1
|
Chu KH, Chiang BL. A Novel Subset of Regulatory T Cells Induced by B Cells Alleviate the Severity of Immunological Diseases. Clin Rev Allergy Immunol 2024; 67:73-82. [PMID: 39465485 DOI: 10.1007/s12016-024-09009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Regulatory T (Treg) cells are crucial for maintaining immune tolerance by suppressing response to self-antigens and harmless antigens to prevent autoimmune diseases and uncontrolled immune responses. Therefore, using Treg cells is considered a therapeutic strategy treating inflammatory diseases. Based on their origin, Treg cells are classified into thymus-derived, peripherally induced, and in vitro induced Treg cells. Our group discovered a novel Treg cell subset, namely, Treg-of-B (Treg/B) cells, generated by culturing CD4+CD25- T cells with B cells, including Peyer's patch B cells, splenic B cells and peritoneal B1a cells, for 3 days. Treg/B cells express CD44, OX40 (CD134), cytotoxic T-lymphocyte-associated antigen-4 (CD152), glucocorticoid-induced tumor necrosis factor receptor family-related protein (CD357), interleukin-10 receptor, lymphocyte activation gene-3 (CD223), inducible co-stimulator (CD278), programmed-death 1 (CD279), tumor necrosis factor receptor II, and high levels of IL-10, but not forkhead box protein P3, similar to type 1 Treg (Tr1) cells. However, unlike Tr1 cells, Treg/B cells do not express CD103, CD226, and latency-associated peptide. Treg/B cells have been applied for the treatment of some murine models of inflammatory diseases, including allergic asthma, inflammatory bowel disease, collagen-induced arthritis, gout, psoriasis and primary biliary cholangitis. This review summarizes the current knowledge of Treg/B cells.
Collapse
Affiliation(s)
- Kuan-Hua Chu
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan.
- Genomes and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
- Allergy Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024; 100:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
3
|
Liu T, Gu Y, Zhang Y, Li Y. Integrin α2 in the microenvironment and the tumor compartment of digestive (gastrointestinal) cancers: emerging regulators and therapeutic opportunities. Front Oncol 2024; 14:1439709. [PMID: 39568561 PMCID: PMC11576383 DOI: 10.3389/fonc.2024.1439709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Integrins are a family of cell surface membrane receptors and play a crucial role in facilitating bidirectional cell signaling. Integrin α2 (ITGA2) is expressed across a range of cell types, including epithelial cells, platelets, megakaryocytes, and fibroblasts, where it functions as a surface marker and it is implicated in the cell movements. The most recent findings have indicated that ITAG2 has the potential to function as a novel regulatory factor in cancer, responsible for driving tumorigenesis, inducing chemoresistance, regulating genomic instability and remodeling tumor microenvironment. Hence, we primarily focus on elucidating the biological function and mechanism of ITGA2 within the digestive tumor microenvironment, while highlighting its prospective utilization as a therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Tiantian Liu
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yanmei Gu
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yuyu Zhang
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yumin Li
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Qi L, Wang Z, Huang X, Gao X. Biological function of type 1 regulatory cells and their role in type 1 diabetes. Heliyon 2024; 10:e36524. [PMID: 39286070 PMCID: PMC11402939 DOI: 10.1016/j.heliyon.2024.e36524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
The collapse of immune homeostasis induces type 1 diabetes (T1D). In T1D, uncontrolled immune attacks against islet β cells reduce insulin secretion, resulting in hyperglycaemia and various complications. Type 1 regulatory (Tr1) cell therapy is a promising approach for the treatment of T1D. Tr1 cells are a subset of regulatory T (Treg) cells that are characterised by high interleukin-10 secretion and forkhead box protein P3 non-expression. Tr1 cells are reduced and have impaired function in patients with T1D. Immunotherapy is used to treat various diseases, and Treg cells have been applied to treat T1D in animal models and clinical trials. However, the safety and efficacy of Tr1 cells in treating diabetes and other diseases remain unclear. In this review, we aim to investigate the identification and biological function of Tr1 cells and related studies on immune diseases; additionally, we discuss the feasibility, limitations, and possible solutions of Tr1 cell therapy in T1D. This review shows that T1D is caused by an immune imbalance where defective Tr1 cells fail to control effector T cells, leading to the destruction of islet β cells. However, Tr1 cell therapy is safe and effective for other immune diseases, suggesting its potential for treating T1D.
Collapse
Affiliation(s)
- Lingli Qi
- Department of Gastroenterology, Children's Medical Center, The First Hospital of Jilin University, China
| | - Zhichao Wang
- Department of Surgery, Children's Medical Center, The First Hospital of Jilin University, China
| | - Xinxing Huang
- Department of Gastroenterology, Children's Medical Center, The First Hospital of Jilin University, China
| | - Xiuzhu Gao
- Department of Public Laboratory Platform, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Knott-Torcal C, de la Blanca NS, Serrano-Somavilla A, Hernández RM, Sampedro-Núñez M, Ruiz-Rosso B, Jiménez-Blanco S, González-Amaro R, González-Baranda L, Garcimartin A, Marazuela M. Quantitative analysis of Tr1 lymphocytes in patients with type 2 diabetes mellitus. J Endocrinol Invest 2024; 47:1447-1455. [PMID: 38183564 PMCID: PMC11142976 DOI: 10.1007/s40618-023-02250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is usually accompanied by a low-grade inflammatory phenomenon, which participates in the pathogenesis of different complications of this condition. The inflammatory response is under the regulation of different mechanisms, including T regulatory (Treg) lymphocytes. However, the possible role of type 1 T regulatory (Tr1) cells in T2DM has not been explored so far. AIM To carry out a quantitative analysis of Tr1 lymphocytes and other immune cell subsets in patients with T2DM and correlate these results with clinical findings and treatments. MATERIALS AND METHODS Sixty patients with T2DM and twenty-three healthy controls were included in the study. Biochemical and anthropometric variables were evaluated, and Tr1 lymphocytes (CD4+CD49+LAG-3+IL-10+) and other cell subsets (Th17, Th22 and Foxp3 + Treg cells) were analyzed in peripheral blood samples by multiparametric flow cytometry. RESULTS Significant increased levels of Tr1 cells were detected in patients with severe and mild disease, compared to healthy controls. In addition, CD4+IL-10+ lymphocytes were also increased in patients with T2DM. In contrast, similar levels of Foxp3+ Treg cells, Th17 and Th22 lymphocytes were observed in patients and controls. Likewise, no significant associations were detected between Tr1 cell levels and different clinical and laboratory parameters. However, those patients receiving glucagon-like peptide-1 receptor agonists (GLP-1-RA) showed similar levels of Tr1 cells than healthy controls, and significant lower numbers than untreated patients. CONCLUSION We observed an increase in Tr1 and CD4+IL10+ lymphocyte levels in T2DM. Moreover, GLP1-RA treatment was significantly associated with normalization of the Tr1 levels. This highlights another potential immune dysfunction in patients with T2DM, which could participate in the pathogenesis of this condition.
Collapse
Affiliation(s)
- C Knott-Torcal
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
- Faculty of Pharmacy, Universidad Complutense de Madrid, Av. Séneca, 2, 28040, Madrid, Spain
| | - N S de la Blanca
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - A Serrano-Somavilla
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - R M Hernández
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - M Sampedro-Núñez
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - B Ruiz-Rosso
- Faculty of Pharmacy, Universidad Complutense de Madrid, Av. Séneca, 2, 28040, Madrid, Spain
| | - S Jiménez-Blanco
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
| | - R González-Amaro
- Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, SLP, México
| | - L González-Baranda
- Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, SLP, México
| | - A Garcimartin
- Faculty of Pharmacy, Universidad Complutense de Madrid, Av. Séneca, 2, 28040, Madrid, Spain.
| | - M Marazuela
- Department of Endocrinology and Nutrition, Health Research Institute, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain.
