1
|
Di Carluccio C, Padilla-Cortés L, Tiemblo-Martìn M, Gheorghita GR, Oliva R, Cerofolini L, Masi AA, Abreu C, Tseng HK, Molinaro A, Del Vecchio P, Vaněk O, Lin CC, Marchetti R, Fragai M, Silipo A. Insights into Siglec-7 Binding to Gangliosides: NMR Protein Assignment and the Impact of Ligand Flexibility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415782. [PMID: 40285643 DOI: 10.1002/advs.202415782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/20/2025] [Indexed: 04/29/2025]
Abstract
Gangliosides, sialylated glycosphingolipids abundant in the nervous system, play crucial roles in neurotransmission, interaction with regulatory proteins, cell-cell recognition, and signaling. Altered gangliosides expression has been correlated with pathological processes, including cancer, inflammatory disorders, and autoimmune diseases. Gangliosides are important endogenous ligands of Siglecs (Sialic acid-binding immunoglobulin-type lectins), I-type lectins mostly expressed by immune cells, that specifically recognize sialylated glycans. Siglec-7, an inhibitory immune receptor on human natural killer cells, represents a potential target for tumor immunotherapy. Notably, the expression of Siglec-7 ligands is high in various cancers, such as pancreatic cancer and melanoma and lead to tumor immune evasion. Siglec-7 binds the disialylated ganglioside GD3, a tumor-associated antigen overexpressed on cancer cells to suppress immune responses. Using a combination of structural biology techniques, including Nuclear Magnetic Resonance (NMR), biophysical, and computational methods, the binding of Siglec-7 to GD3 and Gb3 derivatives is investigated, revealing the importance of ligand conformation in modulating binding energetics and affinity. The greater flexibility of Gb3 derivatives appears to negatively impact binding entropy, leading to lower affinity compared to GD3. A thorough understanding of these interactions could contribute to elucidating molecular mechanisms of cancer immune evasion and facilitate the development of ganglioside-based diagnostic and therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, Naples, 80126, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore 486, Napoli, 80145, Italy
| | - Luis Padilla-Cortés
- Magnetic Resonance Centre (CERM), CIRMMP and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy
| | - Marta Tiemblo-Martìn
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, Naples, 80126, Italy
| | - Giulia Roxana Gheorghita
- Magnetic Resonance Centre (CERM), CIRMMP and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy
- Giotto Biotech s.r.l., Sesto Fiorentino, 50019, Italy
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, Naples, 80126, Italy
| | - Linda Cerofolini
- Magnetic Resonance Centre (CERM), CIRMMP and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy
| | - Alessandro Antonio Masi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, Naples, 80126, Italy
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 12800, Czech Republic
| | - Hsin-Kai Tseng
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, Naples, 80126, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore 486, Napoli, 80145, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, Naples, 80126, Italy
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 12800, Czech Republic
| | - Chun-Cheng Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, Naples, 80126, Italy
| | - Marco Fragai
- Magnetic Resonance Centre (CERM), CIRMMP and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, Naples, 80126, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore 486, Napoli, 80145, Italy
| |
Collapse
|
2
|
Zhong X, D’Antona AM, Rouse JC. Mechanistic and Therapeutic Implications of Protein and Lipid Sialylation in Human Diseases. Int J Mol Sci 2024; 25:11962. [PMID: 39596031 PMCID: PMC11594235 DOI: 10.3390/ijms252211962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon backbone, are frequently found as the terminal residues of these glycoconjugates, forming the critical components of these sugar layers. Changes in the status and content of cellular sialic acids are closely linked to many human diseases such as cancer, cardiovascular, neurological, inflammatory, infectious, and lysosomal storage diseases. The molecular machineries responsible for the biosynthesis of the sialylated glycans, along with their biological interacting partners, are important therapeutic strategies and targets for drug development. The purpose of this article is to comprehensively review the recent literature and provide new scientific insights into the mechanisms and therapeutic implications of sialylation in glycoproteins and glycolipids across various human diseases. Recent advances in the clinical developments of sialic acid-related therapies are also summarized and discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Aaron M. D’Antona
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Jason C. Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA;
| |
Collapse
|
3
|
Kushwaha AC, Mrunalini B, Malhotra P, Roy Choudhury S. CD56-targeted in vivo genetic engineering of natural killer cells mediates immunotherapy for acute myeloid leukemia. NANOSCALE 2024; 16:19743-19755. [PMID: 39363829 DOI: 10.1039/d4nr02692f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy that starts from bone marrow and spreads to other organs. At the time of diagnosis, both innate and defective natural killer (NK) cells are present in AML patients. The dysfunction of the NK cells is due to the absence of NK cell receptors such as NKG2D on tumor cells that help with tumor immune escape, and also the polycomb protein, EzH2, which plays an important role in the commitment and differentiation of NK cells. The inhibition of EzH2 activates NK cells towards enhanced lytic activity. However, the adoptive transfer of NK cells for cancer treatment is still under scrutiny due to limitations like production cost, vein-to-vein time, and complicated experimental procedures. In order to circumvent these issues, here, in vivo CD56+ NK cell genetic engineering is hypothesized through the CD56-directed delivery of the pSMP-EzH2 shRNA plasmid encapsulated in chitosan nanoparticles (pEzH2@CSNPs@CD56). The pSMP-EzH2 shRNA plasmid was encapsulated in chitosan nanoparticles followed by CD56 antibody conjugation through EDC-NHS chemistry. CD56 antibody-conjugated nanoparticles selectively target CD56+ NK cells and downregulate EzH2 expression in CD56+ NK cells of human PBMCs. The in vitro CD56+ CD3- NK cells were enriched and stably suppressed EzH2 expression to prepare adoptive CD56+ CD3- NK (EzH2-) cells for anti-AML immunotherapy. The in vitro NK (EzH2-) cells and pEzH2@CSNPs@CD56 reduced splenomegaly while immunophenotyping revealed in vivo downregulation of the c-Kit+ leukemia stem cell population along with upregulation of the differentiation markers CD11b and Gr-1 in the peripheral blood and bone marrow of AML1-ETO9a-induced xenograft nude mice. CD56+CD3- and CD56+CD38+ cell populations were significantly increased in the peripheral blood and bone marrow, which indicated NK cell-mediated AML cell killing took place suggesting that use of pEzH2@CSNPs@CD56 is a safe and viable strategy for NK cell-mediated anti-AML immunotherapy.
Collapse
Affiliation(s)
- Avinash Chandra Kushwaha
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Boddu Mrunalini
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Pankaj Malhotra
- Department of Clinical Hematology & Medical Oncology, Room No 18, 4th Level, F Block, Nehru Hospital, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh 160020, India
| | - Subhasree Roy Choudhury
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
4
|
Li D, Li F, Zhou Y, Tang Y, Hu Z, Wu Q, Xie T, Lin Q, Wang H, Luo F. Role and Mechanism of Sialic Acid in Alleviating Acute Lung Injury through In Vivo and In Vitro Models. Foods 2024; 13:2984. [PMID: 39335912 PMCID: PMC11431537 DOI: 10.3390/foods13182984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Excessive inflammatory reactions are the most important pathological injury factor in acute lung injury (ALI). Our recent study found that sialic acid had an anti-colitis effect. In this study, the effect of sialic acid (SA) on acute lung inflammation was investigated. A lipopolysaccharide (LPS)-induced ALI animal model and LPS-stimulated HUVEC cell model were used to evaluate the anti-inflammatory effect of SA and study its molecular mechanisms. Compared with the LPS group, the lung index of the SA group decreased from 0.79 ± 0.05% to 0.58 ± 0.06% (LPS + 50 SA) and 0.62 ± 0.02% (LPS + 100 SA), with p < 0.01, suggesting that SA could improve the pulmonary edema of mice and alleviate LPS-induced lung injury. Transcriptome research identified 26 upregulated genes and 25 downregulated genes involved in the protection of SA against ALI. These genes are mainly related to the MAPK and NF-κB signaling pathways. Our study also proved that SA markedly downregulated the expression of inflammatory factors and blocked the JNK/p38/PPAR-γ/NF-κB pathway. Meanwhile, SA treatment also upregulated the expression of HO-1 and NQO1 in ALI mice. In vitro, SA obviously repressed the expressions of inflammatory cytokines and the JNK/p38-NF-κB/AP-1 pathway. SA also regulated the expression of oxidative stress-related genes through the Nrf2 pathway. Taken together, SA exhibits a protective role by modulating the anti-inflammatory and anti-oxidation pathways in ALI, and it may be a promising candidate for functional foods to prevent ALI.
