Mol Med 2025; 57:364-378. [PMID: 39894823 PMCID: PMC11873120 DOI: 10.1038/s12276-025-01397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/13/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
The intestine hosts the largest immune system and peripheral nervous system in the human body. The gut‒brain axis orchestrates communication between the central and enteric nervous systems, playing a pivotal role in regulating overall body function and intestinal homeostasis. Here, using a human three-dimensional in vitro culture model, we investigated the effects of serotonin, a neuromodulator produced in the gut, on immune cell and intestinal tissue interactions. Serotonin attenuated the tumor necrosis factor-induced proinflammatory response, mostly by affecting the expression of chemokines. Serotonin affected the phenotype and distribution of tissue-migrating monocytes, without direct contact with the cells, by remodeling the intestinal tissue. Collectively, our results show that serotonin plays a crucial role in communication among gut-brain axis components and regulates monocyte migration and plasticity, thereby contributing to gut homeostasis and the progression of inflammation. In vivo studies focused on the role of neuromodulators in gut inflammation have shown controversial results, highlighting the importance of human experimental models. Moreover, our results emphasize the importance of human health research in human cell-based models and suggest that the serotonin signaling pathway is a new therapeutic target for inflammatory bowel disease.
Collapse
Affiliation(s)
- Veronika Bosáková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ioanna Papatheodorou
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Filip Kafka
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Tomášiková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Marcela Hortová Kohoutková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| |
Collapse
|
3
|
Agusti A, Molina-Mendoza GV, Tamayo M, Rossini V, Cenit MC, Frances-Cuesta C, Tolosa-Enguis V, Gómez Del Pulgar EM, Flor-Duro A, Sanz Y. Christensenella minuta mitigates behavioral and cardiometabolic hallmarks of social defeat stress. Biomed Pharmacother 2024; 180:117377. [PMID: 39316970 DOI: 10.1016/j.biopha.2024.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Psychological stress during early development and adolescence may increase the risk of psychiatric and cardiometabolic comorbidities in adulthood. The gut microbiota has been associated with mental health problems such as depression and anxiety and with cardiometabolic disease, but the potential role of the gut microbiota in their comorbidity is not well understood. We investigated the effects and mode of action of the intestinal bacterium Christensenella minuta DSM 32891 on stress-induced mental health and cardiometabolic disturbances in a mouse model of social defeat stress. We demonstrate that administered C. minuta alleviates chronic stress-induced depressive, anxiogenic and antisocial behavior. These effects are attributed to the bacterium's ability to modulate the hypothalamic-pituitary-adrenal axis, which mediates the stress response. This included the oversecretion of corticosterone and the overexpression of its receptors, as well as the metabolism of dopamine (DA) and the expression of its receptors (D1, D2L and D2S). Additionally, C. minuta administration reduced chronically induced inflammation in plasma, spleen and some brain areas, which likely contribute to the recovery of physical and behavioral function. Furthermore, C. minuta administration prevented chronic stress-induced cardiovascular damage by regulating key enzymes mediating liver fibrosis and oxidative stress. Finally, C. minuta increased the abundance of bacteria associated with mental health. Overall, our study highlights the potential of microbiota-directed interventions to alleviate both the physical and mental effects of chronic stress.
Collapse
Affiliation(s)
- A Agusti
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain.
| | - G V Molina-Mendoza
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - M Tamayo
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain; Department of Medicine, Autonomous University of Madrid, Madrid 28029, Spain
| | - V Rossini
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - M C Cenit
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain; Department of Medicine, Autonomous University of Madrid, Madrid 28029, Spain
| | - C Frances-Cuesta
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - V Tolosa-Enguis
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - E M Gómez Del Pulgar
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - A Flor-Duro
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - Y Sanz
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain.
| |
Collapse
|
4
|
Zhang F, Pan L, Lian C, Xu Z, Chen H, Lai W, Liang X, Liu Q, Wu H, Wang Y, Zhang P, Zhang G, Liu Z. ICAM-1 may promote the loss of dopaminergic neurons by regulating inflammation in MPTP-induced Parkinson's disease mouse models. Brain Res Bull 2024; 214:110989. [PMID: 38825252 DOI: 10.1016/j.brainresbull.2024.110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease with unclear pathogenesis that involves neuroinflammation and intestinal microbial dysbiosis. Intercellular adhesion molecule-1 (ICAM-1), an inflammatory marker, participates in neuroinflammation during dopaminergic neuronal damage. However, the explicit mechanisms of action of ICAM-1 in PD have not been elucidated. We established a subacute PD mouse model by the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and observed motor symptoms and gastrointestinal dysfunction in mice. Immunofluorescence was used to examine the survival of dopaminergic neurons, expression of microglial and astrocyte markers, and intestinal tight junction-associated proteins. Then, we use 16 S rRNA sequencing to identify alterations in the microbiota. Our findings revealed that ICAM-1-specific antibody (Ab) treatment relieved behavioural defects, gastrointestinal dysfunction, and dopaminergic neuronal death in MPTP-induced PD mice. Further mechanistic investigations indicated that ICAM-1Ab might suppress neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra and relieving colon barrier impairment and intestinal inflammation. Furthermore, 16 S rRNA sequencing revealed that the relative abundances of bacterial Firmicutes, Clostridia, and Lachnospiraceae were elevated in the PD mice. However, ICAM-1Ab treatment ameliorated the MPTP-induced disorders in the intestinal microbiota. Collectively, we concluded that the suppressing ICAM-1 might lead to the a significant decrease of inflammation and restore the gut microbial community, thus ameliorating the damage of DA neurons.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Rehabilitation Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China; Zunyi Medical University, Zunyi, Guizhou, China
| | - Lixin Pan
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Changlin Lian
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Zhifeng Xu
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Hongda Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenjie Lai
- Department of Neurology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Xiaojue Liang
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Qiyuan Liu
- Shantou University, Chaoshan, Guangdong, China
| | - Haomin Wu
- Department of Rehabilitation Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yukai Wang
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Pande Zhang
- Department of Rehabilitation Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China.
| | - Guohua Zhang
- Department of Neurology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China.
| | - Zhen Liu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
5
|
Lu X, Liu Q, Deng Y, Wu J, Mu X, Yang X, Zhang T, Luo C, Li Z, Tang S, Hu Y, Du Q, Xu J, Xie R. Research progress on the roles of dopamine and dopamine receptors in digestive system diseases. J Cell Mol Med 2024; 28:e18154. [PMID: 38494840 PMCID: PMC10945074 DOI: 10.1111/jcmm.18154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 03/19/2024] Open
Abstract
Dopamine (DA) is a neurotransmitter synthesized in the human body that acts on multiple organs throughout the body, reaching them through the blood circulation. Neurotransmitters are special molecules that act as messengers by binding to receptors at chemical synapses between neurons. As ligands, they mainly bind to corresponding receptors on central or peripheral tissue cells. Signalling through chemical synapses is involved in regulating the activities of various body systems. Lack of DA or a decrease in DA levels in the brain can lead to serious diseases such as Parkinson's disease, schizophrenia, addiction and attention deficit disorder. It is widely recognized that DA is closely related to neurological diseases. As research on the roles of brain-gut peptides in human physiology and pathology has deepened in recent years, the regulatory role of neurotransmitters in digestive system diseases has gradually attracted researchers' attention, and research on DA has expanded to the field of digestive system diseases. This review mainly elaborates on the research progress on the roles of DA and DRs related to digestive system diseases. Starting from the biochemical and pharmacological properties of DA and DRs, it discusses the therapeutic value of DA- and DR-related drugs for digestive system diseases.
Collapse
Affiliation(s)
- Xianmin Lu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ya Deng
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jiangbo Wu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Xingyi Mu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Xiaoxu Yang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Chen Luo
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Yanxia Hu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Qian Du
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
6
|
Gupta S, Dinesh S, Sharma S. Bridging the Mind and Gut: Uncovering the Intricacies of Neurotransmitters, Neuropeptides, and their Influence on Neuropsychiatric Disorders. Cent Nerv Syst Agents Med Chem 2024; 24:2-21. [PMID: 38265387 DOI: 10.2174/0118715249271548231115071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND The gut-brain axis (GBA) is a bidirectional signaling channel that facilitates communication between the gastrointestinal tract and the brain. Recent research on the gut-brain axis demonstrates that this connection enables the brain to influence gut function, which in turn influences the brain and its cognitive functioning. It is well established that malfunctioning of this axis adversely affects both systems' ability to operate effectively. OBJECTIVE Dysfunctions in the GBA have been associated with disorders of gut motility and permeability, intestinal inflammation, indigestion, constipation, diarrhea, IBS, and IBD, as well as neuropsychiatric and neurodegenerative disorders like depression, anxiety, schizophrenia, autism, Alzheimer's, and Parkinson's disease. Multiple research initiatives have shown that the gut microbiota, in particular, plays a crucial role in the GBA by participating in the regulation of a number of key neurochemicals that are known to have significant effects on the mental and physical well-being of an individual. METHODS Several studies have investigated the relationship between neuropsychiatric disorders and imbalances or disturbances in the metabolism of neurochemicals, often leading to concomitant gastrointestinal issues and modifications in gut flora composition. The interaction between neurological diseases and gut microbiota has been a focal point within this research. The novel therapeutic interventions in neuropsychiatric conditions involving interventions such as probiotics, prebiotics, and dietary modifications are outlined in this review. RESULTS The findings of multiple studies carried out on mice show that modulating and monitoring gut microbiota can help treat symptoms of such diseases, which raises the possibility of the use of probiotics, prebiotics, and even dietary changes as part of a new treatment strategy for neuropsychiatric disorders and their symptoms. CONCLUSION The bidirectional communication between the gut and the brain through the gut-brain axis has revealed profound implications for both gastrointestinal and neurological health. Malfunctions in this axis have been connected to a range of disorders affecting gut function as well as cognitive and neuropsychiatric well-being. The emerging understanding of the role of gut microbiota in regulating key neurochemicals opens up possibilities for novel treatment approaches for conditions like depression, anxiety, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Bioinformatics, BioNome, Bengaluru, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, India
| |
Collapse
|
7
|
Wang M, Liu H, Huang M, Huang Y, Ming Y, Chen W, Chen Y, Tang Z, Jia B. Immunomodulatory functions of microorganisms in tissue regenerative healing. Acta Biomater 2023; 172:38-52. [PMID: 37816417 DOI: 10.1016/j.actbio.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
External pathogenic microorganisms and commensal microorganisms in the body have either harmful or beneficial impacts on the regenerative repair of tissues, and the immune system plays a crucial regulatory role in this process. This review summarises our current understanding of microorganism-immune system interactions, with a focus on how these interactions impact the renewal and repair ability of tissues, including skin, bone, gut, liver, and nerves. This review concludes with a discussion of the mechanisms by which microbes act on various types of immune cells to affect tissue regeneration, offers potential strategies for using microbial therapies to enhance the regenerative repair function of tissues, and suggest novel therapeutic approaches for regenerative medicine. STATEMENT OF SIGNIFICANCE: Microbiological communities have crucial impacts on human health and illness by participating in energy collection and storage and performing various metabolic processes. External pathogenic microorganisms and commensal microorganisms in the body have either harmful or beneficial impacts on the regenerative repair of tissues, and the immune system plays a critical regulatory role in this process. This study reviews the important correlation between microorganisms and the immune system and investigates the mechanism of various microorganism that participate in the regeneration and repair of tissues and organs by modulating immune system.