| |
Collapse
|
6
|
Wei X, Zhang J, Cui J, Xu W, Zhao G, Guo C, Yuan W, Zhou X, Ma J. Adaptive plasticity of natural interleukin-35-induced regulatory T cells (Tr35) that are required for T-cell immune regulation. Theranostics 2024; 14:2897-2914. [PMID: 38773985 PMCID: PMC11103508 DOI: 10.7150/thno.90608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
Background: IL-35 potently inhibits immune responses both in vivo and in vitro. However, the specific characteristics of IL-35-producing cells, including their developmental origin, cellular phenotype, and function, are unknown. Methods: By using a novel IL-35 reporter mouse (Ebi3-Dre-Thy1.1) and double transgenic fate-mapping reporter mice (35EbiT-Rosa26-rox-tdTomato reporter mice or Foxp3 fate-mapping system), we tracked and analyzed the differentiation and developmental trajectories of Tr35 cells in vivo. And then we investigated the therapeutic effects of OVA-specific Tr35 cells in an OVA-induced allergic airway disease model. Results: We identified a subset of cells, denoted Tr35 cells, that secrete IL-35 but do not express Foxp3. These cells have high expression of molecules associated with T-cell activation and can inhibit T-cell proliferation in vitro. Our analyses showed that Tr35 cells are a distinct subpopulation of cells that are independent of Tr1 cells. Tr35 cells exhibit a unique gene expression profile and tissue distribution. The presence of Thy1.1 (Ebi3) expression in Tr35 cells indicates their active secretion of IL-35. However, the proportion of ex-Tr35 cells (Thy1.1-) is significantly higher compared to Tr35 cells (Thy1.1+). This suggests that Tr35 cells possess the ability to regulate IL-35 expression rapidly in vivo. Tr35 cells downregulated the expression of the inflammatory cytokines IL-4, IFN-γ and IL-17A. However, once Tr35 cells lost IL-35 expression and became exTr35 cells, the expression of inflammatory cytokines was upregulated. Importantly, our findings indicate that Tr35 cells have therapeutic potential. In an OVA-induced allergic airway disease mouse model, Tr35 cell reinfusion significantly reduced airway hyperresponsiveness and histopathological airway and lung inflammation. Conclusions: We have identified a subset of Tregs, Tr35 cells, that are distinct from Tr1 cells. Tr35 cells can dynamically regulate the secretion of inflammatory cytokines by controlling IL-35 expression to regulate inflammatory immune responses.
Collapse
Affiliation(s)
- Xundong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi Nanning, P.R. China
| | - Jianhua Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Jian Cui
- Department of General Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Wei Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Gang Zhao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Chang Guo
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Wei Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P.R. China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi Nanning, P.R. China
| |
Collapse
|
7
|
Harjacek M. Role of regulatory T cells in pathogenesis and therapeutics of spondyloarthritis. REGULATORY T CELLS AND AUTOIMMUNE DISEASES 2024:165-196. [DOI: 10.1016/b978-0-443-13947-5.00042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Xue J, Suo L, An Y, Wang X, Zhang S, Liu H, Wu Y, Sun X, Zhao C, Yang P. Phosphatidylserine promotes immunotherapy for airway allergy. Immunol Lett 2023; 264:46-55. [PMID: 38008186 DOI: 10.1016/j.imlet.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
Type 1 regulatory T cells (Tr1 cells) play an important role in the maintenance of the immune homeostasis in the body. The induction of Tr1 cell is to be further investigated. The interaction of phosphatidylserine (PS) with TIM3 has immune regulation functions. The objective of this study is to elucidate the role of PS-TIM3 signals in inducing Tr1 cells. In this study, mice were treated using PS or specific immunotherapy by nasal instillation. A murine model of allergic rhinitis was developed using ovalbumin as a specific antigen. We found that PS-containing nasal instillation induced Tr1 cells in the airway tissues. PS promoted gene activities associated with IL-10 through activation of TIM3 in CD4+ T cells. TIM3 mediated the effects of PS on inducing Tr1 cells, in which the TIM3- PI3K-AKT pathway played a critical role. PS boosted allergen-specific immunotherapy by inducing specific antigen Tr1 cell generation. Concomitant administration of PS and SIT resulted in better therapeutic effects on AR. In conclusion, the data demonstrate that PS can promote the specific immunotherapy for AR through inducing antigen specific Tr1 cells in the airway tissues.
Collapse
Affiliation(s)
- Jinmei Xue
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Limin Suo
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yunfang An
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Xinxin Wang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China; Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Shuang Zhang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China; Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Huazhen Liu
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China; Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Yongjin Wu
- Department of General Practical Medicine, Third Affiliated Hospital, Shenzhen, China
| | - Xizhuo Sun
- Department of General Practical Medicine, Third Affiliated Hospital, Shenzhen, China
| | - Changqing Zhao
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China.
| | - Pingchang Yang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China; Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China; Department of General Practical Medicine, Third Affiliated Hospital, Shenzhen, China.
| |
Collapse
|
9
|
Wang Y, De Labastida Rivera F, Edwards CL, Frame TC, Engel JA, Bukali L, Na J, Ng SS, Corvino D, Montes de Oca M, Bunn PT, Soon MS, Andrew D, Loughland JR, Zhang J, Amante FH, Barber BE, McCarthy JS, Lopez JA, Boyle MJ, Engwerda CR. STING activation promotes autologous type I interferon-dependent development of type 1 regulatory T cells during malaria. J Clin Invest 2023; 133:e169417. [PMID: 37781920 PMCID: PMC10541195 DOI: 10.1172/jci169417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
The development of highly effective malaria vaccines and improvement of drug-treatment protocols to boost antiparasitic immunity are critical for malaria elimination. However, the rapid establishment of parasite-specific immune regulatory networks following exposure to malaria parasites hampers these efforts. Here, we identified stimulator of interferon genes (STING) as a critical mediator of type I interferon production by CD4+ T cells during blood-stage Plasmodium falciparum infection. The activation of STING in CD4+ T cells by cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) stimulated IFNB gene transcription, which promoted development of IL-10- and IFN-γ-coproducing CD4+ T (type I regulatory [Tr1]) cells. The critical role for type I IFN signaling for Tr1 cell development was confirmed in vivo using a preclinical malaria model. CD4+ T cell sensitivity to STING phosphorylation was increased in healthy volunteers following P. falciparum infection, particularly in Tr1 cells. These findings identified STING expressed by CD4+ T cells as an important mediator of type I IFN production and Tr1 cell development and activation during malaria.
Collapse
Affiliation(s)
- Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Environment and Science, Nathan, Australia
| | | | - Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Teija C.M. Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | | | - Luzia Bukali
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Dillon Corvino
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Marcela Montes de Oca
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Patrick T. Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Megan S.F. Soon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Jia Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona H. Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - James S. McCarthy
- Victorian Infectious Diseases Services, Doherty Institute, University of Melbourne, Melbourne, Australia
| | - J. Alejandro Lopez
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Environment and Science, Nathan, Australia
| | - Michelle J. Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Life Sciences Division, Burnet Institute, Melbourne, Australia
| | | |
Collapse
|
10
|
Gao X, Tang Y, Kong L, Fan Y, Wang C, Wang R. Treg cell: Critical role of regulatory T-cells in depression. Pharmacol Res 2023; 195:106893. [PMID: 37611836 DOI: 10.1016/j.phrs.2023.106893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Depression is a highly prevalent disorder of the central nervous system. The neuropsychiatric symptoms of clinical depression are persistent and include fatigue, anorexia, weight loss, altered sleep patterns, hyperalgesia, melancholia, anxiety, and impaired social behaviours. Mounting evidences suggest that neuroinflammation triggers dysregulated cellular immunity and increases susceptibility to psychiatric diseases. Neuroimmune responses have transformed the clinical approach to depression because of their roles in its pathophysiology and their therapeutic potential. In particular, activated regulatory T (Treg) cells play an increasingly evident role in the inflammatory immune response. In this review, we summarized the available data and discussed in depth the fundamental roles of Tregs in the pathogenesis of depression, as well as the clinical therapeutic potential of Tregs. We aimed to provide recent information regarding the potential of Tregs as immune-modulating biologics for the treatment and prevention of long-term neuropsychiatric symptoms of depression.