Collapse
Affiliation(s)
- Dan Li
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Fangyan Li
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
| | - Yiping Tang
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
| | - Qi Wu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
| | - Tiantian Xie
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
| | - Hanqing Wang
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
| |
Collapse
|
5
|
Chen J, Wu T, Yang Y. Sialylation-associated long non-coding RNA signature predicts the prognosis, tumor microenvironment, and immunotherapy and chemotherapy options in uterine corpus endometrial carcinoma. Cancer Cell Int 2024; 24:314. [PMID: 39261877 PMCID: PMC11391619 DOI: 10.1186/s12935-024-03486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Sialylation in uterine corpus endometrial carcinoma (UCEC) differs significantly from apoptotic and ferroptosis pathways. It plays a crucial role in cancer progression and immune response modulation. Exploring how sialylation affects tumor behavior and its link with long non-coding RNAs (lncRNAs) may provide new insights into UCEC prognosis and treatment. METHODS We obtained RNA transcriptome, clinical, and mutation data of UCEC samples from the TCGA database. Our approach involved developing a risk model based on the co-expression patterns of sialylation genes and lncRNAs. Prognostic lncRNAs were identified through Cox regression and further refined using LASSO analysis. To understand the biological functions and pathways of model-associated differentially expressed genes (MADEGs), we conducted enrichment analyses. We also assessed the immune infiltration status of MADEGs using eight different algorithms, which helped in evaluating the potential for immunotherapy. Additionally, we validated the expression of these lncRNAs in UCEC using cell lines and clinical samples. RESULTS We developed a UCEC risk model using five sialylation-related lncRNAs (AC004884.2, AC026202.2, LINC01579, LINC00942, SLC16A1-AS1). This model, confirmed through Cox analysis and clinical evaluation, effectively predicted patient outcomes. Survival data analysis across entire cohort, as well as within training and test groups, indicated better survival in low-risk UCEC patients. Enrichment analyses linked MADEGs to sialylation functions and cancer pathways. High-risk patients showed increased responsiveness to immune checkpoint inhibitors (ICIs), as indicated by immunological assessments. Subgroup C2 patients showed superior outcomes and a robust response to immunotherapy and chemotherapy. Notably, LINC01579, LINC00942, and SLC16A1-AS1 were significantly overexpressed in UCEC clinical tumor samples as well as in Ishikawa and HEC-1-B cell lines, compared to the normal groups. CONCLUSIONS This lncRNA signature associated with sialylation could guide prognosis, enhance the understanding of molecular mechanisms, and inform treatment strategies in UCEC. It highlights the potential for the use of ICIs and chemotherapy.
Collapse
Affiliation(s)
- Jun Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Wu
- Department of Cardiovasology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongwen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, P. R. China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
6
|
Szabo R, Dobie C, Montgomery AP, Steele H, Yu H, Skropeta D. Synthesis of α-Hydroxy-1,2,3-Triazole-linked Sialyltransferase Inhibitors and Evaluation of Selectivity Towards ST3GAL1, ST6GAL1 and ST8SIA2. ChemMedChem 2024; 19:e202400088. [PMID: 38758134 DOI: 10.1002/cmdc.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Tumour-derived sialoglycans, bearing the charged nonulosonic sugar sialic acid at their termini, play a critical role in tumour cell adhesion and invasion, as well as evading cell death and immune surveillance. Sialyltransferases (ST), the enzymes responsible for the biosynthesis of sialylated glycans, are highly upregulated in cancer, with tumour hypersialylation strongly correlated with tumour growth, metastasis and drug resistance. As a result, desialylation of the tumour cell surface using either targeted delivery of a pan-ST inhibitor (or sialidase) or systemic delivery of a non-toxic selective ST inhibitors are being pursued as potential new anti-metastatic strategies against multiple cancers including pancreatic, ovarian, breast, melanoma and lung cancer. Herein, we have employed molecular modelling to give insights into the selectivity observed in a series of selective ST inhibitors that incorporate a uridyl ring in place of the cytidine of the natural donor (CMP-Neu5Ac) and replace the charged phosphodiester linker of classical ST inhibitors with a neutral α-hydroxy-1,2,3-triazole linker. The inhibitory activities of the nascent compounds were determined against recombinant human ST enzymes (ST3GAL1, ST6GAL1, ST8SIA2) showing promising activity and selectivity towards specific ST sub-types. Our ST inhibitors are non-toxic and show improved synthetic accessibility and drug-likeness compared to earlier nucleoside-based ST inhibitors.
Collapse
Affiliation(s)
- Rémi Szabo
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Chris Dobie
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Andrew P Montgomery
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Harrison Steele
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Haibo Yu
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- ARC Centre of Excellence in Quantum Biotechnology, University of Wollongong, Wollongong, NSW, Australia
| | - Danielle Skropeta
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
7
|
Zhao J, Zhang K, Sui D, Wang S, Li Y, Tang X, Liu X, Song Y, Deng Y. Recent advances in sialic acid-based active targeting chemoimmunotherapy promoting tumor shedding: a systematic review. NANOSCALE 2024; 16:14621-14639. [PMID: 39023195 DOI: 10.1039/d4nr01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Tumors have always been a major public health concern worldwide, and attempts to look for effective treatments have never ceased. Sialic acid is known to be a crucial element for tumor development and its receptors are highly expressed on tumor-associated immune cells, which perform significant roles in establishing the immunosuppressive tumor microenvironment and further boosting tumorigenesis, progression, and metastasis. Obviously, it is essential to consider sophisticated crosstalk between tumors, the immune system, and preparations, and understand the links between pharmaceutics and immunology. Sialic acid-based chemoimmunotherapy enables active targeting drug delivery via mediating the recognition between the sialic acid-modified nano-drug delivery system represented by liposomes and sialic acid-binding receptors on tumor-associated immune cells, which inhibit their activity and utilize their homing ability to deliver drugs. Such a "Trojan horse" strategy has remarkably improved the shortcomings of traditional passive targeting treatments, unexpectedly promoted tumor shedding, and persistently induced robust immunological memory, thus highlighting its prospective application potential for targeting various tumors. Herein, we review recent advances in sialic acid-based active targeting chemoimmunotherapy to promote tumor shedding, summarize the current viewpoints on the tumor shedding mechanism, especially the formation of durable immunological memory, and analyze the challenges and opportunities of this attractive approach.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Kunfeng Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yantong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| |
Collapse
|
8
|
Coccimiglio M, Chiodo F, van Kooyk Y. The sialic acid-Siglec immune checkpoint: an opportunity to enhance immune responses and therapy effectiveness in melanoma. Br J Dermatol 2024; 190:627-635. [PMID: 38197441 DOI: 10.1093/bjd/ljad517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/11/2024]
Abstract
Modulation of immune responses through immune checkpoint blockade has revolutionized cutaneous melanoma treatment. However, it is still the case that not all patients respond successfully to these therapies, indicating the presence of as yet unknown resistance mechanisms. Hence, it is crucial to find novel targets to improve therapy efficacy. One of the described resistance mechanisms is regulated by immune inhibitory Siglec receptors, which are engaged by the carbohydrates sialic acids expressed on tumour cells, contributing to programmed cell death protein-1 (PD1)-like immune suppression mechanisms. In this review, we provide an overview on the regulation of sialic acid synthesis, its expression in melanoma, and the contribution of the sialic acid-Siglec axis to tumour development and immune suppressive mechanisms in the tumour microenvironment. Finally, we highlight potential sialic acid-Siglec axis-related therapeutics to improve the treatment of melanoma.
