1
|
Dai X, Fan Y, Zhao X. Systemic lupus erythematosus: updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct Target Ther 2025; 10:102. [PMID: 40097390 PMCID: PMC11914703 DOI: 10.1038/s41392-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China
- Department of Gastroenterology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, P. R. China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China.
| |
Collapse
|
2
|
Zhao G, Li X, Zhang Y, Wang X, Deng L, Xu J, Jin S, Zuo Z, Xun L, Luo M, Yang F, Qi J, Fu P. Intricating connections: the role of ferroptosis in systemic lupus erythematosus. Front Immunol 2025; 16:1534926. [PMID: 39967676 PMCID: PMC11832682 DOI: 10.3389/fimmu.2025.1534926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory and autoimmune disease with multiple tissue damage. However, the pathology remains elusive, and effective treatments are lacking. Multiple types of programmed cell death (PCD) implicated in SLE progression have recently been identified. Although ferroptosis, an iron-dependent form of cell death, has numerous pathophysiological features similar to those of SLE, such as intracellular iron accumulation, mitochondrial dysfunction, lipid metabolism disorders and concentration of damage associated-molecular patterns (DAMPs), only a few reports have demonstrated that ferroptosis is involved in SLE progression and that the role of ferroptosis in SLE pathogenesis continues to be neglected. Therefore, this review elucidates the potential intricate relationship between SLE and ferroptosis to provide a reliable theoretical basis for further research on ferroptosis in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Guowang Zhao
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xinghai Li
- Department of Minimal Invasive Intervention Radiology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Ying Zhang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xingzi Wang
- Department of Nephrology, Yueyang Central Hospital, Yueyang, Hunan, China
| | - Li Deng
- Department of Internal Medicine, Community Health Service Station of Dian Mian Avenue, Kunming, Yunnan, China
| | - Juan Xu
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shumei Jin
- Yunnan Institute of Food and Drug Supervision and Control, Medical Products Administration of Yunnan Province, Kunming, Yunnan, China
| | - Zan Zuo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Linting Xun
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mei Luo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Fan Yang
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jialong Qi
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Clinical Virology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Birth Defects and Genetic Diseases, First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ping Fu
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Leerach N, Ngaosuwan K, Mahikul W. Regional variations in serum IL-35 levels and association with systemic lupus erythematosus: a systematic review and meta-analysis. Sci Rep 2024; 14:24820. [PMID: 39438756 PMCID: PMC11496805 DOI: 10.1038/s41598-024-76375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Interleukin (IL)-35 is an anti-inflammatory cytokine that regulates autoimmune diseases, including systemic lupus erythematosus (SLE). However, the association between the cytokine and disease may vary by geographical region. This study performed a meta-analysis to quantitatively assess the correlation between the serum IL-35 levels in SLE patients and sub-group analyses were conducted. Four main electronic databases-Scopus, Embase, Science Direct, PubMed-were searched for relevant studies. After a database search, Endnote software was used to find and remove duplicate studies. Random-effects models were used to estimate standard mean differences in serum/plasma IL-35 levels by Hedges' g with 95% confidence intervals (CIs). Publication bias was assessed with funnel plots, and risk of bias was assessed according to the Newcastle-Ottawa Scale (NOS). Sixteen studies met the eligibility criteria and were included in a qualitative review; data from 15 studies were included in the meta-analysis. Total IL-35 levels (pg/mL) did not differ among patients with active SLE and healthy controls (Hedges's g: 0.22, 95% CI - 0.51, 0.95, p = 0.55). Sub-group analysis revealed that IL-35 levels in patients with active SLE were lower than in healthy controls in Chinese studies (Hedges's g: - 3.11, 95% CI - 5.72, - 0.51), but not in non-Chinese studies (Hedges's g: 1.63, 95% CI - 0.31, 3.57). This regional difference was statistically significant (p < 0.01). The analysis comparing patients with inactive SLE and healthy controls showed a similar trend. This study suggests that serum IL-35 levels are lower in patients with SLE in studies from China, but not other regions. However, standardized protocols with large sample sizes are needed to confirm these findings.
Collapse
Affiliation(s)
- Nontaphat Leerach
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand.
| | - Kanchana Ngaosuwan
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Wiriya Mahikul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand.
| |
Collapse
|
4
|
Huang J, Li X, Zhu Q, Wang M, Xie Z, Zhao T. Imbalance of Th17 cells, Treg cells and associated cytokines in patients with systemic lupus erythematosus: a meta-analysis. Front Immunol 2024; 15:1425847. [PMID: 39086480 PMCID: PMC11288813 DOI: 10.3389/fimmu.2024.1425847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Objective This article aims to investigate the changes of T helper 17 (Th17) cells, regulatory T (Treg) cells and their associated cytokines in patients with systemic lupus erythematosus (SLE). Methods Multiple databases were investigated to identify articles that explored Th17 cells, Treg cells and relevant cytokines in SLE patients. A random effects model was used for calculating pooled standardized mean differences. Stata version 15.0 was utilized to conduct the meta-analysis. Results The levels of Th17 cells, IL-17, IL-6, IL-21 and IL-10 were higher in SLE patients than in healthy controls (HCs), but the TGF-β levels were lower. The percentage of Treg cells was lower than HCs in SLE individuals older than 33. Among studies that had 93% or lower females, the percentage of Th17 cells was greater in patients than in HCs. However, the percentage of Treg cells was lower when the proportion of females was less than 90%. Patients with lupus nephritis or active SLE had an increased proportion of Th17 cells and a decreased proportion of Treg cells. Conclusions The increased level of Th17 cells and related cytokines could be the main reason for the elevated Th17/Treg ratio in SLE. The percentages of Th17 and Treg cells were associated with gender, age, disease activity and kidney function. Furthermore, the reduced proportions of Treg cells may primarily result in a rise in the Th17/Treg ratio in older or active SLE patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero, identifier CRD42023454937.
Collapse
Affiliation(s)
- Jinge Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiaolong Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingmiao Zhu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meijiao Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Zhang Y, Wang J, Fang Y, Liang W, Lei L, Wang J, Gao X, Ma C, Li M, Guo H, Wei L. IFN-α affects Th17/Treg cell balance through c-Maf and associated with the progression of EBV- SLE. Mol Immunol 2024; 171:22-35. [PMID: 38749236 DOI: 10.1016/j.molimm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease, of which the pathogens is remains obscure. Viral infection, particularly Epstein Barr viru (EBV) infection, has been considered a common pathogenic factor. This study suggests that c-Maf may be an important target in T cell differentiation during SLE progression, providing a potentially new perspective on the role of viral infection in the pathogenesis of autoimmune diseases. METHODS Cytokines of EBV-infected SLE patients were measured by ELISA and assessed in conjunction with their clinical data. IFN-α, c-Maf, and the differentiation of Th17/Treg cells in SLE patients and MRL/LPR mice were analyzed using FCM, WB, RT-PCR, etc. Following the infection of cells and mice with EBV or viral mimic poly (dA:dT), the changes of the aforementioned indicators were investigated. The relationship among IFN-α, STAT3, c-Maf and Th17 cells was determined by si-RNA technique. RESULTS Many SLE patients are found to be complicated by viral infections; Further, studies have demonstrated that viral infection, especially EBV, is involved in SLE development. This study showed that viral infections might promote IFN-α secretion, inhibit c-Maf expression by activating STAT3, increase Th17 cell differentiation, and lead to the immune imbalance of Th17/Treg cells, thus playing a role in the onset and progression of SLE. CONCLUSION This study demonstrates that EBV infections may contribute to SLE development by activating STAT3 through IFN-α, inhibiting c-Maf, and causing Th17/Treg immune imbalance. Our work provided a new insight into the pathogenesis and treatment of SLE.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China; Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiachao Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Yaqi Fang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Wenzhang Liang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Lingyan Lei
- Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Junhai Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Xue Gao
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Cuiqing Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Huifang Guo
- Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
6
|
Carbone F, Colamatteo A, La Rocca C, Lepore MT, Russo C, De Rosa G, Matarese A, Procaccini C, Matarese G. Metabolic Plasticity of Regulatory T Cells in Health and Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1859-1866. [PMID: 38830147 DOI: 10.4049/jimmunol.2400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Immunometabolism has been demonstrated to control immune tolerance and the pathogenic events leading to autoimmunity. Compelling experimental evidence also suggests that intracellular metabolic programs influence differentiation, phenotype, proliferation, and effector functions of anti-inflammatory CD4+CD25+Foxp3+ regulatory T (Treg) cells. Indeed, alterations in intracellular metabolism associate with quantitative and qualitative impairments of Treg cells in several pathological conditions. In this review, we summarize the most recent advances linking how metabolic pathways control Treg cell homeostasis and their alterations occurring in autoimmunity. Also, we analyze how metabolic manipulations could be employed to restore Treg cell frequency and function with the aim to create novel therapeutic opportunities to halt immune-mediated disorders.
Collapse
Grants
- 2022LNHZAP Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PE00000007 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PE00000006 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- RF-2019-12371111 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- PNRR-MAD-2022-12375634 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- GR-2018-12366154 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- 2022-PRsingle/013 Fondazione Italiana Sclerosi Multipla (FISM)
- P2022T4PKT Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PNRR-MAD-2022-12376126 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- GR-2021-12373337 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- 2022YMJXYT Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- P2022CMK43 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- 20225KH7BZ Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Claudia Russo
- D.A.I. Medicina di Laboratorio e Trasfusionale, Azienda Ospedaliera Universitaria "Federico II," Napoli, Italy
| | - Giusy De Rosa
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Alessandro Matarese
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| |
Collapse
|
7
|
Tektonidou MG, Vlachogiannis NI, Sfikakis PP. T cell involvement in antiphospholipid syndrome. Clin Immunol 2024; 263:110218. [PMID: 38640985 DOI: 10.1016/j.clim.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by arterial and venous thrombosis, and obstetric complications in the presence of antiphospholipid antibodies (aPL), including lupus anticoagulant, anticardiolipin and anti-β2-glycoprotein I antibodies. APS manifests as single, often as recurrent events, and rarely as a catastrophic condition. Most studies of APS pathogenesis to date have focused on the prothrombotic role of aPL, while innate immune responses such as monocyte, complement and neutrophil activation have been also recognized as part of the thrombo-inflammatory cascade in APS. While the presence of autoreactive T cells against β2-glycoprotein I has been long known, less data are available on their pathogenetic role in APS. In this review, we summarize current knowledge on the involvement of T cells in APS pathophysiology, alterations of T cell subsets in peripheral blood, and clinical associations. We also highlight potential therapeutic opportunities by targeting T helper-B cell interactions in these patients.