Collapse
Affiliation(s)
- Min Wang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Moore SC, Vaz de Castro PAS, Yaqub D, Jose PA, Armando I. Anti-Inflammatory Effects of Peripheral Dopamine. Int J Mol Sci 2023; 24:13816. [PMID: 37762126 PMCID: PMC10530375 DOI: 10.3390/ijms241813816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Dopamine is synthesized in the nervous system where it acts as a neurotransmitter. Dopamine is also synthesized in a number of peripheral organs as well as in several types of cells and has organ-specific functions and, as demonstrated more recently, is involved in the regulation of the immune response and inflammatory reaction. In particular, the renal dopaminergic system is very important in the regulation of sodium transport and blood pressure and is particularly sensitive to stimuli that cause oxidative stress and inflammation. This review is focused on how dopamine is synthesized in organs and tissues and the mechanisms by which dopamine and its receptors exert their effects on the inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | - Ines Armando
- Division of Kidney Diseases and Hypertension, Department of Medicine, The George Washington School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.C.M.); (P.A.S.V.d.C.); (D.Y.); (P.A.J.)
| |
Collapse
|
9
|
Cickovski T, Mathee K, Aguirre G, Tatke G, Hermida A, Narasimhan G, Stollstorff M. Attention Deficit Hyperactivity Disorder (ADHD) and the gut microbiome: An ecological perspective. PLoS One 2023; 18:e0273890. [PMID: 37594987 PMCID: PMC10437823 DOI: 10.1371/journal.pone.0273890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is an increasingly prevalent neuropsychiatric disorder characterized by hyperactivity, inattention, and impulsivity. Symptoms emerge from underlying deficiencies in neurocircuitry, and recent research has suggested a role played by the gut microbiome. The gut microbiome is an ecosystem of interdependent taxa involved in an exponentially complex web of interactions, plus host gene and reaction pathways, some of which involve neurotransmitters with roles in ADHD neurocircuitry. Studies have analyzed the ADHD gut microbiome using macroscale metrics such as diversity and differential abundance, and have proposed several taxa as elevated or reduced in ADHD compared to Control. Few studies have delved into the complex underlying dynamics ultimately responsible for the emergence of such metrics, leaving a largely incomplete, sometimes contradictory, and ultimately inconclusive picture. We aim to help complete this picture by venturing beyond taxa abundances and into taxa relationships (i.e. cooperation and competition), using a publicly available gut microbiome dataset (targeted 16S, v3-4 region, qPCR) from an observational, case-control study of 30 Control (15 female, 15 male) and 28 ADHD (15 female, 13 male) undergraduate students. We first perform the same macroscale analyses prevalent in ADHD gut microbiome literature (diversity, differential abundance, and composition) to observe the degree of correspondence, or any new trends. We then estimate two-way ecological relationships by producing Control and ADHD Microbial Co-occurrence Networks (MCNs), using SparCC correlations (p ≤ 0.01). We perform community detection to find clusters of taxa estimated to mutually cooperate along with their centroids, and centrality calculations to estimate taxa most vital to overall gut ecology. We finally summarize our results, providing conjectures on how they can guide future experiments, some methods for improving our experiments, and general implications for the field.
Collapse
Affiliation(s)
- Trevor Cickovski
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States of America
| | - Gloria Aguirre
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Gorakh Tatke
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Alejandro Hermida
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Melanie Stollstorff
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| |
Collapse
|
10
|
Wang M, Ren C, Wang P, Cheng X, Chen Y, Huang Y, Chen J, Sun Z, Wang Q, Zhang Z. Microbiome–Metabolome Reveals the Contribution of the Gut–Testis Axis to Sperm Motility in Sheep (Ovis aries). Animals (Basel) 2023; 13:ani13060996. [PMID: 36978536 PMCID: PMC10044597 DOI: 10.3390/ani13060996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
A close association exists among testicular function, gut microbiota regulation, and organismal metabolism. In this study, serum and seminal plasma metabolomes, and the rumen microbiome of sheep with significant differences in sperm viability, were explored. Serum and seminal plasma metabolomes differed significantly between high-motility (HM) and low-motility (LM) groups of sheep, and 39 differential metabolites closely related to sperm motility in sheep were found in seminal plasma metabolomes, while 35 were found in serum samples. A 16S rRNA sequence analysis showed that the relative abundance of HM and LM rumen microorganisms, such as Ruminococcus and Quinella, was significantly higher in the HM group, whereas genera such as Rikenellaceae_RC9_gut_group and Lactobacillus were enriched in the mid-LM group. Serum hormone assays revealed that serum follicle-stimulating hormone (FSH) and MT levels were significantly lower in the LM group than in the HM group, whereas serum glucocorticoid (GC) levels were higher in the LM group than in the HM group, and they all affected sperm motility in sheep. Ruminococcus and other rumen microorganisms were positively correlated with sperm motility, whereas Lactobacillus was negatively correlated with FSH and GCs levels. Our findings suggest that rumen microbial activity can influence the host metabolism and hormone levels associated with fertility in sheep.
Collapse
Affiliation(s)
- Mingming Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yale Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yafeng Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jiahong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Modern Agricultural Technology Cooperation and Popularization Center of Dingyuan County, Chuzhou 233200, China
| | - Zhipeng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qiangjun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Q.W.); (Z.Z.)
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Modern Agricultural Technology Cooperation and Popularization Center of Dingyuan County, Chuzhou 233200, China
- Correspondence: (Q.W.); (Z.Z.)
| |
Collapse
|
11
|
Jankowski MM, Ignatowska-Jankowska BM, Glac W, Wiergowski M, Kazmierska-Grebowska P, Swiergiel AH. Intravenous haloperidol and cocaine alter the distribution of T CD3 + CD4 + , non-T/NK and NKT cells in rats. Clin Exp Pharmacol Physiol 2023; 50:453-462. [PMID: 36802086 DOI: 10.1111/1440-1681.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/20/2023]
Abstract
The modulation of dopamine transmission evokes strong behavioural effects that can be achieved by commonly used psychoactive drugs such as haloperidol or cocaine. Cocaine non-specifically increases dopamine transmission by blocking dopamine active transporter (DAT) and evokes behavioural arousal, whereas haloperidol is a non-specific D2-like dopamine receptor antagonist with sedative effects. Interestingly, dopamine has been found to affect immune cells in addition to its action in the central nervous system. Here, we address the possible interactions between haloperidol and cocaine and their effects on both immune cells and behaviour in freely moving rats. We use an intravenous model of haloperidol and binge cocaine administration to evaluate the drugs' impact on the distribution of lymphocyte subsets in both the peripheral blood and the spleen. We assess the drugs' behavioural effects by measuring locomotor activity. Cocaine evoked a pronounced locomotor response and stereotypic behaviours, both of which were completely blocked after pretreatment with haloperidol. The results suggest that blood lymphopenia, which was induced by haloperidol and cocaine (except for natural killer T cells), is independent of D2-like dopaminergic activity and most likely results from the massive secretion of corticosterone. Haloperidol pretreatment prevented the cocaine-induced decrease in NKT cell numbers. Moreover, the increased systemic D2-like dopaminergic activity after cocaine administration is a significant factor in retaining T CD3+ CD4+ lymphocytes and non-T/NK CD45RA+ cells in the spleen.
Collapse
Affiliation(s)
- Maciej M Jankowski
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Bogna M Ignatowska-Jankowska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland.,Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Wojciech Glac
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Marek Wiergowski
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | | | - Artur H Swiergiel
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
12
|
Cao Y, Li Y, Wang X, Liu S, Zhang Y, Liu G, Ye S, Zheng Y, Zhao J, Zhu X, Chen Y, Xu H, Feng D, Chen D, Chen L, Liu W, Zhou W, Zhang Z, Zhou P, Deng K, Ye L, Yu Y, Yao Z, Liu Q, Xu H, Zhou J. Dopamine inhibits group 2 innate lymphoid cell-driven allergic lung inflammation by dampening mitochondrial activity. Immunity 2023; 56:320-335.e9. [PMID: 36693372 DOI: 10.1016/j.immuni.2022.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/26/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023]
Abstract
Neuronal signals have emerged as pivotal regulators of group 2 innate lymphoid cells (ILC2s) that regulate tissue homeostasis and allergic inflammation. The molecular pathways underlying the neuronal regulation of ILC2 responses in lungs remain to be fully elucidated. Here, we found that the abundance of neurotransmitter dopamine was negatively correlated with circulating ILC2 numbers and positively associated with pulmonary function in humans. Dopamine potently suppressed lung ILC2 responses in a DRD1-receptor-dependent manner. Genetic deletion of Drd1 or local ablation of dopaminergic neurons augmented ILC2 responses and allergic lung inflammation. Transcriptome and metabolic analyses revealed that dopamine impaired the mitochondrial oxidative phosphorylation (OXPHOS) pathway in ILC2s. Augmentation of OXPHOS activity with oltipraz antagonized the inhibitory effect of dopamine. Local administration of dopamine alleviated allergen-induced ILC2 responses and airway inflammation. These findings demonstrate that dopamine represents an inhibitory regulator of ILC2 responses in allergic airway inflammation.