Collapse
Affiliation(s)
- Xiao Gao
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yuru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, 26600 Qingdao, Shandong Province, China
| | - Lingli Kong
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yong Fan
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Chunxia Wang
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China.
| | - Rui Wang
- Department of Pain Management, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 26600 Qingdao, Shandong Province, China.
| |
Collapse
|
11
|
Hsieh TY, Lui SW, Lu JW, Chen YC, Lin TC, Jheng WL, Ho YJ, Liu FC. Using Treg, Tr1, and Breg Expression Levels to Predict Clinical Responses to csDMARD Treatment in Drug-naive Patients With Rheumatoid Arthritis. In Vivo 2023; 37:2018-2027. [PMID: 37652509 PMCID: PMC10500538 DOI: 10.21873/invivo.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM Regulatory T cells (Treg) play a crucial role in maintaining immune tolerance and preventing autoimmune diseases. Recent data also indicate that type 1 regulatory T (Tr1) and regulatory B (Breg) cells play an inhibitory (i.e., protective) role in autoimmune diseases. Conventional synthetic disease-modifying antirheumatic drugs (csDMARD) are a first-line therapy for rheumatoid arthritis (RA), and our aim was to predict clinical responses of this treatment using immunophenotyping. MATERIALS AND METHODS We first detected the presence of immune cells in fresh blood from 16 healthy controls (HC) and 26 patients with RA (14 drug-naive and 12 csDMARD-experienced). Then, we recorded immunophenotypic changes in 14 drug-naive RA (naive RA) patients prior to csDMARD treatment (i.e., day 0) and after receiving treatment for 6 months. The observed changes were also compared with other clinical indicators, including the presence of anti-citrullinated peptide antibodies (anti-CCP), rheumatoid factor (RF) levels, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) levels. RESULTS Naive RA patients had significantly lower Tregs than HC and csDMARD-experienced patients (both p<0.0001) and the number of Tregs correlated with the diagnosis of RA and therapeutic efficacy of csDMARD treatment. Furthermore, lower baseline levels of Treg, memory Treg, Tr1, and higher PD-1+ Marginal B, Breg cells were significantly associated with decreased development of the 28-joint Disease Activity Score (DAS28) (all p<0.05), revealing better medical response. Multiple regression and principal component analysis identified Treg, Tr1, and Breg as potential predictors of csDMARD responses (Area under curve: 0.9; Accuracy: 92.86%). Furthermore, elevated Treg, Tr1, and Breg cells were associated with decreased DAS28, ESR, and CRP (all p<0.05); changes in Treg and Breg cell expression were also more pronounced among double negative anti-CCP and RF in RA patients with better outcomes (p<0.05). CONCLUSION Immunophenotyping can be an adjunct clinical tool to identify patients who are poor candidates for csDMARD therapy. Alternative therapeutic interventions in the early stages of disease should be formulated for these patients.
Collapse
Affiliation(s)
- Ting-Yu Hsieh
- School of Medicine, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Shan-Wen Lui
- School of Medicine, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Jeng-Wei Lu
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yen-Chen Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Ting-Chun Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Wun-Long Jheng
- Department of Translational Science, Massachusetts Laboratory for Engineering Medicine and Critical Data, Gloucester, MA, U.S.A
| | - Yi-Jung Ho
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.;
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Feng-Cheng Liu
- Rheumatology/Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.
| |
Collapse
|
12
|
Aggarwal V, Workman CJ, Vignali DAA. LAG-3 as the third checkpoint inhibitor. Nat Immunol 2023; 24:1415-1422. [PMID: 37488429 PMCID: PMC11144386 DOI: 10.1038/s41590-023-01569-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Lymphocyte activation gene 3 (LAG-3) is an inhibitory receptor that is highly expressed by exhausted T cells. LAG-3 is a promising immunotherapeutic target, with more than 20 LAG-3-targeting therapeutics in clinical trials and a fixed-dose combination of anti-LAG-3 and anti-PD-1 now approved to treat unresectable or metastatic melanoma. Although LAG-3 is widely recognized as a potent inhibitory receptor, important questions regarding its biology and mechanism of action remain. In this Perspective, we focus on gaps in the understanding of LAG-3 biology and discuss the five biggest topics of current debate and focus regarding LAG-3, including its ligands, signaling and mechanism of action, its cell-specific functions, its importance in different disease settings, and the development of novel therapeutics.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Abdeladhim M, Karnell JL, Rieder SA. In or out of control: Modulating regulatory T cell homeostasis and function with immune checkpoint pathways. Front Immunol 2022; 13:1033705. [PMID: 36591244 PMCID: PMC9799097 DOI: 10.3389/fimmu.2022.1033705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/16/2022] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are the master regulators of immunity and they have been implicated in different disease states such as infection, autoimmunity and cancer. Since their discovery, many studies have focused on understanding Treg development, differentiation, and function. While there are many players in the generation and function of truly suppressive Tregs, the role of checkpoint pathways in these processes have been studied extensively. In this paper, we systematically review the role of different checkpoint pathways in Treg homeostasis and function. We describe how co-stimulatory and co-inhibitory pathways modulate Treg homeostasis and function and highlight data from mouse and human studies. Multiple checkpoint pathways are being targeted in cancer and autoimmunity; therefore, we share insights from the clinic and discuss the effect of experimental and approved therapeutics on Treg biology.
Collapse
|
14
|
Liefaard L, Hajduk E, van den Berg F, Panoilia E, Bouma G, Lisi E, Srinivasan N, Cui Y, Gross AS, Tarzi R, Marks DJB. Randomized Trial of the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of GSK2831781 in Healthy Japanese and White Participants. Clin Pharmacol Drug Dev 2022; 11:1284-1293. [PMID: 36088650 DOI: 10.1002/cpdd.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/08/2022] [Indexed: 01/27/2023]
Abstract
This study investigated ethnic differences in the safety, tolerability, pharmacokinetics, and pharmacodynamics of GSK2831781, an anti-lymphocyte activation gene 3 (LAG3) monoclonal antibody, in healthy participants, and determined local tolerability and bioavailability following subcutaneous (SC) administration. A double-blind, randomized study of (A) single intravenous (IV) doses of GSK2831781 450 mg or placebo in Japanese and White participants; and (B) single SC doses of GSK2831781 150 or 450 mg, or placebo in White participants, was conducted. Blood samples for analyses were collected before dosing and over 112 days after dosing. GSK2831781 was well tolerated in Japanese and White participants after both IV and SC doses, with the adverse event profile in Japanese being consistent with other populations. There were no injection site adverse events. There was no evidence of differences in systemic exposure among Japanese and White participants. Systemic exposure did not vary with body weight. SC bioavailability was 76.5%, as estimated using population pharmacokinetic modeling. Full and sustained target engagement and evidence of LAG3+ cell depletion (≈53%-66%) were observed in both populations and after both administration routes. No evidence of reduced circulating regulatory T cells (CD4+ CD25+ CD127low FoxP3+ ) was observed. Following IV and SC administration, GSK2831781 depleted circulating LAG3+ T cells with no interethnic difference observed. There were no major impacts on circulating regulatory T cells.
Collapse
Affiliation(s)
- Lia Liefaard
- Clinical Pharmacology Modelling and Simulation, GSK, Stevenage, UK
| | - Eva Hajduk
- Global Clinical Sciences and Delivery, GSK, Brentford, UK
| | | | - Eirini Panoilia
- Clinical Pharmacology Modelling and Simulation, GSK, Stevenage, UK
| | - Gerben Bouma
- Clinical Pharmacology and Experimental Medicine, GSK, Stevenage, UK
| | | | | | - Yi Cui
- Global Safety, GSK, Brentford, UK
| | - Annette S Gross
- Clinical Pharmacology Modelling and Simulation, GSK, Sydney, Australia
| | | | - Daniel J B Marks
- Clinical Pharmacology and Experimental Medicine, GSK, Stevenage, UK
| |
Collapse
|
15
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
16
|
Kwon M, Rubio G, Wang H, Riedlinger G, Adem A, Zhong H, Slegowski D, Post-Zwicker L, Chidananda A, Schrump DS, Pine SR, Libutti SK. Smoking-associated Downregulation of FILIP1L Enhances Lung Adenocarcinoma Progression Through Mucin Production, Inflammation, and Fibrosis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1197-1213. [PMID: 36860703 PMCID: PMC9973389 DOI: 10.1158/2767-9764.crc-22-0233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Lung adenocarcinoma (LUAD) is the major subtype in lung cancer, and cigarette smoking is essentially linked to its pathogenesis. We show that downregulation of Filamin A interacting protein 1-like (FILIP1L) is a driver of LUAD progression. Cigarette smoking causes its downregulation by promoter methylation in LUAD. Loss of FILIP1L increases xenograft growth, and, in lung-specific knockout mice, induces lung adenoma formation and mucin secretion. In syngeneic allograft tumors, reduction of FILIP1L and subsequent increase in its binding partner, prefoldin 1 (PFDN1) increases mucin secretion, proliferation, inflammation, and fibrosis. Importantly, from the RNA-sequencing analysis of these tumors, reduction of FILIP1L is associated with upregulated Wnt/β-catenin signaling, which has been implicated in proliferation of cancer cells as well as inflammation and fibrosis within the tumor microenvironment. Overall, these findings suggest that down-regulation of FILIP1L is clinically relevant in LUAD, and warrant further efforts to evaluate pharmacologic regimens that either directly or indirectly restore FILIP1L-mediated gene regulation for the treatment of these neoplasms. Significance This study identifies FILIP1L as a tumor suppressor in LUADs and demonstrates that downregulation of FILIP1L is a clinically relevant event in the pathogenesis and clinical course of these neoplasms.