Collapse
Affiliation(s)
- Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| | - Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine and Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
8
|
Jin H, Lin Z, Pang T, Wu J, Zhao C, Zhang Y, Lei Y, Li Q, Yao X, Zhao M, Lu Q. Effects and mechanisms of polycyclic aromatic hydrocarbons in inflammatory skin diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171492. [PMID: 38458465 DOI: 10.1016/j.scitotenv.2024.171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons characterized by the presence of multiple benzene rings. They are ubiquitously found in the natural environment, especially in environmental pollutants, including atmospheric particulate matter, cigarette smoke, barbecue smoke, among others. PAHs can influence human health through several mechanisms, including the aryl hydrocarbon receptor (AhR) pathway, oxidative stress pathway, and epigenetic pathway. In recent years, the impact of PAHs on inflammatory skin diseases has garnered significant attention, yet many of their underlying mechanisms remain poorly understood. We conducted a comprehensive review of articles focusing on the link between PAHs and several inflammatory skin diseases, including psoriasis, atopic dermatitis, lupus erythematosus, and acne. This review summarizes the effects and mechanisms of PAHs in these diseases and discusses the prospects and potential therapeutic implications of PAHs for inflammatory skin diseases.
Collapse
Affiliation(s)
- Hui Jin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Ziyuan Lin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Tianyi Pang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingwen Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yu Lei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xu Yao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| |
Collapse
|
9
|
Zhang R, Zhao Y, Chen X, Zhuang Z, Li X, Shen E. Low-dose IL-2 therapy in autoimmune diseases: An update review. Int Rev Immunol 2024; 43:113-137. [PMID: 37882232 DOI: 10.1080/08830185.2023.2274574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Regulatory T (Treg) cells are essential for maintaining self-immune tolerance. Reduced numbers or functions of Treg cells have been involved in the pathogenesis of various autoimmune diseases and allograft rejection. Therefore, the approaches that increase the pool or suppressive function of Treg cells in vivo could be a general strategy to treat different autoimmune diseases and allograft rejection. Interleukin-2 (IL-2) is essential for the development, survival, maintenance, and function of Treg cells, constitutively expressing the high-affinity receptor of IL-2 and sensitive response to IL-2 in vivo. And low-dose IL-2 therapy in vivo could restore the imbalance between autoimmune response and self-tolerance toward self-tolerance via promoting Treg cell expansion and inhibiting follicular helper T (Tfh) and IL-17-producing helper T (Th17) cell differentiation. Currently, low-dose IL-2 treatment is receiving extensive attention in autoimmune disease and transplantation treatment. In this review, we summarize the biology of IL-2/IL-2 receptor, the mechanisms of low-dose IL-2 therapy in autoimmune diseases, the application in the progress of different autoimmune diseases, including Systemic Lupus Erythematosus (SLE), Type 1 Diabetes (T1D), Rheumatoid Arthritis (RA), Autoimmune Hepatitis (AIH), Alopecia Areata (AA), Immune Thrombocytopenia (ITP) and Chronic graft-versus-host-disease (GVHD). We also discuss the future directions to optimize low-dose IL-2 treatments.
Collapse
Affiliation(s)
- Ruizhi Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhuoqing Zhuang
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Liao JH, He Q, Huang ZW, Yu XB, Yang JY, Zhang Y, Song WJ, Luo J, Tao QW. Network pharmacology-based strategy to investigate the mechanisms of artemisinin in treating primary Sjögren's syndrome. BMC Immunol 2024; 25:16. [PMID: 38347480 PMCID: PMC10860289 DOI: 10.1186/s12865-024-00605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE The study aimed to explore the mechanism of artemisinin in treating primary Sjögren's syndrome (pSS) based on network pharmacology and experimental validation. METHODS Relevant targets of the artemisinin and pSS-related targets were integrated by public databases online. An artemisinin-pSS network was constructed by Cytoscape. The genes of artemisinin regulating pSS were imported into STRING database to construct a protein-protein interaction (PPI) network in order to predict the key targets. The enrichment analyses were performed to predict the crucial mechanism and pathway of artemisinin against pSS. The active component of artemisinin underwent molecular docking with the key proteins. Artemisinin was administered intragastrically to SS-like NOD/Ltj mice to validate the efficacy and critical mechanisms. RESULTS Network Pharmacology analysis revealed that artemisinin corresponded to 412 targets, and pSS related to 1495 genes. There were 40 intersection genes between artemisinin and pSS. KEGG indicated that therapeutic effects of artemisinin on pSS involves IL-17 signaling pathway, HIF-1 signaling pathway, apoptosis signaling pathway, Th17 cell differentiation, PI3K-Akt signaling pathway, and MAPK signaling pathway. Molecular docking results further showed that the artemisinin molecule had higher binding energy by combining with the key nodes in IL-17 signaling pathway. In vivo experiments suggested artemisinin can restored salivary gland secretory function and improve the level of glandular damage of NOD/Ltj mice. It contributed to the increase of regulatory T cells (Tregs) and the downregulated secretion of IL-17 in NOD/Ltj model. CONCLUSION The treatment of pSS with artemisinin is closely related to modulating the balance of Tregs and Th17 cells via T cell differentiation.
Collapse
Affiliation(s)
- Jia-He Liao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Qian He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Zi-Wei Huang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Xin-Bo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jian-Ying Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Wei-Jiang Song
- Traditional Chinese Medicine Department, Peking University Third Hospital, Beijing, China
| | - Jing Luo
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China.
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China.
| | - Qing-Wen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China.
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
11
|
Farazmand T, Rahbarian R, Jalali M, Ghahremani A, Razi A, Namdar Ahmadabad H. Vitamin D levels in non-pregnant women with a history of recurrent pregnancy loss with and without autoantibodies. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:266-272. [PMID: 38807736 PMCID: PMC11129072 DOI: 10.22088/cjim.15.2.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 05/30/2024]
Abstract
Background The objective of this study was to compare the levels of vitamin D in non-pregnant women with a history of recurrent pregnancy loss (RPL) who were seropositive or seronegative for autoantibodies (autoAbs). Methods The study examined 58 RPL patients with autoAbs (ANA, anti-TPO, or APAs), 34 RPL patients without autoAbs, and 58 healthy women with prior successful pregnancies and without autoantibodies. The levels of 25 (OH) D were measured using the sandwich ELISA technique. Results Our results showed insufficient serum 25(OH) D levels in study groups, with significantly lower levels observed in RPL patients with or without autoAbs compared to healthy women (P=0.0006). In addition, RPL patients with autoAbs had significantly lower 25(OH) D levels compared to RPL patients without autoAbs. We also found that serum levels of 25(OH) D in RPL patients with autoAbs were significantly lower than in RPL patients without autoAbs (20.51 ± 1.15 ng/ml Vs. 23.69 ± 0.74 ng/ml, P=0.0356). Further analysis indicated that RPL patients who were positive for ANA, and APAs, except anti-TPO, had significantly lower than 25(OH)D serum levels than RPL patients without autoAbs. Conclusion These findings suggest that RPL patients, especially those with APAs or ANA, have lower vitamin D levels compared to healthy women. This may indicate a link between maternal immune dysregulation due to vitamin D deficiency and the presence of autoantibodies in RPL.
Collapse
Affiliation(s)
- Tooba Farazmand
- Department of Gynecology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Mitra Jalali
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Amirali Ghahremani
- Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Abdollah Razi
- Department of Urology, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd Iran
| | - Hasan Namdar Ahmadabad
- Vector-borne Diseases Research Center North Khorasan University of Medical Sciences
- Department of Pathobiology and Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
12
|
Spinelli FR, Berti R, Farina G, Ceccarelli F, Conti F, Crescioli C. Exercise-induced modulation of Interferon-signature: a therapeutic route toward management of Systemic Lupus Erythematosus. Autoimmun Rev 2023; 22:103412. [PMID: 37597604 DOI: 10.1016/j.autrev.2023.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is a multisystemic autoimmune disorder characterized by flares-ups/remissions with a complex clinical picture related to disease severity and organ/tissue injury, which, if left untreated, may result in permanent damage. Enhanced fatigue and pain perception, worsened quality of life (QoL) and outcome are constant, albeit symptoms may differ. An aberrant SLE immunoprofiling, note as "interferon (IFN)α-signature", is acknowledged to break immunotolerance. Recently, a deregulated "IFNγ-signature" is suggested to silently precede/trigger IFNα profile before clinical manifestations. IFNα- and IFNγ-over-signaling merge in cytokine/chemokine overexpression exacerbating autoimmunity. Remission achievement and QoL improvement are the main goals. The current therapy (i.e., corticosteroids, immunosuppressants) aims to downregulate immune over-response. Exercise could be a safe treatment due to its ever-emerging ability to shape and re-balance immune system without harmful side-effects; in addition, it improves cardiorespiratory capacity and musculoskeletal strength/power, usually impaired in SLE. Nevertheless, exercise is not yet included in SLE care plans. Furthermore, due to the fear to worsening pain/fatigue, SLE subjects experience kinesiophobia and sedentary lifestyle, worsening physical health. Training SLE patients to exercise is mandatory to fight inactive behavior and ameliorate health. This review aims to focus the attention on the role of exercise as a non-pharmacological therapy in SLE, considering its ability to mitigate IFN-signature and rebalance (auto)immune response. To this purpose, the significance of IFNα- and IFNγ-signaling in SLE etiopathogenesis will be addressed first and discussed thereafter as biotarget of exercise. Comments are addressed on the need to make aware all SLE care professional figures to promote exercise for health patients.
Collapse
Affiliation(s)
- Francesca Romana Spinelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Riccardo Berti
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy
| | - Gabriele Farina
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy
| | - Fulvia Ceccarelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Fabrizio Conti
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Clara Crescioli
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy.
| |
Collapse
|
13
|
Maeda S, Hashimoto H, Maeda T, Tamechika SY, Isogai S, Naniwa T, Niimi A. High-dimensional analysis of T-cell profiling variations following belimumab treatment in systemic lupus erythematosus. Lupus Sci Med 2023; 10:e000976. [PMID: 37802602 PMCID: PMC10565340 DOI: 10.1136/lupus-2023-000976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE This study sought to elucidate the molecular impacts of belimumab (BEL) treatment on T-cell immune profiling in SLE. METHODS We used mass cytometry with 25 marker panels for T-cell immune profiling in peripheral blood T cells (CD3+) from 22 patients with BEL-treated SLE and 20 controls with non-BEL-treated SLE. An unsupervised machine-learning clustering, FlowSOM, was used to identify 39 T-cell clusters (TCLs; TCL01-TCL39). TCLs (% of CD3+) showing significant (p<0.05) associations with BEL treatment (BEL-TCL) were selected by a linear mixed-effects model for comparing groups of time-series data. Furthermore, we analysed the association between BEL treatment and variations in regulatory T-cell (Treg) phenotypes, and the ratio of other T-cell subsets to Treg as secondary analysis. RESULTS Clinical outcomes: BEL treatment was associated with a decrease in daily prednisolone use (coef=-0.1769, p=0.00074), and an increase in serum CH50 (coef=0.4653, p=0.003), C3 (coef=1.1047, p=0.00001) and C4 (coef=0.2990, p=0.00157) levels. Molecular effects: five distinct BEL-TCLs (TCL 04, 07, 11, 12 and 27) were identified. Among these, BEL-treated patients exhibited increased proportions in the Treg-like cluster TCL11 (coef=0.404, p=0.037) and two naïve TCLs (TCL04 and TCL07). TCL27 showed increased levels (coef=0.222, p=0.037) inversely correlating with baseline C3 levels. Secondary analyses revealed associations between BEL treatment and an increase in Tregs (coef=1.749, p=0.0044), elevated proportions of the fraction of Tregs with inhibitory function (fTregs, coef=0.7294, p=0.0178) and changes in peripheral helper T cells/fTreg (coef=-4.475, p=0.0319) and T helper 17/fTreg ratios (coef=-6.7868, p=0.0327). Additionally, BEL was linked to variations in T-cell immunoglobulin and mucin domain-containing protein-3 expression (coef=0.2422, p=0.039). CONCLUSIONS The study suggests an association between BEL treatment and variations in T cells, particularly Tregs, in SLE pathologies involving various immune cells.