Collapse
Affiliation(s)
- Yingjiao Cao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yu Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Xiangyang Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Shaorui Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Yongmei Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Gaoyu Liu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shusen Ye
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yuhao Zheng
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jiacong Zhao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaodong Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Chen
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Haixu Xu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dingyun Feng
- Department of Pulmonary and Critical Care Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Dubo Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Sun Yet-san University, Guangzhou 510080, China
| | - Ling Chen
- Department of Neurology, First Affiliated Hospital of Sun Yet-san University, Guangzhou 510080, China
| | - Wangkai Liu
- Department of Pediatrics, First Affiliated Hospital of Sun Yet-san University, Guangzhou 510080, China
| | - Wenjie Zhou
- Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Zhang
- Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230026, China
| | - Pan Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Kai Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Liu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China.
| | - Jie Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
13
|
Kim HH, Shim YR, Choi SE, Kim MH, Lee G, You HJ, Choi WM, Yang K, Ryu T, Kim K, Kim MJ, Woo C, Chung KPS, Hong SH, Eun HS, Kim SH, Ko G, Park JE, Gao B, Kim W, Jeong WI. Catecholamine induces Kupffer cell apoptosis via growth differentiation factor 15 in alcohol-associated liver disease. Exp Mol Med 2023; 55:158-170. [PMID: 36631664 PMCID: PMC9898237 DOI: 10.1038/s12276-022-00921-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
Chronic alcohol consumption often induces hepatic steatosis but rarely causes severe inflammation in Kupffer cells (KCs) despite the increased hepatic influx of lipopolysaccharide (LPS), suggesting the presence of a veiled tolerance mechanism. In addition to LPS, the liver is affected by several gut-derived neurotransmitters through the portal blood, but the effects of catecholamines on KCs have not been clearly explored in alcohol-associated liver disease (ALD). Hence, we investigated the regulatory roles of catecholamine on inflammatory KCs under chronic alcohol exposure. We discovered that catecholamine levels were significantly elevated in the cecum, portal blood, and liver tissues of chronic ethanol-fed mice. Increased catecholamines induced mitochondrial translocation of cytochrome P450 2E1 in perivenous hepatocytes expressing the β2-adrenergic receptor (ADRB2), leading to the enhanced production of growth differentiation factor 15 (GDF15). Subsequently, GDF15 profoundly increased ADRB2 expression in adjacent inflammatory KCs to facilitate catecholamine/ADRB2-mediated apoptosis. Single-cell RNA sequencing of KCs confirmed the elevated expression of Adrb2 and apoptotic genes after chronic ethanol intake. Genetic ablation of Adrb2 or hepatic Gdf15 robustly decreased the number of apoptotic KCs near perivenous areas, exacerbating alcohol-associated inflammation. Consistently, we found that blood and stool catecholamine levels and perivenous GDF15 expression were increased in patients with early-stage ALD along with an increase in apoptotic KCs. Our findings reveal a novel protective mechanism against ALD, in which the catecholamine/GDF15 axis plays a critical role in KC apoptosis, and identify a unique neuro-metabo-immune axis between the gut and liver that elicits hepatoprotection against alcohol-mediated pathogenic challenges.
Collapse
Affiliation(s)
- Hee-Hoon Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Young-Ri Shim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Sung Eun Choi
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Myung-Ho Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.32224.350000 0004 0386 9924Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Boston, MA USA
| | - Giljae Lee
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun Ju You
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Won-Mook Choi
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.413967.e0000 0001 0842 2126Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Keungmo Yang
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Tom Ryu
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Kyurae Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Min Jeong Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Chaerin Woo
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Katherine Po Sin Chung
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Song Hwa Hong
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Hyuk Soo Eun
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.254230.20000 0001 0722 6377Department of Internal Medicine, Chungnam National University, College of Medicine, Daejeon, 35015 Republic of Korea
| | - Seok-Hwan Kim
- grid.254230.20000 0001 0722 6377Department of Surgery, Chungnam National University, College of Medicine, Daejeon, 35015 Republic of Korea
| | - GwangPyo Ko
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jong-Eun Park
- grid.37172.300000 0001 2292 0500Single-Cell Medical Genomics Laboratory, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Bin Gao
- grid.420085.b0000 0004 0481 4802Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD 20892 USA
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, 07061, Republic of Korea.
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
14
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
15
|
Gaskill PJ, Khoshbouei H. Dopamine and norepinephrine are embracing their immune side and so should we. Curr Opin Neurobiol 2022; 77:102626. [PMID: 36058009 PMCID: PMC10481402 DOI: 10.1016/j.conb.2022.102626] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 01/10/2023]
Abstract
While the history of neuroimmunology is long, the explicit study of neuroimmune communication, and particularly the role of catecholamines in neuroimmunity, is still emerging. Recent studies have shown that catecholamines, norepinephrine, epinephrine, and dopamine, are central to multiple complex mechanisms regulating immune function. These studies show that catecholamines can be released from both the nervous system and directly from immune cells, mediating both autocrine and paracrine signaling. This commentary highlights the importance of catecholaminergic immunomodulation and discusses new considerations needed to study the role of catecholamines in immune homeostasis to best leverage their contribution to disease processes for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA. https://twitter.com/Khoshbouei_lab
| |
Collapse
|
16
|
Tonelli Enrico V, Vo N, Methe B, Morris A, Sowa G. An unexpected connection: A narrative review of the associations between Gut Microbiome and Musculoskeletal Pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:3603-3615. [PMID: 36308543 PMCID: PMC9617047 DOI: 10.1007/s00586-022-07429-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Multiple diverse factors contribute to musculoskeletal pain, a major cause of physical dysfunction and health-related costs worldwide. Rapidly growing evidence demonstrates that the gut microbiome has overarching influences on human health and the body's homeostasis and resilience to internal and external perturbations. This broad role of the gut microbiome is potentially relevant and connected to musculoskeletal pain, though the literature on the topic is limited. Thus, the literature on the topic of musculoskeletal pain and gut microbiome was explored. METHODS This narrative review explores the vast array of reported metabolites associated with inflammation and immune-metabolic response, which are known contributors to musculoskeletal pain. Moreover, it covers known modifiable (e.g., diet, lifestyle choices, exposure to prescription drugs, pollutants, and chemicals) and non-modifiable factors (e.g., gut architecture, genetics, age, birth history, and early feeding patterns) that are known to contribute to changes to the gut microbiome. Particular attention is devoted to modifiable factors, as the ultimate goal of researching this topic is to implement gut microbiome health interventions into clinical practice. RESULTS Overall, numerous associations exist in the literature that could converge on the gut microbiome's pivotal role in musculoskeletal health. Particularly, a variety of metabolites that are either directly produced or indirectly modulated by the gut microbiome have been highlighted. CONCLUSION The review highlights noticeable connections between the gut and musculoskeletal health, thus warranting future research to focus on the gut microbiome's role in musculoskeletal conditions.
Collapse
Affiliation(s)
- Valerio Tonelli Enrico
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA.
- Department of Physical Therapy, University of Pittsburgh, 100 Technology Dr, Pittsburgh, PA, 15219, USA.
| | - Nam Vo
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
| | - Barbara Methe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Alison Morris
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Gwendolyn Sowa
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, Kaufmann Medical Building, Suite 910, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
17
|
Microbiome–Gut Dissociation in the Neonate: Autism-Related Developmental Brain Disease and the Origin of the Placebo Effect. GASTROINTESTINAL DISORDERS 2022. [DOI: 10.3390/gidisord4040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
While the importance of the intestinal microbiome has been realised for a number of years, the significance of the phrase microbiota–gut–brain axis is only just beginning to be fully appreciated. Our recent work has focused on the microbiome as if it were a single entity, modifying the expression of the genetic inheritance of the individual by the generation of interkingdom signalling molecules, semiochemicals, such as dopamine. In our view, the purpose of the microbiome is to convey information about the microbial environment of the mother so as to calibrate the immune system of the new-born, giving it the ability to distinguish harmful pathogens from the harmless antigens of pollen, for example, or to help distinguish self from non-self. In turn, this requires the partition of nutrition between the adult and its microbiome to ensure that both entities remain viable until the process of reproduction. Accordingly, the failure of a degraded microbiome to interact with the developing gut of the neonate leads to failure of this partition in the adult: to low faecal energy excretion, excessive fat storage, and concomitant problems with the immune system. Similarly, a weakened gut–brain axis distorts interoceptive input to the brain, increasing the risk of psychiatric diseases such as autism. These effects account for David Barker’s 1990 suggestion of “the fetal and infant origins of adult disease”, including schizophrenia, and David Strachan’s 1989 observation of childhood immune system diseases, such as hay fever and asthma. The industrialisation of modern life is increasing the intensity and scale of these physical and psychiatric diseases and it seems likely that subclinical heavy metal poisoning of the microbiome contributes to these problems. Finally, the recent observation of Harald Brüssow, that reported intestinal bacterial composition does not adequately reflect the patterns of disease, would be accounted for if microbial eukaryotes were the key determinant of microbiome effectiveness. In this view, the relative success of “probiotic” bacteria is due to their temporary immune system activation of the gut–brain axis, in turn suggesting a potential mechanism for the placebo effect.