Collapse
Affiliation(s)
- Magali Coccimiglio
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Fabrizio Chiodo
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Italian National Research Council, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Yvette van Kooyk
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
9
|
McCord K, Wang C, Anhalt M, Poon WW, Gavin AL, Wu P, Macauley MS. Dissecting the Ability of Siglecs To Antagonize Fcγ Receptors. ACS CENTRAL SCIENCE 2024; 10:315-330. [PMID: 38435516 PMCID: PMC10906256 DOI: 10.1021/acscentsci.3c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 03/05/2024]
Abstract
Fcγ receptors (FcγRs) play key roles in the effector function of IgG, but their inappropriate activation plays a role in several disease etiologies. Therefore, it is critical to better understand how FcγRs are regulated. Numerous studies suggest that sialic acid-binding immunoglobulin-type lectins (Siglecs), a family of immunomodulatory receptors, modulate FcγR activity; however, it is unclear of the circumstances in which Siglecs can antagonize FcγRs and which Siglecs have this ability. Using liposomes displaying selective ligands to coengage FcγRs with a specific Siglec, we explore the ability of Siglec-3, Siglec-5, Siglec-7, and Siglec-9 to antagonize signaling downstream of FcγRs. We demonstrate that Siglec-3 and Siglec-9 can fully inhibit FcγR activation in U937 cells when coengaged with FcγRs. Cells expressing Siglec mutants reveal differential roles for the immunomodulatory tyrosine-based inhibitory motif (ITIM) and immunomodulatory tyrosine-based switch motif (ITSM) in this inhibition. Imaging flow cytometry enabled visualization of SHP-1 recruitment to Siglec-3 in an ITIM-dependent manner, while SHP-2 recruitment is more ITSM-dependent. Conversely, both cytosolic motifs of Siglec-9 contribute to SHP-1/2 recruitment. Siglec-7 poorly antagonizes FcγR activation for two reasons: masking by cis ligands and differences in its ITIM and ITSM. A chimera of the Siglec-3 extracellular domains and Siglec-5 cytosolic tail strongly inhibits FcγR when coengaged, providing evidence that Siglec-5 is more like Siglec-3 and Siglec-9 in its ability to antagonize FcγRs. Additionally, Siglec-3 and Siglec-9 inhibited FcγRs when coengaged by cells displaying ligands for both the Siglec and FcγRs. These results suggest a role for Siglecs in mediating FcγR inhibition in the context of an immunological synapse, which has important relevance to the effectiveness of immunotherapies.
Collapse
Affiliation(s)
- Kelli
A. McCord
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Chao Wang
- Department
of Molecular Medicine, Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Mirjam Anhalt
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Wayne W. Poon
- Institute
for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92617, United States
| | - Amanda L. Gavin
- Department
of Immunology and Microbiology, Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng Wu
- Department
of Molecular Medicine, Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Matthew S. Macauley
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
10
|
Ghosh M, Hazarika P, Dhanya SJ, Pooja D, Kulhari H. Exploration of sialic acid receptors as a potential target for cancer treatment: A comprehensive review. Int J Biol Macromol 2024; 257:128415. [PMID: 38029891 DOI: 10.1016/j.ijbiomac.2023.128415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
The potential to target anticancer drugs directly to cancer cells is the most difficult challenge in the current scenario. Progressive works are being done on multifarious receptors and are on the horizon, expected to facilitate tailored treatment for cancer. Among several receptors, one is the sialic acid (SA) receptor by which cancer cells can be targeted directly as hyper sialylation is one of the most distinguishing characteristics of cancer cells. SA receptors have shown tremendous potential for tumor targeting because of their elevated expression in a range of human malignancies including prostate, breast, gastric cells, myeloid leukemia, liver, etc. This article reviews the overexpression of SA receptors in various tumors and diverse strategies for targeting these receptors to deliver drugs, enzymes, and genes for therapeutic applications. It also summarizes the diagnostic applications of SA-grafted nanoparticles for imaging various SA-overexpressing cancer cells and technological advances that are propelling sialic acid to the forefront of cancer therapy.
Collapse
Affiliation(s)
- Meheli Ghosh
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Priyodarshini Hazarika
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - S J Dhanya
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Deep Pooja
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat 382007, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India; Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India.
| |
Collapse
|
11
|
Feng H, Feng J, Han X, Ying Y, Lou W, Liu L, Zhang L. The Potential of Siglecs and Sialic Acids as Biomarkers and Therapeutic Targets in Tumor Immunotherapy. Cancers (Basel) 2024; 16:289. [PMID: 38254780 PMCID: PMC10813689 DOI: 10.3390/cancers16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The dysregulation of sialic acid is closely associated with oncogenesis and tumor progression. Most tumor cells exhibit sialic acid upregulation. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are receptors that recognize sialic acid and are expressed in various immune cells. The activity of Siglecs in the tumor microenvironment promotes immune escape, mirroring the mechanisms of the well-characterized PD-1/PD-L1 pathway in cancer. Cancer cells utilize sialic acid-linked glycans to evade immune surveillance. As Siglecs exhibit similar mechanisms as the established immune checkpoint inhibitors (ICIs), they are potential therapeutic targets for different forms of cancer, especially ICI-resistant malignancies. Additionally, the upregulation of sialic acid serves as a potential tumor biomarker. This review examines the feasibility of using sialic acid and Siglecs for early malignant tumor detection and discusses the potential of targeting Siglec-sialic acid interaction as a novel cancer therapeutic strategy.