Collapse
Affiliation(s)
- Shinji Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Hiroya Hashimoto
- Clinical Research Management Center, Nagoya City University Hospital, Nagoya, Japan
| | - Tomoyo Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shin-Ya Tamechika
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shuntaro Isogai
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Taio Naniwa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| |
Collapse
|
14
|
Luo Z, Chen A, Xie A, Liu X, Jiang S, Yu R. Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications. Front Immunol 2023; 14:1228754. [PMID: 37638038 PMCID: PMC10450031 DOI: 10.3389/fimmu.2023.1228754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Frequent use of hormones and drugs may be associated with side-effects. Recent studies have shown that probiotics have effects on the prevention and treatment of immune-related diseases. Limosilactobacillus reuteri (L. reuteri) had regulatory effects on intestinal microbiota, host epithelial cells, immune cells, cytokines, antibodies (Ab), toll-like receptors (TLRs), tryptophan (Try) metabolism, antioxidant enzymes, and expression of related genes, and exhibits antibacterial and anti-inflammatory effects, leading to alleviation of disease symptoms. Although the specific composition of the cell-free supernatant (CFS) of L. reuteri has not been clarified, its efficacy in animal models has drawn increased attention to its potential use. This review summarizes the effects of L. reuteri on intestinal flora and immune regulation, and discusses the feasibility of its application in atopic dermatitis (AD), asthma, necrotizing enterocolitis (NEC), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS), and provides insights for the prevention and treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Anni Xie
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Xueying Liu
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
15
|
Yao K, Xie Y, Wang J, Lin Y, Chen X, Zhou T. Gut microbiota: a newly identified environmental factor in systemic lupus erythematosus. Front Immunol 2023; 14:1202850. [PMID: 37533870 PMCID: PMC10390700 DOI: 10.3389/fimmu.2023.1202850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that predominantly affects women of childbearing age and is characterized by the damage to multiple target organs. The pathogenesis of SLE is complex, and its etiology mainly involves genetic and environmental factors. At present, there is still a lack of effective means to cure SLE. In recent years, growing evidence has shown that gut microbiota, as an environmental factor, triggers autoimmunity through potential mechanisms including translocation and molecular mimicry, leads to immune dysregulation, and contributes to the development of SLE. Dietary intervention, drug therapy, probiotics supplement, fecal microbiome transplantation and other ways to modulate gut microbiota appear to be a potential treatment for SLE. In this review, the dysbiosis of gut microbiota in SLE, potential mechanisms linking gut microbiota and SLE, and immune dysregulation associated with gut microbiota in SLE are summarized.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
16
|
Dong Y, Gao L, Sun Q, Jia L, Liu D. Increased levels of IL-17 and autoantibodies following Bisphenol A exposure were associated with activation of PI3K/AKT/mTOR pathway and abnormal autophagy in MRL/lpr mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114788. [PMID: 36948005 DOI: 10.1016/j.ecoenv.2023.114788] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is a common environmental endocrine disruptor which mimic the effect of estrogen. The immunotoxicity of BPA has attracted widespread attention in recent years. However, the effects and mechanism of BPA on autoimmune disease were rarely reported. Systemic lupus erythematosus (SLE) is a typical autoimmune disease, and its etiology and mechanism are complex and unclear. Currently, inflammation and the production of autoantibodies are considered to be important pathological mechanisms of SLE, and estrogen contributes to the occurrence and development of SLE. Therefore, in order to explore whether BPA exposure can affect the development of SLE and its possible mechanism, we used MRL/lpr (lupus-prone mice) and C57/BL6 female mice exposed to 0.1 and 0.2 µg/mL BPA for 6 weeks. We discovered that BPA exposure increased the concentration of serum anti-dsDNA antibody and IL-17, and the level of RORγt protein (the transcription factor of Th17 cells). Moreover, there were higher expression of p-PI3K, p-AKT, p-mTOR, ULK, Rubicon, P62, Becline1 and LC3 protein in spleen tissue of BPA exposed MRL/lpr mice compared with the control. However, there were no significant changes in the expression of IL-17, RORγt or mTOR in C57 mice exposed to BPA at the same dose. Our study implied that BPA exposure induced the development of SLE, which might be related to the up-regulation of PI3K/AKT/mTOR signaling pathway and abnormal autophagy. Our study indicated that lupus mice were more susceptible to BPA, and provided a new insight into the mechanism by which BPA exacerbated SLE. Therefore, our study suggested that autoimmune patients and susceptible population should be considered when setting thresholds for environmental BPA exposure.
Collapse
Affiliation(s)
- Youdan Dong
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Liang Gao
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Dongmei Liu
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| |
Collapse
|
17
|
Wang J, Guo HX, Cheng T, Shi L, Zhang SX, Li XF. Reduced circulating Tregs and positive pANCA were robustly associated with the occurrence of antiphospholipid syndrome in patients with systemic lupus erythematosus. Lupus 2023; 32:746-755. [PMID: 37051771 DOI: 10.1177/09612033231171287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a typical chronic immune disorder with clinical heterogeneity. The systemic abnormal immune response not only challenges the diagnosis and treatment of the disease itself but also the secondary antiphospholipid syndrome (APS), characterized by recurrent arterial or venous thrombosis, recurrent spontaneous abortion, or stillbirth. Clinical interest has primarily focused on primary APS's pathological and clinical features. However, differences in clinical features and laboratory indicators between SLE with or without APS are still lacking, especially differences between circulating lymphocytes, which are critical in the pathogenesis of SLE and its complications. METHODS In this retrospective study, we collected and analyzed clinical characteristics, general laboratory indicators, immunological indicators, and circulating lymphocyte subsets of SLE with or without APS. RESULTS Systemic lupus erythematosus with APS (SLE-APS) had elevated SLEDAI scores, hospitalization costs and time, and frequencies of central nervous system symptoms and spontaneous abortion compared with those without APS. SLE-APS had higher positive anti-Cardiolipin antibodies, anti-β2 Glycoprotein 1 antibodies, and perinuclear antineutrophil cytoplasmic antibody (pANCA) than none-APS patients. Compared with healthy controls (HCs), the circulating lymphocyte subsets were altered to some extent in all patients, especially in patients with SLE-APS. Reduced Tregs and positive pANCA were independent risk factors for SLE secondary APS. CONCLUSION The present study revealed a robust association between APS secondary to SLE and reduced Tregs and positive pANCA, which provides essential information regarding the diagnosis and therapeutic possibilities of APS secondary to SLE.
Collapse
Affiliation(s)
- Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| | - Hong-Xia Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| | - Lei Shi
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| |
Collapse
|
18
|
Tomaszewicz M, Ronowska A, Zieliński M, Jankowska-Kulawy A, Trzonkowski P. T regulatory cells metabolism: The influence on functional properties and treatment potential. Front Immunol 2023; 14:1122063. [PMID: 37033990 PMCID: PMC10081158 DOI: 10.3389/fimmu.2023.1122063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
CD4+CD25highFoxP3+ regulatory T cells (Tregs) constitute a small but substantial fraction of lymphocytes in the immune system. Tregs control inflammation associated with infections but also when it is improperly directed against its tissues or cells. The ability of Tregs to suppress (inhibit) the immune system is possible due to direct interactions with other cells but also in a paracrine fashion via the secretion of suppressive compounds. Today, attempts are made to use Tregs to treat autoimmune diseases, allergies, and rejection after bone marrow or organ transplantation. There is strong evidence that the metabolic program of Tregs is connected with the phenotype and function of these cells. A modulation towards a particular metabolic stage of Tregs may improve or weaken cells’ stability and function. This may be an essential tool to drive the immune system keeping it activated during infections or suppressed when autoimmunity occurs.
Collapse
Affiliation(s)
- Martyna Tomaszewicz
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
- Poltreg S.A., Gdanísk, Poland
- *Correspondence: Martyna Tomaszewicz,
| | - Anna Ronowska
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
- Poltreg S.A., Gdanísk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
- Poltreg S.A., Gdanísk, Poland
| |
Collapse
|
19
|
Li H, Zhang S, Zhang J, Cheng T, Liu Y, Liu H, Hao M, Chen J. A decreased number of circulating regulatory T cells is associated with adverse pregnancy outcomes in patients with systemic lupus erythematosus. Immun Inflamm Dis 2022; 10:e731. [PMID: 36444629 PMCID: PMC9639458 DOI: 10.1002/iid3.731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE As an autoimmune disease affecting women of reproductive age, systemic lupus erythematosus (SLE) is linked to adverse fetal and maternal outcomes. However, the status of peripheral lymphocytes in SLE patients with different pregnancy outcomes is unclear. This retrospective cross-sectional study explored the relationship between lymphocyte subpopulations and pregnancy outcomes in married SLE female patients. METHODS The absolute numbers of peripheral T, helper T (Th)1, Th2, Th17, regulatory T (Treg), B, and natural killer (NK) cell subpopulations from 585 female SLE patients and 91 female healthy controls (HCs) were assessed. We compared the lymphocyte subpopulations in SLE patients with HCs and analyzed the absolute number and ratio of Treg cells according to pregnancy outcome in SLE patients. RESULTS SLE patients had decreased numbers of T, B, NK, Th1, Th2, Th17, and Treg cells and an imbalance in pro- and anti-inflammatory cells (p < .05), as well as adverse pregnancy outcomes. In abortion patients, the number of Treg cells (p = .008) decreased, leading to an imbalance in effector T and Treg cells. The ratio of Treg cells was higher in SLE patients with nulliparity than in those with one or two parities. CONCLUSIONS The absolute numbers of lymphocyte subpopulations in SLE patients decreased, which was associated with abortion and parity (p < .05). These results suggest that a loss of immune tolerance mediated by Tregs triggers pregnancy loss.