Collapse
|
18
|
Wassie T, Cheng B, Zhou T, Gao L, Lu Z, Xie C, Wu X. Microbiome-metabolome analysis reveals alterations in the composition and metabolism of caecal microbiota and metabolites with dietary Enteromorpha polysaccharide and Yeast glycoprotein in chickens. Front Immunol 2022; 13:996897. [PMID: 36311785 PMCID: PMC9614668 DOI: 10.3389/fimmu.2022.996897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
The intestinal microbiome is responsible for the fermentation of complex carbohydrates and orchestrates the immune system through gut microbiota-derived metabolites. In our previous study, we reported that supplementation of Enteromorpha polysaccharide (EP) and yeast glycoprotein (YG) in combination synergistically improved antioxidant activities, serum lipid profile, and fatty acid metabolism in chicken. However, the mechanism of action of these polysaccharides remains elusive. The present study used an integrated 16S-rRNA sequencing technology and untargeted metabolomics technique to reveal the mechanism of action of EP+YG supplementation in broiler chickens fed basal diet or diets supplemented with EP+YG (200mg/kg EP + 200mg/kg YG). The results showed that EP+YG supplementation altered the overall structure of caecal microbiota as evidenced by β diversities analysis. Besides, EP+YG supplementation changed the microbiota composition by altering the community profile at the phylum and genus levels. Furthermore, Spearman correlation analysis indicated a significant correlation between altered microbiota genera vs serum cytokine levels and microbiota genera vs volatile fatty acids production. Predicted functional analysis showed that EP+YG supplementation significantly enriched amino acid metabolism, nucleotide metabolism, glycan biosynthesis and metabolism, energy metabolism, and carbohydrate metabolism. Metabolomics analysis confirmed that EP+YG supplementation modulates a myriad of caecal metabolites by increasing some metabolites, including pyruvic acid, pyridoxine, spermidine, spermine, and dopamine, and decreasing metabolites related to lipid metabolisms such as malonic acid, oleic acid, and docosahexaenoic acid. The quantitative enrichment analysis results further showed that glycolysis/gluconeogenesis, citric acid cycle, tyrosine metabolism, glycine, serine, and threonine metabolism, and cysteine and methionine metabolism were the most important enriched pathways identified with enrichment ratio >11, whereas, fatty acid biosynthesis and biosynthesis of unsaturated fatty acids pathways were suppressed. Together, the 16S-rRNA and untargeted metabolomics results uncovered that EP+YG supplementation modulates intestinal microbiota and their metabolites, thereby influencing the important metabolism pathways, suggesting a potential feed additive.
Collapse
Affiliation(s)
- Teketay Wassie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Bei Cheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Tiantian Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Lumin Gao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Zhuang Lu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Chunyan Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- *Correspondence: Xin Wu,
| |
Collapse
|
19
|
Smith D, Jheeta S, Fuentes HV, Palacios-Pérez M. Feeding Our Microbiota: Stimulation of the Immune/Semiochemical System and the Potential Amelioration of Non-Communicable Diseases. Life (Basel) 2022; 12:1197. [PMID: 36013376 PMCID: PMC9410320 DOI: 10.3390/life12081197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Non-communicable diseases are those conditions to which causative infectious agents cannot readily be assigned. It is increasingly likely that at least some of these conditions are due to the breakdown of the previously mutualistic intestinal microbiota under the influence of a polluted, biocide-rich, environment. Following the mid-20th century African studies of Denis Burkitt, the environmental cause of conditions such as obesity has been ascribed to the absence of sufficient fibre in the modern diet, however in itself that is insufficient to explain the parallel rise of problems with both the immune system and of mental health. Conversely, Burkitt himself noted that the Maasai, a cattle herding people, remained healthy even with their relatively low intake of dietary fibre. Interestingly, however, Burkitt also emphasised that levels of non-communicable disease within a population rose as faecal weight decreased significantly, to about one third of the levels found in healthy populations. Accordingly, a more cogent explanation for all the available facts is that the fully functioning, adequately diverse microbiome, communicating through what has been termed the microbiota-gut-brain axis, helps to control the passage of food through the digestive tract to provide itself with the nutrition it needs. The method of communication is via the production of semiochemicals, interkingdom signalling molecules, potentially including dopamine. In turn, the microbiome aids the immune system of both adult and, most importantly, the neonate. In this article we consider the role of probiotics and prebiotics, including fermented foods and dietary fibre, in the stimulation of the immune system and of semiochemical production in the gut lumen. Finally, we reprise our suggestion of an ingestible sensor, calibrated to the detection of such semiochemicals, to assess both the effectiveness of individual microbiomes and methods of amelioration of the associated non-communicable diseases.
Collapse
Affiliation(s)
- David Smith
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Sohan Jheeta
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Hannya V. Fuentes
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Miryam Palacios-Pérez
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
20
|
Kim H, Jeon S, Kim J, Seol D, Jo J, Cho S, Kim H. Investigation of memory-enhancing effects of Streptococcus thermophilus EG007 in mice and elucidating molecular and metagenomic characteristics using nanopore sequencing. Sci Rep 2022; 12:13274. [PMID: 35918353 PMCID: PMC9346115 DOI: 10.1038/s41598-022-14837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, accumulating evidences have highlighted the gut microbiota as a key player in the brain functioning via microbiota–gut–brain axis, and accordingly, the beneficial role of several probiotic strains in cognitive ability also have been actively investigated. However, the majority of the research have demonstrated the effects against age-related cognitive decline or neurological disease. To this end, we aimed to investigate lactic acid bacteria strains having beneficial effects on the cognitive function of healthy young mice and elucidate underlying characteristics by carrying out nanopore sequencing-based genomics and metagenomics analysis. 8-week consumption of Streptococcus thermophilus EG007 demonstrated marked enhancements in behavior tests assessing short-term spatial and non-spatial learning and memory. It was revealed that EG007 possessed genes encoding various metabolites beneficial for a health condition in many aspects, including gamma-aminobutyric acid producing system, a neurotransmitter associated with mood and stress response. Also, by utilizing 16S–23S rRNA operon as a taxonomic marker, we identified more accurate species-level compositional changes in gut microbiota, which was increase of certain species, previously reported to have associations with mental health or down-regulation of inflammation or infection-related species. Moreover, correlation analysis revealed that the EG007-mediated altered microbiota had a significant correlation with the memory traits.
Collapse
Affiliation(s)
- Hyaekang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soomin Jeon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jina Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,eGnome, Inc, Seoul, Republic of Korea
| | - JinChul Jo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seoae Cho
- eGnome, Inc, Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,eGnome, Inc, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Gama JFG, Cardoso LMDF, Bisaggio RDC, Lagrota-Candido J, Henriques-Pons A, Alves LA. Immunological Tolerance in Liver Transplant Recipients: Putative Involvement of Neuroendocrine-Immune Interactions. Cells 2022; 11:cells11152327. [PMID: 35954171 PMCID: PMC9367574 DOI: 10.3390/cells11152327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
The transplantation world changed significantly following the introduction of immunosuppressants, with millions of people saved. Several physicians have noted that liver recipients that do not take their medication for different reasons became tolerant regarding kidney, heart, and lung transplantations at higher frequencies. Most studies have attempted to explain this phenomenon through unique immunological mechanisms and the fact that the hepatic environment is continuously exposed to high levels of pathogen-associated molecular patterns (PAMPs) or non-pathogenic microorganism-associated molecular patterns (MAMPs) from commensal flora. These components are highly inflammatory in the periphery but tolerated in the liver as part of the normal components that arrive via the hepatic portal vein. These immunological mechanisms are discussed herein based on current evidence, although we hypothesize the participation of neuroendocrine-immune pathways, which have played a relevant role in autoimmune diseases. Cells found in the liver present receptors for several cytokines, hormones, peptides, and neurotransmitters that would allow for system crosstalk. Furthermore, the liver is innervated by the autonomic system and may, thus, be influenced by the parasympathetic and sympathetic systems. This review therefore seeks to discuss classical immunological hepatic tolerance mechanisms and hypothesizes the possible participation of the neuroendocrine-immune system based on the current literature.
Collapse
Affiliation(s)
- Jaciara Fernanda Gomes Gama
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
- Laboratory of Immunopathology, Department of Immunobiology, Biology Institute, Federal Fluminense University (UFF), Gragoatá Bl-M Campus, Niterói 24210-200, Brazil;
| | - Liana Monteiro da Fonseca Cardoso
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
| | - Rodrigo da Cunha Bisaggio
- Department of Biotechnology, Federal Institute of Rio de Janeiro (IFRJ), Maracanã, Rio de Janeiro 20270-021, Brazil;
| | - Jussara Lagrota-Candido
- Laboratory of Immunopathology, Department of Immunobiology, Biology Institute, Federal Fluminense University (UFF), Gragoatá Bl-M Campus, Niterói 24210-200, Brazil;
| | - Andrea Henriques-Pons
- Laboratory of Innovations in Therapies, Education, and Bioproducts, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil;
| | - Luiz A. Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
- Correspondence: or ; Tel.: +55-(21)-2562-1816 (ext. 1841)
| |
Collapse
|
22
|
Intestinal homeostasis in autoimmune liver diseases. Chin Med J (Engl) 2022; 135:1642-1652. [PMID: 36193976 PMCID: PMC9509077 DOI: 10.1097/cm9.0000000000002291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Intestinal homeostasis depends on complex interactions between the gut microbiota and host immune system. Emerging evidence indicates that the intestinal microbiota is a key player in autoimmune liver disease (AILD). Autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and IgG4-related sclerosing cholangitis have been linked to gut dysbiosis. Diverse mechanisms contribute to disturbances in intestinal homeostasis in AILD. Bacterial translocation and molecular mimicry can lead to hepatic inflammation and immune activation. Additionally, the gut and liver are continuously exposed to microbial metabolic products, mediating variable effects on liver immune pathologies. Importantly, microbiota-specific or associated immune responses, either hepatic or systemic, are abnormal in AILD. Comprehensive knowledge about host-microbiota interactions, included but not limited to this review, facilitates novel clinical practice from a microbiome-based perspective. However, many challenges and controversies remain in the microbiota field of AILD, and there is an urgent need for future investigations.
Collapse
|
23
|
Keller RM, Beaver LM, Prater MC, Truong L, Tanguay RL, Stevens JF, Hord NG. Nitrate exposure reprograms hepatic amino acid and nutrient sensing pathways prior to exercise: A metabolomic and transcriptomic investigation in zebrafish (Danio rerio). Front Mol Biosci 2022; 9:903130. [PMID: 35928228 PMCID: PMC9343839 DOI: 10.3389/fmolb.2022.903130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Scope: Nitrate supplementation is a popular ergogenic aid that improves exercise performance by reducing oxygen consumption during exercise. We investigated the effect of nitrate exposure and exercise on metabolic pathways in zebrafish liver.Materials and methods: Fish were exposed to sodium nitrate (606.9 mg/L), or control water, for 21 days and analyzed at intervals during an exercise test. We utilized untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and measured gene expression of 24 genes central to energy metabolism and redox signaling.Results: We observed a greater abundance of metabolites involved in endogenous nitric oxide (NO) metabolism and amino acid metabolism in nitrate-treated liver at rest, compared to rested controls. In the absence of exercise, nitrate treatment upregulated expression of genes central to nutrient sensing (pgc1a), protein synthesis (mtor) and purine metabolism (pnp5a and ampd1) and downregulated expression of genes involved in mitochondrial fat oxidation (acaca and cpt2).Conclusion: Our data support a role for sub-chronic nitrate treatment in the improvement of exercise performance, in part, by improving NO bioavailability, sparing arginine, and modulating hepatic gluconeogenesis and glycolytic capacity in the liver.