Collapse
Affiliation(s)
- Haokang Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiale Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The Shanghai Geriatrics Medical Center, Zhongshan Hospital MinHang MeiLong Branch, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Jangid AK, Kim S, Park HW, Kim HJ, Kim K. Ex Vivo Surface Decoration of Phenylboronic Acid onto Natural Killer Cells for Sialic Acid-Mediated Versatile Cancer Cell Targeting. Biomacromolecules 2024; 25:222-237. [PMID: 38130077 DOI: 10.1021/acs.biomac.3c00916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Phenylboronic acid (PBA) has been highly acknowledged as a significant cancer recognition moiety in sialic acid-overexpressing cancer cells. In this investigation, lipid-mediated biomaterial integrated PBA molecules onto the surface of natural killer (NK) cells to make a receptor-mediated immune cell therapeutic module. Therefore, a 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE) lipid-conjugated di-PEG-PBA (DSPEPEG-di(PEG-PBA) biomaterial was synthesized. The DSPEPEG-di(PEG-PBA) biomaterial exhibited a high affinity for sialic acid (SA), confirmed by fluorescence spectroscopy at pH 6.5 and 7.4. DSPEPEG-di(PEG-PBA) was successfully anchored onto NK cell surfaces (PBA-NK), and this biomaterial maintains intrinsic properties such as viability, ligand availability (FasL & TRAIL), and cytokine secretion response to LPS. The anticancer efficacy of PBA-NK cells was evaluated against 2D cancer cells (MDA-MB-231, HepG2, and HCT-116) and 3D tumor spheroids of MDA-MB-231 cells. PBA-NK cells exhibited greatly enhanced anticancer effects against SA-overexpressing cancer cells. Thus, PBA-NK cells represent a new anticancer strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul 04620, South Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul 04620, South Korea
| | - Hee Won Park
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul 04620, South Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Inha University, Incheon 22212, South Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul 04620, South Korea
| |
Collapse
|
13
|
Baysal Ö, Genç D, Silme RS, Kırboğa KK, Çoban D, Ghafoor NA, Tekin L, Bulut O. Targeting Breast Cancer with N-Acetyl-D-Glucosamine: Integrating Machine Learning and Cellular Assays for Promising Results. Anticancer Agents Med Chem 2024; 24:334-347. [PMID: 38305389 DOI: 10.2174/0118715206270568231129054853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Breast cancer is a common cancer with high mortality rates. Early diagnosis is crucial for reducing the prognosis and mortality rates. Therefore, the development of alternative treatment options is necessary. OBJECTIVE This study aimed to investigate the inhibitory effect of N-acetyl-D-glucosamine (D-GlcNAc) on breast cancer using a machine learning method. The findings were further confirmed through assays on breast cancer cell lines. METHODS MCF-7 and 4T1 cell lines (ATCC) were cultured in the presence and absence of varying concentrations of D-GlcNAc (0.5 mM, 1 mM, 2 mM, and 4 mM) for 72 hours. A xenograft mouse model for breast cancer was established by injecting 4T1 cells into mammary glands. D-GlcNAc (2 mM) was administered intraperitoneally to mice daily for 28 days, and histopathological effects were evaluated at pre-tumoral and post-tumoral stages. RESULTS Treatment with 2 mM and 4 mM D-GlcNAc significantly decreased cell proliferation rates in MCF-7 and 4T1 cell lines and increased Fas expression. The number of apoptotic cells was significantly higher than untreated cell cultures (p < 0.01 - p < 0.0001). D-GlcNAc administration also considerably reduced tumour size, mitosis, and angiogenesis in the post-treatment group compared to the control breast cancer group (p < 0.01 - p < 0.0001). Additionally, molecular docking/dynamic analysis revealed a high binding affinity of D-GlcNAc to the marker protein HER2, which is involved in tumour progression and cell signalling. CONCLUSION Our study demonstrated the positive effect of D-GlcNAc administration on breast cancer cells, leading to increased apoptosis and Fas expression in the malignant phenotype. The binding affinity of D-GlcNAc to HER2 suggests a potential mechanism of action. These findings contribute to understanding D-GlcNAc as a potential anti-tumour agent for breast cancer treatment.
Collapse
Affiliation(s)
- Ömür Baysal
- Department of Molecular Biology and Genetics, Faculty of Science, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Deniz Genç
- Faculty of Health Sciences, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Ragıp Soner Silme
- Center for Research and Practice in Biotechnology and Genetic Engineering, Istanbul University, Istanbul, Türkiye
| | - Kevser Kübra Kırboğa
- Department of Bioengineering, Bilecik Seyh Edebali University, 11230, Bilecik, Türkiye
| | - Dilek Çoban
- Department of Molecular Biology and Genetics, Faculty of Science, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Naeem Abdul Ghafoor
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Leyla Tekin
- Department of Pathology, Faculty of Medicine, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Osman Bulut
- Milas Faculty of Veterinary Medicine, Muğla Sıtkı Koçman University, Milas, Muğla, Türkiye
| |
Collapse
|
14
|
Li D, Lin Q, Luo F, Wang H. Insights into the Structure, Metabolism, Biological Functions and Molecular Mechanisms of Sialic Acid: A Review. Foods 2023; 13:145. [PMID: 38201173 PMCID: PMC10779236 DOI: 10.3390/foods13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Sialic acid (SA) is a kind of functional monosaccharide which exists widely in edible bird's nest (EBN), milk, meat, mucous membrane surface, etc. SA is an important functional component in promoting brain development, anti-oxidation, anti-inflammation, anti-virus, anti-tumor and immune regulation. The intestinal mucosa covers the microbial community that has a significant impact on health. In the gut, SA can also regulate gut microbiota and metabolites, participating in different biological functions. The structure, source and physiological functions of SA were reviewed in this paper. The biological functions of SA through regulating key signaling pathways and target genes were discussed. In summary, SA can modulate gut microbiota and metabolites, which affect gene expressions and exert its biological activities. It is helpful to provide scientific reference for the further investigation of SA in the functional foods.
Collapse
Affiliation(s)
- Dan Li
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Hanqing Wang
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
15
|
Moreira RS, da Silva MM, de Melo Vasconcelos CF, da Silva TD, Cordeiro GG, Mattos-Jr LAR, da Rocha Pitta MG, de Melo Rêgo MJB, Pereira MC. Siglec 15 as a biomarker or a druggable molecule for non-small cell lung cancer. J Cancer Res Clin Oncol 2023; 149:17651-17661. [PMID: 37843557 DOI: 10.1007/s00432-023-05437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
Lung cancer has been the main cause of cancer mortality worldwide. Furthermore, lung cancer rates of new cases per year evidenced a large incidence of this neoplasm in both men and women. Because there is no biomarker for early detection, it is frequently detected late, at an advanced state. The introduction of multiple lines of tyrosine kinase inhibitors in patients with EGFR, ALK, ROS1, and NTRK mutations has modified the therapy of lung cancer. Immunotherapy advances have resulted in substantial improvements in overall survival and disease-free survival, making immune checkpoint inhibitors (ICIs) a potential option for lung cancer treatment. Current PD-1/PD-L1/CTLA-4 immunotherapies have resulted in important response and survival rates. However, existing medicines only function in around 20% of unselected, advanced NSCLC patients, and primary and acquired resistance remain unsolved obstacles. Therefore, precise predictive indicators must be identified to choose the best patients for ICI treatment. Thus, Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) stands out as a potential tumor biomarker, with distinctive expression in normal tissues, in tumor immune involvement, and a high structural similarity to PD-L1. Understanding the tumor immune response and the search for new therapeutic targets leads to the improvement of therapeutic pathways directed at the tumor microenvironment. The present review aims to analyze Siglec-15 potential as a diagnostic, prognostic, and response biomarker in lung cancer, considering its results evidenced in the current literature.