Collapse
Affiliation(s)
- Mijung Kwon
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Genesaret Rubio
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Haitao Wang
- Thoracic Surgery Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Gregory Riedlinger
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Asha Adem
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Hua Zhong
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Daniel Slegowski
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | | | | | - David S. Schrump
- Thoracic Surgery Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Sharon R. Pine
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | | |
Collapse
|
17
|
Matsuda M, Terada T, Kitatani K, Kawata R, Nabe T. Roles of type 1 regulatory T (Tr1) cells in allergen-specific immunotherapy. FRONTIERS IN ALLERGY 2022; 3:981126. [PMID: 35991310 PMCID: PMC9381954 DOI: 10.3389/falgy.2022.981126] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is the only causative treatment for allergic diseases by modification of the immune response to allergens. A key feature of AIT is to induce immunotolerance to allergens by generating antigen-specific regulatory T (Treg) cells in allergic patients. Type 1 regulatory T (Tr1) cells and forkhead box protein 3 (Foxp3)-expressing Treg cells are well known among Treg cell subsets. Foxp3 was identified as a master transcription factor of Treg cells, and its expression is necessary for their suppressive activity. In contrast to Foxp3+ Treg cells, the master transcription factor of Tr1 cells has not been elucidated. Nevertheless, Tr1 cells are generally considered as a distinct subset of Treg cells induced in the periphery during antigen exposure in tolerogenic conditions and can produce large amounts of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor-β, followed by down-regulation of the function of effector immune cells independently of Foxp3 expression. Since the discovery of Tr1 cells more than 20 years ago, research on Tr1 cells has expanded our understanding of the mechanism of AIT. Although the direct precursors and true identity of these cells continues to be disputed, we and others have demonstrated that Tr1 cells are induced in the periphery by AIT, and the induced cells are re-activated by antigens, followed by suppression of allergic symptoms. In this review, we discuss the immune mechanisms for the induction of Tr1 cells by AIT and the immune-suppressive roles of Tr1 cells in AIT.
Collapse
Affiliation(s)
- Masaya Matsuda
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Tetsuya Terada
- Department of Otolaryngology, Head & Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kazuyuki Kitatani
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Ryo Kawata
- Department of Otolaryngology, Head & Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
- Correspondence: Takeshi Nabe
| |
Collapse
|
18
|
Martens PJ, Centelles-Lodeiro J, Ellis D, Cook DP, Sassi G, Verlinden L, Verstuyf A, Raes J, Mathieu C, Gysemans C. High Serum Vitamin D Concentrations, Induced via Diet, Trigger Immune and Intestinal Microbiota Alterations Leading to Type 1 Diabetes Protection in NOD Mice. Front Immunol 2022; 13:902678. [PMID: 35784365 PMCID: PMC9241442 DOI: 10.3389/fimmu.2022.902678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The hormonally-active form of vitamin D, 1,25-dihydroxyvitamin D3, can modulate both innate and adaptive immunity, through binding to the nuclear vitamin D receptor expressed in most immune cells. A high dose of regular vitamin D protected non-obese diabetic (NOD) mice against type 1 diabetes (T1D), when initiated at birth and given lifelong. However, considerable controversy exists on the level of circulating vitamin D (25-hydroxyvitamin D3, 25(OH)D3) needed to modulate the immune system in autoimmune-prone subjects and protect against T1D onset. Here, we evaluated the impact of two doses of dietary vitamin D supplementation (400 and 800 IU/day), given to female NOD mice from 3 until 25 weeks of age, on disease development, peripheral and gut immune system, gut epithelial barrier function, and gut bacterial taxonomy. Whereas serum 25(OH)D3 concentrations were 2.6- (400 IU/day) and 3.9-fold (800 IU/day) higher with dietary vitamin D supplementation compared to normal chow (NC), only the 800 IU/day vitamin D-supplemented diet delayed and reduced T1D incidence compared to NC. Flow cytometry analyses revealed an increased frequency of FoxP3+ Treg cells in the spleen of mice receiving the 800 IU/day vitamin D-supplemented diet. This vitamin D-induced increase in FoxP3+ Treg cells, also expressing the ecto-5’-nucleotidase CD73, only persisted in the spleen of mice at 25 weeks of age. At this time point, the frequency of IL-10-secreting CD4+ T cells was also increased in all studied immune organs. High-dose vitamin D supplementation was unable to correct gut leakiness nor did it significantly modify the increased gut microbial diversity and richness over time observed in NOD mice receiving NC. Intriguingly, the rise in alpha-diversity during maturation occurred especially in mice not progressing to hyperglycaemia. Principal coordinates analysis identified that both diet and disease status significantly influenced the inter-individual microbiota variation at the genus level. The abundance of the genera Ruminoclostridium_9 and Marvinbryantia gradually increased or decreased, respectively in faecal samples of mice on the 800 IU/day vitamin D-supplemented diet compared to mice on the 400 IU/day vitamin D-supplemented diet or NC, irrespective of disease outcome. In summary, dietary vitamin D reduced T1D incidence in female NOD mice at a dose of 800, but not of 400, IU/day, and was accompanied by an expansion of Treg cells in various lymphoid organs and an altered intestinal microbiota signature.
Collapse
Affiliation(s)
- Pieter-Jan Martens
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Javier Centelles-Lodeiro
- Laboratory of Molecular Bacteriology, Rega-Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dana Paulina Cook
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gabriele Sassi
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Rega-Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven, Leuven, Belgium
- *Correspondence: Conny Gysemans,
| |
Collapse
|
19
|
DUAN FP, LI YS, HU TY, PAN XQ, MA F, FENG Y, QIU SQ, ZHENG YQ. Dendrobium nobile protects against ovalbumin-induced allergic rhinitis by regulating intestinal flora and suppressing lung inflammation. Chin J Nat Med 2022; 20:443-457. [DOI: 10.1016/s1875-5364(22)60168-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Indexed: 11/25/2022]
|
20
|
Short WD, Wang X, Keswani SG. The Role of T Lymphocytes in Cutaneous Scarring. Adv Wound Care (New Rochelle) 2022; 11:121-131. [PMID: 34238032 PMCID: PMC8742284 DOI: 10.1089/wound.2021.0059] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/05/2021] [Indexed: 01/14/2023] Open
Abstract
Significance: Cutaneous scarring affects millions of patients worldwide and results in significant financial and psychosocial burdens. Given the immune system's intricate involvement in the initiation and progression of wound healing, it is no surprise that the scarring outcome can be affected by the actions of various immune cells and the cytokines and growth factors they produce. Understanding the role of T cells in regulating immune responses and directing the action of wound mesenchymal cells is essential to developing antifibrotic therapies to reduce the burden of scarring. Recent Advances: As the immune system is intimately involved in wound healing, much work has examined the impact of T cells and their cytokines on the final wound outcome. New innovative tools for studying T cells have resulted in more sophisticated immunophenotyping capabilities and the ability to examine effects of individual cytokines in the wound environment. Critical Issues: Despite continued advances in the study of specific immune cells and their effects on dermal fibrosis, minimal progress has been made to modulate immune responses to result in improved wound cosmesis. Future Directions: The actions of T cells represent potential pharmacologic targets that could lead to novel bioengineered or immunoengineered therapies to improve the lives of people with cutaneous scarring.
Collapse
Affiliation(s)
- Walker D. Short
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, Texas, USA
| | - Xinyi Wang
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, Texas, USA
| | - Sundeep G. Keswani
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
21
|
Liu JQ, Geng XR, Hu TY, Mo LH, Luo XQ, Qiu SY, Liu DB, Liu ZG, Shao JB, Liu ZQ, Yang PC. Glutaminolysis is required in maintaining immune regulatory functions in B cells. Mucosal Immunol 2022; 15:268-278. [PMID: 35013572 DOI: 10.1038/s41385-021-00481-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023]
Abstract
IL-10-expressing regulatory B cells (B10 cells) are dysfunctional in patients with many immune disorders. The underlying mechanism remains to be further elucidated. Glutamine is an essential nutrient for cell metabolism. This study aims to elucidate the role of glutaminolysis in maintaining the immune regulatory capacity in B10 cells. Peripheral blood samples were collected from 50 patients with allergic rhinitis and 50 healthy control subjects. B cells were isolated from blood samples by cell sorting with flow cytometry. The role of glutaminolysis in regulating B10 cell activities was assessed by immunological and biochemical approaches. The results showed that B cells from patients with allergic rhinitis expressed low levels of the transporter of glutamine and neutral amino acid. Glutaminolysis was required in the IL-10 expression in B cells. The glutamine catabolism was required in B10 cell generation. The mTOR activation mediated the glutaminolysis-associated B10 cell induction, and the suppression of the B cell glycogen synthase kinase-3 (GSK3) activation. GSK3 activation suppressed IL-10 expression in B cells. Inhibition of GSK3 enhanced IL-10 expression in B cells and alleviated experimental allergic rhinitis by generating immune competent type 1 regulatory T cells.
