1
|
Zhou CK, Liu ZZ, Peng ZR, Luo XY, Zhang XM, Zhang JG, Zhang L, Chen W, Yang YJ. M28 family peptidase derived from Peribacillus frigoritolerans initiates trained immunity to prevent MRSA via the complosome-phosphatidylcholine axis. Gut Microbes 2025; 17:2484386. [PMID: 40159598 PMCID: PMC11959922 DOI: 10.1080/19490976.2025.2484386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) represents a major global health threat due to its resistance to conventional antibiotics. The commensal microbiota maintains a symbiotic relationship with the host, playing essential roles in metabolism, energy regulation, immune modulation, and pathogen control. Mammals harbor a wide range of commensal bacteria capable of producing unique metabolites with potential therapeutic properties. This study demonstrated that M28 family peptidase (M28), derived from commensal bacteria Peribacillus frigoritolerans (P. f), provided protective effects against MRSA-induced pneumonia. M28 enhanced the phagocytosis and bactericidal activity of macrophages by inducing trained immunity. RNA sequencing and metabolomic analyses identified the CFB-C3a-C3aR-HIF-1α axis-mediated phosphatidylcholine accumulation as the key mechanism for M28-induced trained immunity. Phosphatidylcholine, like M28, also induced trained immunity. To enhance M28-mediated therapeutic potential, it was encapsulated in liposomes (M28-LNPs), which exhibited superior immune-stimulating properties compared to M28 alone. In vivo experiments revealed that M28-LNPs significantly reduced bacterial loads and lung damage following MRSA infection, which also provided enhanced protection against Klebsiella pneumoniae and Candida albicans. We first confirmed a link between complement activation and trained immunity, offering valuable insights into the treatment and prevention of complement-related autoimmune diseases.
Collapse
Affiliation(s)
- Cheng-Kai Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Zhen-Zhen Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Zi-Ran Peng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Xue-Yue Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Xiao-Mei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Jian-Gang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Liang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Wei Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Yong-Jun Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| |
Collapse
|
2
|
Jia Z, Niu L, Guo J, Wang J, Li H, Liu R, Liu N, Zhang S, Wang F, Ge J. Pathogen-derived peptidoglycan skeleton enhances innate immune defense against Staphylococcus aureus via mTOR-HIF-1α-HK2-mediated trained immunity. Microbiol Res 2025; 296:128160. [PMID: 40174361 DOI: 10.1016/j.micres.2025.128160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Regulation of the innate immune response may be an effective strategy to enhance Staphylococcus aureus vaccines. Based on our previous findings that the Listeria peptidoglycan skeleton (pBLP) enhances the immune response through an unknown mechanism, we hypothesized that pBLP provides protection by modulating the innate immune response via trained immunity. In vitro, pBLP increased phagocytosis and inflammatory cytokine levels and elevated the anti-inflammatory cytokine TGF-β following secondary stimulation. In an in vivo model, our findings indicate that pBLP, when administered with a vaccine, protects mice from methicillin-resistant S. aureus challenge and also provides protection against S. aureus CMCC26003 in the absence of antigens. Using an ex vivo model, we demonstrated that pBLP increases markers of trained immunity in peritoneal macrophages. Transcriptome analysis of differentially expressed genes and inhibitor experiments revealed that the trained immunity process induced by pBLP depends on mTOR-HIF-1α and hexokinase 2. This study is the first to demonstrate that pBLP can induce trained immunity. Furthermore, we show that the peptidoglycan skeleton induces a distinct trained immunity phenotype compared to β-glucan, enhancing vaccine protection. Our study provides valuable insights for the design of novel vaccines that integrate both specific and innate immune responses.
Collapse
Affiliation(s)
- Zheng Jia
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Lingdi Niu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Junjie Guo
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Jiaqing Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Hai Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Runhang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ning Liu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Shuhe Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Fang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China.
| |
Collapse
|
3
|
Monreal-Escalante E, Angulo M, Ramos-Vega A, Trujillo E, Angulo C. Plant-made trained immunity-based vaccines: Beyond one approach. Int J Pharm 2025; 675:125572. [PMID: 40204041 DOI: 10.1016/j.ijpharm.2025.125572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Plant-made vaccines and trained immunity-based vaccines (TIbV or TRAIMbV) represent two strategies for enhancing immunity against diseases. Plants provide an effective and cost-efficient vaccine production platform, while TIbV induces innate immune memory that can protect against both homologous and heterologous diseases. Both strategies are generally compatible; however, they have not been explored in a transdisciplinary manner. Despite their strengths in vaccinology, each faces limitations that hinder widespread adoption and health benefits. This review revisits both strategies, discussing their fundamental knowledge alongside practical and experimental examples, ultimately highlighting their limitations and perspectives to pave the way for a unified approach to combat diseases. Future scenarios are envisioned and presented if research on plant-made trained immunity-based vaccines is adopted.
Collapse
Affiliation(s)
- Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico; SECIHTI-Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Miriam Angulo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Abel Ramos-Vega
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Dirección: Boulevard de la Tecnología No.1036, Código Postal 62790 Xochitepec, Morelos, Mexico
| | - Edgar Trujillo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.
| |
Collapse
|
4
|
Ferreras-Colino E, de la Fuente J, Couto J, Golovchenko M, Antunes S, Sevilla IA, Domingos A, Rudenko N, Contreras M, Martínez-Camacho R, Gortazar C, Risalde MA. Immunostimulant effect of heat-inactivated Mycobacterium bovis in mice challenged with vector-borne pathogens. Vaccine 2025; 53:127076. [PMID: 40188566 DOI: 10.1016/j.vaccine.2025.127076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/08/2025]
Abstract
Trained immunity is defined as an enhanced state of the innate system which leads to an improved immune response against related or non-related pathogens. Bacillus Calmette-Guérin (BCG) vaccine, a live attenuated Mycobacterium bovis strain, is currently one of the main inductors of trained immunity. The objective of the present study was to evaluate the protective effects of heat-inactivated M. bovis (HIMB) against Plasmodium berghei and Borrelia burgdorferi and characterize the immunological mechanisms involved. BALB/c and C3H/HeN mice were randomly assigned in similar number to either immunized group receiving two oral doses of HIMB with a 4-week interval, or control group treated with PBS. All the BALB/c mice were intraperitoneally infected with P. berghei while the C3H/HeN mice were subcutaneously infected with B. burgdorferi. Pathogen burden was significantly reduced in both immunized groups when compared to controls. The number of macrophages significantly decreased in the liver or in the spleen of the mice that had been immunized prior to the challenge with P. berghei or B. burgdorferi, respectively. Furthermore, the immunized groups showed an apparent upregulation of IFN-γ, TNF-α and IL-1α in the liver (P. berghei challenge) or a significant increase in IL-1α producing cells in the spleen (B. burgdorferi challenge). Our findings suggest that oral immunization with heat-inactivated mycobacteria limits pathogen burden through stimulation of the innate immune response in two vector-borne diseases in mice.
Collapse
Affiliation(s)
- Elisa Ferreras-Colino
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain
| | - José de la Fuente
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM/IHMT NOVA), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM/IHMT NOVA), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Iker A Sevilla
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM/IHMT NOVA), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Marinela Contreras
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain
| | - Rafael Martínez-Camacho
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14014, Córdoba, Spain
| | - Christian Gortazar
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain.
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14014, Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Simonis A, Theobald SJ, Koch AE, Mummadavarapu R, Mudler JM, Pouikli A, Göbel U, Acton R, Winter S, Albus A, Holzmann D, Albert MC, Hallek M, Walczak H, Ulas T, Koch M, Tessarz P, Hänsel-Hertsch R, Rybniker J. Persistent epigenetic memory of SARS-CoV-2 mRNA vaccination in monocyte-derived macrophages. Mol Syst Biol 2025; 21:341-360. [PMID: 40133533 PMCID: PMC11965535 DOI: 10.1038/s44320-025-00093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Immune memory plays a critical role in the development of durable antimicrobial immune responses. How precisely mRNA vaccines train innate immune cells to shape protective host defense mechanisms remains unknown. Here we show that SARS-CoV-2 mRNA vaccination significantly establishes histone H3 lysine 27 acetylation (H3K27ac) at promoters of human monocyte-derived macrophages, suggesting epigenetic memory. However, we found that two consecutive vaccinations were required for the persistence of H3K27ac, which matched with pro-inflammatory innate immune-associated transcriptional changes and antigen-mediated cytokine secretion. H3K27ac at promoter regions were preserved for six months and a single mRNA booster vaccine potently restored their levels and release of macrophage-derived cytokines. Interestingly, we found that H3K27ac at promoters is enriched for G-quadruplex DNA secondary structure-forming sequences in macrophage-derived nucleosome-depleted regions, linking epigenetic memory to nucleic acid structure. Collectively, these findings reveal that mRNA vaccines induce a highly dynamic and persistent training of innate immune cells enabling a sustained pro-inflammatory immune response.
Collapse
Affiliation(s)
- Alexander Simonis
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Anna E Koch
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
| | - Ram Mummadavarapu
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne, 50931, Germany
| | - Julie M Mudler
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
| | - Andromachi Pouikli
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne, 50931, Germany
| | - Ulrike Göbel
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Richard Acton
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Babraham Institute, Cambridge, UK
| | - Sandra Winter
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
| | - Alexandra Albus
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
| | - Dmitriy Holzmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
| | - Marie-Christine Albert
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Biochemistry I, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
| | - Henning Walczak
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Biochemistry I, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, United Kingdom
| | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany
- PRECISE Plattform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, Bonn and West German Genome Center, Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Manuel Koch
- Institute of Biochemistry I, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Dental, Oral and Maxillofacial Medicine (central facilities), Medical Faculty and University of Cologne, Cologne, Germany
| | - Peter Tessarz
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne, 50931, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Human Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Robert Hänsel-Hertsch
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany.
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Minute L, Montalbán-Hernández K, Bravo-Robles L, Conejero L, Iborra S, Del Fresno C. Trained immunity-based mucosal immunotherapies for the prevention of respiratory infections. Trends Immunol 2025; 46:270-283. [PMID: 40113536 DOI: 10.1016/j.it.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
The devastating impact of respiratory infections demonstrates the critical need for novel prophylactic vaccines. In this opinion article, we advocate for bacterial immunotherapies as a complementary tool in our fight against respiratory infections. These immunotherapies can activate a wide spectrum of immunological mechanisms, with trained immunity (TI) being particularly significant. This phenomenon has led to the concept of trained immunity-based vaccines (TIbVs), which represent a novel approach in vaccinology. We discuss examples of TIbVs, including the tuberculosis vaccine Bacille Calmette-Guérin (BCG) and the polybacterial immunotherapy MV130. From our viewpoint, illustrating the mode of action and clinical evidence supports the proposal that TIbVs should be considered as next-generation vaccines to confer protection against a wide range of respiratory infections.
Collapse
Affiliation(s)
- Luna Minute
- The Innate Immune Response Group, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain; Immunomodulation Laboratory, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | | | - Laura Bravo-Robles
- The Innate Immune Response Group, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain; Immunomodulation Laboratory, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | | | | | - Carlos Del Fresno
- The Innate Immune Response Group, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain; Immunomodulation Laboratory, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain.
| |
Collapse
|
7
|
Jia J, Ji W, Xiong N, Lin J, Yang Q. Trained immunity using probiotics and inactivated pathogens enhances resistance to Salmonella enterica serovar Typhimurium infection by activating the cGAS-STING signal pathway in mice and chickens. J Adv Res 2025:S2090-1232(25)00152-3. [PMID: 40086629 DOI: 10.1016/j.jare.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
INTRODUCTION Concerns about antibiotic resistance have prompted interest in alternative strategies for enhancing disease resistance, particularly in livestock and poultry production. OBJECTIVES This study explored the role of trained immunity in enhancing resistance to Salmonella enterica serovar Typhimurium (S. Typhimurium) infection in mice and chickens. METHODS We investigated the effects of probiotics and inactivated pathogenic bacterial strains on host immunity in Toll-like receptor 2-deficient mice (TLR2-/-) to assess whether these effects were related to bacterial outer membrane components such as peptidoglycan (PNG), lipoarabinomannan (LAM) and lipoteichoic acid (LTA). Bacterial genomes were evaluated for their ability to enhance the host immune system. Macrophage-depletion models were used to identify the key immune cells involved in trained immunity, with a focus on the cGAS-STING pathway. RESULTS Probiotics and inactivated pathogenic strains enhanced host immunity and protected against S. Typhimurium infection. As demonstrated in the TLR2-deficient mice, the effects were not dependent on bacterial outer membrane components. Instead, bacterial genomes played a significant role in activating trained immunity. Macrophages were identified as the primary cells that mediated the response with the cGAS-STING pathway playing a crucial role. The results observed using the mouse models led to investigating the potential application of trained immunity in poultry. CONCLUSION Trained immunity activated by probiotics and inactivated bacterial pathogens enhanced resistance against S. Typhimurium infection via macrophage activation and involved the cGAS-STING pathway. These findings highlight the potential of trained immunity as an alternative strategy for disease prevention in both livestock and poultry.