Collapse
Affiliation(s)
- Rodrigo Santiago Moreira
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Marillya Morais da Silva
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Thiago Douberin da Silva
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Luiz Alberto Reis Mattos-Jr
- Department of Clinic Medicine, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Michelly Cristiny Pereira
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
16
|
Schengrund CL. The Ying and Yang of Ganglioside Function in Cancer. Cancers (Basel) 2023; 15:5362. [PMID: 38001622 PMCID: PMC10670608 DOI: 10.3390/cancers15225362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
The plethora of information about the expression of cancer cell-associated gangliosides, their role(s) in signal transduction, and their potential usefulness in the development of cancer treatments makes this an appropriate time to review these enigmatic glycosphingolipids. Evidence, reflecting the work of many, indicates that (1) expression of specific gangliosides, not generally found in high concentrations in most normal human cells, can be linked to certain types of cancer. (2) Gangliosides can affect the ability of cells to interact either directly or indirectly with growth factor receptors, thereby changing such things as a cell's mobility, rate of proliferation, and metastatic ability. (3) Anti-ganglioside antibodies have been tested, with some success, as potential treatments for certain cancers. (4) Cancer-associated gangliosides shed into the circulation can (a) affect immune cell responsiveness either positively or negatively, (b) be considered as diagnostic markers, and (c) be used to look for recurrence. (5) Cancer registries enable investigators to evaluate data from sufficient numbers of patients to obtain information about potential therapies. Despite advances that have been made, a discussion of possible approaches to identifying additional treatment strategies to inhibit metastasis, responsible for the majority of deaths of cancer patients, as well as for treating therapy-resistant tumors, is included.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
17
|
Bordoloi D, Kulkarni AJ, Adeniji OS, Pampena MB, Bhojnagarwala PS, Zhao S, Ionescu C, Perales-Puchalt A, Parzych EM, Zhu X, Ali AR, Cassel J, Zhang R, Betts MR, Abdel-Mohsen M, Weiner DB. Siglec-7 glyco-immune binding mAbs or NK cell engager biologics induce potent antitumor immunity against ovarian cancers. SCIENCE ADVANCES 2023; 9:eadh4379. [PMID: 37910620 PMCID: PMC10619929 DOI: 10.1126/sciadv.adh4379] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Ovarian cancer (OC) is a lethal gynecologic malignancy, with modest responses to CPI. Engagement of additional immune arms, such as NK cells, may be of value. We focused on Siglec-7 as a surface antigen for engaging this population. Human antibodies against Siglec-7 were developed and characterized. Coculture of OC cells with PBMCs/NKs and Siglec-7 binding antibodies showed NK-mediated killing of OC lines. Anti-Siglec-7 mAb (DB7.2) enhanced survival in OC-challenged mice. In addition, the combination of DB7.2 and anti-PD-1 demonstrated further improved OC killing in vitro. To use Siglec-7 engagement as an OC-specific strategy, we engineered an NK cell engager (NKCE) to simultaneously engage NK cells through Siglec-7, and OC targets through FSHR. The NKCE demonstrated robust in vitro killing of FSHR+ OC, controlled tumors, and improved survival in OC-challenged mice. These studies support additional investigation of the Siglec-7 targeting approaches as important tools for OC and other recalcitrant cancers.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | - Opeyemi S. Adeniji
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - M. Betina Pampena
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Shushu Zhao
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Candice Ionescu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | | | - Xizhou Zhu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Ali R. Ali
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Joel Cassel
- Molecular Screening and Protein Expression facility, The Wistar Institute, Philadelphia, PA, USA
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David B. Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
18
|
Jastrząb P, Narejko K, Car H, Wielgat P. Cell Membrane Sialome: Sialic Acids as Therapeutic Targets and Regulators of Drug Resistance in Human Cancer Management. Cancers (Basel) 2023; 15:5103. [PMID: 37894470 PMCID: PMC10604966 DOI: 10.3390/cancers15205103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
A cellular sialome is a physiologically active and dynamically changing component of the cell membrane. Sialylation plays a crucial role in tumor progression, and alterations in cellular sialylation patterns have been described as modulators of chemotherapy effectiveness. However, the precise mechanisms through which altered sialylation contributes to drug resistance in cancer are not yet fully understood. This review focuses on the intricate interplay between sialylation and cancer treatment. It presents the role of sialic acids in modulating cell-cell interactions, the extracellular matrix (ECM), and the immunosuppressive processes within the context of cancer. The issue of drug resistance is also discussed, and the mechanisms that involve transporters, the tumor microenvironment, and metabolism are analyzed. The review explores drugs and therapeutic approaches that may induce modifications in sialylation processes with a primary focus on their impact on sialyltransferases or sialidases. Despite advancements in cellular glycobiology and glycoengineering, an interdisciplinary effort is required to decipher and comprehend the biological characteristics and consequences of altered sialylation. Additionally, understanding the modulatory role of sialoglycans in drug sensitivity is crucial to applying this knowledge in clinical practice for the benefit of cancer patients.
Collapse
Affiliation(s)
- Patrycja Jastrząb
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| | - Karolina Narejko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| |
Collapse
|
19
|
Scott E, Archer Goode E, Garnham R, Hodgson K, Orozco-Moreno M, Turner H, Livermore K, Putri Nangkana K, Frame FM, Bermudez A, Jose Garcia Marques F, McClurg UL, Wilson L, Thomas H, Buskin A, Hepburn A, Duxfield A, Bastian K, Pye H, Arredondo HM, Hysenaj G, Heavey S, Stopka-Farooqui U, Haider A, Freeman A, Singh S, Johnston EW, Punwani S, Knight B, McCullagh P, McGrath J, Crundwell M, Harries L, Heer R, Maitland NJ, Whitaker H, Pitteri S, Troyer DA, Wang N, Elliott DJ, Drake RR, Munkley J. ST6GAL1-mediated aberrant sialylation promotes prostate cancer progression. J Pathol 2023; 261:71-84. [PMID: 37550801 DOI: 10.1002/path.6152] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 08/09/2023]
Abstract
Aberrant glycosylation is a universal feature of cancer cells, and cancer-associated glycans have been detected in virtually every cancer type. A common change in tumour cell glycosylation is an increase in α2,6 sialylation of N-glycans, a modification driven by the sialyltransferase ST6GAL1. ST6GAL1 is overexpressed in numerous cancer types, and sialylated glycans are fundamental for tumour growth, metastasis, immune evasion, and drug resistance, but the role of ST6GAL1 in prostate cancer is poorly understood. Here, we analyse matched cancer and normal tissue samples from 200 patients and verify that ST6GAL1 is upregulated in prostate cancer tissue. Using MALDI imaging mass spectrometry (MALDI-IMS), we identify larger branched α2,6 sialylated N-glycans that show specificity to prostate tumour tissue. We also monitored ST6GAL1 in plasma samples from >400 patients and reveal ST6GAL1 levels are significantly increased in the blood of men with prostate cancer. Using both in vitro and in vivo studies, we demonstrate that ST6GAL1 promotes prostate tumour growth and invasion. Our findings show ST6GAL1 introduces α2,6 sialylated N-glycans on prostate cancer cells and raise the possibility that prostate cancer cells can secrete active ST6GAL1 enzyme capable of remodelling glycans on the surface of other cells. Furthermore, we find α2,6 sialylated N-glycans expressed by prostate cancer cells can be targeted using the sialyltransferase inhibitor P-3FAX -Neu5Ac. Our study identifies an important role for ST6GAL1 and α2,6 sialylated N-glycans in prostate cancer progression and highlights the opportunity to inhibit abnormal sialylation for the development of new prostate cancer therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Emma Scott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, UK
| | - Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, UK
| | - Rebecca Garnham
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, UK
| | - Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, UK
| | - Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, UK
| | - Helen Turner
- Cellular Pathology, The Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Karen Livermore
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, UK
| | - Kyla Putri Nangkana
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, UK
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, North Yorkshire, UK
| | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Fernando Jose Garcia Marques
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Urszula L McClurg
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Laura Wilson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, UK
| | - Huw Thomas
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, UK
| | - Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, UK
| | - Anastasia Hepburn
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, UK
| | - Adam Duxfield
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, UK
| | - Kayla Bastian
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, UK
| | - Hayley Pye
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Hector M Arredondo
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Gerald Hysenaj
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, UK
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Urszula Stopka-Farooqui
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Aiman Haider
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Alex Freeman
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Saurabh Singh
- UCL Centre for Medical Imaging, Charles Bell House, University College London, London, UK
| | - Edward W Johnston
- UCL Centre for Medical Imaging, Charles Bell House, University College London, London, UK
| | - Shonit Punwani
- UCL Centre for Medical Imaging, Charles Bell House, University College London, London, UK
| | - Bridget Knight
- NIHR Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Paul McCullagh
- Department of Pathology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - John McGrath
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Malcolm Crundwell
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Lorna Harries
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, UK
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, North Yorkshire, UK
| | - Hayley Whitaker
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Sharon Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Dean A Troyer
- Cancer Biology and Infectious Disease Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, UK
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, USA
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, UK
| |
Collapse
|
20
|
Ye Z, Wang Y, Xiang B, Wang H, Tao H, Zhang C, Zhang S, Sun D, Luo F, Song L. Roles of the Siglec family in bone and bone homeostasis. Biomed Pharmacother 2023; 165:115064. [PMID: 37413904 DOI: 10.1016/j.biopha.2023.115064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Tremendous progress has been seen in the study of the role of sialic acid binding im-munoglobulin type lectins (Siglecs) in osteoimmunology in the past two decades. Interest in Siglecs as immune checkpoints has grown from the recognition that Siglecs have relevance to human disease. Siglecs play important roles in inflammation and cancer, and play key roles in immune cell signaling. By recognizing common sialic acid containing glycans on glycoproteins and glycolipids as regulatory receptors for immune cell signals, Siglecs are expressed on most immune cells and play important roles in normal homeostasis and self-tolerance. In this review, we describe the role that the siglec family plays in bone and bone homeostasis, including the regulation of osteoclast differentiation as well as recent advances in inflammation, cancer and osteoporosis. Particular emphasis is placed on the relevant functions of Siglecs in self-tolerance and as pattern recognition receptors in immune responses, thereby potentially providing emerging strategies for the treatment of bone related diseases.