Collapse
Affiliation(s)
- He‐Tong Li
- Department of Obstetrics and GynecologySecond Hospital of Shanxi Medical UniversityTaiyuanChina
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Sheng‐Xiao Zhang
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of RheumatologySecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Jia‐Qi Zhang
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of RheumatologySecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Ting Cheng
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of RheumatologySecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Yan Liu
- Department of Information managementSecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Hong‐Qi Liu
- Department of Information managementSecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Min Hao
- Department of Obstetrics and GynecologySecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Jun‐Wei Chen
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of RheumatologySecond Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
20
|
Xiang S, Zhang J, Zhang M, Qian S, Wang R, Wang Y, Xiang Y, Ding X. Imbalance of helper T cell type 1, helper T cell type 2 and associated cytokines in patients with systemic lupus erythematosus: A meta-analysis. Front Pharmacol 2022; 13:988512. [PMID: 36249802 PMCID: PMC9556996 DOI: 10.3389/fphar.2022.988512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Th1 and Th2 cells and their associated cytokines function in the pathogenesis of systemic lupus erythematosus (SLE), but their exact roles are uncertain. We performed a meta-analysis to examine the relationship of these cells and cytokines with SLE. Methods: Multiple databases were searched to identify publications that reported the percentages of Th1 and Th2 cells and their associated cytokines in SLE patients and healthy controls (HCs). Meta-analysis was performed using Stata MP version 16. Results: SLE patients had a lower percentage of Th1 cells, a higher percentage of Th2 cells, and higher levels of Th1- and Th2-associated cytokines than HCs. SLE treatments normalized some but not all of these indicators. For studies in which the proportion of females was less than 94%, the percentage of Th2 cells and the level of IL-10 were higher in patients than HCs. SLE patients who had abnormal kidney function and were younger than 30 years old had a higher proportion of Th1 cells than HCs. SLE patients more than 30 years old had a higher level of IL-6 than HCs. Conclusion: Medications appeared to restore the balance of Th1 cells and other disease indicators in patients with SLE. Gender and age affected the levels of Th1 and Th2 cells, and the abnormally elevated levels of Th2 cells appear to be more pronounced in older patients and males. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022296540].
Collapse
Affiliation(s)
- Shate Xiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengge Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Suhai Qian
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongyun Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yao Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingshi Xiang
- First Clinical School of Medicine, Nanjing Medical University, Nanjing, China
| | - Xinghong Ding
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xinghong Ding,
| |
Collapse
|
21
|
Feng X, Li X, Liu N, Hou N, Sun X, Liu Y. Glutaminolysis and CD4 + T-cell metabolism in autoimmunity: From pathogenesis to therapy prospects. Front Immunol 2022; 13:986847. [PMID: 36211442 PMCID: PMC9537545 DOI: 10.3389/fimmu.2022.986847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
The recent increase in the pathogenesis of autoimmune diseases revealed the critical role of T cells. Investigation into immunometabolism has drawn attention to metabolic processes other than glycometabolism. In rapidly dividing immune cells, including T lymphocytes, the consumption of glutamine is similar to or higher than that of glucose even though glucose is abundant. In addition to contributing to many processes critical for cellular integrity and function, glutamine, as the most abundant amino acid, was recently regarded as an immunomodulatory nutrient. A better understanding of the biological regulation of glutaminolysis in T cells will provide a new perspective for the treatment of autoimmune diseases. In this review, we summarized the current knowledge of glutamine catabolism in CD4+ T-cell subsets of autoimmunity. We also focused on potential treatments targeting glutaminolysis in patients with autoimmune diseases. Knowledge of immunometabolism is constantly evolving, and glutamine metabolism may be a potential therapeutic target for autoimmune disease therapy.
Collapse
Affiliation(s)
- Xiaojin Feng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xue Li
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
22
|
Ali HN, Alubaidi GT, Gorial FI, Jasim IA. Disturbance in Serum Levels of IL-17 and TGF-β1 and in Gene Expression of ROR-γt and FOX-P3 Is Associated with Pathogenicity of Systematic Lupus Erythematosus. Prague Med Rep 2022; 123:166-180. [PMID: 36107445 DOI: 10.14712/23362936.2022.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
To investigate the disturbance in serum levels of interleukin-17 (IL-17) and transforming growth factor-beta1 (TGF-β1) and gene expression of retinoic acid-related orphan receptor-gamma t (ROR-γt) and forkhead box-P3 (FOX-P3) in patients with systemic lupus erythematosus (SLE) and to study their association with disease pathogenicity and activity. Newly diagnosed active patients with SLE (n=88) and healthy volunteers (n=70) were included. Serum IL-17 and TGF-β1 were measured using enzyme-linked immunosorbent assay. Gene-expression profiles of ROR-γt and FOX-P3 were screened using real-time polymerase chain reaction. The IL-17/TGF-β1 and ROR-γt/FOX-P3 levels were also calculated. The mean age of the patients was 30.96±8.25 years; they were 82 women and 6 men. Of the patients, 11.4% manifested mild disease while 88.6% had severe disease. The serum level of TGF-β1 was significantly lower (70.2±34.9 vs. 200.23±124.77 pg/ml), while both IL-17 (614.7±317.5 vs. 279.76±110.65 pg/ml) and IL-17/TGF-β1 (18.5±30.1 vs. 1.66±0.9) levels were significantly higher, in patients than in controls (p<0.0001). The gene-expression level of FOX-P3 (0.6±0.8 vs. 13.68±39.35) was reported to be lower, while ROR-γt (3.9±3.5 vs. 1.99±2.09) and ROR-γt/FOX-P3 (18.6±21.1 vs. 7.63±17.19) levels were significantly higher, in patients than in controls (p<0.0001). Disturbance in serum levels of IL-17 and TGF-β1 in T helper-17 and T-regulatory cells proliferation was highlighted through an imbalance in the gene expression of FOX-P3 and ROR-γt, as both are signature genes for the two cell types, respectively. These findings underscore the critical role of IL-17 and TGF-β1 in SLE development, rendering them potential targets for developing novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Hanaa N Ali
- Microbiology Unit, Emam Ali Hospital, Baghdad, Iraq
| | - Ghassaq T Alubaidi
- Medical Research Unit, College of Medicine, Al-Nahrain University, Baghdad, Iraq.
| | - Faiq I Gorial
- Rheumatology Unit, Department of Medicine, College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Ilham A Jasim
- Medical Research Unit, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| |
Collapse
|
23
|
Cao L, Zhang H, Bai J, Wu T, Wang Y, Wang N, Huang C. HERC6 is upregulated in peripheral blood mononuclear cells of patients with systemic lupus erythematosus and promotes the disease progression. Autoimmunity 2022; 55:506-514. [PMID: 35880641 DOI: 10.1080/08916934.2022.2103800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Peripheral blood mononuclear cells (PBMCs) are any peripheral blood cell with round nuclei, including lymphocytes (T cells, B cells) and monocytes, whose physicochemical properties are randomized by obvious immune changes, and are a potentially effective source of SLE blood test samples and therapeutic targets. This study aimed to explore the upregulation molecules of PBMCs in patients with SLE and to explore their biological role. Homologous to the E6-AP carboxyl terminus (HECT) and regulator of chromosome condensation 1 (RCC1)-like domain (RLD) containing E3 ubiquitin protein ligase family member 6 (HERC6) expression was found significantly upregulated in four Gene Expression Omnibus gene sets. Moreover, HERC6 expression was upregulated in PBMCs from SLE patients compared with that in PBMCs from normal donors. HERC6 was significantly associated with SLE clinical phenotypes such as complement C3 content, erythrocyte sedimentation rate, and SLE disease activity index. In vitro, knockdown of HERC6 inhibited PBMC apoptosis, inflammatory response, and janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling pathway, while overexpression of HERC6 led to the opposite results. In addition, AG490, a JAK/STAT pathway inhibitor, reversed the promoting effect of HERC6 overexpression on PBMC apoptosis and inflammation. In conclusion, the level of HERC6 in PBMCs in patients with SLE was upregulated. Overexpression of HERC6 promoted PBMC apoptosis and inflammatory response, which was involved in the JAK/STAT pathway.
Collapse
Affiliation(s)
- Ling Cao
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| | - Hui Zhang
- Cardiology Department, The First Hospital of Yulin, Yulin, PR China
| | - Jin Bai
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| | - Tingting Wu
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| | - Yingjuan Wang
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| | - Ning Wang
- Pediatric Department, Xi'an International Medical Center Hospital, Xi'an, PR China
| | - Caihong Huang
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| |
Collapse
|
24
|
The Role of Exposomes in the Pathophysiology of Autoimmune Diseases II: Pathogens. PATHOPHYSIOLOGY 2022; 29:243-280. [PMID: 35736648 PMCID: PMC9231084 DOI: 10.3390/pathophysiology29020020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022] Open
Abstract
In our continuing examination of the role of exposomes in autoimmune disease, we use this review to focus on pathogens. Infections are major contributors to the pathophysiology of autoimmune diseases through various mechanisms, foremost being molecular mimicry, when the structural similarity between the pathogen and a human tissue antigen leads to autoimmune reactivity and even autoimmune disease. The three best examples of this are oral pathogens, SARS-CoV-2, and the herpesviruses. Oral pathogens reach the gut, disturb the microbiota, increase gut permeability, cause local inflammation, and generate autoantigens, leading to systemic inflammation, multiple autoimmune reactivities, and systemic autoimmunity. The COVID-19 pandemic put the spotlight on SARS-CoV-2, which has been called “the autoimmune virus.” We explore in detail the evidence supporting this. We also describe how viruses, in particular herpesviruses, have a role in the induction of many different autoimmune diseases, detailing the various mechanisms involved. Lastly, we discuss the microbiome and the beneficial microbiota that populate it. We look at the role of the gut microbiome in autoimmune disorders, because of its role in regulating the immune system. Dysbiosis of the microbiota in the gut microbiome can lead to multiple autoimmune disorders. We conclude that understanding the precise roles and relationships shared by all these factors that comprise the exposome and identifying early events and root causes of these disorders can help us to develop more targeted therapeutic protocols for the management of this worldwide epidemic of autoimmunity.