Collapse
Affiliation(s)
- Junpeng Jia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Wenxin Ji
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Ningna Xiong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Jian Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China.
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
8
|
Martín‐Cruz L, Palomares O. Allergen-Specific Immunotherapy and Trained Immunity. Allergy 2025; 80:677-689. [PMID: 39641571 PMCID: PMC11891420 DOI: 10.1111/all.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
The high prevalence of allergic diseases reached over the last years is attributed to the complex interplay of genetic factors, lifestyle changes, and environmental exposome. Allergen-specific immunotherapy (AIT) is the single therapeutic strategy for allergic diseases with the potential capacity to modify the course of the disease. Our knowledge of the mechanisms involved in allergy and successful AIT has significantly improved. Recent findings indicate that long-term allergen tolerance upon AIT discontinuation not only relies on the generation of proper adaptive immune responses by the generation of allergen-specific regulatory T and B cells enabling the induction of different isotypes of blocking antibodies but also relies on the restoration of proper innate immune responses. Trained immunity (TRIM) is the process by which innate immune cells acquire memory by mechanisms depending on metabolic and epigenetic reprogramming, thus conferring the host with increased broad protection against infection. This concept was initially explored for infectious diseases, as well as for vaccination against infections, but compelling experimental evidence suggests that TRIM might also play a role in allergy and AIT. Hyperinflammatory innate immune responses in early life, likely due to TRIM maladaptations, lead to aberrant type 2 inflammation-enhancing allergy. However, exposure to farming environments and specific microbes prevents recurrent infections and allergy development, likely due to mechanisms partially depending on TRIM. TRIM-based vaccines and next-generation AIT vaccines inducing metabolic and epigenetic reprogramming in innate immune cells and their precursors have shown protective antiallergic effects. A better understanding of the factors involved in early-life TRIM mechanisms in the context of allergy and the identification and characterization of novel tolerance inducers might well enable the design of alternative TRIM-based allergen vaccines for allergic diseases.
Collapse
Affiliation(s)
- Leticia Martín‐Cruz
- School of Chemistry, Department of Biochemistry and Molecular BiologyComplutense UniversityMadridSpain
- School of Pharmacy, Department of Biochemistry and Molecular BiologyComplutense UniversityMadridSpain
| | - Oscar Palomares
- School of Chemistry, Department of Biochemistry and Molecular BiologyComplutense UniversityMadridSpain
| |
Collapse
|
9
|
Robles-Vera I, Jarit-Cabanillas A, Brandi P, Martínez-López M, Martínez-Cano S, Rodrigo-Tapias M, Femenía-Muiña M, Redondo-Urzainqui A, Nuñez V, González-Correa C, Moleón J, Duarte J, Conejero L, Mata-Martínez P, Díez-Rivero CM, Bergón-Gutiérrez M, Fernández-López I, Gómez MJ, Quintas A, Dopazo A, Sánchez-Cabo F, Pariente E, Del Fresno C, Subiza JL, Iborra S, Sancho D. Microbiota translocation following intestinal barrier disruption promotes Mincle-mediated training of myeloid progenitors in the bone marrow. Immunity 2025; 58:381-396.e9. [PMID: 39848243 PMCID: PMC11832192 DOI: 10.1016/j.immuni.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 12/31/2024] [Indexed: 01/25/2025]
Abstract
Impairment of the intestinal barrier allows the systemic translocation of commensal bacteria, inducing a proinflammatory state in the host. Here, we investigated innate immune responses following increased gut permeability upon administration of dextran sulfate sodium (DSS) in mice. We found that Enterococcus faecalis translocated to the bone marrow following DSS treatment and induced trained immunity (TI) hallmarks in bone-marrow-derived mouse macrophages and human monocytes. DSS treatment or heat-killed E. faecalis reprogrammed bone marrow progenitors (BMPs), resulting in enhanced inflammatory responses in vitro and in vivo and protection against subsequent pathogen infections. The C-type lectin receptor Mincle (Clec4e) was essential for E. faecalis-induced TI in BMPs. Clec4e-/- mice showed impaired TI upon E. faecalis administration and reduced pathology following DSS treatment. Thus, Mincle sensing of E. faecalis induces TI that may have long-term effects on pathologies associated with increased gut permeability.
Collapse
Affiliation(s)
- Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| | - Aitor Jarit-Cabanillas
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Paola Brandi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Sarai Martínez-Cano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Inmunotek S.L., Alcalá de Henares, Spain
| | | | | | | | - Vanesa Nuñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina González-Correa
- Department of Pharmacology, School of Pharmacy, University of Granada, IBS-Granada, Centro de Investigaciones Biomédicas (CIBM), CIBER-Enfermedades Cardiovasculares (CiberCV), Granada, Spain
| | - Javier Moleón
- Department of Pharmacology, School of Pharmacy, University of Granada, IBS-Granada, Centro de Investigaciones Biomédicas (CIBM), CIBER-Enfermedades Cardiovasculares (CiberCV), Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, IBS-Granada, Centro de Investigaciones Biomédicas (CIBM), CIBER-Enfermedades Cardiovasculares (CiberCV), Granada, Spain
| | | | - Pablo Mata-Martínez
- Immunomodulation Lab, Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | | | - Marta Bergón-Gutiérrez
- Immunomodulation Lab, Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | | | - Manuel J Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Esther Pariente
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carlos Del Fresno
- Immunomodulation Lab, Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | | | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Fundación Inmunotek, Alcalá de Henares, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
10
|
Bahl A, Pandey S, Rakshit R, Kant S, Tripathi D. Infection-induced trained immunity: a twist in paradigm of innate host defense and generation of immunological memory. Infect Immun 2025; 93:e0047224. [PMID: 39655962 PMCID: PMC11784091 DOI: 10.1128/iai.00472-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
In contrast to adaptive immunity, which relies on memory T and B cells for long-term pathogen-specific responses, trained immunity involves the enhancement of innate immune responses through cellular reprogramming. Experimental evidence from animal models and human studies supports the concept of trained immunity and its potential therapeutic applications in the development of personalized medicine. However, there remains a huge gap in understanding the mechanisms, identifying specific microbial triggers responsible for the induction of trained immunity. This underscores the importance of investigating the potential role of trained immunity in redefining host defense and highlights future research directions. This minireview will provide a comprehensive summary of the new paradigm of trained immunity or innate memory pathways. It will shed light on infection-induced pathways through non-specific stimulation within macrophages and natural killer cells, which will be further elaborated in multiple disease perspectives caused by infectious agents such as bacteria, fungi, and viruses. The article further elaborates on the biochemical and cellular basis of trained immunity and its impact on disease status during recurrent exposures. The review concludes with a perspective segment discussing potential therapeutic benefits, limitations, and future challenges in this area of study. The review also sheds light upon potential risks involved in the induction of trained immunity.
Collapse
Affiliation(s)
- Aayush Bahl
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Saurabh Pandey
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, Delhi, India
| | - Roopshali Rakshit
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sashi Kant
- Bacterial Pathogenesis, Boehringer Ingelheim Animal Health USA Inc, Ames, Iowa, USA
| | - Deeksha Tripathi
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
11
|
Wang X, Yu G. Advancing veterinary vaccines design through trained immunity insights. Front Vet Sci 2025; 11:1524668. [PMID: 39881716 PMCID: PMC11776093 DOI: 10.3389/fvets.2024.1524668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Trained immunity, characterized by long-term functional reprogramming of innate immune cells, offers promising new directions for veterinary vaccine development. This perspective examines how trained immunity can be integrated into veterinary vaccine design through metabolic reprogramming and epigenetic modifications. We analyze key molecular mechanisms, including the shift to aerobic glycolysis and sustained epigenetic changes, that enable enhanced immune responses. Strategic approaches for vaccine optimization are proposed, focusing on selecting effective trained immunity inducers, developing innovative adjuvant systems, and achieving synergistic enhancement of immune responses. While implementation challenges exist, including individual response variations and safety considerations, trained immunity-based vaccines show potential for providing broader protection against emerging pathogens. This approach could revolutionize veterinary vaccinology by offering enhanced efficacy and cross-protection against heterologous infections, particularly valuable for zoonotic disease control.
Collapse
Affiliation(s)
- Xin Wang
- College of Life Science, Longyan University, Longyan, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnolog, Longyan, China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan, China
- Chinese International College, Dhurakij Pundit University, Bangkok, Thailand
| | - Guohua Yu
- College of Life Science, Longyan University, Longyan, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnolog, Longyan, China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan, China
| |
Collapse
|
12
|
Angulo M, Angulo C. Trained immunity-based vaccines: A vision from the one health initiative. Vaccine 2025; 43:126505. [PMID: 39520776 DOI: 10.1016/j.vaccine.2024.126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Trained immunity-based vaccines (TIbV or TRIMbV) represent a novel approach to combating infectious diseases. The innate immune system in animals, including humans, exhibits "memory-like" functions. Remarkably, the immunological mechanisms -both epigenetic and metabolic-) underlying this memory enables immune cells to develop defensive and protective outcomes against unspecific pathogenic infections. Under this context, the One Health initiative promotes integrative efforts to combat zoonotic (and anthropozoonotic) diseases, which is critical because 3 of 4 animal infections are transmitted to humans. Therefore, TIbV constitutes a potential affordable approach to control zoonotic pathologies, especially under pandemic scenarios. This review describes the state-of-the-art TIbV and their hurdles, opportunities, and prospects for the One Health initiative to prevent, control, and treat infectious diseases.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.; Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C. S., C.P. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.; Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C. S., C.P. 23096, Mexico.
| |
Collapse
|
13
|
He J, Cui H, Jiang G, Fang L, Hao J. Knowledge mapping of trained immunity/innate immune memory: Insights from two decades of studies. Hum Vaccin Immunother 2024; 20:2415823. [PMID: 39434217 PMCID: PMC11497974 DOI: 10.1080/21645515.2024.2415823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
This study employs knowledge mapping and bibliometric techniques to analyze the research landscape of trained immunity over the past 20 years and to identify current research hotspots and future development directions. The literature related to trained immunity was searched from the Web of Science Core Collection database, spanning 2004 to 2023. VOSViewer, CiteSpace and Bibliometrix were used for the knowledge mapping analysis. The foremost research institutions are Radboud University Nijmegen, University of Bonn, and Harvard University. Professor Netea MG of Radboud University Nijmegen has published the greatest number of articles. The current research focus encompasses immune memory, nonspecific effects, epigenetics, metabolic reprogramming, BCG vaccine, and the development of trained immunity-based vaccines. It is likely that research on trained immunity-based vaccines will become a major focus in the development of new vaccines in the future. It would be advantageous to observe a greater number of prospective clinical studies with robust evidence.