Collapse
Affiliation(s)
- Zi Ye
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Yetong Wang
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Binqing Xiang
- Department of Surgical Anesthesia, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Heng Wang
- Army Border Defense 331st Brigade, Dandong 118000, China
| | - Haiyan Tao
- Health Management Center, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Shuai Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Dong Sun
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Lei Song
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
21
|
Natoni A, Cerreto M, De Propris MS, Del Giudice I, Soscia R, Peragine N, Intoppa S, Milani ML, Guarini A, Foà R. Sialylation regulates migration in chronic lymphocytic leukemia. Haematologica 2023; 108:1851-1860. [PMID: 36779594 PMCID: PMC10316253 DOI: 10.3324/haematol.2022.281999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Sialylation is the terminal addition of sialic acid to underlying glycans. It plays a prominent role in cell adhesion and immune regulation. Sialylated structures found on adhesion molecules, such as CD49d, mediate the interactions between cancer cells and the microenvironment, facilitating metastatic seeding in target organs. Chronic lymphocytic leukemia (CLL) is a clonal B-cell malignancy characterized by the accumulation of CD5-positive B cells in the peripheral blood, bone marrow and lymph nodes. CLL cells proliferate mainly in the lymph node "proliferation centers", where the microenvironment provides pro-survival signals. Thus, migration and homing into these protective niches play a crucial role in CLL biology. In recent years, therapeutic strategies aimed at inducing the egress of CLL cells from the lymph nodes and bone marrow into the circulation have been highly successful. In this study, the sialylation status of 79 untreated and 24 ibrutinib-treated CLL patients was characterized by flow cytometry. Moreover, the effect of sialic acid removal on migration was tested by a transwell assay. Finally, we examined the sialylation status of CD49d by Western blot analysis. We found that CLL cells are highly sialylated, particularly those characterized by an "activated" immune phenotype. Notably, sialylation regulates CLL migration through the post-translational modification of CD49d. Finally, we showed that therapeutic agents that induce CLL mobilization from their protective niches, such as ibrutinib, modulate sialic acid levels. We propose that sialylation is an important regulator of CLL trafficking and may represent a novel target to further improve CLL therapy.
Collapse
Affiliation(s)
- Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome.
| | - Marina Cerreto
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome
| | | | - Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome
| | - Roberta Soscia
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome
| | - Nadia Peragine
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome
| | - Stefania Intoppa
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome
| | - Maria Laura Milani
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome
| | - Anna Guarini
- Department of Molecular Medicine, Sapienza University, Rome
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome
| |
Collapse
|
22
|
Jangid AK, Kim S, Kim K. Polymeric biomaterial-inspired cell surface modulation for the development of novel anticancer therapeutics. Biomater Res 2023; 27:59. [PMID: 37344853 DOI: 10.1186/s40824-023-00404-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Immune cell-based therapies are a rapidly emerging class of new medicines that directly treat and prevent targeted cancer. However multiple biological barriers impede the activity of live immune cells, and therefore necessitate the use of surface-modified immune cells for cancer prevention. Synthetic and/or natural biomaterials represent the leading approach for immune cell surface modulation. Different types of biomaterials can be applied to cell surface membranes through hydrophobic insertion, layer-by-layer attachment, and covalent conjugations to acquire surface modification in mammalian cells. These biomaterials generate reciprocity to enable cell-cell interactions. In this review, we highlight the different biomaterials (lipidic and polymeric)-based advanced applications for cell-surface modulation, a few cell recognition moieties, and how their interplay in cell-cell interaction. We discuss the cancer-killing efficacy of NK cells, followed by their surface engineering for cancer treatment. Ultimately, this review connects biomaterials and biologically active NK cells that play key roles in cancer immunotherapy applications.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
23
|
Schnaar RL. Gangliosides as Siglec ligands. Glycoconj J 2023; 40:159-167. [PMID: 36701102 PMCID: PMC11000168 DOI: 10.1007/s10719-023-10101-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
The structure of a sialoglycan can be translated into to a biological response when it binds to a specific endogenous lectin. Among endogenous sialic acid-binding lectins in humans are those comprising the 15-member Siglec family, most of which are expressed on overlapping sets of immune cells. Endogenous Siglec ligands are sialoglycolipids (gangliosides) and/or sialoglycoproteins, on cell surfaces or in the extracellular milieu, that bind to and initiate signaling by cell surface Siglecs. In the nervous system, where gangliosides are the predominant sialoglycans, Siglec-4 (myelin-associated glycoprotein) on myelinating cells binds to gangliosides GD1a and GT1b on nerve cell axons to ensure stable and productive axon-myelin interactions. In the immune system, Siglec-7 on natural killer cells binds to gangliosides GD3 and GD2 to inhibit immune signaling. Expression of GD3 and GD2 on cancer cells can lead to tumor immune evasion. Siglec-1 (sialoadhesin, CD169) on macrophages binds to gangliosides on tumors and enveloped viruses. This may enhance antigen presentation in some cases, or increase viral distribution in others. Several other Siglecs bind to gangliosides in vitro, the biological significance of which has yet to be fully established. Gangliosides, which are found on all human cells and tissues in cell-specific distributions, are functional Siglec ligands with varied roles driving Siglec-mediated signaling.
Collapse
Affiliation(s)
- Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N Wolfe St, Baltimore, MD, 21205, USA.
| |
Collapse
|
24
|
Ye Z, Zhang H, Liang J, Yi S, Zhan X. Significance of logistic regression scoring model based on natural killer cell-mediated cytotoxic pathway in the diagnosis of colon cancer. Front Immunol 2023; 14:1117908. [PMID: 36742322 PMCID: PMC9895796 DOI: 10.3389/fimmu.2023.1117908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Background The poor clinical accuracy to predict the survival of colon cancer patients is associated with a high incidence rate and a poor 3-year survival rate. This study aimed to identify the poor prognostic biomarkers of colon cancer from natural killer cell-mediated cytotoxic pathway (NKCP), and establish a logistical regression scoring model to predict its prognosis. Methods Based on the expressions and methylations of NKCP-related genes (NRGs) and the clinical information, dimensionality reduction screening was performed to establish a logistic regression scoring model to predict survival and prognosis. Risk score, clinical stage, and ULBP2 were used to establish a logistic regression scoring model to classify the 3-year survival period and compare with each other. Comparison of survival, tumor mutation burden (TMB), estimation of immune invasion, and prediction of chemotherapeutic drug IC50 were performed between low- and high-risk score groups. Results This study found that ULBP2 was significantly overexpressed in colon cancer tissues and colon cancer cell lines. The logistic regression scoring model was established to include six statistically significant features: S = 1.70 × stage - 9.32 × cg06543087 + 6.19 × cg25848557 + 1.29 × IFNA1 + 0.048 × age + 4.37 × cg21370856 - 8.93, which was used to calculate risk score of each sample. The risk scores, clinical stage, and ULBP2 were classified into three-year survival, the 3-year prediction accuracy based on 10-fold cross-validation was 80.17%, 67.24, and 59.48%, respectively. The survival time of low-risk score group was better than that of the high-risk score group. Moreover, compared to high-risk score group, low-risk score group had lower TMB [2.20/MB (log10) vs. 2.34/MB (log10)], higher infiltration score of M0 macrophages (0.17 vs. 0.14), and lower mean IC50 value of oxaliplatin (3.65 vs 3.78) (p < 0.05). Conclusions The significantly upregulated ULBP2 was a poor prognostic biomarker of colon cancer. The risk score based on the six-feature logistic regression model can effectively predict the 3-year survival time. High-risk score group demonstrated a poorer prognosis, higher TMB, lower M0 macrophage infiltration score, and higher IC50 value of oxaliplatin. The six-feature logistic scoring model has certain clinical significance in colon cancer.