Collapse
Affiliation(s)
- Rosa M. Keller
- University of California, San Francisco, San Francisco, CA, United States
| | - Laura M. Beaver
- University of California, San Francisco, San Francisco, CA, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Mary C. Prater
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA, United States
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory and the Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory and the Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Norman G. Hord
- OU Health, Harold Hamm Diabetes Center, Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Norman G. Hord,
| |
Collapse
|
24
|
Yang R, Gao G, Yang H. The Pathological Mechanism Between the Intestine and Brain in the Early Stage of Parkinson's Disease. Front Aging Neurosci 2022; 14:861035. [PMID: 35813958 PMCID: PMC9263383 DOI: 10.3389/fnagi.2022.861035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common chronic progressive neurodegenerative disease. The main pathological features are progressive degeneration of neurons and abnormal accumulation of α-synuclein. At present, the pathogenesis of PD is not completely clear, and many changes in the intestinal tract may be the early pathogenic factors of PD. These changes affect the central nervous system (CNS) through both nervous and humoral pathways. α-Synuclein deposited in the intestinal nerve migrates upward along the vagus nerve to the brain. Inflammation and immune regulation mediated by intestinal immune cells may be involved, affecting the CNS through local blood circulation. In addition, microorganisms and their metabolites may also affect the progression of PD. Therefore, paying attention to the multiple changes in the intestinal tract may provide new insight for the early diagnosis and treatment of PD.
Collapse
|
25
|
Rich BE, Jackson JC, de Ora LO, Long ZG, Uyeda KS, Bess EN. Alternative pathway for dopamine production by acetogenic gut bacteria that O-Demethylate 3-Methoxytyramine, a metabolite of catechol O-Methyltransferase. J Appl Microbiol 2022; 133:1697-1708. [PMID: 35737746 PMCID: PMC9544265 DOI: 10.1111/jam.15682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
Abstract
AIMS The gut microbiota modulates dopamine levels in vivo, but the bacteria and biochemical processes responsible remain incompletely characterized. A potential precursor of bacterial dopamine production is 3-methoxytyramine (3MT); 3MT is produced when dopamine is O-methylated by host catechol O-methyltransferase (COMT), thereby attenuating dopamine levels. This study aimed to identify whether gut bacteria are capable of reverting 3MT to dopamine. METHODS AND RESULTS Human faecal bacterial communities O-demethylated 3MT and yielded dopamine. Gut bacteria that mediate this transformation were identified as acetogens Eubacterium limosum and Blautia producta. Upon exposing these acetogens to propyl iodide, a known inhibitor of cobalamin-dependent O-demethylases, 3MT O-demethylation was inhibited. Culturing E. limosum and B. producta with 3MT afforded increased acetate levels as compared with vehicle controls. CONCLUSIONS Gut bacterial acetogens E. limosum and B. producta synthesized dopamine from 3MT. This O-demethylation of 3MT was likely performed by cobalamin-dependent O-demethylases implicated in reductive acetogenesis. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report that gut bacteria can synthesize dopamine by O-demethylation of 3MT. Owing to 3MT being the product of host COMT attenuating dopamine levels, gut bacteria that reverse this transformation-converting 3MT to dopamine-may act as a counterbalance for dopamine regulation by COMT.
Collapse
Affiliation(s)
- Barry E Rich
- Department of Chemistry, University of California, Irvine, Irvine, California, USA
| | - Jayme C Jackson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Lizett Ortiz de Ora
- Department of Chemistry, University of California, Irvine, Irvine, California, USA
| | - Zane G Long
- Department of Chemistry, University of California, Irvine, Irvine, California, USA
| | - Kylie S Uyeda
- Department of Chemistry, University of California, Irvine, Irvine, California, USA
| | - Elizabeth N Bess
- Department of Chemistry, University of California, Irvine, Irvine, California, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
26
|
The intestinal and biliary microbiome in autoimmune liver disease-current evidence and concepts. Semin Immunopathol 2022; 44:485-507. [PMID: 35536431 PMCID: PMC9088151 DOI: 10.1007/s00281-022-00936-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/03/2022] [Indexed: 02/07/2023]
Abstract
Autoimmune liver diseases are a group of immune-mediated liver diseases with three distinct entities, including autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. The interplay of genetic and environmental factors leads to the breakdown of self-tolerance, resulting in hyper-responsiveness, and auto-aggressive immune activation. Emerging evidence links autoimmune liver diseases with alterations of the commensal microbiome configuration and aberrant immune system activation by microbial signals, mainly via the gut-liver axis. Thus, the microbiome is a new frontier to deepen the pathogenetic understanding, uncover biomarkers, and inspire innovative treatments. Herein, we review the current evidence on the role of the microbiome in autoimmune liver diseases from both clinical and basic research. We highlight recent achievements and also bottlenecks and limitations. Moreover, we give an outlook on future developments and potential for clinical applications.
Collapse
|
27
|
Lucarini E, Di Pilato V, Parisio C, Micheli L, Toti A, Pacini A, Bartolucci G, Baldi S, Niccolai E, Amedei A, Rossolini GM, Nicoletti C, Cryan JF, O'Mahony SM, Ghelardini C, Di Cesare Mannelli L. Visceral sensitivity modulation by faecal microbiota transplantation: the active role of gut bacteria in pain persistence. Pain 2022; 163:861-877. [PMID: 34393197 PMCID: PMC9009324 DOI: 10.1097/j.pain.0000000000002438] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
Recent findings linked gastrointestinal disorders characterized by abdominal pain to gut microbiota composition. The present work aimed to evaluate the power of gut microbiota as a visceral pain modulator and, consequently, the relevance of its manipulation as a therapeutic option in reversing postinflammatory visceral pain persistence. Colitis was induced in mice by intrarectally injecting 2,4-dinitrobenzenesulfonic acid (DNBS). The effect of faecal microbiota transplantation from viscerally hypersensitive DNBS-treated and naive donors was evaluated in control rats after an antibiotic-mediated microbiota depletion. Faecal microbiota transplantation from DNBS donors induced a long-lasting visceral hypersensitivity in control rats. Pain threshold trend correlated with major modifications in the composition of gut microbiota and short chain fatty acids. By contrast, no significant alterations of colon histology, permeability, and monoamines levels were detected. Finally, by manipulating the gut microbiota of DNBS-treated animals, a counteraction of persistent visceral pain was achieved. The present results provide novel insights into the relationship between intestinal microbiota and visceral hypersensitivity, highlighting the therapeutic potential of microbiota-targeted interventions.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Claudio Nicoletti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Siobhain M. O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
28
|
Sheikh-Wu SF, Gerber KS, Pinto MD, Downs CA. Mechanisms and Methods to Understand Depressive Symptoms. Issues Ment Health Nurs 2022; 43:434-446. [PMID: 34752200 DOI: 10.1080/01612840.2021.1998261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Depressive symptoms, feelings of sadness, anger, and loss that interfere with a person's daily life, are prevalent health concerns across populations that significantly result in adverse health outcomes with direct and indirect economic burdens at a national and global level. This article aims to synthesize known mechanisms of depressive symptoms and the established and emerging methodologies used to understand depressive symptoms; implications and directions for future nursing research are discussed. A comprehensive search was performed by Cumulative Index to Nursing and Allied Health Literature, MEDLINE, and PUBMED databases between 2000-2021 to examine contributing factors of depressive symptoms. Many environmental, psychological, and physiological factors are associated with the development or increased severity of depressive symptoms (anhedonia, fatigue, sleep and appetite disturbances to depressed mood). This paper discusses biological and psychological theories that guide our understanding of depressive symptoms, as well as known biomarkers (gut microbiome, specific genes, multi-cytokine, and hormones) and established and emerging methods. Disruptions within the nervous system, hormonal and neurotransmitters levels, brain structure, gut-brain axis, leaky-gut syndrome, immune and inflammatory process, and genetic variations are significant mediating mechanisms in depressive symptomology. Nursing research and practice are at the forefront of furthering depressive symptoms' mechanisms and methods. Utilizing advanced technology and measurement tools (big data, machine learning/artificial intelligence, and multi-omic approaches) can provide insight into the psychological and biological mechanisms leading to effective intervention development. Thus, understanding depressive symptomology provides a pathway to improve patients' health outcomes, leading to reduced morbidity and mortality and the overall nation-wide economic burden.Supplemental data for this article is available online at https://doi.org/10.1080/01612840.2021.1998261 .