Collapse
|
25
|
Rosa Dos Santos AP, de Oliveira Vaz C, Hounkpe BW, Jacintho BC, Oliveira JD, Tripiquia Vechiatto Mesquita GL, Pereira Dos Santos I, Annichino-Bizzacchi J, Appenzeller S, de Moraes Mazetto Fonseca B, Orsi FA. Association between interferon-I producing plasmacytoid dendritic cells and thrombotic antiphospholipid syndrome. Lupus 2022; 31:1067-1077. [PMID: 35612283 DOI: 10.1177/09612033221101731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Thrombotic risk in antiphospholipid syndrome (APS) is conferred by the association of antiphospholipid (aPL) antibodies (first hit) with additional pro-coagulant stimulus (second hit), such as inflammation. Among inflammatory responses, the production of large amounts of interferon (IFN)-I by plasmacytoid dendritic cells (pDCs) is at the basis of the pathophysiology of systemic autoimmune disorders, which raises the hypothesis that this mechanism could also be associated with vascular manifestations of APS. Purpose: Here, we determined the association of pDCs and IFN-I production with thrombotic APS. Research design: Patients with thrombotic primary (t-PAPS) and secondary APS (t-SAPS), asymptomatic aPL carriers and individuals without thrombosis (controls) were included. Data collection and analysis: Circulating pDCs and IFN-α intracellular expression (in the presence or not of oligodeoxynucleotides (CP) stimulus) were quantified by flow cytometry. The expression of five IFN-I inducing genes: ISG15, OASL, Ly6E, MX1, and OAS1 in mononuclear cells was determined by qPCR. Between-group differences were evaluated using chi-square or Kruskal-Wallis tests. Results: A total of 50 patients with t-PAPS, 50 patients with t-SAPS, 20 aPL carriers, and 50 individuals without thrombosis (controls) were included. Intracellular expression of IFN-α was increased after CPG stimulation in both t-SAPS (1.56%; IQR 1.07-2.02) and t-PAPS (0.96%; IQR 0.55-1.24), when compared to aPL carriers (0.71%; IQR 0.42-0.93) and controls (0.48%; IQR 0.24-0.78; p < .0001). ISG15, OASL, Ly6E, MX1, and OAS1 mRNA expressions were higher in t-SAPS (but not in t-PAPS) than in aPL carriers and controls. The expression of proteins and mRNA related to IFN-I response was similar between the triple aPL-positive profile and other aPL profiles. Conclusion: Our results indicate an association of IFN-I response and t-APS. Since IFN-I expression was not increased in aPL carriers or associated with a higher-risk aPL profile, this mechanism does not appear to be related to the presence of aPL alone. IFN-I response could possibly constitute a complementary mechanism for triggering clinical manifestations in APS.
Collapse
Affiliation(s)
- Ana Paula Rosa Dos Santos
- Department of Medical Sciences, School of Medical Sciences, 28132University of Campinas-Unicamp, Campinas, Brazil
| | - Camila de Oliveira Vaz
- Department of Clinical Medicine, School of Medical Sciences, University of Campinas-Unicamp, Campinas, Brazil
| | | | - Bruna Cardoso Jacintho
- Department of Clinical Medicine, School of Medical Sciences, University of Campinas-Unicamp, Campinas, Brazil
| | - José Diogo Oliveira
- Department of Clinical Medicine, School of Medical Sciences, University of Campinas-Unicamp, Campinas, Brazil
| | | | | | - Joyce Annichino-Bizzacchi
- School of Medical Sciences, Hematology and Hemotherapy Center, 28132University of Campinas-Unicamp, Campinas, Brazil
| | - Simone Appenzeller
- Department of Clinical Medicine, School of Medical Sciences, Rheumatology Unit, 28132University of Campinas-Unicamp, Campinas, Brazil
| | | | - Fernanda Andrade Orsi
- School of Medical Sciences, Hematology and Hemotherapy Center, Department of Clinical Pathology,28132University of Campinas-Unicamp, Campinas, Brazil
| |
Collapse
|
26
|
Kuca-Warnawin E, Plebańczyk M, Ciechomska M, Olesińska M, Szczęsny P, Kontny E. Impact of Adipose-Derived Mesenchymal Stem Cells (ASCs) of Rheumatic Disease Patients on T Helper Cell Differentiation. Int J Mol Sci 2022; 23:ijms23105317. [PMID: 35628127 PMCID: PMC9140468 DOI: 10.3390/ijms23105317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Complex pathogenesis of systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) is associated with an imbalance of various Th-cell subpopulations. Mesenchymal stem cells (MSCs) have the ability to restore this balance. However, bone marrow-derived MSCs of SLE and SSc patients exhibit many abnormalities, whereas the properties of adipose derived mesenchymal stem cells (ASCS) are much less known. Therefore, we examined the effect of ASCs obtained from SLE (SLE/ASCs) and SSc (SSc/ASCs) patients on Th subset differentiation, using cells from healthy donors (HD/ASCs) as controls. ASCs were co-cultured with activated CD4+ T cells or peripheral blood mononuclear cells. Expression of transcription factors defining Th1, Th2, Th17, and regulatory T cell (Tregs) subsets, i.e., T-bet, GATA3, RORc, and FoxP3, were analysed by quantitative RT-PCR, the concentrations of subset-specific cytokines were measured by ELISA, and Tregs formation by flow cytometry. Compared with HD/ASCs, SLE/ASCs and especially SSc/ASCs triggered Th differentiation which was disturbed at the transcription levels of genes encoding Th1- and Tregs-related transcription factors. However, we failed to find functional consequences of this abnormality, because all tested ASCs similarly switched differentiation from Th1 to Th2 direction with accompanying IFNγ/IL-4 ratio decrease, up-regulated Th17 formation and IL-17 secretion, and up-regulated classical Tregs generation.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; (M.P.); (M.C.); (E.K.)
- Correspondence:
| | - Magdalena Plebańczyk
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; (M.P.); (M.C.); (E.K.)
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; (M.P.); (M.C.); (E.K.)
| | - Marzena Olesińska
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.O.); (P.S.)
| | - Piotr Szczęsny
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.O.); (P.S.)
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; (M.P.); (M.C.); (E.K.)
| |
Collapse
|
27
|
Yan H, Li B, Su R, Gao C, Li X, Wang C. Preliminary Study on the Imbalance Between Th17 and Regulatory T Cells in Antiphospholipid Syndrome. Front Immunol 2022; 13:873644. [PMID: 35603166 PMCID: PMC9121099 DOI: 10.3389/fimmu.2022.873644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivePatients with antiphospholipid syndrome (APS) have immune cell abnormalities that remain poorly understood. This study compared primary APS (PAPS) and secondary APS (SAPS) patients with healthy controls with respect to peripheral blood lymphocytes, CD4+T cell subsets, and cytokine levels. The correlation between antiphospholipid antibody titres and T helper 17 (Th17) and T regulatory (Treg) cell subsets was also analyzed, together with the correlations between cytokine profiles and the clinical characteristics of APS patients.MethodsThe retrospective study population consisted of 67 APS patients (12 with PAPS, 55 with SAPS) and 40 healthy controls. Absolute numbers of peripheral blood lymphocyte subsets and CD4+ T cell subsets were detected by flow cytometry, and serum cytokine levels by flow cytometry bead array.ResultsPatients with SAPS had lower absolute values of T, B and CD4+T cells than the healthy control group, while only natural killer (NK) cell levels were decreased in patients with PAPS. Absolute numbers of T, B, NK, and CD4+T cells were significantly higher in the PAPS than SAPS group. The trends in CD4+T cell subsets were the same in PAPS and SAPS patients as in healthy controls, with increased Th1, decreased Th2, and decreased Treg levels, and thus an increased Th17/Treg ratio. Th2, Th17, and Treg cell counts were higher in the PAPS than SAPS group. Cytokine analysis showed that only IL-10 levels differed between the two APS groups. However, the levels of all of the studied cytokines were higher in APS patients than healthy controls, and correlated with the clinical characteristics of the patients. In the PAPS group, the titres of two autoantibodies correlated positively with the Th17/Treg ratio and negatively with the levels of D-dimer and Treg subsets.ConclusionsOur study clearly showed that APS patients have immune disturbances, the most prominent of which is an increase in the Th17/Treg ratio, due to a decrease in the number of Treg cells. These abnormalities may be involved in the occurrence and progression of APS. An additional finding was a higher level of peripheral blood lymphocytes in PAPS than SAPS patients, which may be related to the immunosuppressive treatment of SAPS patients.
Collapse
Affiliation(s)
- Huanhuan Yan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Baochen Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital/Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Caihong Wang,
| |
Collapse
|
28
|
Vaz CDO, Mazetto BM, Vasconcelos PENS, Bastos LB, Cursino MA, Quintanilha JCF, Mesquita GLTV, Dos Santos APR, Jacintho BC, Oliveira JD, Annichino-Bizzacchi J, Orsi FA. Answer to "REPLY to Association between Plasmatic Oxidative Stress and Thrombosis in Primary Antiphospholipid Syndrome". J Thromb Thrombolysis 2022; 54:191-192. [PMID: 35419746 DOI: 10.1007/s11239-022-02652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Camila de O Vaz
- Department of Pharmacology, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Bruna M Mazetto
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | | | - Maria Aparecida Cursino
- Department of Medical Sciences, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | | | - Ana Paula Rosa Dos Santos
- Department of Medical Sciences, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Bruna Cardoso Jacintho
- Department of Clinical Medicine, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - José Diogo Oliveira
- Department of Clinical Medicine, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Joyce Annichino-Bizzacchi
- Department of Clinical Medicine, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil.,Hematology and Hemotherapy, Center University of Campinas, Campinas, SP, Brazil
| | - Fernanda Andrade Orsi
- Hematology and Hemotherapy, Center University of Campinas, Campinas, SP, Brazil. .,Department of Pathology, School of Medical Sciences, University of Campinas, Campinas R. Tessália Vieira de Camargo, 126. Cidade Universitária, Campinas, SP, Zip Code 13083-887, Brazil.
| |
Collapse
|
29
|
Xie Y, Zhang H, Huang J, Zhang Q. Interleukin-35 in autoimmune dermatoses: Current concepts. Open Med (Wars) 2022; 17:589-600. [PMID: 35434379 PMCID: PMC8941186 DOI: 10.1515/med-2022-0455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Abstract
Interleukin-35 (IL-35) is a lately observed cytokine and is part of the IL-12 cytokine family. IL-35 includes two subunits, p35 and Epstein-Barr virus-induced gene 3, and activates subsequent signaling pathways by binding to receptors to mediate signal transduction, thereby modulating the immunoregulatory functions of T cells, B cells, macrophages, and other immune cell types. Although there is currently limited research on the roles of IL-35 in human autoimmunity, many studies have demonstrated that IL-35 may mediate immunosuppression. Therefore, it plays an essential role in some autoimmune dermatoses, including systemic lupus erythematosus, psoriasis, systemic sclerosis, and dermatomyositis. We will introduce the structure and biological characteristics of IL-35 and summarize its effects on the occurrence and development of autoimmune dermatoses in this article. It is suggested that IL-35 is a possible target for therapy in the aforementioned diseases.