Collapse
Affiliation(s)
- Jiang-Qi Liu
- Department of Otolaryngology, Longgang E.N.T hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Xiao-Rui Geng
- Department of Otolaryngology, Longgang E.N.T hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Tian-Yong Hu
- Department of Otolaryngology, Longgang E.N.T hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Li-Hua Mo
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China
| | - Xiang-Qian Luo
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shu-Yao Qiu
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Da-Bo Liu
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhi-Gang Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China
| | - Jian-Bo Shao
- Department of Otolaryngology, Beijing Children Hospital, Beijing, China
| | - Zhi-Qiang Liu
- Department of Otolaryngology, Longgang E.N.T hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China.
| | - Ping-Chang Yang
- Department of Otolaryngology, Longgang E.N.T hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China. .,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China. .,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China.
| |
Collapse
|
22
|
Short WD, Wang X, Li H, Yu L, Kaul A, Calderon GA, Gilley J, Bollyky PL, Balaji S, Keswani SG. Interleukin-10 Producing T Lymphocytes Attenuate Dermal Scarring. Ann Surg 2021; 274:627-636. [PMID: 34506318 PMCID: PMC8428868 DOI: 10.1097/sla.0000000000004984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Demonstrate the impact of IL-10 producing T lymphocytes on mediating dermal scarring. SUMMARY BACKGROUND DATA We demonstrated that CD4+ cells are essential to improving postinjury wound healing and preventing fibrosis. CD4+ subsets secrete differential cytokine and growth factor profiles, though their role in fibrosis is not known. IL-10, a key anti-inflammatory cytokine shown to promote regenerative wound healing, is secreted by some CD4+ subsets. We, therefore, hypothesize that IL-10 producing CD4+ T lymphocyte subsets selectively attenuate dermal wound fibrosis. METHODS IL-10-/- and wild-type murine splenocytes were enriched for CD4+ lymphocytes and adoptively transferred into severe combined immunodeficient (SCID) mice that received full-thickness wounds which were analyzed at days 7 and 28 for inflammation and collagen content. We then sorted CD4+CD44int/lowFoxP3-CD62L+ T cells (Tnaive) or CD4+CD44HiFoxP3- type 1 regulatory (Tr1) T cell subsets from 10BiT murine splenocytes, activated them, and transferred them into wounds. In vitro, dermal fibroblasts were cocultured with Tnaive or Tr1 and the effect on extracellular matrix (ECM) regulation was analyzed. RESULTS The anti-inflammatory and antifibrotic effects of CD4+ cells on SCID wounds were lost with cells from IL-10-/- mice. Adoptive transfer of Tr1 into SCID mice resulted in accelerated wound closure at d7 with reduced fibrosis at d28, with Tr1 favoring hyaluronan production by fibroblasts, an ECM molecule implicated in IL-10-induced regenerative healing. CONCLUSIONS IL-10 producing T-lymphocytes, specifically Tr1, regulate inflammatory cell cytokine expression to promote HA-rich ECM deposition and attenuate fibrosis. Promoting IL-10 producing lymphocytes in wounds may be a therapeutic target to promote regenerative wound healing.
Collapse
Affiliation(s)
- Walker D Short
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Xinyi Wang
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Hui Li
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Ling Yu
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Aditya Kaul
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Gisele A Calderon
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Jamie Gilley
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Paul L Bollyky
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California
| | - Swathi Balaji
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Sundeep G Keswani
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| |
Collapse
|
23
|
Nicholls J, Cao B, Le Texier L, Xiong LY, Hunter CR, Llanes G, Aguliar EG, Schroder WA, Phipps S, Lynch JP, Cao H, Heazlewood SY, Williams B, Clouston AD, Nefzger CM, Polo JM, Nilsson SK, Blazar BR, MacDonald KPA. Bone Marrow Regulatory T Cells Are a Unique Population, Supported by Niche-Specific Cytokines and Plasmacytoid Dendritic Cells, and Required for Chronic Graft-Versus-Host Disease Control. Front Cell Dev Biol 2021; 9:737880. [PMID: 34631716 PMCID: PMC8493124 DOI: 10.3389/fcell.2021.737880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Regulatory T cell (Treg) reconstitution is essential for reestablishing tolerance and maintaining homeostasis following stem-cell transplantation. We previously reported that bone marrow (BM) is highly enriched in autophagy-dependent Treg and autophagy disruption leads to a significant Treg loss, particularly BM-Treg. To correct the known Treg deficiency observed in chronic graft-versus-host disease (cGVHD) patients, low dose IL-2 infusion has been administered, substantially increasing peripheral Treg (pTreg) numbers. However, as clinical responses were only seen in ∼50% of patients, we postulated that pTreg augmentation was more robust than for BM-Treg. We show that BM-Treg and pTreg have distinct characteristics, indicated by differential transcriptome expression for chemokine receptors, transcription factors, cell cycle control of replication and genes linked to Treg function. Further, BM-Treg were more quiescent, expressed lower FoxP3, were highly enriched for co-inhibitory markers and more profoundly depleted than splenic Treg in cGVHD mice. In vivo our data are consistent with the BM and not splenic microenvironment is, at least in part, driving this BM-Treg signature, as adoptively transferred splenic Treg that entered the BM niche acquired a BM-Treg phenotype. Analyses identified upregulated expression of IL-9R, IL-33R, and IL-7R in BM-Treg. Administration of the T cell produced cytokine IL-2 was required by splenic Treg expansion but had no impact on BM-Treg, whereas the converse was true for IL-9 administration. Plasmacytoid dendritic cells (pDCs) within the BM also may contribute to BM-Treg maintenance. Using pDC-specific BDCA2-DTR mice in which diptheria toxin administration results in global pDC depletion, we demonstrate that pDC depletion hampers BM, but not splenic, Treg homeostasis. Together, these data provide evidence that BM-Treg and splenic Treg are phenotypically and functionally distinct and influenced by niche-specific mediators that selectively support their respective Treg populations. The unique properties of BM-Treg should be considered for new therapies to reconstitute Treg and reestablish tolerance following SCT.
Collapse
Affiliation(s)
- Jemma Nicholls
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Laetitia Le Texier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Laura Yan Xiong
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christopher R. Hunter
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Genesis Llanes
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ethan G. Aguliar
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Wayne A. Schroder
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Simon Phipps
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jason P. Lynch
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Huimin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Shen Y. Heazlewood
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Brenda Williams
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | | | - Christian M. Nefzger
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jose M. Polo
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Susan K. Nilsson
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Kelli P. A. MacDonald
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Nguyen NH, Glassman FY, Dingman RK, Shenoy GN, Wohlfert EA, Kay JG, Bankert RB, Balu-Iyer SV. Rational design of a nanoparticle platform for oral prophylactic immunotherapy to prevent immunogenicity of therapeutic proteins. Sci Rep 2021; 11:17853. [PMID: 34497305 PMCID: PMC8426360 DOI: 10.1038/s41598-021-97333-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/11/2021] [Indexed: 12/31/2022] Open
Abstract
The safety and efficacy of several life-saving therapeutic proteins are compromised due to their immunogenicity. Once a sustained immune response against a protein-based therapy is established, clinical options that are safe and cost-effective become limited. Prevention of immunogenicity of therapeutic proteins prior to their initial use is critical as it is often difficult to reverse an established immune response. Here, we discuss a rational design and testing of a phosphatidylserine-containing nanoparticle platform for novel oral prophylactic reverse vaccination approach, i.e., pre-treatment of a therapeutic protein in the presence of nanoparticles to prevent immunogenicity of protein therapies.