Collapse
Affiliation(s)
- Sameena F Sheikh-Wu
- School of Nursing and Health Studies, University of Miami, Coral Gables, Florida, USA
| | - Kathryn S Gerber
- School of Nursing and Health Studies, University of Miami, Coral Gables, Florida, USA
| | - Melissa D Pinto
- Sue and Bill Gross School of Nursing, University of California, Irvine, California, USA
| | - Charles A Downs
- School of Nursing and Health Studies, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
29
|
Li M, Zhang C, Zhou L, Sun X, Wang T, Fu F. Continuous Activation of Dopamine Receptors Alleviates LPS-Induced Liver Injury in Mice via β-arrestin2 Dependent Akt/NF-κB Pathway. Front Pharmacol 2022; 13:853834. [PMID: 35359858 PMCID: PMC8963954 DOI: 10.3389/fphar.2022.853834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
Many studies showed that dopamine receptors (DRs) agonists have anti-inflammatory effects. Rotigotine, a non-ergot dopamine receptor agonist, mainly actives DRD2/DRD3/DRD1. Rotigotine extended-release microspheres (RoMS) are a sustained-release formulation that can release sustainably rotigotine for more than 7 days after a single dose of RoMS. This study aimed to investigate whether RoMS can attenuate the lipopolysaccharide (LPS)-induced liver injury of mice. The liver injury was evaluated by assaying serum transaminase and observing histopathological changes. The levels of pro-inflammatory cytokines in serum were also detected. Western blot was employed to assay the expression of proteins in the Akt/NF-κB pathway. The results showed that pre-administration with a single dose of RoMS could inhibit the increase of serum transaminase induced by LPS, alleviate the pathological damage of liver tissue, and decrease the levels of tumor necrosis factor-α and interleukin-6. In addition, RoMS decreased Toll-like receptor 4 protein expression in liver tissue. RoMS mitigated liver injury by activating DRs and negatively regulating the β-arrestin2-dependent Akt/NF-κB signaling pathway. The effects of RoMS could be weakened or abolished by the specific DRD2 antagonist, R121. In conclusion, activation of DRs inhibited the releases of pro-inflammatory cytokines and alleviated the immune-mediated liver injury induced by LPS in mice. The anti-inflammatory mechanism of RoMS may be related to the regulation of the β-arrestin2-dependent Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Mingan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Ce Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
30
|
Villageliu DN, Samuelson DR. The Role of Bacterial Membrane Vesicles in Human Health and Disease. Front Microbiol 2022; 13:828704. [PMID: 35300484 PMCID: PMC8923303 DOI: 10.3389/fmicb.2022.828704] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial membrane vesicles (MVs) are nanoparticles derived from the membrane components of bacteria that transport microbial derived substances. MVs are ubiquitous across a variety of terrestrial and marine environments and vary widely in their composition and function. Membrane vesicle functional diversity is staggering: MVs facilitate intercellular communication by delivering quorum signals, genetic information, and small molecules active against a variety of receptors. MVs can deliver destructive virulence factors, alter the composition of the microbiota, take part in the formation of biofilms, assist in the uptake of nutrients, and serve as a chemical waste removal system for bacteria. MVs also facilitate host-microbe interactions including communication. Released in mass, MVs overwhelm the host immune system and injure host tissues; however, there is also evidence that vesicles may take part in processes which promote host health. This review will examine the ascribed functions of MVs within the context of human health and disease.
Collapse
Affiliation(s)
| | - Derrick R. Samuelson
- Division of Pulmonary, Critical Care, and Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
31
|
Smith D, Palacios-Pérez M, Jheeta S. The Enclosed Intestinal Microbiome: Semiochemical Signals from the Precambrian and Their Disruption by Heavy Metal Pollution. Life (Basel) 2022; 12:287. [PMID: 35207574 PMCID: PMC8879143 DOI: 10.3390/life12020287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
It is increasingly likely that many non-communicable diseases of humans and associated animals are due to the degradation of their intestinal microbiomes, a situation often referred to as dysbiosis. An analysis of the resultant diseases offers an opportunity to probe the function of these microbial partners of multicellular animals. In our view, it now seems likely that vertebrate animals and their microbiomes have coevolved throughout the Ediacaran-Cambrian transition and beyond, operating by semiochemical messaging between the multicellular host and its microbial community guest. A consideration of the overall role of the mutualistic intestinal microbiome as an enclosed bioreactor throws up a variety of challenging concepts. In particular: the significance of the microbiome with respect to the immune system suggests that microeukaryotes could act as microbial sentinel cells; the ubiquity of bacteriophage viruses implies the rapid turnover of microbial composition by a viral-shunt mechanism; and high microbial diversity is needed to ensure that horizontal gene transfer allows valuable genetic functions to be expressed. We have previously postulated that microbes of sufficient diversity must be transferred from mother to infant by seemingly accidental contamination during the process of natural birth. We termed this maternal microbial inheritance and suggested that it operates alongside parental genetic inheritance to modify gene expression. In this way, the adjustment of the neonate immune system by the microbiome may represent one of the ways in which the genome of a vertebrate animal interacts with its microbial environment. The absence of such critical functions in the neonate may help to explain the observation of persistent immune-system problems in affected adults. Equally, granted that the survival of the guest microbiome depends on the viability of its host, one function of microbiome-generated semiochemicals could be to facilitate the movement of food through the digestive tract, effectively partitioning nutrition between host and guest. In the event of famine, downregulation of microbial growth and therefore of semiochemical production would allow all available food to be consumed by the host. Although it is often thought that non-communicable diseases, such as type 2 diabetes, are caused by consumption of food containing insufficient dietary fibre, our hypothesis suggests that poor-quality food is not the prime cause but that the tendency for disease follows the degradation of the intestinal microbiome, when fat build-up occurs because the relevant semiochemicals can no longer be produced. It is the purpose of this paper to highlight the possibility that the origins of the microbiome lie in the Precambrian and that the disconnection of body and microbiome gives rise to non-communicable disease through the loss of semiochemical signalling. We further surmise that this disconnect has been largely brought about by heavy metal poisoning, potentially illuminating a facet of the exposome, the sum total of environmental insults that influence the expression of the genetic inheritance of an animal.
Collapse
Affiliation(s)
- David Smith
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Miryam Palacios-Pérez
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
- Theoretical Biology Group, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Sohan Jheeta
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
| |
Collapse
|
32
|
Hamamah S, Aghazarian A, Nazaryan A, Hajnal A, Covasa M. Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines 2022; 10:biomedicines10020436. [PMID: 35203645 PMCID: PMC8962300 DOI: 10.3390/biomedicines10020436] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 01/09/2023] Open
Abstract
Dopamine is a neurotransmitter that plays a critical role both peripherally and centrally in vital functions such as cognition, reward, satiety, voluntary motor movements, pleasure, and motivation. Optimal dopamine bioavailability is essential for normal brain functioning and protection against the development of neurological diseases. Emerging evidence shows that gut microbiota have significant roles in maintaining adequate concentrations of dopamine via intricate, bidirectional communication known as the microbiota-gut-brain axis. The vagus nerve, immune system, hypothalamus–pituitary–adrenal axis, and microbial metabolites serve as important mediators of the reciprocal microbiota-gut-brain signaling. Furthermore, gut microbiota contain intrinsic enzymatic activity that is highly involved in dopamine metabolism, facilitating dopamine synthesis as well as its metabolite breakdown. This review examines the relationship between key genera of gut microbiota such as Prevotella, Bacteroides, Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, and Ruminococcus and their effects on dopamine. The effects of gut dysbiosis on dopamine bioavailability and the subsequent impact on dopamine-related pathological conditions such as Parkinson’s disease are also discussed. Understanding the role of gut microbiota in modulating dopamine activity and bioavailability both in the periphery and in the central nervous system can help identify new therapeutic targets as well as optimize available methods to prevent, delay, or restore dopaminergic deficits in neurologic and metabolic disorders.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Armin Aghazarian
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Anthony Nazaryan
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
- Correspondence:
| |
Collapse
|
33
|
Menshov VA, Trofimov AV, Zagurskaya AV, Berdnikova NG, Yablonskaya OI, Platonova AG. Influence of Nicotine from Diverse Delivery Tools on the Autonomic Nervous and Hormonal Systems. Biomedicines 2022; 10:biomedicines10010121. [PMID: 35052800 PMCID: PMC8773565 DOI: 10.3390/biomedicines10010121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Through measurements of the heart rate variability (HRV) accompanied by the pertinent biomarker assays, the effects of nicotine and byproducts derived from alternative nicotine delivery systems (ANDS) on the autonomic nervous system (ANS) and hormonal system have been investigated. Methods: HRV was studied in a group of volunteers (17 people), involving non-smokers, i.e., who never smoked before (11), ex-smokers (4) and active smokers (2). ANDS and smoking simulators, including regular, nicotine-free and electronic cigarettes; tobacco heating systems; chewing gums and nicotine packs of oral fixation (nic-packs), were used. Blood pressure, levels of stress hormones in saliva and catecholamines in the blood were also monitored. Results: HRV analysis showed relatively small changes in HRV and in the other studied parameters with the systemic use of nic-packs with low and moderate nicotine contents (up to 6 mg) compared to other ANDS. Conclusions: The HRV method is proven to be a promising technique for evaluation of the risks associated with smoking, dual use of various ANDS and studying the biomedical aspects of smoking cessation. Nic-packs are shown to be leaders in biological safety among the studied ANDS. A sharp surge in the activity of the sympathetic division of the ANS within the first minutes of the use of nicotine packs implies that nicotine begins to act already at very low doses (before entering the blood physically in any significant amount) through fast signal transmission to the brain from the nicotinic and taste buds located in the mouth area.
Collapse
Affiliation(s)
- Valerii A. Menshov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.G.B.); (O.I.Y.)
- Correspondence: (V.A.M.); (A.V.T.); Tel.: +7-495-9397358 (A.V.T.); Fax: +7-499-1374101 (V.A.M. & A.V.T.)
| | - Aleksei V. Trofimov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.G.B.); (O.I.Y.)
- Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- Correspondence: (V.A.M.); (A.V.T.); Tel.: +7-495-9397358 (A.V.T.); Fax: +7-499-1374101 (V.A.M. & A.V.T.)
| | | | - Nadezda G. Berdnikova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.G.B.); (O.I.Y.)
- Department of Clinical Pharmacology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Olga I. Yablonskaya
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.G.B.); (O.I.Y.)
| | | |
Collapse
|
34
|
Li M, Zhou L, Sun X, Yang Y, Zhang C, Wang T, Fu F. Dopamine, a co-regulatory component, bridges the central nervous system and the immune system. Biomed Pharmacother 2021; 145:112458. [PMID: 34847478 DOI: 10.1016/j.biopha.2021.112458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Dopamine (DA) is a crucial neurotransmitter that plays an important role in maintaining physiological function in human body. In the past, most studies focused on the relationship between the dopaminergic system and neurological-related diseases. However, it has been found recently that DA is an immunomodulatory mediator and many immune cells express dopamine receptors (DRs). Some immune cells can synthesize and secrete DA and then participate in regulating immune function. DRs agonists or antagonists can improve the dysfunction of immune system through classical G protein signaling pathways or other non-receptor-dependent pathways. This article will discuss the relationship between the dopaminergic system and the immune system. It will also review the use of DRs agonists or antagonists to treat chronic and acute inflammatory diseases and corresponding immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Mingan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yunqi Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Ce Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
35
|
Li X, Jin C, Chen Q, Zheng X, Xie D, Wu Q, Wang L, Bai S, Zhang H, Bai L. Identification of liver-specific CD24 + invariant NK T cells with low granzyme B production and high proliferative capacity. J Leukoc Biol 2021; 111:1199-1210. [PMID: 34730251 DOI: 10.1002/jlb.1a0621-309r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Invariant NK T (iNKT) cells are innate-like lymphocytes that can recognize the lipid Ag presented by MHC I like molecule CD1d. Distinct tissue distribution of iNKT cells subsets implies a contribution of these subsets to their related tissue regional immunity. iNKT cells are enriched in liver, an organ with unique immunological properties. Whether liver-specific iNKT cells exist and dedicate to the liver immunity remains elusive. Here, a liver-specific CD24+ iNKT subset is shown. Hepatic CD24+ iNKT cells show higher levels of proliferation, glucose metabolism, and mTOR activity comparing to CD24- iNKT cells. Although CD24+ iNKT cells and CD24- iNKT cells in the liver produce similar amounts of cytokines, the hepatic CD24+ iNKT cells exhibit lower granzyme B production. These liver-specific CD24+ iNKT cells are derived from thymus and differentiate into CD24+ iNKT in the liver microenvironment. Moreover, liver microenvironment induces the formation of CD24+ conventional T cells as well, and these cells exhibit higher proliferation ability but lower granzyme B production in comparison with CD24- T cells. The results propose that liver microenvironment might induce the generation of liver-specific iNKT subset that might play an important role in maintaining liver homeostasis.