Collapse
Affiliation(s)
- Jiacheng He
- College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Hongxia Cui
- College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
| | - Guoqian Jiang
- College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
| | - Lijun Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
| | - Jianlei Hao
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, P.R. China
| |
Collapse
|
14
|
Jiménez E, Vázquez A, González S, Sacedón R, Fernández-Sevilla LM, Varas A, Subiza JL, Valencia J, Vicente Á. Mucosal Bacterial Immunotherapy Attenuates the Development of Experimental Colitis by Reducing Inflammation Through the Regulation of Myeloid Cells. Int J Mol Sci 2024; 25:13629. [PMID: 39769391 PMCID: PMC11728189 DOI: 10.3390/ijms252413629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Ulcerative colitis is a chronic relapsing-remitting and potentially progressive form of inflammatory bowel disease in which there is extensive inflammation and mucosal damage in the colon and rectum as a result of an abnormal immune response. MV130 is a mucosal-trained immunity-based vaccine used to prevent respiratory tract infections in various clinical settings. Additionally, MV130 may induce innate immune cells that acquire anti-inflammatory properties and promote tolerance, which could have important implications for chronic inflammatory diseases such as ulcerative colitis. This work demonstrated that the prophylactic administration of MV130 substantially mitigated colitis in a mouse model of acute colitis induced by dextran sulphate sodium. MV130 downregulated systemic and local inflammatory responses, maintained the integrity of the intestinal barrier by preserving the enterocyte layer and goblet cells, and reduced the oedema and fibrosis characteristic of the disease. Mechanistically, MV130 significantly reduced the infiltration of neutrophils and pro-inflammatory macrophages in the intestinal wall of the diseased animals and favoured the appearance of M2-polarised macrophages. These results suggest that MV130 might have therapeutic potential for the treatment of ulcerative colitis, reducing the risk of relapse and the progression of disease.
Collapse
Affiliation(s)
- Eva Jiménez
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Alberto Vázquez
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
| | - Sara González
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Doce de Octubre (i+12), 28041 Madrid, Spain
| | - Rosa Sacedón
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Lidia M. Fernández-Sevilla
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Alberto Varas
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | | - Jaris Valencia
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Ángeles Vicente
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Doce de Octubre (i+12), 28041 Madrid, Spain
| |
Collapse
|
15
|
Başbulut E, Bilgin M, Işler H, Şen A, Kılıç SS, Çubukçu M. Analysis of Measles and Rubella Immunoglobulin G Titers in COVID-19 Patients. Risk Manag Healthc Policy 2024; 17:2789-2801. [PMID: 39558910 PMCID: PMC11572050 DOI: 10.2147/rmhp.s472872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Background The objective of this study is to compare the measles immunoglobulin G (IgG) and rubella IgG levels in patient groups with mild and severe COVID-19 disease and reveal the possible relationship. Methods This study was conducted among COVID-19-confirmed patients over 18, under 65 years of age. This study involved 75 participants- divided into two groups. The first group usually comprised asymptomatic patients who did not require hospitalization (n=43), and the second group consisted of patients who had diffuse pneumonia on thoracic CT and required hospitalization (n=32). Results Anti-measles and anti-rubella IgG titers were detected to be higher in the group with severe disease compared to the group with mild disease (p=0.001 and p=0.001, respectively). The analyses were repeated by taking n=27 in Group 1 and n=27 in Group 2, which were similar in terms of age, gender and number. In the analysis performed without any age difference between the groups, no significant difference was found between the two groups in terms of Anti Measles IgG antibody titers (p=0.068). However, Anti Rubella antibody titers were found to be higher in the group with severe COVID-19 disease than in those with mild disease (p=0.03). Regardless of the severity of the disease, there was a positive correlation between Anti Rubella and Anti Measles IgG antibody titers and age (p=<0.001 Spearman's rho 0.517; p=0.008 Spearman's rho 0.304, respectively). Conclusion We believe that the pre-existing Anti-Rubella IgG antibodies in the patient may increase in parallel with the patient's viral load by recognizing the common macrodomain of SARS-CoV-2 and Rubella viruses. The common macrodomain of SARS-CoV-2 and Rubella viruses is also present in the attenuated rubella virus used in the MMR vaccine4. In this case, we predict that previously administered MMR vaccine may be protective for COVID-19 patients. disease compared to those with mild disease.
Collapse
Affiliation(s)
- Eşe Başbulut
- Department of Medical Microbiology, Samsun Training and Research Hospital, Samsun, Turkey
| | - Melek Bilgin
- Department of Medical Microbiology, Samsun Training and Research Hospital, Samsun, Turkey
| | - Hacer Işler
- Department of Medical Microbiology, Samsun Training and Research Hospital, Samsun, Turkey
| | - Ahmet Şen
- Department of Anesthesia and Reanimation, Trabzon Faculty of Medicine, Trabzon, Turkey
| | - Süleyman Sırrı Kılıç
- Department of Infectious Disease and Clinical Microbiology, Samsun Training and Research Hospital, Samsun, Turkey
| | - Mahcube Çubukçu
- Department of Family Medicine, Samsun University Faculty of Medicine, Samsun, Turkey
| |
Collapse
|
16
|
Martín-Cruz L, Benito-Villalvilla C, Angelina A, Subiza JL, Palomares O. Trained immunity-based vaccines for infections and allergic diseases. J Allergy Clin Immunol 2024; 154:1085-1094. [PMID: 39303893 DOI: 10.1016/j.jaci.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Trained immunity has emerged as a new concept in immunology that is associated with the memory of innate immune cells and linked to specific metabolic and epigenetic reprogramming of these cells. Trained immunity may confer nonspecific and sustained protection against a broad range of pathogens, and recent findings show that it might also be involved in allergy mechanisms. Some conventional vaccines have demonstrated trained immunity induction as the mechanism underlying their heterologous protection. The development of novel vaccines designed especially for this purpose (trained immunity-based vaccines) might be useful in the absence of conventional vaccines or in specific clinical settings. Under certain circumstances, trained immunity could lead to persistent inflammatory innate immune cell responses in subjects with allergy, which could be associated with the development and worsening of allergy by promoting and amplifying aberrant type 2 immune responses. In other cases, trained immunity may help promote healthy immune responses to allergens, such as type 1 responses that counterbalance the type 2 inflammation or regulatory T cells that induce tolerance. Trained immunity-based allergen vaccines could become the next generation of allergen-specific immunotherapy vaccines, harnessing the potential of trained immunity to induce allergen tolerance. The identification and characterization of proper training inducers might well pave the way for the development of novel immunotherapies.
Collapse
Affiliation(s)
- Leticia Martín-Cruz
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain; Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University, Madrid, Spain
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain; Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University, Madrid, Spain
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain.
| |
Collapse
|
17
|
Chen Y, Li Z, Jiang H, Wang L, Zhang Y, Zhang X, Jiang W, Wang F. Biological evaluation of curdlan sulfate-based nanoparticles in trained immunity enhancement: In vitro and in vivo approaches. Int J Biol Macromol 2024; 281:136208. [PMID: 39362439 DOI: 10.1016/j.ijbiomac.2024.136208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
OBJECTIVES Recently, more and more evidences suggest that β-glucans can induce trained immunity and non-specific protections against pathogens. However, most of the reports evaluated the immunological activities of β-glucans through injection route but no nasal inhalation. In this study, the effects of curdlan sulfate-based nanoparticles, CS/O-HTCC on trained immunity through intranasal administration were evaluated. METHODS Macrophages were treated with CS/O-HTCC and the metabolisms of the macrophages were detected. Mice were intranasal administered with CS/O-HTCC for 3 times with a 14 days interval, then the antitumor or infection prevention effects were assessed. RESULTS In vitro, CS/O-HTCC enhanced the macrophage metabolism significantly through upregulating glycolysis (26.1 ± 4.3 mpH/min) and oxidative phosphorylation (36.0 ± 9.0 pmol/min) compared with that of negative group (7.5 ± 2.3 mpH/min and 19.5 ± 4.9 pmol/min). In vivo, CS/O-HTCC inhibited lung metastasis of B16F10 tumor cells and improved the survival time (26.5 days) of the nmice compared with negative group (19.5 days). Moreover, CS/O-HTCC prevented the lung infections by Escherichia coli or Streptococcus pneumoniae (less bacterial residual) and reduced lung damages. CONCLUSIONS CS/O-HTCC can induce trained immunity through enhancing the metabolism of macrophages and enhance the non-specific protection against pathogens through intranasal immunization.
Collapse
Affiliation(s)
- Yipan Chen
- Key Laboratory of Chemical Biology of Natural Products (Ministry of education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Zuyi Li
- Key Laboratory of Chemical Biology of Natural Products (Ministry of education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Honglei Jiang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Longkun Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Yuhe Zhang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Xinke Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjie Jiang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China.
| | - Fengshan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
18
|
Candelas G, Villegas Á, Sánchez-Ramón S. Mucosal trained immunity-based vaccines: Cutting recurrent infections in autoimmune patients on immunosuppression. J Allergy Clin Immunol 2024; 154:1120-1122. [PMID: 39307289 DOI: 10.1016/j.jaci.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/09/2024]
Affiliation(s)
- Gloria Candelas
- Department of Rheumatology, Instituto de Medicina de Laboratorio (IML) and Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Ángela Villegas
- Department of Clinical Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology, and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology, and ENT, School of Medicine, Complutense University, Madrid, Spain.
| |
Collapse
|
19
|
Di Gioacchino M, Santilli F, Pession A. Is There a Role for Immunostimulant Bacterial Lysates in the Management of Respiratory Tract Infection? Biomolecules 2024; 14:1249. [PMID: 39456182 PMCID: PMC11505618 DOI: 10.3390/biom14101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Bacterial Lysates are immunostimulants clinically prescribed for the prevention of respiratory tract infections (RTIs). It has been shown that Bacterial Lysates upregulate the immune system, acting both on innate and adaptive reactions. In fact, there are demonstrations of their efficacy in restoring the integrity and immune function of epithelial barriers, activating ILC3 and dendritic cells with an enhanced Th1 response, and producing serum IgG and serum and salivary IgA specific to the administered bacterial antigens. The activated immune system also protects against other bacteria and viruses due to a trained immunity effect. Most studies show that the number of RTIs and their severity decrease in Bacterial Lysates-pretreated patients, without relevant side effects. The Bacterial Lysates treatment, in addition to reducing the number of RTIs, also prevents the deterioration of the underlying disease (i.e., COPD) induced by repeated infections. Despite these positive data, the most recent meta-analyses evidence the weakness of the studies performed, which are of low quality and have an inadequate number of patients, some of which were non-randomized while others were without a control group or were performed contemporarily in different clinical conditions or with different ages. The high heterogeneity of the studies does not allow us to state Bacterial Lysates' effectiveness in preventing RTIs with sufficient certainty. To completely define their indications, double-blind, placebo-controlled, multicenter, randomized clinical trials should be performed for each product and for each indication. The study population should be adequate for each indication. For this purpose, an adequate run-in phase will be necessary.
Collapse
Affiliation(s)
- Mario Di Gioacchino
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Francesca Santilli
- Center for Advanced Science and Technology (CAST), G. d’Annunzio University, 66100 Chieti, Italy;
- Department of Medicine and Science of Aging, G. d’Annunzio University, 66100 Chieti, Italy
| | - Andrea Pession
- Department of Medicine and Surgery, “Alma Mater Studiorum”-University of Bologna, 40100 Bologna, Italy;
| |
Collapse
|
20
|
Severa M, Ricci D, Etna MP, Facchini M, Puzelli S, Fedele G, Iorio E, Cairo G, Castrechini S, Ungari V, Iannetta M, Leone P, Chirico M, Pisanu ME, Bottazzi B, Benedetti L, Sali M, Bartolomucci R, Balducci S, Garlanda C, Stefanelli P, Spadea A, Palamara AT, Coccia EM. A Serum Multi-Parametric Analysis Identifies an Early Innate Immune Signature Associated to Increased Vaccine-Specific Antibody Production and Seroconversion in Simultaneous COVID-19 mRNA and Cell-Based Quadrivalent Influenza Vaccination. Vaccines (Basel) 2024; 12:1050. [PMID: 39340080 PMCID: PMC11436141 DOI: 10.3390/vaccines12091050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
In this pilot study, a multi-parametric analysis comparing immune responses in sera of adult healthy subjects (HS) or people with type 2 diabetes mellitus (T2D) undergoing the single or simultaneous administration of mRNA-based COVID-19 and cellular quadrivalent inactivated influenza vaccines was conducted. While SARS-CoV-2 antibodies remains comparable, influenza antibody titers and seroconversion were significantly higher upon simultaneous vaccination. Magnitude of anti-influenza humoral response closely correlated with an early innate immune signature, previously described for the COVID-19 vaccine, composed of IL-15, IL-6, TNF-α, IFN-γ, CXCL-10 and here extended also to acute-phase protein Pentraxin 3. People with T2D receiving simultaneous vaccination showed a protective response comparable to HS correlating with the early induction of IFN-γ/CXCL10 and a significant reduction of the circulating glucose level due to increased oxidation of glucose digestion and consumption. These data, although preliminary and in-need of validation in larger cohorts, might be exploited to optimize future vaccination in people with chronic disorders, including diabetes.