Collapse
Affiliation(s)
- Nhan H Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, SUNY-University at Buffalo, 359 Pharmacy Building, Buffalo, NY, 14214, USA
| | - Fiona Y Glassman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, SUNY-University at Buffalo, 359 Pharmacy Building, Buffalo, NY, 14214, USA
- CSL Behring, King of Prussia, PA, USA
| | - Robert K Dingman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, SUNY-University at Buffalo, 359 Pharmacy Building, Buffalo, NY, 14214, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Gautam N Shenoy
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, SUNY-University at Buffalo, Buffalo, NY, USA
| | - Elizabeth A Wohlfert
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, SUNY-University at Buffalo, Buffalo, NY, USA
| | - Jason G Kay
- Department of Oral Biology, School of Dental Medicine, SUNY-University at Buffalo, Buffalo, NY, USA
| | - Richard B Bankert
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, SUNY-University at Buffalo, Buffalo, NY, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, SUNY-University at Buffalo, 359 Pharmacy Building, Buffalo, NY, 14214, USA.
| |
Collapse
|
25
|
Wu S, Ma R, Zhong Y, Chen Z, Zhou H, Zhou M, Chong W, Chen J. Deficiency of IL-27 Signaling Exacerbates Experimental Autoimmune Uveitis with Elevated Uveitogenic Th1 and Th17 Responses. Int J Mol Sci 2021; 22:ijms22147517. [PMID: 34299138 PMCID: PMC8305313 DOI: 10.3390/ijms22147517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 01/31/2023] Open
Abstract
Human uveitis is an autoimmune disease of the central nervous system that is characterized by ocular inflammation with the involvement of uveitogenic Th1 and Th17 responses. In experimental autoimmune uveitis (EAU), the animal model for human uveitis, both responses are proven to be critical in disease development. Therefore, targeting both Th1 and Th17 cells has therapeutic implication for disease resolution. IL-27 is a multifunctional cytokine that can either promote or inhibit T cell responses and is implicated in both autoimmune and infectious diseases. The aim of this study is to characterize the role of IL-27/IL-27R signaling in regulating uveitogenic Th1/Th17 responses in EAU. By immunizing IL-27Rα-/- mice and their wild-type (WT) littermates for EAU, we demonstrated that IL-27 signaling deficiency exacerbated EAU with severe ocular inflammation and impairment of visual function. Furthermore, there was a significant increase in the eye-infiltrating Th1 and Th17 cells in IL-27Rα-/- EAU mice compared to WT. Their retinal antigen-specific Th1 and Th17 responses were also significantly increased, as represented by the elevation of their signature cytokines, IFN-γ and IL-17A, respectively. We also observed the upregulation of another pathogenic cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF), from effector T cells in IL-27Rα-/- EAU mice. Mechanistic studies confirmed that IL-27 inhibited GM-CSF production from Th17 cells. In addition, the induction of IL-10 producing type 1 regulatory T (Tr1) cells was impaired in IL-27Rα-/- EAU mice. These results identified that IL-27 signaling plays a suppressive role in EAU by regulating multiple CD4+ cell subsets, including the effector Th1 and Th17 cells and the regulatory Tr1 cells. Our findings provide new insights for therapeutic potential in controlling uveitis by enhancing IL-27 signaling.
Collapse
|
26
|
Zhang A, Zhang J, Li X, Zhang H, Xiong Y, Wang Z, Zhao N, Wang F, Luan X. hPMSCs inhibit the expression of PD-1 in CD4 +IL-10 + T cells and mitigate liver damage in a GVHD mouse model by regulating the crosstalk between Nrf2 and NF-κB signaling pathway. Stem Cell Res Ther 2021; 12:368. [PMID: 34187557 PMCID: PMC8240402 DOI: 10.1186/s13287-021-02407-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Background The activation of T cells and imbalanced redox metabolism enhances the development of graft-versus-host disease (GVHD). Human placenta-derived mesenchymal stromal cells (hPMSCs) can improve GVHD through regulating T cell responses. However, whether hPMSCs balance the redox metabolism of CD4+IL-10+ T cells and liver tissue and alleviate GVHD remains unclear. This study aimed to investigate the effect of hPMSC-mediated treatment of GVHD associated with CD4+IL-10+ T cell generation via control of redox metabolism and PD-1 expression and whether the Nrf2 and NF-κB signaling pathways were both involved in the process. Methods A GVHD mouse model was induced using 6–8-week-old C57BL/6 and Balb/c mice, which were treated with hPMSCs. In order to observe whether hPMSCs affect the generation of CD4+IL-10+ T cells via control of redox metabolism and PD-1 expression, a CD4+IL-10+ T cell culture system was induced using human naive CD4+ T cells. The percentage of CD4+IL-10+ T cells and their PD-1 expression levels were determined in vivo and in vitro using flow cytometry, and Nrf2, HO-1, NQO1, GCLC, GCLM, and NF-κB levels were determined by western blotting, qRT-PCR, and immunofluorescence, respectively. Hematoxylin-eosin, Masson’s trichrome, and periodic acid-Schiff staining methods were employed to analyze the changes in hepatic tissue. Results A decreased activity of superoxide dismutase (SOD) and a proportion of CD4+IL-10+ T cells with increased PD-1 expression were observed in GVHD patients and the mouse model. Treatment with hPMSCs increased SOD activity and GCL and GSH levels in the GVHD mouse model. The percentage of CD4+IL-10+ T cells with decreased PD-1 expression, as well as Nrf2, HO-1, NQO1, GCLC, and GCLM levels, both in the GVHD mouse model and in the process of CD4+IL-10+ T cell generation, were also increased, but NF-κB phosphorylation and nuclear translocation were inhibited after treatment with hPMSCs, which was accompanied by improvement of hepatic histopathological changes. Conclusions The findings suggested that hPMSC-mediated redox metabolism balance and decreased PD-1 expression in CD4+IL-10+ T cells were achieved by controlling the crosstalk between Nrf2 and NF-κB, which further provided evidence for the application of hPMSC-mediated treatment of GVHD.
Collapse
Affiliation(s)
- Aiping Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Jiashen Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Xiaohua Li
- Department of Component, Yantai Central Blood Station, Yantai, Shandong Province, 264003, People's Republic of China
| | - Hengchao Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Yanlian Xiong
- Department of Anatomy, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Zhuoya Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Nannan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Feifei Wang
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Shandong Province, 264003, Yantai, People's Republic of China.
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China.
| |
Collapse
|
27
|
Sayitoglu EC, Freeborn RA, Roncarolo MG. The Yin and Yang of Type 1 Regulatory T Cells: From Discovery to Clinical Application. Front Immunol 2021; 12:693105. [PMID: 34177953 PMCID: PMC8222711 DOI: 10.3389/fimmu.2021.693105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
Regulatory T cells are essential players of peripheral tolerance and suppression of inflammatory immune responses. Type 1 regulatory T (Tr1) cells are FoxP3- regulatory T cells induced in the periphery under tolerogenic conditions. Tr1 cells are identified as LAG3+CD49b+ mature CD4+ T cells that promote peripheral tolerance through secretion of IL-10 and TGF-β in addition to exerting perforin- and granzyme B-mediated cytotoxicity against myeloid cells. After the initial challenges of isolation were overcome by surface marker identification, ex vivo expansion of antigen-specific Tr1 cells in the presence of tolerogenic dendritic cells (DCs) and IL-10 paved the way for their use in clinical trials. With one Tr1-enriched cell therapy product already in a Phase I clinical trial in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT), Tr1 cell therapy demonstrates promising results so far in terms of efficacy and safety. In the current review, we identify developments in phenotypic and molecular characterization of Tr1 cells and discuss the potential of engineered Tr1-like cells for clinical applications of Tr1 cell therapies. More than 3 decades after their initial discovery, Tr1 cell therapy is now being used to prevent graft versus host disease (GvHD) in allo-HSCT and will be an alternative to immunosuppression to promote graft tolerance in solid organ transplantation in the near future.
Collapse
Affiliation(s)
- Ece Canan Sayitoglu
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Robert Arthur Freeborn
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, United States.,Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
28
|
Song Y, Wang N, Chen L, Fang L. Tr1 Cells as a Key Regulator for Maintaining Immune Homeostasis in Transplantation. Front Immunol 2021; 12:671579. [PMID: 33981317 PMCID: PMC8109434 DOI: 10.3389/fimmu.2021.671579] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
The immune system is composed of effectors and regulators. Type 1 regulatory T (Tr1) cells are classified as a distinct subset of T cells, and they secret high levels of IL-10 but lack the expression of the forkhead box P3 (Foxp3). Tr1 cells act as key regulators in the immune network, and play a central role in maintaining immune homeostasis. The regulatory capacity of Tr1 cells depends on many mechanisms, including secretion of suppressive cytokines, cell-cell contacts, cytotoxicity and metabolic regulation. A breakdown of Tr1-cell-mediated tolerance is closely linked with the pathogenesis of various diseases. Based on this observation, Tr1-cell therapy has emerged as a successful treatment option for a number of human diseases. In this review, we describe an overview of Tr1 cell identification, functions and related molecular mechanisms. We also discuss the current protocols to induce/expand Tr1 cells in vitro for clinical application, and summarize the recent progress of Tr1 cells in transplantation.