Collapse
Affiliation(s)
- Yuming Xie
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics , Changsha , Hunan 410011 , China
| | - Huilin Zhang
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University , Changsha , Hunan 410011 , China
| | - Junke Huang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics , Changsha , Hunan 410011 , China
| | - Qing Zhang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics , #139 Renmin Middle Rd , Changsha , Hunan 410011 , China
| |
Collapse
|
30
|
Gao X, Song Y, Lu S, Hu L, Zheng M, Jia S, Zhao M. Insufficient Iron Improves Pristane-Induced Lupus by Promoting Treg Cell Expansion. Front Immunol 2022; 13:799331. [PMID: 35296076 PMCID: PMC8918487 DOI: 10.3389/fimmu.2022.799331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/07/2022] [Indexed: 12/31/2022] Open
Abstract
Trace element iron affects T cell biology, but the knowledge about the role of iron in regulating Treg cell expansion is limited. Treg cells play an important role in keeping peripheral T cell tolerance, increasing Treg cell expansion is a promising therapeutic method for SLE. Here we showed that iron deficiency promotes Treg cell expansion by reducing ROS accumulation, improving the disease progression of pristane-induced lupus. Increased oxidative stress inhibits Treg cell differentiation by inducing cell apoptosis. Our data suggest that altering iron metabolism promotes Treg cell expansion by preventing oxidation-induced cell death, which may provide a potential therapeutic strategy for SLE.
Collapse
Affiliation(s)
- Xiaofei Gao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Yang Song
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Shuang Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Longyuan Hu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Meiling Zheng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Sujie Jia
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Sujie Jia, ; Ming Zhao,
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- *Correspondence: Sujie Jia, ; Ming Zhao,
| |
Collapse
|
31
|
Robinson GA, Wilkinson MGL, Wincup C. The Role of Immunometabolism in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2022; 12:806560. [PMID: 35154082 PMCID: PMC8826250 DOI: 10.3389/fimmu.2021.806560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder in which pathogenic abnormalities within both the innate and adaptive immune response have been described. In order to activated, proliferate and maintain this immunological response a drastic upregulation in energy metabolism is required. Recently, a greater understanding of these changes in cellular bioenergetics have provided new insight into the links between immune response and the pathogenesis of a number of diseases, ranging from cancer to diabetes and multiple sclerosis. In this review, we highlight the latest understanding of the role of immunometabolism in SLE with particular focus on the role of abnormal mitochondrial function, lipid metabolism, and mTOR signaling in the immunological phenomenon observed in the SLE. We also consider what implications this has for future therapeutic options in the management of the disease in future.
Collapse
Affiliation(s)
- George Anthony Robinson
- Department of Rheumatology, Division of Medicine, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), University College London, London, United Kingdom
| | - Meredyth G Ll Wilkinson
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), University College London, London, United Kingdom.,Department of Rheumatology, University College London Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research and Teaching Department, University College London, London, United Kingdom
| | - Chris Wincup
- Department of Rheumatology, Division of Medicine, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), University College London, London, United Kingdom
| |
Collapse
|
32
|
Qin Y, Gao C, Luo J. Metabolism Characteristics of Th17 and Regulatory T Cells in Autoimmune Diseases. Front Immunol 2022; 13:828191. [PMID: 35281063 PMCID: PMC8913504 DOI: 10.3389/fimmu.2022.828191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
The abnormal number and functional deficiency of immune cells are the pathological basis of various diseases. Recent years, the imbalance of Th17/regulatory T (Treg) cell underlies the occurrence and development of inflammation in autoimmune diseases (AID). Currently, studies have shown that material and energy metabolism is essential for maintaining cell survival and normal functions and the altered metabolic state of immune cells exists in a variety of AID. This review summarizes the biology and functions of Th17 and Treg cells in AID, with emphasis on the advances of the roles and regulatory mechanisms of energy metabolism in activation, differentiation and physiological function of Th17 and Treg cells, which will facilitate to provide targets for the treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Yan Qin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Jing Luo,
| |
Collapse
|
33
|
Chen HL, Lin SC, Li S, Tang KT, Lin CC. Alantolactone alleviates collagen-induced arthritis and inhibits Th17 cell differentiation through modulation of STAT3 signalling. PHARMACEUTICAL BIOLOGY 2021; 59:134-145. [PMID: 33556301 PMCID: PMC8871681 DOI: 10.1080/13880209.2021.1876102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Alantolactone, the bioactive component in Inula helenium L. (Asteraceae), exhibits multiple biological effects. OBJECTIVE We aimed to determine the anti-inflammatory effect of alantolactone in a collagen-induced arthritis (CIA) mouse model and its immunomodulatory effects on Th17 differentiation. MATERIALS AND METHODS A CIA mouse model was established with DBA/1 mice randomly divided into four groups (n = 6): healthy, vehicle and two alantolactone-treated groups (25 or 50 mg/kg), followed by oral administration of alantolactone to mice for 21 consecutive days after arthritis onset. The severity of CIA was evaluated by an arthritic scoring system and histopathological examination. Levels of cytokines and anti-CII antibodies as well as percentages of splenic Th17 and Th17 differentiation with or without alantolactone treatments (0.62, 1.2 or 2.5 μM) were detected with ELISA and flow cytometry, respectively. Western blot analysis was used to evaluate intracellular signalling in alantolactone-treated spleen cells. RESULTS In CIA mice, alantolactone at 50 mg/kg attenuated RA symptoms, including high arthritis scores, infiltrating inflammatory cells, synovial hyperplasia, bone erosion and levels of the proinflammatory cytokines TNF-α, IL-6 and IL-17A, but not IL-10 in paw tissues. Alantolactone also reduced the number of splenic Th17 cells and the capability of naïve CD4+ T cells to differentiate into the Th17 subset by downregulating STAT3/RORγt signalling by as early as 24 h of treatment. DISCUSSION AND CONCLUSIONS Alantolactone possesses an anti-inflammatory effect that suppresses murine CIA by inhibiting Th17 cell differentiation, suggesting alantolactone is an adjunctive therapeutic candidate to treat rheumatoid arthritis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Anti-Inflammatory Agents/isolation & purification
- Anti-Inflammatory Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/pathology
- Cell Differentiation/drug effects
- Cytokines
- Dose-Response Relationship, Drug
- Female
- Immunologic Factors/administration & dosage
- Immunologic Factors/isolation & purification
- Immunologic Factors/pharmacology
- Inula/chemistry
- Lactones/administration & dosage
- Lactones/isolation & purification
- Lactones/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- STAT3 Transcription Factor/metabolism
- Sesquiterpenes, Eudesmane/administration & dosage
- Sesquiterpenes, Eudesmane/isolation & purification
- Sesquiterpenes, Eudesmane/pharmacology
- Signal Transduction/drug effects
- Th17 Cells/cytology
- Th17 Cells/drug effects
Collapse
Affiliation(s)
- Hsiang-Lai Chen
- Department of Surgery, Division of Urology, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan, ROC
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Shih Chao Lin
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Shiming Li
- College of Chemistry & Chemical Engineering, Hubei Key Laboratory for Processing & Application of Catalytic Materials, Huanggang Normal University, Huanggang, PR China
| | - Kuo-Tung Tang
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- CONTACT Kuo-Tung Tang Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Chi-Chien Lin
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Chi-Chien Lin Institute of Biomedical Science, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung402, Taiwan, ROC
| |
Collapse
|
34
|
Urine and serum interleukin 35 as potential biomarkers of lupus nephritis. Cent Eur J Immunol 2021; 46:351-359. [PMID: 34764807 PMCID: PMC8574112 DOI: 10.5114/ceji.2021.109151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction Lupus nephritis (LN) is considered a serious manifestation of systemic lupus erythematosus (SLE). Therefore, a reliable non-invasive biomarker is a priority for monitoring renal involvement instead of the kidney biopsy. Interleukin 35 (IL-35) has an immunosuppressive and anti-inflammatory role in many autoimmune diseases. However, its role in LN still needs to be elucidated. Aim of the study To evaluate urine and serum levels of IL-35 in SLE patients with LN and without nephritis identifying their potential as biomarkers of renal involvement. Material and methods Urine and serum levels of IL-35 were measured in 42 SLE patients, divided into 22 with LN and 20 without LN, and 20 matched healthy controls using enzyme-linked immunosorbent assay (ELISA). SLE disease activity was assessed for patients by the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K). Results Levels of serum and urine IL-35 were significantly higher (p < 0.001) in the LN group compared with those without LN and with controls. In LN patients, a strong correlation (p < 0.001) was observed between serum and urine IL-35 levels with SLEDAI-2K score (r = 0.677 and 0.806 respectively). Furthermore, proteinuria had a strong and significant correlation (p ˂ 0.001) with serum and urinary IL-35 levels in the patients with LN. Serum IL-35 had 90.9% sensitivity and 85% specificity while urine IL-35 had 95.5% sensitivity and 75% specificity to differentiate LN from healthy individuals. Conclusions Urine and serum IL-35 may aid in assessment of renal involvement in SLE patients, serving as potential biomarkers of LN.
Collapse
|
35
|
Paquissi FC, Abensur H. The Th17/IL-17 Axis and Kidney Diseases, With Focus on Lupus Nephritis. Front Med (Lausanne) 2021; 8:654912. [PMID: 34540858 PMCID: PMC8446428 DOI: 10.3389/fmed.2021.654912] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by dysregulation and hyperreactivity of the immune response at various levels, including hyperactivation of effector cell subtypes, autoantibodies production, immune complex formation, and deposition in tissues. The consequences of hyperreactivity to the self are systemic and local inflammation and tissue damage in multiple organs. Lupus nephritis (LN) is one of the most worrying manifestations of SLE, and most patients have this involvement at some point in the course of the disease. Among the effector cells involved, the Th17, a subtype of T helper cells (CD4+), has shown significant hyperactivation and participates in kidney damage and many other organs. Th17 cells have IL-17A and IL-17F as main cytokines with receptors expressed in most renal cells, being involved in the activation of many proinflammatory and profibrotic pathways. The Th17/IL-17 axis promotes and maintains repetitive tissue damage and maladaptive repair; leading to fibrosis, loss of organ architecture and function. In the podocytes, the Th17/IL-17 axis effects include changes of the cytoskeleton with increased motility, decreased expression of health proteins, increased oxidative stress, and activation of the inflammasome and caspases resulting in podocytes apoptosis. In renal tubular epithelial cells, the Th17/IL-17 axis promotes the activation of profibrotic pathways such as increased TGF-β expression and epithelial-mesenchymal transition (EMT) with consequent increase of extracellular matrix proteins. In addition, the IL-17 promotes a proinflammatory environment by stimulating the synthesis of inflammatory cytokines by intrinsic renal cells and immune cells, and the synthesis of growth factors and chemokines, which together result in granulopoiesis/myelopoiesis, and further recruitment of immune cells to the kidney. The purpose of this work is to present the prognostic and immunopathologic role of the Th17/IL-17 axis in Kidney diseases, with a special focus on LN, including its exploration as a potential immunotherapeutic target in this complication.