Collapse
Affiliation(s)
- Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Daniela Ricci
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Marilena Paola Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Marzia Facchini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Simona Puzelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Egidio Iorio
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.I.); (M.C.); (M.E.P.)
| | - Giada Cairo
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Sara Castrechini
- ASL ROMA 1, Regione Lazio, 00145 Rome, Italy; (S.C.); (V.U.); (R.B.); (A.S.)
| | - Valentina Ungari
- ASL ROMA 1, Regione Lazio, 00145 Rome, Italy; (S.C.); (V.U.); (R.B.); (A.S.)
| | - Marco Iannetta
- Infectious Disease Clinic, Tor Vergata University Hospital, 00133 Rome, Italy; (M.I.); (L.B.)
| | - Pasqualina Leone
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Mattea Chirico
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.I.); (M.C.); (M.E.P.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.I.); (M.C.); (M.E.P.)
| | - Barbara Bottazzi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Centre—IRCCS, 20019 Milan, Italy; (B.B.); (C.G.)
| | - Livia Benedetti
- Infectious Disease Clinic, Tor Vergata University Hospital, 00133 Rome, Italy; (M.I.); (L.B.)
| | - Michela Sali
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Remo Bartolomucci
- ASL ROMA 1, Regione Lazio, 00145 Rome, Italy; (S.C.); (V.U.); (R.B.); (A.S.)
| | | | - Cecilia Garlanda
- Department of Inflammation and Immunology, Humanitas Clinical and Research Centre—IRCCS, 20019 Milan, Italy; (B.B.); (C.G.)
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Antonietta Spadea
- ASL ROMA 1, Regione Lazio, 00145 Rome, Italy; (S.C.); (V.U.); (R.B.); (A.S.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Eliana Marina Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| |
Collapse
|
21
|
Shim EH, Kim SH, Kim DJ, Jang YS. Complement C5a Receptor Signaling in Macrophages Enhances Trained Immunity Through mTOR Pathway Activation. Immune Netw 2024; 24:e24. [PMID: 39246622 PMCID: PMC11377950 DOI: 10.4110/in.2024.24.e24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 09/10/2024] Open
Abstract
Complement C5a receptor (C5aR) signaling in immune cells has various functions, inducing inflammatory or anti-inflammatory responses based on the type of ligand present. The Co1 peptide (SFHQLPARSRPLP) has been reported to activate C5aR signaling in dendritic cells. We investigated the effect of C5aR signaling via the Co1 peptide on macrophages. In peritoneal macrophages, the interaction between C5aR and the Co1 peptide activated the mTOR pathway, resulting in the production of pro-inflammatory cytokines. Considering the close associations of mTOR signaling with IL-6 and TNF-α in macrophage training, our findings indicate that the Co1 peptide amplifies β-glucan-induced trained immunity. Overall, this research highlights a previously underappreciated aspect of C5aR signaling in trained immunity, and posits that the Co1 peptide is a potentially effective immunomodulator for enhancing trained immunity.
Collapse
Affiliation(s)
- Eun-Hyeon Shim
- Innovative Research and Education Center for Integrated Bioactive Materials and the Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Sae-Hae Kim
- Department of Molecular Biology and The Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
| | - Doo-Jin Kim
- Department of Medicine, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Yong-Suk Jang
- Innovative Research and Education Center for Integrated Bioactive Materials and the Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Korea
- Department of Molecular Biology and The Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
22
|
Jiang C, Wu J. Hypothesis: hematogenous metastatic cancer cells of solid tumors may disguise themselves as memory macrophages for metastasis. Front Oncol 2024; 14:1412296. [PMID: 39035733 PMCID: PMC11257992 DOI: 10.3389/fonc.2024.1412296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
German pathologist Otto Aichel suggested, a century ago, that the cancer cell acquired its metastatic property from a leukocyte via cell-cell fusion. Since then, several revised versions of this theory have been proposed. Most of the proposals attribute the generation of the metastatic cancer cell to the fusion between a primary cancer cell and a macrophage. However, these theories have not addressed several issues, such as dormancy and stem cell-like self-renewal, of the metastatic cancer cell. On the other hand, recent studies have found that, like T- and B-/plasma cells, macrophages can also be categorized into naïve, effector, and memory/trained macrophages. As a memory/trained macrophage can enter dormancy/quiescence, be awakened from the dormancy/quiescence by acquainted primers, and re-populate via stem cell-like self-renewal, we, therefore, further specify that the macrophage fusing with the cancer cell and contributing to metastasis, belongs with the memory/trained macrophage, not other subtypes of macrophages. The current theory can explain many puzzling clinical features of cancer, including the paradoxal effects (recurrence vs. regression) of microbes on tumors, "spontaneous" and Coley's toxin-induced tumor regression, anticancer activities of β-blockers and anti-inflammatory/anti-immune/antibiotic drugs, oncotaxis, surgery- and trauma-promoted metastasis, and impact of microbiota on tumors. Potential therapeutic strategies, such as Coley's toxin-like preparations, are proposed. This is the last article of our trilogy on carcinogenesis theories.
Collapse
Affiliation(s)
- Chuo Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
- Central Laboratories, Shanghai Clinical Research Center Xuhui Central Hospital, Chinese Academy of Sciences, Shanghai, China
| | - Jiaxi Wu
- Central Laboratories, Shanghai Clinical Research Center Xuhui Central Hospital, Chinese Academy of Sciences, Shanghai, China
- Office of Industrial Cooperation, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Nickel JC, Cotechini T, Doiron RC. Secondary Analysis of Interstitial Cystitis/Bladder Pain Syndrome Patients Enrolled in a Recurrent Urinary Tract Infection Prevention Study Provides a Novel Paradigm for Etio-Pathogenesis and Practical Management of This Infection Phenotype. Pathogens 2024; 13:396. [PMID: 38787248 PMCID: PMC11123849 DOI: 10.3390/pathogens13050396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION A subset of interstitial cystitis/bladder pain syndrome (IC/BPS) patients experience recurrent urinary tract infection (rUTI) associated with symptom flares. Recurrent UTI subjects with associated IC/BPS were enrolled in the first North American early clinical experience trial evaluating a new sublingual UTI preventative vaccine, MV140. It has been shown that women with rUTI develop an imbalance in the T helper 1 and 2 (Th2 over-expression) in the bladder mucosa. Our hypothesis-generating secondary analysis will suggest that this infection subcategory of IC/BPS patients develop a similar imbalance of Th1-Th2 response type to bacteria present in their urinary microbiome, leading to a bladder hypersensitivity that responds to mucosal immune modulation. METHODS Female participants with ≥3 documented UTI/year underwent a 3-month vaccination treatment period with a 9-month efficacy period after completion of vaccine treatment (total 12 months). There were no exclusion criteria for subjects in relation to baseline urinary symptoms and/or discomfort/pain. Primary outcome was no UTI following vaccination. Secondary outcomes included change in UTI incidence, overall patient-reported subjective global assessment (SGA responder defined as moderately or markedly improved on 7-point scale), and safety. RESULTS Sixteen subjects with IC/BPS-related symptoms and rUTI (mean age 47; range 23-74 years; mean number of UTI episodes in previous year 6.1 +/- 4.2) were eligible to be included in the Health Canada-approved MV140 vaccine study for prevention of rUTI. All subjects completed the 3-month vaccination period. One subject was lost to follow-up after their 6-month visit. Six subjects were UTI-free, while all 16 subjects had a reduction in UTI episodes compared to the year pre-vaccination. The total post-vaccination reduction in UTI episodes compared to pre-vaccination was 80% (0.1 UTI/subject/month from 0.5 UTI/subject/month, respectively). At 12 months, 13 subjects (81%) were SGA responders (moderately or markedly improved), and the responders reported a reduction in IC/BPS symptoms, with 8 subjects reporting significant or almost complete resolution of their specific long-term bladder discomfort/pain and bothersome urinary frequency or urgency. Four subjects reported mild and self-limited adverse events during vaccination period, but none were related to MV140 vaccine. CONCLUSION Sublingual MV140 vaccine in IC/BPS patients with rUTI not only achieved UTI-free or reduced UTI incidence status but also, after approximately 9 months post vaccination, resolution of patients' long-term treatment-refractory IC/BPS symptoms. This suggests some cases of IC/BPS may be etiologically based on Th2-driven hypersensitivity to bacteria within or entering the urinary microbiome that responds to a vaccine whose mechanism of action is to normalize or balance the bladder Th1/Th2 mucosal immune system.
Collapse
Affiliation(s)
- J. Curtis Nickel
- Department of Urology, Queen’s University, Kingston, ON K7L2V7, Canada;
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L3N6, Canada
| | | |
Collapse
|
24
|
Vuscan P, Kischkel B, Joosten LAB, Netea MG. Trained immunity: General and emerging concepts. Immunol Rev 2024; 323:164-185. [PMID: 38551324 DOI: 10.1111/imr.13326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024]
Abstract
Over the past decade, compelling evidence has unveiled previously overlooked adaptive characteristics of innate immune cells. Beyond their traditional role in providing short, non-specific protection against pathogens, innate immune cells can acquire antigen-agnostic memory, exhibiting increased responsiveness to secondary stimulation. This long-term de-facto innate immune memory, also termed trained immunity, is mediated through extensive metabolic rewiring and epigenetic modifications. While the upregulation of trained immunity proves advantageous in countering immune paralysis, its overactivation contributes to the pathogenesis of autoinflammatory and autoimmune disorders. In this review, we present the latest advancements in the field of innate immune memory followed by a description of the fundamental mechanisms underpinning trained immunity generation and different cell types that mediate it. Furthermore, we explore its implications for various diseases and examine current limitations and its potential therapeutic targeting in immune-related disorders.
Collapse
Affiliation(s)
- Patricia Vuscan
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brenda Kischkel
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
25
|
López-Collazo E, del Fresno C. Endotoxin tolerance and trained immunity: breaking down immunological memory barriers. Front Immunol 2024; 15:1393283. [PMID: 38742111 PMCID: PMC11089161 DOI: 10.3389/fimmu.2024.1393283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
For decades, innate immune cells were considered unsophisticated first responders, lacking the adaptive memory of their T and B cell counterparts. However, mounting evidence demonstrates the surprising complexity of innate immunity. Beyond quickly deploying specialized cells and initiating inflammation, two fascinating phenomena - endotoxin tolerance (ET) and trained immunity (TI) - have emerged. ET, characterized by reduced inflammatory response upon repeated exposure, protects against excessive inflammation. Conversely, TI leads to an enhanced response after initial priming, allowing the innate system to mount stronger defences against subsequent challenges. Although seemingly distinct, these phenomena may share underlying mechanisms and functional implications, blurring the lines between them. This review will delve into ET and TI, dissecting their similarities, differences, and the remaining questions that warrant further investigation.