Collapse
Affiliation(s)
- Yun Song
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Ning Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China.,Department of Immunology, Xi'an Medical University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Liang Fang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
29
|
Huang Z, Li W, Su W. Tregs in Autoimmune Uveitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:205-227. [PMID: 33523450 DOI: 10.1007/978-981-15-6407-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Uveitis is a chronic disease with relapsing and remitting ocular attack, which requires corticosteroids and systemic immunosuppression to prevent severe vision loss. Classically, uveitis is referred to an autoimmune disease, mediated by pro-inflammatory Th17 cells and immunosuppressive CD4+CD25+FoxP3+ T-regulatory cells (Tregs). More and more evidence indicates that Tregs are involved in development, resolution, and remission of uveitis. Clinically, many researchers have conducted quantitative and functional analyses of peripheral blood from patients with different subtypes of uveitis, in an attempt to find the changing rules of Tregs. Consistently, using the experimental autoimmune uveitis (EAU) model, researchers have explored the development and resolution mechanism of uveitis in many aspects. In addition, many drug and Tregs therapy investigations have yielded encouraging results. In this chapter, we introduced the current understanding of Tregs, summarized the clinical changes in the number and function of patients with uveitis and the immune mechanism of Tregs involved in EAU model, as well as discussed the progress and shortcomings of Tregs-related drug therapy and Tregs therapy. Although the exact mechanism of Tregs-mediated uveitis protection remains to be elucidated, the strategy of Tregs regulation may provide a specific and meaningful way for the prevention and treatment of uveitis.
Collapse
Affiliation(s)
- Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenli Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Du Y, Fang Q, Zheng SG. Regulatory T Cells: Concept, Classification, Phenotype, and Biological Characteristics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:1-31. [PMID: 33523440 DOI: 10.1007/978-981-15-6407-9_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Treg) play an indispensable role in maintaining the body's immune nonresponse to self-antigens and suppressing the body's unwarranted and potentially harmful immune responses. Their absence, reduction, dysfunction, transformation, and instability can lead to numerous autoimmune diseases. There are several distinct subtypes of the Treg cells, although they share certain biological characteristics and have unique phenotypes with different regulatory functions, as well as mechanistic abilities. In this book chapter, we introduce the latest advances in Treg cell subtypes pertaining to classification, phenotype, biological characteristics, and mechanisms. We also highlight the relationship between Treg cells and various diseases, including autoimmune, infectious, as well as tumors and organ transplants.
Collapse
Affiliation(s)
- Yang Du
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi, China.,Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Qiannan Fang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Song-Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
31
|
Fan Y, Yang C, Zhou J, Cheng X, Dong Y, Wang Q, Wang Z. Regulatory effect of glutathione on treg/Th17 cell balance in allergic rhinitis patients through inhibiting intracellular autophagy. Immunopharmacol Immunotoxicol 2020; 43:58-67. [PMID: 33285073 DOI: 10.1080/08923973.2020.1850762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Glutathione is a potential therapy for systemic lupus erythematosus, but its role in allergic rhinitis (AR) has not been determined. This report probed into the actions of glutathione in AR, so as to supplement evidence for a therapeutical countermeasure for AR. METHODS In this study, peripheral blood mononuclear cells (PBMCs) of patients were extracted and processed with glutathione. PBMCs and nasal mucosa tissues were collected from AR mouse models treated with or without glutathione. The proportions of Th17/Treg cell markers and autophagy-related molecules in the nasal mucosa, PBMCs or Th17/Treg cells were assessed by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot (WB) or flow cytometry analysis, and serum contents of related factors were analyzed by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was applied to observe the thickness of mouse mucosa. RESULTS IL-17A, RORγt, Beclin1 and LC3-II/LC3-I levels were increased in AR patients, while Foxp3 and P62 were decreased. The serum contents of IL-17A and eosinophil cationic protein (ECP) in AR patients were elevated, but IL-10 level was reduced. In PBMCs of AR patients, the levels of IL-17A and LC3-II were increased, and the levels of Foxp3 and P62 were decreased, while these changes could be reversed by glutathione. In AR mouse models, glutathione could balance Th17/Treg cells, reduce autophagy, correct the levels of related cytokines in mouse serum, and shrunk mucosa thickness. CONCLUSION Glutathione could rescue the imbalance of Treg/Th17 cells by suppressing intracellular autophagy, which might be beneficial to the treatment of AR patients.
Collapse
Affiliation(s)
- Yuqin Fan
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenchen Yang
- Department of Nursing, Wuxi Taihu University, Wuxi, Jiangsu, China
| | - Jieyu Zhou
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Cheng
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Dong
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Wang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhentao Wang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Ellis J, J B Marks D, Srinivasan N, Barrett C, Hopkins TG, Richards A, Fuhr R, Albayaty M, Coenen M, Liefaard L, Leavens K, Nevin KL, Tang S, Hughes SA, Fortunato L, Edwards K, Cui Y, Anselm R, Delves CJ, Charles E, Feeney M, Webb TM, Brett SJ, Schmidt TS, Stone J, Savage COS, Wisniacki N, Tarzi RM. Depletion of LAG-3 + T Cells Translated to Pharmacology and Improvement in Psoriasis Disease Activity: A Phase I Randomized Study of mAb GSK2831781. Clin Pharmacol Ther 2020; 109:1293-1303. [PMID: 33113155 PMCID: PMC8246744 DOI: 10.1002/cpt.2091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
Activated T cells drive a range of immune‐mediated inflammatory diseases. LAG‐3 is transiently expressed on recently activated CD4+ and CD8+ T cells. We describe the engineering and first‐in‐human clinical study (NCT02195349) of GSK2831781 (an afucosylated humanized IgG1 monoclonal antibody enhanced with high affinity for Fc receptors and LAG‐3 and antibody‐dependent cellular cytotoxicity capabilities), which depletes LAG‐3 expressing cells. GSK2831781 was tested in a phase I/Ib, double‐blind, placebo‐controlled clinical study, which randomized 40 healthy participants (part A) and 27 patients with psoriasis (part B) to single doses of GSK2831781 (up to 0.15 and 5 mg/kg, respectively) or placebo. Adverse events were generally balanced across groups, with no safety or tolerability concern identified. LAG‐3+ cell depletion in peripheral blood was observed at doses ≥ 0.15 mg/kg and was dose‐dependent. In biopsies of psoriasis plaques, a reduction in mean group LAG‐3+ and CD3+ T‐cell counts was observed following treatment. Downregulation of proinflammatory genes (IL‐17A, IL‐17F, IFNγ, and S100A12) and upregulation of the epithelial barrier integrity gene, CDHR1, was observed with the 5 mg/kg dose of GSK2831781. Psoriasis disease activity improved up to day 43 at all GSK2831781 doses (0.5, 1.5, and 5 mg/kg) compared with placebo. Depletion of LAG‐3‐expressing activated T cells is a novel approach, and this first clinical study shows that GSK2831781 is pharmacologically active and provides encouraging early evidence of clinical effects in psoriasis, which warrants further investigation in T‐cell‐mediated inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Martin Coenen
- Study Center Bonn (SZB), Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | | | | | - Shuo Tang
- GlaxoSmithKline, Upper Providence, Pennsylvania, USA
| | | | | | - Ken Edwards
- GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Yi Cui
- GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | | | | | | | | | | | | | | | - John Stone
- GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | | | | | | |
Collapse
|
33
|
Lymphocyte Immunosuppression and Dysfunction Contributing to Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS). Shock 2020; 55:723-741. [PMID: 33021569 DOI: 10.1097/shk.0000000000001675] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT Persistent Inflammation, Immune Suppression, and Catabolism Syndrome (PICS) is a disease state affecting patients who have a prolonged recovery after the acute phase of a large inflammatory insult. Trauma and sepsis are two pathologies after which such an insult evolves. In this review, we will focus on the key clinical determinants of PICS: Immunosuppression and cellular dysfunction. Currently, relevant immunosuppressive functions have been attributed to both innate and adaptive immune cells. However, there are significant gaps in our knowledge, as for trauma and sepsis the immunosuppressive functions of these cells have mostly been described in acute phase of inflammation so far, and their clinical relevance for the development of prolonged immunosuppression is mostly unknown. It is suggested that the initial immune imbalance determines the development of PCIS. Additionally, it remains unclear what distinguishes the onset of immune dysfunction in trauma and sepsis and how this drives immunosuppression in these cells. In this review, we will discuss how regulatory T cells (Tregs), innate lymphoid cells, natural killer T cells (NKT cells), TCR-a CD4- CD8- double-negative T cells (DN T cells), and B cells can contribute to the development of post-traumatic and septic immunosuppression. Altogether, we seek to fill a gap in the understanding of the contribution of lymphocyte immunosuppression and dysfunction to the development of chronic immune disbalance. Further, we will provide an overview of promising diagnostic and therapeutic interventions, whose potential to overcome the detrimental immunosuppression after trauma and sepsis is currently being tested.