Collapse
Affiliation(s)
- Xiang Li
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Jin
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qi Chen
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xihua Zheng
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Di Xie
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qielan Wu
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lu Wang
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shiyu Bai
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huimin Zhang
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Li Bai
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
36
|
Glinert A, Turjeman S, Elliott E, Koren O. Microbes, metabolites and (synaptic) malleability, oh my! The effect of the microbiome on synaptic plasticity. Biol Rev Camb Philos Soc 2021; 97:582-599. [PMID: 34734461 PMCID: PMC9298272 DOI: 10.1111/brv.12812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/10/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
The microbiome influences the emotional and cognitive phenotype of its host, as well as the neurodevelopment and pathophysiology of various brain processes and disorders, via the well‐established microbiome–gut–brain axis. Rapidly accumulating data link the microbiome to severe neuropsychiatric disorders in humans, including schizophrenia, Alzheimer's and Parkinson's. Moreover, preclinical work has shown that perturbation of the microbiome is closely associated with social, cognitive and behavioural deficits. The potential of the microbiome as a diagnostic and therapeutic tool is currently undercut by a lack of clear mechanistic understanding of the microbiome–gut–brain axis. This review establishes the hypothesis that the mechanism by which this influence is carried out is synaptic plasticity – long‐term changes to the physical and functional neuronal structures that enable the brain to undertake learning, memory formation, emotional regulation and more. By examining the different constituents of the microbiome–gut–brain axis through the lens of synaptic plasticity, this review explores the diverse aspects by which the microbiome shapes the behaviour and mental wellbeing of the host. Key elements of this complex bi‐directional relationship include neurotransmitters, neuronal electrophysiology, immune mediators that engage with both the central and enteric nervous systems and signalling cascades that trigger long‐term potentiation of synapses. The importance of establishing mechanistic correlations along the microbiome–gut–brain axis cannot be overstated as they hold the potential for furthering current understanding regarding the vast fields of neuroscience and neuropsychiatry. This review strives to elucidate the promising theory of microbiome‐driven synaptic plasticity in the hope of enlightening current researchers and inspiring future ones.
Collapse
Affiliation(s)
- Ayala Glinert
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| |
Collapse
|
37
|
Abstract
The reduction of excessive weight remains a major public health challenge, with control currently limited to a calorie reduction strategy. Currently, attempts are being made at revisiting the fibre hypothesis based on the African studies of Denis Burkitt, that the lack of dietary fibre in the modern diet was responsible for the occurrence of obesity and many of the other non-communicable diseases of what he called “Western civilization”. However, the dilemma is that Burkitt himself stressed that other peoples of his day, such as the Maasai, remained healthy without consuming such high fibre diets. Equally, the present obesity epidemic is accompanied by diseases of a malfunctioning immune system and of poor mental health that do not seem to be adequately explained simply by a deficiency of dietary fibre. Though unknown in Burkitt’s day, an increasing degradation of a mutualistic intestinal microbiome would offer a better fit to the observed epidemiology, especially if the microbiome is not effectively passed on from mother to child at birth. Taking the broader view, in this article we posit a view of the microbiome as a cofactor of mammalian evolution, in which a maternal microbial inheritance complements the parental genetic inheritance of the animal, both engaging epigenetic processes. As this would require the microbiome to be fully integrated with the animal as it develops into an adult, so we have a meaningful evolutionary role for the microbiome–gut–brain axis. By a failure to correctly establish a microbiome–gut interface, the inhibition of maternal microbial inheritance sets the scene for the future development of non-communicable disease: compromised immune system function on the one hand and dysfunctional gut–brain communication on the other. The basic principle is that the fully functioning, diverse, microbiome achieves interkingdom communication by the generation of messenger chemicals, semiochemicals. It is envisaged that the in situ detection of these as yet ill-defined chemical entities by means of an ingestible sensor would indicate the severity of disease and provide a guide as to its amelioration.
Collapse
|
38
|
The Link between Obesity, Microbiota Dysbiosis, and Neurodegenerative Pathogenesis. Diseases 2021; 9:diseases9030045. [PMID: 34201465 PMCID: PMC8293145 DOI: 10.3390/diseases9030045] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
Current research in medicine in several parts of the world has attempted to establish a link between the occurrence of neurodegenerative pathologies, microbiota dysbiosis, and the incidence of obesity. The body’s response to different physicochemical factors has also been influenced by the proper assimilation of bioactive compounds contained in the food that is ingested. Oxidative stress is one of the major factors that directly affects the functioning of the human microbiota. The body’s reaction to this imbalance is crucial to the progression of inflammatory processes, which are based on molecular mechanisms. Microbial dysbiosis can result in a possibly permanent alteration in the physiological response. This review aims to highlight recent contributions made to alleviating human dysbiosis in degenerative diseases, especially for neurodegenerative pathologies based on the rising prevalence of obesity. We discuss the significance of both microbiota modulation and possible alleviations of pathologies by a modulatory function. We argue that pre- and probiotics (including phenolic compounds stimulating the favorable strain from the microbiota) are an effective alternative that can support the microbiota pattern’s modulation over time and the attenuation of indirect causes that determine dysbiosis. Molecular aspects are presented in support of the modulating role of the microbiota following the use of probiotics.
Collapse
|
39
|
Yang X, Lou J, Shan W, Ding J, Jin Z, Hu Y, Du Q, Liao Q, Xie R, Xu J. Pathophysiologic Role of Neurotransmitters in Digestive Diseases. Front Physiol 2021; 12:567650. [PMID: 34194334 PMCID: PMC8236819 DOI: 10.3389/fphys.2021.567650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Neurotransmitters are special molecules that serve as messengers in chemical synapses between neurons, cells, or receptors, including catecholamines, serotonin, dopamine, and other neurotransmitters, which play an important role in both human physiology and pathology. Compelling evidence has indicated that neurotransmitters have an important physiological role in various digestive diseases. They act as ligands in combination with central or peripheral receptors, and transmits signals through chemical synapses, which are involved in regulating the physiological and pathological processes of the digestive tract organs. For instance, neurotransmitters regulate blood circulation and affect intestinal movement, nutrient absorption, the gastrointestinal innate immune system, and the microbiome. In this review, we will focus on the role of neurotransmitters in the pathogenesis of digestive tract diseases to provide novel therapeutic targets for new drug development in digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
40
|
Chen T, Li R, Chen P. Gut Microbiota and Chemical-Induced Acute Liver Injury. Front Physiol 2021; 12:688780. [PMID: 34122150 PMCID: PMC8187901 DOI: 10.3389/fphys.2021.688780] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Drug overdose or chemical exposures are the main causes of acute liver injury (ALI). Severe liver injury can develop into liver failure that is an important cause of liver-related mortality in intensive care units in most countries. Pharmacological studies have utilized a variety of comprehensive chemical induction models that recapitulate the natural pathogenesis of acute liver injury. Their mechanism is always based on redox imbalance-induced direct hepatotoxicity and massive hepatocyte cell death, which can trigger immune cell activation and recruitment to the liver. However, the pathogenesis of these models has not been fully stated. Many studies showed that gut microbiota plays a crucial role in chemical-induced liver injury. Hepatotoxicity is likely induced by imbalanced microbiota homeostasis, gut mucosal barrier damage, systemic immune activation, microbial-associated molecular patterns, and bacterial metabolites. Meanwhile, many preclinical studies have shown that supplementation with probiotics can improve chemical-induced liver injury. In this review, we highlight the pathogenesis of gut microorganisms in chemical-induced acute liver injury animal models and explore the protective mechanism of exogenous microbial supplements on acute liver injury.
Collapse
Affiliation(s)
- Tao Chen
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China.,Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Yang P, Tian H, Zou YR, Chambon P, Ichinose H, Honig G, Diamond B, Kim SJ. Epinephrine Production in Th17 Cells and Experimental Autoimmune Encephalitis. Front Immunol 2021; 12:616583. [PMID: 33692790 PMCID: PMC7937652 DOI: 10.3389/fimmu.2021.616583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Epinephrine is a hormone secreted primarily by medullary cells of the adrenal glands which regulates permeability of blood–brain barrier (BBB). Recent studies showed signaling by epinephrine/epinephrine receptor in T cells is involved in autoimmune diseases. Nevertheless, the production of epinephrine by T cells and its pathogenic function in T cells are not well investigated. Our results show that phenylethanol N-methyltransferase (PNMT), a rate-limiting enzyme of epinephrine synthesis, is specifically expressed in vitro in differentiated TH17 cells and in tissue-resident TH17 cells. Indeed, expression levels of enzymes involved in epinephrine production are higher in TH17 cells from animals after EAE induction. The induction of PNMT was not observed in other effector T cell subsets or regulatory T cells. Epinephrine producing TH17 cells exhibit co-expression of GM-CSF, suggesting they are pathogenic TH17 cells. To delineate the function of epinephrine-production in TH17 cells, we generated a TH17-specific knockout of tyrosine hydroxylase (Th) by breeding a Th-flox and a ROR-gt-CRE mouse (Th-CKO). Th-CKO mice are developmentally normal with an equivalent T lymphocyte number in peripheral lymphoid organs. Th-CKO mice also show an equivalent number of TH17 cells in vivo and following in vitro differentiation. To test whether epinephrine-producing TH17 cells are key for breaching the BBB, migration of T cells through mouse brain endothelial cells was investigated in vitro. Both epi+ wild-type and epi- TH17 cells migrate through an endothelial cell barrier. Mice were immunized with MOG peptide to induce experimental autoimmune encephalitis (EAE) and disease progression was monitored. Although there is a reduced infiltration of CD4+ T cells in Th-CKO mice, no difference in clinical score was observed between Th-CKO and wild-type control mice. Increased neutrophils were observed in the central nervous system of Th-CKO mice, suggesting an alternative pathway to EAE progression in the absence of TH17 derived epinephrine.