Collapse
Affiliation(s)
- Eduardo López-Collazo
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER), Respiratory Diseases (CIBRES), Madrid, Spain
| | - Carlos del Fresno
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
26
|
Srikrishna G, Bullen CK, Bishai WR. Mycobacterial Nucleic Acids Modulate Host Innate Immune Responses. JOURNAL OF INFECTIOUS DISEASE AND THERAPY 2024; 12:1000585. [PMID: 38745994 PMCID: PMC11091829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Affiliation(s)
- Geetha Srikrishna
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, USA
| | - C Korin Bullen
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, USA
| | - William R Bishai
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, USA
| |
Collapse
|
27
|
Arunachalam AB. Vaccines Induce Homeostatic Immunity, Generating Several Secondary Benefits. Vaccines (Basel) 2024; 12:396. [PMID: 38675778 PMCID: PMC11053716 DOI: 10.3390/vaccines12040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The optimal immune response eliminates invading pathogens, restoring immune equilibrium without inflicting undue harm to the host. However, when a cascade of immunological reactions is triggered, the immune response can sometimes go into overdrive, potentially leading to harmful long-term effects or even death. The immune system is triggered mostly by infections, allergens, or medical interventions such as vaccination. This review examines how these immune triggers differ and why certain infections may dysregulate immune homeostasis, leading to inflammatory or allergic pathology and exacerbation of pre-existing conditions. However, many vaccines generate an optimal immune response and protect against the consequences of pathogen-induced immunological aggressiveness, and from a small number of unrelated pathogens and autoimmune diseases. Here, we propose an "immuno-wave" model describing a vaccine-induced "Goldilocks immunity", which leaves fine imprints of both pro-inflammatory and anti-inflammatory milieus, derived from both the innate and the adaptive arms of the immune system, in the body. The resulting balanced, 'quiet alert' state of the immune system may provide a jump-start in the defense against pathogens and any associated pathological inflammatory or allergic responses, allowing vaccines to go above and beyond their call of duty. In closing, we recommend formally investigating and reaping many of the secondary benefits of vaccines with appropriate clinical studies.
Collapse
Affiliation(s)
- Arun B Arunachalam
- Analytical Sciences, R&D Sanofi Vaccines, 1 Discovery Dr., Swiftwater, PA 18370, USA
| |
Collapse
|
28
|
Minute L, Bergón-Gutiérrez M, Mata-Martínez P, Fernández-Pascual J, Terrón V, Bravo-Robles L, Bıçakcıoğlu G, Zapata-Fernández G, Aguiló N, López-Collazo E, del Fresno C. Heat-killed Mycobacterium tuberculosis induces trained immunity in vitro and in vivo administered systemically or intranasally. iScience 2024; 27:108869. [PMID: 38318361 PMCID: PMC10838711 DOI: 10.1016/j.isci.2024.108869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Trained immunity (TI) represents a memory-like process of innate immune cells. TI can be initiated with various compounds such as fungal β-glucan or the tuberculosis vaccine, Bacillus Calmette-Guérin. Nevertheless, considering the clinical applications of harnessing TI against infections and cancer, there is a growing need for new, simple, and easy-to-use TI inducers. Here, we demonstrate that heat-killed Mycobacterium tuberculosis (HKMtb) induces TI both in vitro and in vivo. In human monocytes, this effect represents a truly trained process, as HKMtb confers boosted inflammatory responses against various heterologous challenges, such as lipopolysaccharide (Toll-like receptor [TLR] 4 ligand) and R848 (TLR7/8 ligand). Mechanistically, HKMtb-induced TI relies on epigenetic mechanisms in a Syk/HIF-1α-dependent manner. In vivo, HKMtb induced TI when administered both systemically and intranasally, with the latter generating a more robust TI response. Summarizing, our research has demonstrated that HKMtb has the potential to act as a mucosal immunotherapy that can successfully induce trained responses.
Collapse
Affiliation(s)
- Luna Minute
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Marta Bergón-Gutiérrez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Pablo Mata-Martínez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Jaime Fernández-Pascual
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Verónica Terrón
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Laura Bravo-Robles
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Gülce Bıçakcıoğlu
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Gabriela Zapata-Fernández
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Nacho Aguiló
- Department of Microbiology, Pediatrics, Radiology, and Public Health, University of Zaragoza/IIS Aragon, Zaragoza, Spain
- CIBERES, CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | - Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- CIBERES, CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | - Carlos del Fresno
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
29
|
Montalbán-Hernández K, Cogollo-García A, Girón de Velasco-Sada P, Caballero R, Casanovas M, Subiza JL, Conejero L. MV130 in the Prevention of Recurrent Respiratory Tract Infections: A Retrospective Real-World Study in Children and Adults. Vaccines (Basel) 2024; 12:172. [PMID: 38400155 PMCID: PMC10893268 DOI: 10.3390/vaccines12020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Respiratory tract infections (RTIs) are among the most common and important problems in clinical medicine, making antibiotics the gold standard therapeutic option regardless of their frequent viral etiology. Their excessive and inappropriate use contributes to the rapid rise of antibiotic resistance and underscores the need for alternative strategies, especially when dealing with recurrent RTIs. Prevention is the ideal alternative, but specific vaccines targeting a wide range of respiratory pathogens are scarce. MV130 is a sublingual bacterial vaccine that induces trained immunity and provides non-specific protection against respiratory pathogens in various clinical settings according to the concept of TIbV (Trained Immunity-based Vaccine). A retrospective real-world study (RWS) was conducted to evaluate the annual incidence of RTIs and the consumption of antibiotics before and after the administration of MV130, using data sourced from the medical records of 599 patients (186 children and 413 adults) who suffered from recurrent RTIs. The median number of infectious episodes in children was significantly reduced by more than 70% from 5 episodes (interquartile range (IQR) 4.0-6.0) to 1 (IQR, 0.0-2.0) (p < 0.001) after MV130. Similarly, in adults, the median number of episodes before MV130 immunization was 5 (IQR, 4.0-6.0), which dropped by more than 80% to 1 (IQR, 0.0-1.0) during the year following MV130 immunization (p < 0.001). The median number of antibiotic courses also significantly decreased for both children and adults by over 80% (p < 0.001). This RWS showed that MV130 is an effective strategy for the prevention of respiratory infections and the reduction of associated antibiotic consumption.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laura Conejero
- Inmunotek S.L., 28805 Madrid, Spain; (K.M.-H.); (A.C.-G.); (P.G.d.V.-S.); (R.C.); (M.C.)
| |
Collapse
|
30
|
Aguiar Santiago JA, Marrero Miragaya MA, Figueroa Oliva DA, Aguilar Juanes A, Idavoy Corona A, Martínez Fernández S, Morán Bertot I, Rodríguez Hernández M, Canales López E, Hernández Esteves I, Silva Girado JA, Estrada Vázquez RC, Gell Cuesta O, Mendoza-Marí Y, Valdés Prado I, Rodríguez Ibarra C, Palenzuela Gardon DO, Pentón Arias E, Guillén Nieto G, Aguilar Rubido JC. Preparing for the Next Pandemic: Increased Expression of Interferon-Stimulated Genes After Local Administration of Nasalferon or HeberNasvac. DNA Cell Biol 2024; 43:95-102. [PMID: 38118108 DOI: 10.1089/dna.2023.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
HeberNasvac, a therapeutic vaccine for chronic hepatitis B, is able to safely stimulate multiple Toll-like receptors, increasing antigen presentation in vitro and in a phase II clinical trial (Profira) in elderly volunteers who were household contacts of respiratory infection patients. Thus, a new indication as a postexposure prophylaxis or early therapy for respiratory infections has been proposed. In this study, we evaluated the expression of several interferon-stimulated genes (ISGs) after mucosal administration of HeberNasvac and compared this effect with the nasal delivery of interferon alpha 2b (Nasalferon). Molecular studies of blood samples of 50 subjects from the Profira clinical trial who were locally treated with HeberNasvac or Nasalferon and concurrent untreated individuals were compared based on their relative mRNA expression of OAS1, ISG15, ISG20, STAT1, STAT3, and DRB1-HLA II genes. In most cases, the gene expression induced by HeberNasvac was similar in profile and intensity to the expression induced by Nasalferon and significantly superior to that observed in untreated controls. The immune stimulatory effect of HeberNasvac on ISGs paved the way for its future use as an innate immunity stimulator in elderly persons and immunocompromised subjects or as part of Mambisa, a nasal vaccine to prevent severe acute respiratory syndrome coronavirus 2 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ivis Morán Bertot
- Plant Molecular Biology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | - Eduardo Canales López
- Plant Genomic Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | - José Angel Silva Girado
- Olinonucleotide Synthesis Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | - Omar Gell Cuesta
- Olinonucleotide Synthesis Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Yssel Mendoza-Marí
- Vaccine Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Iris Valdés Prado
- Vaccine Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | | | - Eduardo Pentón Arias
- Vaccine Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Gerardo Guillén Nieto
- Vaccine Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | |
Collapse
|
31
|
Smith CL, Richardson B, Rubsamen M, Cameron MJ, Cameron CM, Canaday DH. Adjuvant AS01 activates human monocytes for costimulation and systemic inflammation. Vaccine 2024; 42:229-238. [PMID: 38065772 DOI: 10.1016/j.vaccine.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/01/2024]
Abstract
BACKGROUND The adjuvanted recombinant zoster vaccine (RZV) is highly effective even in adults over 80 years old. The high efficacy of RZV is attributed to its highly reactogenic adjuvant, AS01, but limited studies have been done on AS01's activation of human immune cells. METHODS We stimulated peripheral blood mononuclear cells (PBMC) with AS01 and used flow cytometry and RNA Sequencing (RNAseq) to analyze the impacts on human primary cells. RESULTS We found that incubation of PBMC with AS01 activated monocytes to a greater extent than any other cell population, including dendritic cells. Both classical and non-classical monocytes demonstrated this activation. RNASeq showed that TNF-ɑ and IL1R pathways were highly upregulated in response to AS01 exposure, even in older adults. CONCLUSIONS In a PBMC co-culture, AS01 strongly activates human monocytes to upregulate costimulation markers and induce cytokines that mediate systemic inflammation. Understanding AS01's impacts on human cells opens possibilities to further address the reduced vaccine response associated with aging.
Collapse
Affiliation(s)
- Carson L Smith
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Rubsamen
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Cheryl M Cameron
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - David H Canaday
- Case Western Reserve University School of Medicine, Cleveland, OH, USA; Geriatric Research, Education, and Clinical Center, Louis Stokes VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
| |
Collapse
|
32
|
Mussap M, Puddu M, Fanos V. Metabolic Reprogramming of Immune Cells Following Vaccination: From Metabolites to Personalized Vaccinology. Curr Med Chem 2024; 31:1046-1068. [PMID: 37165503 DOI: 10.2174/0929867330666230509110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/12/2023]
Abstract
Identifying metabolic signatures induced by the immune response to vaccines allows one to discriminate vaccinated from non-vaccinated subjects and decipher the molecular mechanisms associated with the host immune response. This review illustrates and discusses the results of metabolomics-based studies on the innate and adaptive immune response to vaccines, long-term functional reprogramming (immune memory), and adverse reactions. Glycolysis is not overexpressed by vaccines, suggesting that the immune cell response to vaccinations does not require rapid energy availability as necessary during an infection. Vaccines strongly impact lipids metabolism, including saturated or unsaturated fatty acids, inositol phosphate, and cholesterol. Cholesterol is strategic for synthesizing 25-hydroxycholesterol in activated macrophages and dendritic cells and stimulates the conversion of macrophages and T cells in M2 macrophage and Treg, respectively. In conclusion, the large-scale application of metabolomics enables the identification of candidate predictive biomarkers of vaccine efficacy/tolerability.