Collapse
|
34
|
Beauford SS, Kumari A, Garnett-Benson C. Ionizing radiation modulates the phenotype and function of human CD4+ induced regulatory T cells. BMC Immunol 2020; 21:18. [PMID: 32299365 PMCID: PMC7164225 DOI: 10.1186/s12865-020-00349-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The use of immunotherapy strategies for the treatment of advanced cancer is rapidly increasing. Most immunotherapies rely on induction of CD8+ tumor-specific cytotoxic T cells that are capable of directly killing cancer cells. Tumors, however, utilize a variety of mechanisms that can suppress anti-tumor immunity. CD4+ regulatory T cells can directly inhibit cytotoxic T cell activity and these cells can be recruited, or induced, by cancer cells allowing escape from immune attack. The use of ionizing radiation as a treatment for cancer has been shown to enhance anti-tumor immunity by several mechanisms including immunogenic tumor cell death and phenotypic modulation of tumor cells. Less is known about the impact of radiation directly on suppressive regulatory T cells. In this study we investigate the direct effect of radiation on human TREG viability, phenotype, and suppressive activity. RESULTS Both natural and TGF-β1-induced CD4+ TREG cells exhibited increased resistance to radiation (10 Gy) as compared to CD4+ conventional T cells. Treatment, however, decreased Foxp3 expression in natural and induced TREG cells and the reduction was more robust in induced TREGS. Radiation also modulated the expression of signature iTREG molecules, inducing increased expression of LAG-3 and decreased expression of CD25 and CTLA-4. Despite the disconcordant modulation of suppressive molecules, irradiated iTREGS exhibited a reduced capacity to suppress the proliferation of CD8+ T cells. CONCLUSIONS Our findings demonstrate that while human TREG cells are more resistant to radiation-induced death, treatment causes downregulation of Foxp3 expression, as well as modulation in the expression of TREG signature molecules associated with suppressive activity. Functionally, irradiated TGF-β1-induced TREGS were less effective at inhibiting CD8+ T cell proliferation. These data suggest that doses of radiotherapy in the hypofractionated range could be utilized to effectively target and reduce TREG activity, particularly when used in combination with cancer immunotherapies.
Collapse
Affiliation(s)
- Samantha S Beauford
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA
| | - Anita Kumari
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA
| | - Charlie Garnett-Benson
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA.
| |
Collapse
|
35
|
Safavi F, Thome R, Li Z, Wang L, Rasouli J, Ciric B, Zhang GX, Rostami A. A serine protease inhibitor induces type 1 regulatory T cells through IFN-γ/STAT1 signaling. Cell Mol Immunol 2020; 17:1004-1006. [PMID: 31900456 PMCID: PMC7609307 DOI: 10.1038/s41423-019-0354-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022] Open
Affiliation(s)
- Farinaz Safavi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,NINDS, National Institute of Health, Bethesda, MD, USA
| | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zichen Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Limei Wang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
36
|
Cook L, Stahl M, Han X, Nazli A, MacDonald KN, Wong MQ, Tsai K, Dizzell S, Jacobson K, Bressler B, Kaushic C, Vallance BA, Steiner TS, Levings MK. Suppressive and Gut-Reparative Functions of Human Type 1 T Regulatory Cells. Gastroenterology 2019; 157:1584-1598. [PMID: 31513797 DOI: 10.1053/j.gastro.2019.09.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS T-regulatory (Treg) cells suppress the immune response to maintain homeostasis. There are 2 main subsets of Treg cells: FOXP3 (forkhead box protein 3)-positive Treg cells, which do not produce high levels of effector cytokines, and type 1 Treg (Tr1) cells, which are FOXP3-negative and secrete interleukin (IL) 10. IL10 is an anti-inflammatory cytokine, so Tr1 cells might be used in the treatment of inflammatory bowel diseases. We aimed to develop methods to isolate and expand human Tr1 cells and define their functions. METHODS We obtained blood and colon biopsy samples from patients with Crohn's disease or ulcerative colitis or healthy individuals (controls). CD4+ T cells were isolated from blood samples and stimulated with anti-CD3 and anti-CD28 beads, and Tr1 cells were purified by using an IL10 cytokine-capture assay and cell sorting. FOXP3-positive Treg cells were sorted as CD4+CD25highCD127low cells from unstimulated cells. Tr1 and FOXP3-positive Treg cells were expanded, and phenotypes and gene expression profiles were compared. T cells in peripheral blood mononuclear cells from healthy donors were stimulated with anti-CD3 and anti-CD28 beads, and the suppressive abilities of Tr1 and FOXP3-positive Treg cells were measured. Human colon organoid cultures were established, cultured with supernatants from Tr1 or FOXP3-positive cells, and analyzed by immunofluorescence and flow cytometry. T84 cells (human colon adenocarcinoma epithelial cells) were incubated with supernatants from Tr1 or FOXP3-positive cells, and transepithelial electrical resistance was measured to determine epithelial cell barrier function. RESULTS Phenotypes of Tr1 cells isolated from control individuals vs patients with Crohn's disease or ulcerative colitis did not differ significantly after expansion. Tr1 cells and FOXP3-positive Treg cells suppressed proliferation of effector T cells, but only Tr1 cells suppressed secretion of IL1B and tumor necrosis factor from myeloid cells. Tr1 cells, but not FOXP3-positive Treg cells, isolated from healthy individuals and patients with Crohn's disease or ulcerative colitis secreted IL22, which promoted barrier function of human intestinal epithelial cells. Tr1 cell culture supernatants promoted differentiation of mucin-producing goblet cells in intestinal organoid cultures. CONCLUSIONS Human Tr1 cells suppress proliferation of effector T cells (adaptive immune response) and production of IL1B and TNF by myeloid cells (inmate immune response). They also secrete IL22 to promote barrier function. They might be developed as a cell-based therapy for intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Laura Cook
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Stahl
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiao Han
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aisha Nazli
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine N MacDonald
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - May Q Wong
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Tsai
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sara Dizzell
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kevan Jacobson
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Bressler
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Gastrointestinal Research Institute, Vancouver, British Columbia, Canada
| | - Charu Kaushic
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Bruce A Vallance
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Theodore S Steiner
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
37
|
Adoptive transfer of type 1 regulatory T cells suppressed the development of airway hyperresponsiveness in ovalbumin-induced airway inflammation model mice. J Pharmacol Sci 2019; 141:139-145. [PMID: 31744690 DOI: 10.1016/j.jphs.2019.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/19/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
Type 1 regulatory T (Tr1) cells are CD4+ T cells that produce a large amount of IL-10, an anti-inflammatory cytokine. However, it has not been fully elucidated whether Tr1 cells suppress allergic asthma. In this study, the effects of adoptive transfer of in vitro-induced Tr1 cells on allergic asthma were evaluated. Splenocytes from ovalbumin (OVA)-sensitized BALB/c mice were cultured with OVA, IL-21, IL-27, and TGF-β. After culture, IL-10-producing CD4+ T cells were isolated by Dynabeads mouse CD4 and IL-10 secretion assay, and analyzed by flow cytometry. Purified Tr1 cells (IL-10+ CD4+ T cells) were intravenously injected into OVA-sensitized BALB/c mice. The recipient mice were intratracheally challenged with OVA. Airway hyperresponsiveness to methacholine was assessed by the forced oscillation technique, followed by bronchoalveolar lavage (BAL). Almost all of the induced IL-10-producing CD4+ T cells were negative for interferon-γ, IL-4, IL-17A, and forkhead box P3, suggesting that the cells were Tr1 cells. The adoptive transfer of Tr1 cells significantly suppressed the development of airway hyperresponsiveness, and increases in IL-5, eosinophils, and neutrophils in BAL fluid. In conclusion, we demonstrated that Tr1 cells suppressed allergic asthma in mice.
Collapse
|