Collapse
Affiliation(s)
- Zhen Ye
- Medical Science and Technology Innovation Center, The Second Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Huanhuan Zhang
- Medical Science and Technology Innovation Center, The Second Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jianwei Liang
- Department of General Surgery, Tai ‘an Central Hospital, Taian, Shandong, China
| | - Shuying Yi
- Medical Science and Technology Innovation Center, The Second Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Xianquan Zhan, ; Shuying Yi,
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, The Second Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Xianquan Zhan, ; Shuying Yi,
| |
Collapse
|
25
|
Huang R, Zheng J, Shao Y, Zhu L, Yang T. Siglec-15 as multifunctional molecule involved in osteoclast differentiation, cancer immunity and microbial infection. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:34-41. [PMID: 36265694 DOI: 10.1016/j.pbiomolbio.2022.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 09/19/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Siglec-15 is a highly conserved member of the Siglec family, expressed on osteoclasts, a subset of myeloid cells and some cancer cells. Except for regulating osteoclast differentiation, Siglec-15 engages in immunoregulation as an immune suppressor. Siglec-15 functions as an immunosuppressive molecule in tumor-associated macrophage-mediated T cell immunity in the tumor microenvironment (TME), which makes Siglec-15 to be an emerging and promising target for normalization cancer immunotherapy. Besides, Siglec-15 interacts with sialylated pathogens and modulates host immune response against microbial pathogens by altering cytokine production and/or phagocytosis, which further broadens the underlying pathophysiological roles of Siglec-15. The fact that N-glycosylation and sialylation of Siglec-15 play a pivotal role in Siglec-15 biological function indicates that targeting certain post-translational modification may be an effective strategy for targeting Siglec-15 therapy. In-depth exploring Siglec-15 biology function is crucial for better design of Siglec-15-based therapy according to different clinical indications.
Collapse
Affiliation(s)
- Rui Huang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China; Department of Clinical Laboratory, Children's Hospital and Women Health Center of Shanxi, Taiyuan, China
| | - Jinxiu Zheng
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Ying Shao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Lei Zhu
- Department of Clinical Laboratory, Children's Hospital and Women Health Center of Shanxi, Taiyuan, China
| | - Tao Yang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.
| |
Collapse
|
26
|
Läubli H, Nalle SC, Maslyar D. Targeting the Siglec-Sialic Acid Immune Axis in Cancer: Current and Future Approaches. Cancer Immunol Res 2022; 10:1423-1432. [PMID: 36264237 PMCID: PMC9716255 DOI: 10.1158/2326-6066.cir-22-0366] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 01/10/2023]
Abstract
The sialic acid-binding immunoglobulin-like lectin (Siglec)-sialic acid immune axis is an evolutionarily conserved immunoregulatory pathway that provides a mechanism for establishing self-recognition and combatting invasive pathogens. Perturbations in the pathway lead to many immune dysregulated diseases, including autoimmunity, neurodegeneration, allergic conditions, and cancer. The purpose of this review is to provide a brief overview of the relationship between Siglecs and sialic acid as they relate to human health and disease, to consider current Siglec-based therapeutics, and to discuss new therapeutic approaches targeting the Siglec-sialic acid immune axis, with a focus on cancer.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University, of Basel, Basel, Switzerland.,Division of Oncology, University Hospital Basel, Basel, Switzerland.,Corresponding Author: Heinz Läubli, University Hospital Basel, Petersgraben 4, Basel 4031, Switzerland. Phone: 416-1556-5212; Fax: 416-1265-5316; E-mail:
| | | | | |
Collapse
|
27
|
Ganguly K, Shah A, Atri P, Rauth S, Ponnusamy MP, Kumar S, Batra SK. Chemokine-mucinome interplay in shaping the heterogeneous tumor microenvironment of pancreatic cancer. Semin Cancer Biol 2022; 86:511-520. [PMID: 35346803 PMCID: PMC9793394 DOI: 10.1016/j.semcancer.2022.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is exemplified by a complex immune-suppressive, fibrotic tumor microenvironment (TME), and aberrant expression of mucins. The constant crosstalk between cancer cells, cancer-associated fibroblasts (CAFs), and the immune cells mediated by the soluble factors and inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) promote the dynamic temporal switch towards an immune-escape phenotype in the neoplastic cells and its microenvironment that bolsters disease progression. Chemokines have been studied in PC pathogenesis, albeit poorly in the context of mucins, tumor glycocalyx, and TME heterogeneity (CAFs and immune cells). With correlative analysis from PC patients' transcriptome data, support from available literature, and scientific arguments-based speculative extrapolations in terms of disease pathogenesis, we have summarized in this review a comprehensive understanding of chemokine-mucinome interplay during stromal modulation and immune-suppression in PC. Future studies should focus on deciphering the complexities of chemokine-mediated control of glycocalyx maturation, immune infiltration, and CAF-associated immune suppression. Knowledge extracted from such studies will be beneficial to mechanistically correlate the mucin-chemokine abundance in serum versus pancreatic tumors of patients, which may aid in prognostication and stratification of PC patients for immunotherapy.
Collapse
Affiliation(s)
- Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
28
|
Marciel MP, Haldar B, Hwang J, Bhalerao N, Bellis SL. Role of tumor cell sialylation in pancreatic cancer progression. Adv Cancer Res 2022; 157:123-155. [PMID: 36725107 PMCID: PMC11342334 DOI: 10.1016/bs.acr.2022.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies and is currently the third leading cause of cancer death. The aggressiveness of PDAC stems from late diagnosis, early metastasis, and poor efficacy of current chemotherapies. Thus, there is an urgent need for effective biomarkers for early detection of PDAC and development of new therapeutic strategies. It has long been known that cellular glycosylation is dysregulated in pancreatic cancer cells, however, tumor-associated glycans and their cognate glycosylating enzymes have received insufficient attention as potential clinical targets. Aberrant glycosylation affects a broad range of pathways that underpin tumor initiation, metastatic progression, and resistance to cancer treatment. One of the prevalent alterations in the cancer glycome is an enrichment in a select group of sialylated glycans including sialylated, branched N-glycans, sialyl Lewis antigens, and sialylated forms of truncated O-glycans such as the sialyl Tn antigen. These modifications affect the activity of numerous cell surface receptors, which collectively impart malignant characteristics typified by enhanced cell proliferation, migration, invasion and apoptosis-resistance. Additionally, sialic acids on tumor cells engage inhibitory Siglec receptors on immune cells to dampen anti-tumor immunity, further promoting cancer progression. The goal of this review is to summarize the predominant changes in sialylation occurring in pancreatic cancer, the biological functions of sialylated glycoproteins in cancer pathogenesis, and the emerging strategies for targeting sialoglycans and Siglec receptors in cancer therapeutics.