Collapse
Affiliation(s)
- Michele Mussap
- Department of Surgical Sciences, School of Medicine, University of Cagliari, Cittadella Universitaria S.S. 554, Monserrato 09042, Cagliari, Italy
| | - Melania Puddu
- Department of Surgical Sciences, School of Medicine, University of Cagliari, Cittadella Universitaria S.S. 554, Monserrato 09042, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, School of Medicine, University of Cagliari, Cittadella Universitaria S.S. 554, Monserrato 09042, Cagliari, Italy
| |
Collapse
|
33
|
Coulongeat M, Marlet J, Aidoud A, Donati F, Jamard S, Van Der Werf S, Debacq C, Leroy V, Lemaignen A, Munier S, Fougère B. Impact of influenza immunity on the mortality among older adults hospitalized with COVID-19: a retrospective cohort study. Clin Exp Med 2023; 23:4955-4965. [PMID: 37906387 DOI: 10.1007/s10238-023-01203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
It has been suggested that the outcomes of coronavirus disease 2019 (COVID-19) are better in individuals having recently received an influenza vaccine than in non-vaccinated individuals. We hypothesized that this association depends on the humoral responses against influenza viruses. We aim to assess the relationship between the humoral immunity against influenza and the 3-month all-cause mortality among hospitalized older patients with COVID-19. We performed an exploratory retrospective study of older patients (aged 65 and over) hospitalized for confirmed COVID-19 between November 2020 and June 2021. Previous humoral responses to influenza viruses were assessed using a hemagglutination inhibition assay on routinely collected blood samples. The study's primary outcome was the 3-month all-cause mortality, and the secondary outcomes were severe COVID-19 (oxygen requirement ≥ 6 L/min or ventilatory support) and complications (kidney or heart failure, thrombosis and bacterial infection). In the cohort of 95 patients with COVID-19, immunity against influenza vaccine subtypes/lineages was not significantly associated with 3-month all-cause mortality, with an OR [95%CI] of 0.22 [0.02-1.95] (p = 0.174) for the H1N1pdm09 subtype, 0.21 [0.03-1.24] (p = 0.081) for A/Hong Kong/2671/2019 H3N2 subtype, 1.98 [0.51-8.24] (p = 0.329) for the B/Victoria lineage, and 1.82 [0.40-8.45] (p = 0.437) for the B/Yamagata lineage. Immunity against influenza vaccine subtypes/lineages was also not significantly associated with severity and complication. Immunity against influenza subtypes/lineages included in the 2020-2021 vaccine was not associated with a lower 3-month all-cause mortality among COVID-19 hospitalized patients.Trial registration: The study was approved by a hospital committee with competency for research not requiring approval by an institutional review board (Tours University Medical Center, Tours, France: reference: 2021_015). All patients give the informed consent.
Collapse
Affiliation(s)
- Matthieu Coulongeat
- Division of Geriatric Medicine, Tours University Medical Center, 37044, Tours, France.
- Division of Geriatric Medicine, University Hospital Center of ORLEANS, 45100, Orléans, France.
| | - Julien Marlet
- Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, Tours, France
- INSERM U1259, Université de Tours, 37044, Tours, France
| | - Amal Aidoud
- Division of Geriatric Medicine, Tours University Medical Center, 37044, Tours, France
- Tours University, EA4245 Transplantation, Immunologie, Inflammation, Tours, France
| | - Flora Donati
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Génétique Moléculaire Des Virus À ARN, 75015, Paris, France
- Institut Pasteur, CNR Virus Des Infections Respiratoires, 75015, Paris, France
| | - Simon Jamard
- Service de Maladies Infectieuses Et Tropicales (SMIT), Centre Hospitalier Universitaire de Tours, 37044, Tours, France
| | - Sylvie Van Der Werf
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Génétique Moléculaire Des Virus À ARN, 75015, Paris, France
- Institut Pasteur, CNR Virus Des Infections Respiratoires, 75015, Paris, France
| | - Camille Debacq
- Division of Geriatric Medicine, Tours University Medical Center, 37044, Tours, France
| | - Victoire Leroy
- Division of Geriatric Medicine, Tours University Medical Center, 37044, Tours, France
- Centre Mémoire Ressources Et Recherche (CMRR), Centre Hospitalier Universitaire de Tours, 37044, Tours, France
- Education, Ethics, Health (EA 7505), Tours University, 37044, Tours, France
| | - Adrien Lemaignen
- Service de Maladies Infectieuses Et Tropicales (SMIT), Centre Hospitalier Universitaire de Tours, 37044, Tours, France
| | - Sandie Munier
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Génétique Moléculaire Des Virus À ARN, 75015, Paris, France
- Institut Pasteur, CNR Virus Des Infections Respiratoires, 75015, Paris, France
| | - Bertrand Fougère
- Division of Geriatric Medicine, Tours University Medical Center, 37044, Tours, France
- Education, Ethics, Health (EA 7505), Tours University, 37044, Tours, France
| |
Collapse
|
34
|
Calzada-Fraile D, Sánchez-Madrid F. Reprogramming dendritic cells through the immunological synapse: A two-way street. Eur J Immunol 2023; 53:e2350393. [PMID: 37598303 DOI: 10.1002/eji.202350393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/21/2023]
Abstract
Dendritic cells (DCs) bridge innate and adaptive immunity. Their main function is to present antigens to prime T cells and initiate and shape adaptive responses. Antigen presentation takes place through intimate contacts between the two cells, termed immune synapses (IS). During the formation of IS, information travels towards the T-cell side to induce and tune its activation; but it also travels in reverse via engagement of membrane receptors and within extracellular vesicles transferred to the DC. Such reverse information transfer and its consequences on DC fate have been largely neglected. Here, we review the events and effects of IS-mediated antigen presentation on DCs. In addition, we discuss novel technological advancements that enable monitoring DCs interactions with T lymphocytes, the main effects of DCs undergoing productive IS (postsynaptic DCs, or psDCs), and how reverse information transfer could be harnessed to modulate immune responses for therapeutic intervention.
Collapse
Affiliation(s)
- Diego Calzada-Fraile
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
35
|
Kaur G, Chawla S, Kumar P, Singh R. Advancing Vaccine Strategies against Candida Infections: Exploring New Frontiers. Vaccines (Basel) 2023; 11:1658. [PMID: 38005990 PMCID: PMC10674196 DOI: 10.3390/vaccines11111658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Candida albicans, along with several non-albicans Candida species, comprise a prominent fungal pathogen in humans, leading to candidiasis in various organs. The global impact of candidiasis in terms of disease burden, suffering, and fatalities is alarmingly high, making it a pressing global healthcare concern. Current treatment options rely on antifungal drugs such as azoles, polyenes, and echinocandins but are delimited due to the emergence of drug-resistant strains and associated adverse effects. The current review highlights the striking absence of a licensed antifungal vaccine for human use and the urgent need to shift our focus toward developing an anti-Candida vaccine. A number of factors affect the development of vaccines against fungal infections, including the host, intraspecies and interspecies antigenic variations, and hence, a lack of commercial interest. In addition, individuals with a high risk of fungal infection tend to be immunocompromised, so they are less likely to respond to inactivated or subunit whole organisms. Therefore, it is pertinent to discover newer and novel alternative strategies to develop safe and effective vaccines against fungal infections. This review article provides an overview of current vaccination strategies (live attenuated, whole-cell killed, subunit, conjugate, and oral vaccine), including their preclinical and clinical data on efficacy and safety. We also discuss the mechanisms of immune protection against candidiasis, including the role of innate and adaptive immunity and potential biomarkers of protection. Challenges, solutions, and future directions in vaccine development, namely, exploring novel adjuvants, harnessing the trained immunity, and utilizing immunoinformatics approaches for vaccine design and development, are also discussed. This review concludes with a summary of key findings, their implications for clinical practice and public health, and a call to action for continued investment in candidiasis vaccine research.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Chandigarh College of Technology (CCT), Chandigarh Group of Colleges (CGC), Landran, Mohali 140307, India
| | - Sonam Chawla
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Piyush Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Ritu Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| |
Collapse
|
36
|
Dotiwala F, Upadhyay AK. Next Generation Mucosal Vaccine Strategy for Respiratory Pathogens. Vaccines (Basel) 2023; 11:1585. [PMID: 37896988 PMCID: PMC10611113 DOI: 10.3390/vaccines11101585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Inducing humoral and cytotoxic mucosal immunity at the sites of pathogen entry has the potential to prevent the infection from getting established. This is different from systemic vaccination, which protects against the development of systemic symptoms. The field of mucosal vaccination has seen fewer technological advances compared to nucleic acid and subunit vaccine advances for injectable vaccine platforms. The advent of the next-generation adenoviral vectors has given a boost to mucosal vaccine research. Basic research into the mechanisms regulating innate and adaptive mucosal immunity and the discovery of effective and safe mucosal vaccine adjuvants will continue to improve mucosal vaccine design. The results from clinical trials of inhaled COVID-19 vaccines demonstrate their ability to induce the proliferation of cytotoxic T cells and the production of secreted IgA and IgG antibodies locally, unlike intramuscular vaccinations. However, these mucosal vaccines induce systemic immune responses at par with systemic vaccinations. This review summarizes the function of the respiratory mucosa-associated lymphoid tissue and the advantages that the adenoviral vectors provide as inhaled vaccine platforms.
Collapse
Affiliation(s)
- Farokh Dotiwala
- Ocugen Inc., 11 Great Valley Parkway, Malvern, PA 19355, USA
| | | |
Collapse
|
37
|
Akiso M, Ameka M, Naidoo K, Langat R, Kombo J, Sikuku D, Ndung’u T, Altfeld M, Anzala O, Mureithi M. Metabolic and mitochondrial dysregulation in CD4+ T cells from HIV-positive women on combination anti-retroviral therapy. PLoS One 2023; 18:e0286436. [PMID: 37816026 PMCID: PMC10564234 DOI: 10.1371/journal.pone.0286436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND For optimal functionality, immune cells require a robust and adaptable metabolic program that is fueled by dynamic mitochondrial activity. In this study, we investigate the metabolic alterations occurring in immune cells during HIV infection and antiretroviral therapy by analyzing the uptake of metabolic substrates and mitochondrial phenotypes. By delineating changes in immune cell metabolic programming during HIV, we may identify novel potential therapeutic targets to improve anti-viral immune responses. METHODS After consent and voluntary participation was confirmed, whole blood was drawn from HIV uninfected women and women with chronic HIV infection on long-term combination antiretroviral therapy (HIV/cART). Peripheral blood mononuclear cells-derived immune cells were directly incubated with different fluorescently tagged metabolites and markers of mitochondrial activity: FITC-2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose), FITC-BODIPY (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Hexadecanoic Acid), FITC-MitoTracker Green and APC-MitoTracker Deep Red. The uptake of glucose and fats and the mitochondrial mass and potential were measured using flow cytometry. All values are reported quantitatively as geometric means of fluorescence intensity. RESULTS During chronic HIV infection, cellular uptake of glucose increases in HIV+ dendritic cells in particular. CD4+ T cells had the lowest uptake of glucose and fats compared to all other cells regardless of HIV status, while CD8+ T cells took up more fatty acids. Interestingly, despite the lower utilization of glucose and fats in CD4+ T cells, mitochondrial mass increased in HIV+ CD4+ T cells compared to HIV negative CD4+ T-cells. HIV+ CD4+ T cells also had the highest mitochondrial potential. CONCLUSIONS Significant disparities in the utilization of substrates by leukocytes during chronic HIV/cART exist. Innate immune cells increased utilization of sugars and fats while adaptive immune cells displayed lower glucose and fat utilization despite having a higher mitochondrial activity. Our findings suggest that cART treated HIV-infected CD4+ T cells be dysfunctional or may prefer alternative fuel sources not included in these studies. This underscores the importance of understanding the metabolic effects of HIV treatment on immune function.
Collapse
Affiliation(s)
- Matrona Akiso
- Department of Medical Microbiology & Immunology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
- KAVI-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
| | - Magdalene Ameka
- KAVI-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
| | - Kewreshini Naidoo
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Robert Langat
- KAVI-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota Twin Cities, United States of America
| | - Janet Kombo
- Department of Medical Microbiology & Immunology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
- KAVI-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
| | - Delories Sikuku
- Department of Medical Microbiology & Immunology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Virus Immunology Department, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Omu Anzala
- Department of Medical Microbiology & Immunology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
- KAVI-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
| | - Marianne Mureithi
- Department of Medical Microbiology & Immunology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
- KAVI-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
| |
Collapse
|
38
|
Zhu J, Liu J, Yan C, Wang D, Pan W. Trained immunity: a cutting edge approach for designing novel vaccines against parasitic diseases? Front Immunol 2023; 14:1252554. [PMID: 37868995 PMCID: PMC10587610 DOI: 10.3389/fimmu.2023.1252554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The preventive situation of parasitosis, a global public health burden especially for developing countries, is not looking that good. Similar to other infections, vaccines would be the best choice for preventing and controlling parasitic infection. However, ideal antigenic molecules for vaccine development have not been identified so far, resulting from the complicated life history and enormous genomes of the parasites. Furthermore, the suppression or down-regulation of anti-infectious immunity mediated by the parasites or their derived molecules can compromise the effect of parasitic vaccines. Comparing the early immune profiles of several parasites in the permissive and non-permissive hosts, a robust innate immune response is proposed to be a critical event to eliminate the parasites. Therefore, enhancing innate immunity may be essential for designing novel and effective parasitic vaccines. The newly emerging trained immunity (also termed innate immune memory) has been increasingly recognized to provide a novel perspective for vaccine development targeting innate immunity. This article reviews the current status of parasitic vaccines and anti-infectious immunity, as well as the conception, characteristics, and mechanisms of trained immunity and its research progress in Parasitology, highlighting the possible consideration of trained immunity in designing novel vaccines against parasitic diseases.