Collapse
Affiliation(s)
- Feliciano Chanana Paquissi
- Department of Medicine, Clínica Girassol, Luanda, Angola
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hugo Abensur
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Association between plasmatic oxidative stress and thrombosis in primary antiphospholipid syndrome. J Thromb Thrombolysis 2021; 52:730-737. [PMID: 34224066 PMCID: PMC8568865 DOI: 10.1007/s11239-021-02509-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 11/15/2022]
Abstract
Antiphospholipid antibodies induce a pro-inflammatory and hypercoagulable state that lead to increased risk of thrombosis. Whether oxidative damage contributes thrombosis risk is a matter of debate. We evaluated the association between oxidative stress and thrombosis in primary antiphospholipid syndrome (t-PAPS). Plasma total antioxidant capacity and the levels of malondialdehyde (TBARs), carbonyl protein, and 8-isoprostane in plasma were determined in a group of patients with t-PAPS and in individuals without a history of thrombosis (controls) using commercial ELISA assays. The levels of these plasma markers of oxidative stress were compared between t-PAPS and controls using Mann–Whitney test. A total of 70 patients with t-PAPS and 74 controls were included. Overall, measurements of all plasma oxidative stress markers were similar between t-PAPS patients and controls. In a subgroup analysis, patients with t-PAPS and arterial thrombosis had a higher antioxidant capacity as compared to controls. Thrombotic PAPS was not associated with increased levels of oxidative stress markers, in comparison with individuals without thrombosis. Even though it is not possible to rule out that a mild oxidative damage, not detected by plasma markers, occurs in t-PAPS, our results suggest that measuring plasma oxidative stress markers has limited clinical relevance in t-PAPS.
Collapse
|
37
|
Huang J, Xu X, Yang J. miRNAs Alter T Helper 17 Cell Fate in the Pathogenesis of Autoimmune Diseases. Front Immunol 2021; 12:593473. [PMID: 33968012 PMCID: PMC8096907 DOI: 10.3389/fimmu.2021.593473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/18/2021] [Indexed: 01/05/2023] Open
Abstract
T helper 17 (Th17) cells are characterized by the secretion of the IL-17 cytokine and are essential for the immune response against bacterial and fungal infections. Despite the beneficial roles of Th17 cells, unrestrained IL-17 production can contribute to immunopathology and inflammatory autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Although these diverse outcomes are directed by the activation of Th17 cells, the regulation of Th17 cells is incompletely understood. The discovery that microRNAs (miRNAs) are involved in the regulation of Th17 cell differentiation and function has greatly improved our understanding of Th17 cells in immune response and disease. Here, we provide an overview of the biogenesis and function of miRNA and summarize the role of miRNAs in Th17 cell differentiation and function. Finally, we focus on recent advances in miRNA-mediated dysregulation of Th17 cell fate in autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Abstract
Background Childhood-onset systemic lupus erythematosus (cSLE) is a kind of chronic inflammatory disease characterized by a highly abnormal immune system. This study aimed to detect the serum levels of Th (T helper) cytokines (IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17F, IL-21, IL-22, IFN-γ and TNF-α) in cSLE and healthy controls, and then to elucidate their association with clinical manifestations, disease activity and laboratory parameters. In order to provide clues for early diagnosis and timely intervention treatment of cSLE patients. Methods A total of 33 children with cSLE and 30 healthy children were enrolled in this study. Children in the cSLE group were classified into the inactive or active cSLE group according to their SLE disease activity index 2000 (SLEDAI-2 K) score. Th cytokine profiles in the peripheral blood were detected and analysed. Results Levels of IL-2, IL-10 and IL-21 in the cSLE group were significantly higher than those in the healthy control group (P < 0.05, P < 0.01 and P < 0.01, respectively). Expression of IL-2, IL-10 and IL-21 in the active cSLE group was significantly higher than that in the healthy control group (P < 0.05, P < 0.01 and P < 0.05, respectively), but that of IL-22 expression was markedly lower in the active cSLE group than in the healthy control group (P < 0.001). IL-21 in the inactive SLE group was significantly higher than that in the healthy control group (P < 0.05), and levels of IL-2 and IL-10 in the active cSLE group were significantly higher than those in the inactive cSLE group (P < 0.01 and P < 0.05). In-depth analysis showed that after excluding age, gender and drug interference, the levels of IL-2 (P < 0.05), IL-6 (P < 0.05) and IL-10 (P < 0.05) were still positively correlated with SLEDAI-2 K scores. However, the levels of IL-6 (P < 0.05) and IFN- γ (P < 0.05) were still negatively correlated with CD4+/CD8+, and the concentration of IL-6 (P < 0.05) was still positively correlated with the occurrence of nephritis. Conclusion This study provides a theoretical basis for the discovery of effective methods to regulate imbalance in T lymphocyte subsets in cSLE, which may lead to new approaches for the diagnosis of cSLE.
Collapse
|
39
|
Rahimzadeh M, Naderi N. Toward an understanding of regulatory T cells in COVID-19: A systematic review. J Med Virol 2021; 93:4167-4181. [PMID: 33605463 DOI: 10.1002/jmv.26891] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
A more detailed understanding of Treg cells in COVID-19 infection will broaden our knowledge of the COVID-19 immunopathology and give us more insight into the curative immune-based strategies. We systematically searched electronic databases (PubMed, Google Scholar, EMBASE) and identified 18 eligible studies. Despite the inconsistencies between the results, we observed a trend toward decreasing Treg levels in severe COVID-19 patients. This finding underlines the hypothesis that Tregs play a role in the pathogenesis of COVID-19. Further studies on Tregs' functional aspects are necessary to illustrate Tregs' potential role in COVID-19 disease.
Collapse
Affiliation(s)
- Mahsa Rahimzadeh
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nadereh Naderi
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
40
|
Chen Y, Tao T, Wang W, Yang B, Cha X. Dihydroartemisinin attenuated the symptoms of mice model of systemic lupus erythematosus by restoring the Treg/Th17 balance. Clin Exp Pharmacol Physiol 2021; 48:626-633. [PMID: 33469936 DOI: 10.1111/1440-1681.13461] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 09/29/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022]
Abstract
The Treg/Th17 imbalance is associated with the development of systemic lupus erythematosus (SLE). Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is isolated from the traditional Chinese herb Artemisia annua Artemisia annua L. This study aims to evaluate the effects of DHA alone or in combination with prednisone in immunodeficiency of SLE. In vivo, the therapeutical effect of DHA alone or in combination with prednisone was assessed in the pristane-induced SLE mouse model. Then, the level of serum antibodies, creatinine (Cre), blood urea nitrogen (BUN), urine protein, kidney histopathology, interleukin (IL)-17, IL-6, transforming growth factor (TGF)-β, the expression of RORγt and Foxp3, the percentages of Treg and Th17 in peripheral blood and spleen were assayed. In vitro, the mouse spleen lymphocytes were separated and treated with DHA alone or DHA in combination with prednisone. Then the percentages of Treg and Th17, the concentration of IL-17, IL-6, TGF-β, and the expression of RORγt and Foxp3 were assayed. It was shown that DHA alone or in combination with prednisone treatment significantly alleviated the manifestations of pristane-induced SLE mice, suppressed inflammation and restored the Treg/Th17 balance. DHA alone or in combination with prednisone significantly inhibited Th17 cell differentiation while induced Treg cell differentiation in vitro. DHA alone or in combination with prednisone also reduced the transcription of RORγt and increased Foxp3 in lymphocytes, as well as IL-17 and TGF-β levels. Our data indicated that DHA can produce synergistic effect with prednisone to attenuate the symptoms of SLE by restoring Treg/Th17 balance.
Collapse
MESH Headings
- Animals
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Artemisinins/pharmacology
- Artemisinins/therapeutic use
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Mice
- Disease Models, Animal
- Female
- Prednisone/pharmacology
- Prednisone/therapeutic use
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Forkhead Transcription Factors/metabolism
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Yan Chen
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, Yangjiang People's Hospital, Yangjiang, China
| | - Tingjun Tao
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, Yangjiang People's Hospital, Yangjiang, China
| | - Weiliang Wang
- Department of Dermatology, Yangjiang People's Hospital, Yangjiang, China
| | - Botao Yang
- Department of Dermatology, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, China
| | - Xushan Cha
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
41
|
Wu D, Dong D, Bi X, Liu Y, Ma Y. Cucurbitacin IIb improved active chromatin-induced systemic lupus erythematosus via balancing the percentage of Th17 and Treg cells. Clin Exp Pharmacol Physiol 2021; 48:329-336. [PMID: 33128285 DOI: 10.1111/1440-1681.13434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/01/2022]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is closely associated with aberrant immune system. Here, the aim of our study was to explore the regulation of cucurbitacin IIb (CuIIb) to Th17/Treg cells in SLE. Compared with normal mice, the percentage of Treg cells was downregulated in SLE mouse model, and Th17 was upregulated. Meantime, the production of Treg-related transcription factor (foxp3) in SLE model mouse was reduced, and the production of Th17-related transcription factor (RORγt) was increased. After treatment with CuIIb, the percentage of Treg cells in SLE mice was partly upregulated, and Th17 cells percentage was downregulated. The expression of foxp3 and RORγt in SLE mice were promoted and inhibited by CuIIb treatment, respectively. SLE-induced kidney injury also was improved by CuIIb treatment. In vitro, we demonstrated again that CuIIb upregulated the percentage of Treg cells in lymphocytes from SLE mice, and downregulated the percentage of Th17 cells. Highly expressed IL-6 and IL17, and lowly expressed IL-10 and TGF-β in lymphocytes from SLE mice were repressed and facilitated by CuIIb treatment, respectively. Overall, our data proved that CuIIb improved kidney injury in SLE mice through balancing the percentage of Th17 and Treg cells. Our data provided a reliable evidence to support the potential of CuIIb in SLE treatment.