Collapse
Affiliation(s)
- Pinguang Yang
- Center of Autoimmune and Hematopoietic and Musculoskeletal diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, NY, United States
| | - Hong Tian
- Center of Autoimmune and Hematopoietic and Musculoskeletal diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Yong-Rui Zou
- Center of Autoimmune and Hematopoietic and Musculoskeletal diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Pierre Chambon
- Institute for Genetics and Cellular and Molecular Biology, Institute of Advanced Study of the University of Strasbourg, Strasbourg, France
| | - Hiroshi Ichinose
- Department of Life Science, Graduate School of bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Gerard Honig
- Crohn's & Colitis Foundation, National Headquarters, New York, NY, United States
| | - Betty Diamond
- Center of Autoimmune and Hematopoietic and Musculoskeletal diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Sun Jung Kim
- Center of Autoimmune and Hematopoietic and Musculoskeletal diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
42
|
Zou M, Nong C, Yu Z, Cai H, Jiang Z, Xue R, Huang X, Sun L, Zhang L, Wang X. The role of invariant natural killer T cells and associated immunoregulatory factors in triptolide-induced cholestatic liver injury. Food Chem Toxicol 2020; 146:111777. [DOI: 10.1016/j.fct.2020.111777] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
|
43
|
Gut microbiota depletion by chronic antibiotic treatment alters the sleep/wake architecture and sleep EEG power spectra in mice. Sci Rep 2020; 10:19554. [PMID: 33177599 PMCID: PMC7659342 DOI: 10.1038/s41598-020-76562-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Dysbiosis of the gut microbiota affects physiological processes, including brain functions, by altering the intestinal metabolism. Here we examined the effects of the gut microbiota on sleep/wake regulation. C57BL/6 male mice were treated with broad-spectrum antibiotics for 4 weeks to deplete their gut microbiota. Metabolome profiling of cecal contents in antibiotic-induced microbiota-depleted (AIMD) and control mice showed significant variations in the metabolism of amino acids and vitamins related to neurotransmission, including depletion of serotonin and vitamin B6, in the AIMD mice. Sleep analysis based on electroencephalogram and electromyogram recordings revealed that AIMD mice spent significantly less time in non-rapid eye movement sleep (NREMS) during the light phase while spending more time in NREMS and rapid eye movement sleep (REMS) during the dark phase. The number of REMS episodes seen in AIMD mice increased during both light and dark phases, and this was accompanied by frequent transitions from NREMS to REMS. In addition, the theta power density during REMS was lower in AIMD mice during the light phase compared with that in the controls. Consequently, the gut microbiota is suggested to affect the sleep/wake architecture by altering the intestinal balance of neurotransmitters.
Collapse
|
44
|
Liu X, Jiang L, Li L, Yu H, Nie S, Xie M, Gong J. The Role of Neurotransmitters in the Protection of Caenorhabditis Elegans for Salmonella Infection by Lactobacillus. Front Cell Infect Microbiol 2020; 10:554052. [PMID: 33134188 PMCID: PMC7550654 DOI: 10.3389/fcimb.2020.554052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Salmonellosis is a common foodborne disease. We previously reported the protection of Caenorhabditis elegans from Salmonella Typhimurium DT104 infection by Lactobacillus zeae LB1. However, the mechanism is not fully understood. C. elegans exhibits behavior plasticity when presented with diverse pathogenic or commensal bacteria. Whether it can exert approach avoidance to S. Typhimurium through altering its neurological activity remains to be determined. In the current study, both the wild type and mutants defective in serotonin or dopamine production of C. elegans were used to investigate olfactory preference of the nematode to L. zeae LB1, DT104, and Escherichia coli OP50 by choice assays, and its resistance to DT104 infection and the protection offered by L. zeae LB1 using a life-span assay. The expression of target genes in C. elegans was also examined by real-time quantitative PCR. Results showed that pre-exposure to L. zeae LB1 did not elicit aversive olfactory behavior of the nematode toward DT104. Both mutants tph-1 and cat-2 succumbed faster than the wild type when infected with DT104. While pre-exposure to L. zeae LB1 significantly increased the survival of both the wild type and mutant tph-1, it provided no protection to mutant cat-2. Supplementation of dopamine resulted in both the resistance of mutant cat-2 to S. Typhimurium infection and the protection from L. zeae LB1 to the same mutant. Gene expression data also supported the observations in the life-span assay. These results suggest that both serotonin and dopamine play a positive role in the host defense of C. elegans to S. Typhimurium infection and that the L. zeae LB1 protection is not dependent on modifying olfactory preference of the nematode but mediated by dopamine that may have involved the regulation of p38-mitogen-activated protein kinase and insulin/insulin-like growth factor signaling pathways.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China.,Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Leming Jiang
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Linyan Li
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hai Yu
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Joshua Gong
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
45
|
Desta YT, Wu M, Bai L, Wu X, Xiong M, Weng X. Mitochondrial-targeted ubiquinone alleviates concanavalin A-induced hepatitis via immune modulation. Int Immunopharmacol 2020; 84:106518. [DOI: 10.1016/j.intimp.2020.106518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/23/2023]
|
46
|
Water Extract from Inflorescences of Industrial Hemp Futura 75 Variety as a Source of Anti-Inflammatory, Anti-Proliferative and Antimycotic Agents: Results from In Silico, In Vitro and Ex Vivo Studies. Antioxidants (Basel) 2020; 9:antiox9050437. [PMID: 32429587 PMCID: PMC7278775 DOI: 10.3390/antiox9050437] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Industrial hemp (Cannabis sativa) is traditionally cultivated as a valuable source of fibers and nutrients. Multiple studies also demonstrated antimicrobial, anti-proliferative, phytotoxic and insecticide effects of the essential oil from hemp female inflorescences. On the other side, only a few studies explored the potential pharmacological application of polar extracts from inflorescences. In the present study, we investigated the water extract from inflorescences of industrial hemp Futura 75 variety, from phytochemical and pharmacological point of view. The water extract was assayed for phenolic compound content, radical scavenger/reducing, chelating and anti-tyrosinase effects. Through an ex vivo model of toxicity induced by lipopolysaccharide (LPS) on isolated rat colon and liver, we explored the extract effects on serotonin, dopamine and kynurenine pathways and the production of prostaglandin (PG)E2. Anti-proliferative effects were also evaluated against human colon cancer HCT116 cell line. Additionally, antimycotic effects were investigated against Trichophyton rubrum, Trichophyton interdigitale, Microsporum gypseum. Finally, in silico studies, including bioinformatics, network pharmacology and docking approaches were conducted in order to predict the putative targets underlying the observed pharmacological and microbiological effects. Futura 75 water extract was able to blunt LPS-induced reduction of serotonin and increase of dopamine and kynurenine turnover, in rat colon. Additionally, the reduction of PGE2 levels was observed in both colon and liver specimens, as well. The extract inhibited the HCT116 cell viability, the growth of T. rubrum and T. interdigitale and the activity of tyrosinase, in vitro, whereas in silico studies highlighting the inhibitions of cyclooxygenase-1 (induced by carvacrol), carbonic anhydrase IX (induced by chlorogenic acid and gallic acid) and lanosterol 14-α-demethylase (induced by rutin) further support the observed pharmacological and antimycotic effects. The present findings suggest female inflorescences from industrial hemp as high quality by-products, thus representing promising sources of nutraceuticals and cosmeceuticals against inflammatory and infectious diseases.
Collapse
|
47
|
Glotfelty LG, Wong AC, Levy M. Small molecules, big effects: microbial metabolites in intestinal immunity. Am J Physiol Gastrointest Liver Physiol 2020; 318:G907-G911. [PMID: 32249590 PMCID: PMC7395478 DOI: 10.1152/ajpgi.00263.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mammalian intestine is host to a vast number of microbial organisms. The immune system must balance tolerance with innate and adaptive defense mechanisms to maintain homeostasis with the microbial community. Interestingly, microbial metabolites have been shown to play a role in shaping the host immune response, thus assisting with adaptations that have significant implications for human health and disease. New investigations have uncovered roles for metabolites in modulating almost every aspect of the immune system. In this minireview, we survey these recent findings, which taken together reveal nuanced interactions that we are just beginning to understand.
Collapse
Affiliation(s)
- Lila G. Glotfelty
- 1Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania,2Division of Gastroenterology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrea C. Wong
- 1Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maayan Levy
- 1Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Nataf S. An alteration of the dopamine synthetic pathway is possibly involved in the pathophysiology of COVID-19. J Med Virol 2020; 92:1743-1744. [PMID: 32246784 PMCID: PMC7228370 DOI: 10.1002/jmv.25826] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Serge Nataf
- Bank of Tissues and Cells, Hôpital Edouard Herriot, Lyon University Hospital, Lyon, France.,CarMeN Laboratory, INSERM 1060, INRA 1397, INSA, Oullins, France.,Department of Cytology/Histology, Lyon-Est School of Medicine, University Claude Bernard Lyon-1, Lyon, France
| |
Collapse
|
49
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
50
|
Nong C, Zou M, Xue R, Bai L, Liu L, Jiang Z, Sun L, Huang X, Zhang L, Wang X. The role of invariant natural killer T cells in experimental xenobiotic-induced cholestatic hepatotoxicity. Biomed Pharmacother 2020; 122:109579. [DOI: 10.1016/j.biopha.2019.109579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/10/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
|