Collapse
Affiliation(s)
- Jinhang Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, Zhejiang, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
39
|
Yan J, Nielsen TB, Lu P, Talyansky Y, Slarve M, Reza H, Novakovic B, Netea MG, Keller AE, Warren T, DiGiandomenico A, Sellman BR, Luna BM, Spellberg B. A protein-free vaccine stimulates innate immunity and protects against nosocomial pathogens. Sci Transl Med 2023; 15:eadf9556. [PMID: 37792959 PMCID: PMC10947341 DOI: 10.1126/scitranslmed.adf9556] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/15/2023] [Indexed: 10/06/2023]
Abstract
Traditional vaccines are difficult to deploy against the diverse antimicrobial-resistant, nosocomial pathogens that cause health care-associated infections. We developed a protein-free vaccine composed of aluminum hydroxide, monophosphoryl lipid A, and fungal mannan that improved survival and reduced bacterial burden of mice with invasive blood or lung infections caused by methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, extended-spectrum beta-lactamase-expressing Escherichia coli, and carbapenem-resistant strains of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The vaccine also conferred protection against the fungi Rhizopus delemar and Candida albicans. Efficacy was apparent by 24 hours and lasted for up to 28 days after a single vaccine dose, with a second dose restoring efficacy. The vaccine acted through stimulation of the innate, rather than the adaptive, immune system, as demonstrated by efficacy in the absence of lymphocytes that were abrogated by macrophage depletion. A role for macrophages was further supported by the finding that vaccination induced macrophage epigenetic alterations that modulated phagocytosis and the inflammatory response to infection. Together, these data show that this protein-free vaccine is a promising strategy to prevent deadly antimicrobial-resistant health care-associated infections.
Collapse
Affiliation(s)
- Jun Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Travis B. Nielsen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- UC San Diego School of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Peggy Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuli Talyansky
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Matt Slarve
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hernan Reza
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Boris Novakovic
- Murdoch Children’s Research Institute and Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Ashley E. Keller
- AstraZeneca Inc., Early Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Troy Warren
- AstraZeneca Inc., Early Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Antonio DiGiandomenico
- AstraZeneca Inc., Early Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Bret R. Sellman
- AstraZeneca Inc., Early Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Brian M. Luna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brad Spellberg
- Los Angeles General Medical Center, Los Angeles, CA 90033, USA
| |
Collapse
|
40
|
Al B, Suen TK, Placek K, Netea MG. Innate (learned) memory. J Allergy Clin Immunol 2023; 152:551-566. [PMID: 37385546 DOI: 10.1016/j.jaci.2023.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
With the growing body of evidence, it is now clear that not only adaptive immune cells but also innate immune cells can mount a more rapid and potent nonspecific immune response to subsequent exposures. This process is known as trained immunity or innate (learned) immune memory. This review discusses the different immune and nonimmune cell types of the central and peripheral immune systems that can develop trained immunity. This review highlights the intracellular signaling and metabolic and epigenetic mechanisms underlying the formation of innate immune memory. Finally, this review explores the health implications together with the potential therapeutic interventions harnessing trained immunity.
Collapse
Affiliation(s)
- Burcu Al
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Tsz K Suen
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Katarzyna Placek
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Mihai G Netea
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen.
| |
Collapse
|
41
|
Kim SY, Lee KM, Kim KH. Differences between DNA vaccine and single-cycle viral vaccine in the ability of cross-protection against viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV). Vaccine 2023; 41:5580-5586. [PMID: 37517909 DOI: 10.1016/j.vaccine.2023.07.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Vaccination procedures can be stressful for fish and can bring severe side effects. Therefore, vaccines that can minimize the number of administrations and maximize cross-protection against multiple serotypes, genotypes, or even different species would be highly advantageous. In the present study, we investigated the cross-protective ability of two types of vaccines - viral hemorrhagic septicemia virus (VHSV) G protein-expressing DNA vaccine and G gene-deleted single-cycle VHSV genotype IVa (rVHSV-ΔG) vaccine - against both VHSV genotype Ia and infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss). The results showed that rainbow trout immunized with VHSV genotype Ia G gene- or IVa G gene-expressing DNA vaccine were significantly protected against VHSV genotype Ia, but were not protected against IHNV. In contrast to the DNA vaccine, the single-cycle VHSV IVa vaccine induced significant protection against not only VHSV Ia but also IHNV. Considering no significant increase in ELISA titer and serum neutralization activity against IHNV in fish immunized with single-cycle VHSV IVa, the protection might be independent of humoral adaptive immunity. The scarcity of cytotoxic T cell epitopes between VHSV and IHNV suggested that the possibility of involvement of cytotoxic T cell-mediated cellular adaptive immunity would be low. The role of trained immunity (innate immune memory) in cross-protection should be further investigated.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea
| | - Kyung Min Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
42
|
Bodas-Pinedo A, Lafuente EM, Pelaez-Prestel HF, Ras-Carmona A, Subiza JL, Reche PA. Combining different bacteria in vaccine formulations enhances the chance for antiviral cross-reactive immunity: a detailed in silico analysis for influenza A virus. Front Immunol 2023; 14:1235053. [PMID: 37675108 PMCID: PMC10477994 DOI: 10.3389/fimmu.2023.1235053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Bacteria are well known to provide heterologous immunity against viral infections through various mechanisms including the induction of innate trained immunity and adaptive cross-reactive immunity. Cross-reactive immunity from bacteria to viruses is responsible for long-term protection and yet its role has been downplayed due the difficulty of determining antigen-specific responses. Here, we carried out a systematic evaluation of the potential cross-reactive immunity from selected bacteria known to induce heterologous immunity against various viruses causing recurrent respiratory infections. The bacteria selected in this work were Bacillus Calmette Guerin and those included in the poly-bacterial preparation MV130: Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Klebisella pneumoniae, Branhamella catarrhalis and Haemophilus influenzae. The virus included influenza A and B viruses, human rhinovirus A, B and C, respiratory syncytial virus A and B and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Through BLAST searches, we first identified the shared peptidome space (identity ≥ 80%, in at least 8 residues) between bacteria and viruses, and subsequently predicted T and B cell epitopes within shared peptides. Interestingly, the potential epitope spaces shared between bacteria in MV130 and viruses are non-overlapping. Hence, combining diverse bacteria can enhance cross-reactive immunity. We next analyzed in detail the cross-reactive T and B cell epitopes between MV130 and influenza A virus. We found that MV130 contains numerous cross-reactive T cell epitopes with high population protection coverage and potentially neutralizing B cell epitopes recognizing hemagglutinin and matrix protein 2. These results contribute to explain the immune enhancing properties of MV130 observed in the clinic against respiratory viral infections.
Collapse
Affiliation(s)
- Andrés Bodas-Pinedo
- Children’s Digestive Unit, Institute for Children and Adolescents, Hospital Clinico San Carlos, Madrid, Spain
| | - Esther M. Lafuente
- Department of Immunology & O2, Faculty of Medicine, University Complutense of Madrid, Ciudad Universitaria, Pza. Ramón y Cajal, Madrid, Spain
| | - Hector F. Pelaez-Prestel
- Department of Immunology & O2, Faculty of Medicine, University Complutense of Madrid, Ciudad Universitaria, Pza. Ramón y Cajal, Madrid, Spain
| | - Alvaro Ras-Carmona
- Department of Immunology & O2, Faculty of Medicine, University Complutense of Madrid, Ciudad Universitaria, Pza. Ramón y Cajal, Madrid, Spain
| | | | - Pedro A. Reche
- Department of Immunology & O2, Faculty of Medicine, University Complutense of Madrid, Ciudad Universitaria, Pza. Ramón y Cajal, Madrid, Spain
| |
Collapse
|
43
|
Han S, Lee P, Choi HJ. Non-Invasive Vaccines: Challenges in Formulation and Vaccine Adjuvants. Pharmaceutics 2023; 15:2114. [PMID: 37631328 PMCID: PMC10458847 DOI: 10.3390/pharmaceutics15082114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Given the limitations of conventional invasive vaccines, such as the requirement for a cold chain system and trained personnel, needle-based injuries, and limited immunogenicity, non-invasive vaccines have gained significant attention. Although numerous approaches for formulating and administrating non-invasive vaccines have emerged, each of them faces its own challenges associated with vaccine bioavailability, toxicity, and other issues. To overcome such limitations, researchers have created novel supplementary materials and delivery systems. The goal of this review article is to provide vaccine formulation researchers with the most up-to-date information on vaccine formulation and the immunological mechanisms available, to identify the technical challenges associated with the commercialization of non-invasive vaccines, and to guide future research and development efforts.
Collapse
Affiliation(s)
| | | | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.H.); (P.L.)
| |
Collapse
|
44
|
Adams JRG, Mehat J, La Ragione R, Behboudi S. Preventing bacterial disease in poultry in the post-antibiotic era: a case for innate immunity modulation as an alternative to antibiotic use. Front Immunol 2023; 14:1205869. [PMID: 37469519 PMCID: PMC10352996 DOI: 10.3389/fimmu.2023.1205869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
The widespread use of antibiotics in the poultry industry has led to the emergence of antibiotic-resistant bacteria, which pose a significant health risk to humans and animals. These public health concerns, which have led to legislation limiting antibiotic use in animals, drive the need to find alternative strategies for controlling and treating bacterial infections. Modulation of the avian innate immune system using immunostimulatory compounds provides a promising solution to enhance poultry immune responses to a broad range of bacterial infections without the risk of generating antibiotic resistance. An array of immunomodulatory compounds have been investigated for their impact on poultry performance and immune responses. However, further research is required to identify compounds capable of controlling bacterial infections without detrimentally affecting bird performance. It is also crucial to determine the safety and effectiveness of these compounds in conjunction with poultry vaccines. This review provides an overview of the various immune modulators known to enhance innate immunity against avian bacterial pathogens in chickens, and describes the mechanisms involved.
Collapse
Affiliation(s)
- James R. G. Adams
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Avian Immunology, The Pirbright Institute, Woking, United Kingdom
| | - Jai Mehat
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Roberto La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
45
|
Doolan R, Putananickal N, Tritten L, Bouchery T. How to train your myeloid cells: a way forward for helminth vaccines? Front Immunol 2023; 14:1163364. [PMID: 37325618 PMCID: PMC10266106 DOI: 10.3389/fimmu.2023.1163364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Soil-transmitted helminths affect approximately 1.5 billion people worldwide. However, as no vaccine is currently available for humans, the current strategy for elimination as a public health problem relies on preventive chemotherapy. Despite more than 20 years of intense research effort, the development of human helminth vaccines (HHVs) has not yet come to fruition. Current vaccine development focuses on peptide antigens that trigger strong humoral immunity, with the goal of generating neutralizing antibodies against key parasite molecules. Notably, this approach aims to reduce the pathology of infection, not worm burden, with only partial protection observed in laboratory models. In addition to the typical translational hurdles that vaccines struggle to overcome, HHVs face several challenges (1): helminth infections have been associated with poor vaccine responses in endemic countries, probably due to the strong immunomodulation caused by these parasites, and (2) the target population displays pre-existing type 2 immune responses to helminth products, increasing the likelihood of adverse events such as allergy or anaphylaxis. We argue that such traditional vaccines are unlikely to be successful on their own and that, based on laboratory models, mucosal and cellular-based vaccines could be a way to move forward in the fight against helminth infection. Here, we review the evidence for the role of innate immune cells, specifically the myeloid compartment, in controlling helminth infections. We explore how the parasite may reprogram myeloid cells to avoid killing, notably using excretory/secretory (ES) proteins and extracellular vesicles (EVs). Finally, learning from the field of tuberculosis, we will discuss how anti-helminth innate memory could be harnessed in a mucosal-trained immunity-based vaccine.