Collapse
Affiliation(s)
- Dongke Wu
- Department of Paediatrics, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dasheng Dong
- Department of Internal Medicine, Medical College of Nanchang University, Nanchang, China
| | - Xiongjie Bi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Yuping Liu
- Department of Surgery, Jinxian People's Hospital of Jiangxi Province, Nanchang, China
| | - Yunqing Ma
- Department of Internal Medicine, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
42
|
Capecchi R, Puxeddu I, Pratesi F, Migliorini P. New biomarkers in SLE: from bench to bedside. Rheumatology (Oxford) 2021; 59:v12-v18. [PMID: 32911542 PMCID: PMC7719038 DOI: 10.1093/rheumatology/keaa484] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Biomarkers may have a diagnostic or monitoring value, or may predict response to therapy or disease course. The aim of this review is to discuss new serum and urinary biomarkers recently proposed for the diagnosis and management of SLE patients. Novel sensitive and specific assays have been proposed to evaluate complement proteins, ‘old’ biomarkers that are still a cornerstone in the management of this disease. Chemokines and lectins have been evaluated as surrogate biomarkers of IFN signature. Other cytokines like the B cell activating factor (BAFF) family cytokines are directly related to perturbations of the B cell compartment as key pathogenetic mechanism of the disease. A large number of urine biomarkers have been proposed, either related to the migration and homing of leukocytes to the kidney or to the local regulation of inflammatory circuits and the survival of renal intrinsic cells. The combination of traditional disease-specific biomarkers and novel serum or urine biomarkers may represent the best choice to correctly classify, stage and treat patients with SLE.
Collapse
Affiliation(s)
- Riccardo Capecchi
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Puxeddu
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
43
|
Tsai CY, Shen CY, Liu CW, Hsieh SC, Liao HT, Li KJ, Lu CS, Lee HT, Lin CS, Wu CH, Kuo YM, Yu CL. Aberrant Non-Coding RNA Expression in Patients with Systemic Lupus Erythematosus: Consequences for Immune Dysfunctions and Tissue Damage. Biomolecules 2020; 10:biom10121641. [PMID: 33291347 PMCID: PMC7762297 DOI: 10.3390/biom10121641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease with heterogeneous clinical manifestations. A diverse innate and adaptive immune dysregulation is involved in the immunopathogenesis of SLE. The dysregulation of immune-related cells may derive from the intricate interactions among genetic, epigenetic, environmental, and immunological factors. Of these contributing factors, non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs), and long non-coding RNAs (lncRNAs) play critical roles in the post-transcriptional mRNA expression of cytokines, chemokines, and growth factors, which are essential for immune modulation. In the present review, we emphasize the roles of ncRNA expression in the immune-related cells and cell-free plasma, urine, and tissues contributing to the immunopathogenesis and tissue damage in SLE. In addition, the circular RNAs (circRNA) and their post-translational regulation of protein synthesis in SLE are also briefly described. We wish these critical reviews would be useful in the search for biomarkers/biosignatures and novel therapeutic strategies for SLE patients in the future.
Collapse
MESH Headings
- Adaptive Immunity/genetics
- Autoimmunity/genetics
- Chemokines/genetics
- Chemokines/immunology
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Gene Expression Regulation
- Humans
- Immunity, Innate/genetics
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- MicroRNAs/genetics
- MicroRNAs/immunology
- Neutrophils/immunology
- Neutrophils/pathology
- RNA, Circular/genetics
- RNA, Circular/immunology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, National Taiwan University School of Medicine, Taipei 10002, Taiwan
| | - Chih-Wei Liu
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Ko-Jen Li
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Cheng-Shiun Lu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hui-Ting Lee
- Mackay Memorial Hospital and Mackay College of Medicine, Taipei 10449, Taiwan;
| | - Cheng-Sung Lin
- Department of Thoracic Surgery, Ministry of Health and Welfare Taipei Hospital, New Taipei City 24213, Taiwan;
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
44
|
Wang B, Chen S, Qian H, Zheng Q, Chen R, Liu Y, Shi G. Role of T cells in the pathogenesis and treatment of gout. Int Immunopharmacol 2020; 88:106877. [PMID: 32805695 DOI: 10.1016/j.intimp.2020.106877] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
Though macrophages and neutrophils are considered to be the principal immune cells involved in gout inflammation, recent studies highlight an emerging role of T cell subsets in the pathogenesis of gout. Some studies found that abnormal functions of several T cell subsets and aberrant expressions of their signature cytokines existed in gouty arthritis. Additionally, recent studies also suggested that therapeutic strategies by targeting pro-inflammatory T cell subsets or their related cytokines could ameliorate monosodium urate (MSU) crystals-induced arthritis in mice. The important role of T cells in gouty arthritis may provide some explanation for the absence of acute gout attacks among individuals with severe hyperuricemia or clinical evidence of MSU crystals deposition. Nevertheless, the molecular mechanisms underlying the role of those T cell subsets in gouty arthritis and their role in the initiation, progression and resolution of gouty arthritis are largely elusive, which need to be elaborated in future research. Uncovering the role of those T cell subsets in gout may transform our understanding of gout and facilitate new promising preventive or therapeutic strategies for gouty arthritis.
Collapse
Affiliation(s)
- Bin Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Shiju Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Hongyan Qian
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Qing Zheng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Rongjuan Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China.
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen 361003, China.
| |
Collapse
|
45
|
Lee AY, Körner H. CC chemokine receptor 6 (CCR6) in the pathogenesis of systemic lupus erythematosus. Immunol Cell Biol 2020; 98:845-853. [PMID: 32634857 DOI: 10.1111/imcb.12375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 01/10/2023]
Abstract
The CC chemokine receptor 6 (CCR6) and its sole chemokine ligand, CCL20, are an intriguing pair that have been implicated in a growing number of inflammatory, autoimmune and malignant disease processes. Recent observations have also highlighted this chemokine axis in the regulation of humoral immune responses. Through this review article, we explore the emerging links of CCR6-CCL20 with an archetypal autoimmune disease of humoral dysregulation: systemic lupus erythematosus (SLE). CCR6 is expressed prominently on several immune cells involved in the pathogenesis of SLE, such as dendritic cells and T-helper 17 cells. CCR6's expression is correlated with disease activity and serological markers of disease severity, suggesting a possible role in disease pathogenesis. However, there are numerous holes in our understanding of the functions of CCR6 and CCL20, and future studies are required to determine if there are any diagnostic, prognostic or monitoring roles for these important molecules.
Collapse
Affiliation(s)
- Adrian Ys Lee
- Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, PR China
| |
Collapse
|
46
|
Nirk EL, Reggiori F, Mauthe M. Hydroxychloroquine in rheumatic autoimmune disorders and beyond. EMBO Mol Med 2020; 12:e12476. [PMID: 32715647 PMCID: PMC7411564 DOI: 10.15252/emmm.202012476] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Initially used as antimalarial drugs, hydroxychloroquine (HCQ) and, to a lesser extent, chloroquine (CQ) are currently being used to treat several diseases. Due to its cost‐effectiveness, safety and efficacy, HCQ is especially used in rheumatic autoimmune disorders (RADs), such as systemic lupus erythematosus, primary Sjögren's syndrome and rheumatoid arthritis. Despite this widespread use in the clinic, HCQ molecular modes of action are still not completely understood. By influencing several cellular pathways through different mechanisms, CQ and HCQ inhibit multiple endolysosomal functions, including autophagy, as well as endosomal Toll‐like receptor activation and calcium signalling. These effects alter several aspects of the immune system with the synergistic consequence of reducing pro‐inflammatory cytokine production and release, one of the most marked symptoms of RADs. Here, we review the current knowledge on the molecular modes of action of these drugs and the circumstances under which they trigger side effects. This is of particular importance as the therapeutic use of HCQ is expanding beyond the treatment of malaria and RADs.
Collapse
Affiliation(s)
- Eliise Laura Nirk
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
47
|
Shan J, Jin H, Xu Y. T Cell Metabolism: A New Perspective on Th17/Treg Cell Imbalance in Systemic Lupus Erythematosus. Front Immunol 2020; 11:1027. [PMID: 32528480 PMCID: PMC7257669 DOI: 10.3389/fimmu.2020.01027] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
The Th17/T-regulatory (Treg) cell imbalance is involved in the occurrence and development of organ inflammation in systemic lupus erythematosus (SLE). Metabolic pathways can regulate T cell differentiation and function, thus contributing to SLE inflammation. Increasingly, data have shown metabolism influences and reprograms the Th17/Treg cell balance, and the metabolic pattern of T cells is different in SLE. Notably, metabolic characteristics of SLE T cells, such as enhanced glycolysis, lipid synthesis, glutaminolysis, and highly activated mTOR, all favored Th17 differentiation and function, which underlie the Th17/Treg cell imbalance in SLE patients. Targeting metabolic pathways to reverse Th17/Treg imbalance offer a promising method for SLE therapy.
Collapse
Affiliation(s)
- Juan Shan
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Hong Jin
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yan Xu
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
48
|
Wang M, Zhang P, Yu S, Zhou G, Lv J, Nallapothula D, Guo C, Wang Q, Singh RR. Heparin and aspirin combination therapy restores T-cell phenotype in pregnant patients with antiphospholipid syndrome-related recurrent pregnancy loss. Clin Immunol 2019; 208:108259. [DOI: 10.1016/j.clim.2019.108259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022]
|
49
|
IL-35, TNF-α, BAFF, and VEGF serum levels in patients with different rheumatic diseases. Reumatologia 2019; 57:145-150. [PMID: 31462829 PMCID: PMC6710841 DOI: 10.5114/reum.2019.86424] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 01/07/2023] Open
Abstract
Objectives Inflammatory processes in rheumatic diseases spread via various types of immune system cells and tissues with the aid of inflammatory cytokines and growth factors and the participation of vascular endothelium. Research is still conducted to determine the role of individual factors in the pathophysiology of rheumatic diseases. The task is complicated because the multiplane network of cytokines is characterized by complex correlations manifesting as positive and negative feedback, which impedes the definitive interpretation of the role of specific cytokines. Therefore, it seems justified to perform a comparative analysis of the expression of at least several molecules in one study, which may help reveal their role in the pathogenesis of rheumatic diseases and have prognostic value. Material and methods The aim of the study involves the assessment and comparative analysis of the concentrations of interleukin 35 (IL-35), tumour necrosis factor α (TNF-α), B-cell-activating factor (BAFF), and vascular endothelial growth factor (VEGF) in peripheral blood serum in patients with rheumatoid arthritis (RA) (n = 43), systemic lupus erythematosus (SLE) (n = 28), antiphospholipid syndrome (APS) (n = 24), and mixed connective tissue disease (MCTD) (n = 9). The main intention is to search for biomarkers for specific rheumatic diseases. Cytokine and growth factor levels were determined using specific ELISA kits. Results Statistically significant differences in VEGF and IL-35 concentrations occurred between patients with APS vs. RA and SLE vs. RA. There was a significant high positive correlation between the concentration of BAFF and TNF-α (r = 0.77, p < 0.0000) in patients with APS, as well as in patients with SLE (r = 0.55, p = 0.00). Conclusions BAFF and TNF-α may be promising biomarkers in patients with APS and VEGF in patients with RA. Additionally, IL-35 may be a useful marker for the diagnosis of APS. Positive correlation of BAFF and TNF-α concentrations in APS and SLE potentially indicates much more similar etiopathogenesis of these diseases than it could be previously predicted.
Collapse
|