Collapse
Affiliation(s)
- Rory Doolan
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Namitha Putananickal
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tiffany Bouchery
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
46
|
Arzola-Martínez L, Ptaschinski C, Lukacs NW. Trained innate immunity, epigenetics, and food allergy. FRONTIERS IN ALLERGY 2023; 4:1105588. [PMID: 37304168 PMCID: PMC10251748 DOI: 10.3389/falgy.2023.1105588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years the increased incidence of food allergy in Western culture has been associated with environmental factors and an inappropriate immune phenotype. While the adaptive immune changes in food allergy development and progression have been well-characterized, an increase in innate cell frequency and activation status has also recently received greater attention. Early in prenatal and neonatal development of human immunity there is a reliance on epigenetic and metabolic changes that stem from environmental factors, which are critical in training the immune outcomes. In the present review, we discuss how trained immunity is regulated by epigenetic, microbial and metabolic factors, and how these factors and their impact on innate immunity have been linked to the development of food allergy. We further summarize current efforts to use probiotics as a potential therapeutic approach to reverse the epigenetic and metabolic signatures and prevent the development of severe anaphylactic food allergy, as well as the potential use of trained immunity as a diagnostic and management strategy. Finally, trained immunity is presented as one of the mechanisms of action of allergen-specific immunotherapy to promote tolerogenic responses in allergic individuals.
Collapse
Affiliation(s)
- Llilian Arzola-Martínez
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| | - Nicholas W. Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
47
|
Vázquez ME, Mesías AC, Acuña L, Spangler J, Zabala B, Parodi C, Thakur M, Oh E, Walper SA, Brandán CP. Exploring the performance of Escherichia coli outer membrane vesicles as a tool for vaccine development against Chagas disease. Mem Inst Oswaldo Cruz 2023; 118:e220263. [PMID: 37222309 DOI: 10.1590/0074-02760220263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Vaccine development is a laborious craftwork in which at least two main components must be defined: a highly immunogenic antigen and a suitable delivery method. Hence, the interplay of these elements could elicit the required immune response to cope with the targeted pathogen with a long-lasting protective capacity. OBJECTIVES Here we evaluate the properties of Escherichia coli spherical proteoliposomes - known as outer membrane vesicles (OMVs) - as particles with natural adjuvant capacities and as antigen-carrier structures to assemble an innovative prophylactic vaccine for Chagas disease. METHODS To achieve this, genetic manipulation was carried out on E. coli using an engineered plasmid containing the Tc24 Trypanosoma cruzi antigen. The goal was to induce the release of OMVs displaying the parasite protein on their surface. FINDINGS As a proof of principle, we observed that native OMVs - as well as those carrying the T. cruzi antigen - were able to trigger a slight, but functional humoral response at low immunization doses. Of note, compared to the non-immunized group, native OMVs-vaccinated animals survived the lethal challenge and showed minor parasitemia values, suggesting a possible involvement of innate trained immunity mechanism. MAIN CONCLUSION These results open the range for further research on the design of new carrier strategies focused on innate immunity activation as an additional immunization target and venture to seek for alternative forms in which OMVs could be used for optimizing vaccine development.
Collapse
Affiliation(s)
- María Elisa Vázquez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Salta, Instituto de Patología Experimental Dr Miguel Ángel Basombrío, Salta, Argentina
| | - Andrea Cecilia Mesías
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Salta, Instituto de Patología Experimental Dr Miguel Ángel Basombrío, Salta, Argentina
| | - Leonardo Acuña
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Salta, Instituto de Patología Experimental Dr Miguel Ángel Basombrío, Salta, Argentina
| | - Joseph Spangler
- US Naval Research Laboratory, Center for Bio/Molecular Science & Engineering, Washington, DC, United States of America
| | - Brenda Zabala
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Salta, Instituto de Patología Experimental Dr Miguel Ángel Basombrío, Salta, Argentina
| | - Cecilia Parodi
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Salta, Instituto de Patología Experimental Dr Miguel Ángel Basombrío, Salta, Argentina
| | - Meghna Thakur
- George Mason University, Fairfax, Virginia, United States of America
| | - Eunkeu Oh
- US Naval Research Laboratory, Optical Science Division, Washington, DC, United States of America
| | - Scott Allan Walper
- US Naval Research Laboratory, Center for Bio/Molecular Science & Engineering, Washington, DC, United States of America
| | - Cecilia Pérez Brandán
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Salta, Instituto de Patología Experimental Dr Miguel Ángel Basombrío, Salta, Argentina
| |
Collapse
|
48
|
Kannan MP, Sreeraman S, Somala CS, Kushwah RB, Mani SK, Sundaram V, Thirunavukarasou A. Advancement of targeted protein degradation strategies as therapeutics for undruggable disease targets. Future Med Chem 2023; 15:867-883. [PMID: 37254917 DOI: 10.4155/fmc-2023-0072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Targeted protein degradation (TPD) aids in developing novel bifunctional small-molecule degraders and eliminates proteins of interest. The TPD approach shows promising results in oncological, neurogenerative, cardiovascular and gynecological drug development. We provide an overview of technology advancements in TPD, including molecular glues, proteolysis-targeting chimeras (PROTACs), lysosome-targeting chimeras, antibody-based PROTAC, GlueBody PROTAC, autophagy-targeting chimera, autophagosome-tethering compound, autophagy-targeting chimera and chaperone-mediated autophagy-based degraders. Here we discuss the development and evolution of the TPD field, the variety of proteins that PROTACs target and the biological repercussions of their degradation. We particularly highlight the recent improvements in TPD research that utilize autophagy or the endolysosomal pathway, which enables the targeting of undruggable targets.
Collapse
Affiliation(s)
- Mayuri P Kannan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
| | - Sarojini Sreeraman
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
- SRIIC Lab, Sri Ramachandra Institute for Higher Education & Research, Chennai, Tamil Nadu, 600116, India
| | - Chaitanya S Somala
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
| | - Raja Bs Kushwah
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX 77843, USA
| | - Saravanan K Mani
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Vickram Sundaram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Anand Thirunavukarasou
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
- SRIIC Lab, Sri Ramachandra Institute for Higher Education & Research, Chennai, Tamil Nadu, 600116, India
| |
Collapse
|
49
|
Pérez-Sancristóbal I, de la Fuente E, Álvarez-Hernández MP, Guevara-Hoyer K, Morado C, Martínez-Prada C, Freites-Nuñez D, Villaverde V, Fernández-Arquero M, Fernández-Gutiérrez B, Sánchez-Ramón S, Candelas G. Long-Term Benefit of Perlingual Polybacterial Vaccines in Patients with Systemic Autoimmune Diseases and Active Immunosuppression. Biomedicines 2023; 11:1168. [PMID: 37189785 PMCID: PMC10136188 DOI: 10.3390/biomedicines11041168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
INTRODUCTION We have previously shown that trained-immunity-based vaccines, namely TIbV, significantly reduce the rate of recurrent infections, both of the respiratory tract (RRTI) and urinary tract infections (RUTI) in SAD patients on disease-modifying drugs (DMARDs). OBJECTIVE We evaluated the frequency of RRTI and RUTI from 2018 to 2021 in those SAD patients that received TIbV until 2018. Secondarily, we evaluated the incidence and clinical course of COVID-19 in this cohort. METHODS A retrospective observational study was conducted in a cohort of SAD patients under active immunosuppression immunized with TIbV (MV130 for RRTI and MV140 for RUTI, respectively). RESULTS Forty-one SAD patients on active immunosuppression that were given TIbV up to 2018 were studied for RRTI and RUTI during the 2018-2021 period. Approximately half of the patients had no infections during 2018-2021 (51.2% no RUTI and 43.5% no RRTI at all). When we compared the 3-year period with the 1-year pre-TIbV, RRTI (1.61 ± 2.26 vs. 2.76 ± 2.57; p = 0.002) and RUTI (1.56 ± 2.12 vs. 2.69 ± 3.07; p = 0.010) episodes were still significantly lower. Six SAD patients (four RA; one SLE; one MCTD) with RNA-based vaccines were infected with SARS-CoV-2, with mild disease. CONCLUSIONS Even though the beneficial protective effects against infections of TIbV progressively decreased, they remained low for up to 3 years, with significantly reduced infections compared to the year prior to vaccination, further supporting a long-term benefit of TIbV in this setting. Moreover, an absence of infections was observed in almost half of patients.
Collapse
Affiliation(s)
- Inés Pérez-Sancristóbal
- Rheumatology Department, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Rheumatology Department, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Eduardo de la Fuente
- Department of Immunology, IML and IdISSC, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | | | - Kissy Guevara-Hoyer
- Department of Immunology, IML and IdISSC, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Concepción Morado
- Rheumatology Department, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | | | - Dalifer Freites-Nuñez
- Rheumatology Department, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Rheumatology Department, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | | | - Miguel Fernández-Arquero
- Department of Immunology, IML and IdISSC, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Benjamín Fernández-Gutiérrez
- Rheumatology Department, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Rheumatology Department, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Silvia Sánchez-Ramón
- Department of Immunology, IML and IdISSC, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Gloria Candelas
- Rheumatology Department, Hospital Clínico San Carlos, 28040 Madrid, Spain
| |
Collapse
|
50
|
Cui M, Tang G, Yan F, Wang S, Wang X, Yao J, Xu X. Oral administration of heat-inactivated Escherichia coli during suckling alleviated Salmonella typhimurium-derived intestinal injury after rat weaning. Front Immunol 2023; 14:1119747. [PMID: 37090706 PMCID: PMC10114613 DOI: 10.3389/fimmu.2023.1119747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionNewly weaned animals are susceptible to a wide range of microbial infections taking a high risk of developing post-weaning diarrhea. Trained immunity is the capacity of the innate immune system to produce a stronger and non-specific response against a secondary infection after the inflammatory response caused by previous stimulus has returned to normal state. The objective of this study was to evaluate if the heat-inactivated Escherichia coli (IEC) as an immunostimulant on suckling pups elicits a protective effect on the intestine of post-weaning rats challenged with Salmonella Typhimurium (S.Typhimurium). We adapted a newborn rat model for this purpose.MethodsSixty newborn pups were randomly separated into two groups: IEC group (n =30) orally administrated IEC during suckling, while the CON group received orally the same dose of saline. Both of the two group challenged with various doses of S.Typhimurium after experiencing a 4-week resting period. Twelve of individuals were selected to detect the survival rate, and ten of the rest were necropsied 48 hours post-challenge.Results and DiscussionThe results showed that oral administration of IEC during suckling alleviated the injury in ileal morphology induced by post-weaning S.Typhimurium infection via increasing the levels of two tight junction proteins [zonula occluden-1 (ZO-1) and Occludin-1] and several secreted proteins (Lysozyme, Mucin-2, and SIgA) in the intestinal mucosa. Furthermore, the pre-stimulation with IEC significantly increased cytokines tumor necrosis factor-alpha (TNF- α) and interleukin-1 beta (IL-1 β) expressions in an enhanced secondary reaction way after experiencing a 4-week resting period. This implicated the possible involvement of trained immunity. The 16S rDNA sequence results showed that pre-stimulation with IEC decreased the abundance of Clostridia, Prevotella, Christensenellaceae_R-7_group and Parabacteroides after intestinal infection of S.Typhimurium. Our results confirmed that the previous oral administration of IEC had a protective effect on S.Typhimurium-induced intestinal injury in weaned rats by inducing a robust immune response. The present study suggested a new strategy for preventing intestinal infection of newborn animals.
Collapse
|