Collapse
Affiliation(s)
- Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barnita Haldar
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
29
|
Aberrant Sialylation in Cancer: Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14174248. [PMID: 36077781 PMCID: PMC9454432 DOI: 10.3390/cancers14174248] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The surface of every eukaryotic cell is coated in a thick layer of glycans that acts as a key interface with the extracellular environment. Cancer cells have a different ‘glycan coat’ to healthy cells and aberrant glycosylation is a universal feature of cancer cells linked to all of the cancer hallmarks. This means glycans hold huge potential for the development of new diagnostic and therapeutic strategies. One key change in tumour glycosylation is increased sialylation, both on N-glycans and O-glycans, which leads to a dense forest of sialylated structures covering the cell surface. This hypersialylation has far-reaching consequences for cancer cells, and sialylated glycans are fundamental in tumour growth, metastasis, immune evasion and drug resistance. The development of strategies to inhibit aberrant sialylation in cancer represents an important opportunity to develop new therapeutics. Here, I summarise recent advances to target aberrant sialylation in cancer, including the development of sialyltransferase inhibitors and strategies to inhibit Siglecs and Selectins, and discuss opportunities for the future.
Collapse
|
30
|
Volkhina IV, Butolin EG. Clinical and Diagnostic Significance of Sialic Acids Determination in Biological Material. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES B, BIOMEDICAL CHEMISTRY 2022; 16:165-174. [PMID: 35990315 PMCID: PMC9377294 DOI: 10.1134/s199075082203012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Abstract
Sialic acids (SA) are neuraminic acid derivatives, located at the terminal position in the chains of monosaccharide residues of various glycoconjugates. SA play a dual role: they either mask recognition sites, or, on the contrary, represent biological targets that can be recognized by receptor proteins and serve as ligands. The desialylation/sialylation processes can be considered as a dynamic modification regulated by sialyltransferases and sialidases in response to external or internal stimuli. This review describes the structural and functional diversity and the potential use of SA fractions as biomarkers for various pathological conditions. Almost any extreme impact on the body and inflammatory processes are accompanied by an increase in the level of both total and free SA in the blood and tissues. Possible reasons for the increase of sialoglycoconjugate metabolism indicators in biological material include: (i) activation of the hepatocyte synthesis and secretion of various acute-phase proteins, many of which are sialoglycoproteins, (ii) impaired membrane integrity and destruction of body cells, (iii) high activity of sialidases (neurominidases) and sialyltransferases. Most acute and chronic liver diseases are characterized by the decrease in the total level of SA in the blood serum (because many plasma proteins are synthesized and glycosylated in hepatocytes). Aberrant sialylation results in changes of sialoglycoconjugate structure, its ability to perform biological functions and sialoglycoconjugate half-life. Glycosylation is the most common post-translational modification of proteins in the virus, which not only promotes the formation of specific conformation of viral proteins, but also modulates their interaction with receptors and affects host cell recognition, viral replication and infectivity. Serum total SA concentration increases in some benign and inflammatory conditions, which indicates a lack of specificity and limits their use for early detection and screening of neoplastic diseases. Clinical and diagnostic value of determining the sialoglycoconjugate metabolic indicators, including changes in the content of both SA fractions and specific proteins in various biological fluids and tissues, consists in establishing the causes and mechanisms of biochemical changes in the body in certain diseases. In combination with the measurement of existing markers, they can be used to improve diagnosis, staging and monitoring of therapeutic response in some pathological conditions where the need for specificity is less than for specific diagnostics.
Collapse
Affiliation(s)
- I. V. Volkhina
- Saint Petersburg State Pediatric Medical University, ul. Litovskaya 2, 194100 St.Petersburg, Russia
| | - E. G. Butolin
- Izhevsk State Medical Academy, ul. Kommunarov 201, 426034 Izhevsk, Russia
| |
Collapse
|
31
|
Doostkam A, Malekmakan L, Hosseinpour A, Janfeshan S, Roozbeh J, Masjedi F. Sialic acid: an attractive biomarker with promising biomedical applications. ASIAN BIOMED 2022; 16:153-167. [PMID: 37551166 PMCID: PMC10321195 DOI: 10.2478/abm-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This broad, narrative review highlights the roles of sialic acids as acidic sugars found on cellular membranes. The role of sialic acids in cellular communication and development has been well established. Recently, attention has turned to the fundamental role of sialic acids in many diseases, including viral infections, cardiovascular diseases, neurological disorders, diabetic nephropathy, and malignancies. Sialic acid may be a target for developing new drugs to treat various cancers and inflammatory processes. We recommend the routine measurement of serum sialic acid as a sensitive inflammatory marker in various diseases.
Collapse
Affiliation(s)
- Aida Doostkam
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Leila Malekmakan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Alireza Hosseinpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz7134853185, Iran
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| |
Collapse
|
32
|
Antillon K, Ross PA, Farrell MP. Directing CAR NK Cells via the Metabolic Incorporation of CAR Ligands into Malignant Cell Glycans. ACS Chem Biol 2022; 17:1505-1512. [PMID: 35648806 PMCID: PMC10061155 DOI: 10.1021/acschembio.2c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The abundance of sialic acid-containing glycans in the glycocalyx of malignant cells enables immune evasion. Here, we leverage the biosynthetic pathways that permit pervasive sialylation to incorporate a chimeric antigen receptor (CAR) ligand into malignant cell glycans, and demonstrate that this increases the susceptibility of malignant cells to the cytolytic activity of CAR-expressing natural killer (NK) cells. Specifically, we applied a C-9-functionalized nonnatural sialic acid [i.e., fluorescein sialic acid (FL-SA)] to modify malignant cell glycans. We confirm the metabolic incorporation of FL-SA into plasma membrane-associated glycans. The preparation of anti-fluorescein CAR NK cells permitted studies demonstrating that treating malignant cells with FL-SA increased susceptibility to CAR NK cell-mediated cytolysis. Furthermore, we observed that the specificity of the anti-fluorescein CAR NK cells is enhanced for fluorescein-labeled cells, and an increased release of cytokines from the CAR NK cells upon incubation with FL-SA-treated cells. The results arising from this study demonstrate that CAR ligands can be metabolically incorporated into malignant cells, and we reason that such strategies could be leveraged to tackle the issue of antigen heterogeneity that limits the clinical efficacy of CAR T/NK cell therapies.
Collapse
Affiliation(s)
- Kathia Antillon
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Patrick A Ross
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Mark P Farrell
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
33
|
Sialic acids: An Avenue to Target Cancer Progression, Metastasis, and Resistance to Therapy. FORUM OF CLINICAL ONCOLOGY 2022. [DOI: 10.2478/fco-2021-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract
Background
Sialic acids are alpha-keto acids with nine carbons that are commonly present in the terminal sugars of glycans on glycoproteins and glycolipids on the cell surface. Sialic acids have a role in a variety of physiological and pathological processes by interacting with carbohydrates and proteins, communicating between cells, and acting as cell surface receptors for viruses and bacteria. Several studies have shown the aberrant pattern of sialic acids on cancer cells due to change in their glycosylation status. This pattern may be attributed to various physiological and pathological changes occurring in tumour cells. Hypersialylation in tumours, its involvement in tumour growth, immune evasion and escape from the apoptotic pathway, metastasis formation, and therapeutic resistance have all been fairly well investigated.
Methods
A PubMed search was conducted and published articles in different studies from 2000 to 2020 were included and reviewed. Here, we discuss current outcomes that emphasize the unfavourable effects of hypersialylation on multiple aspects of tumour genesis, immune evasion, metastasis and resistance to therapy.
Conclusion
These recent investigations have found that aberrant sialylation is an essential process for tumour cells to evade immune surveillance and maintain their malignancy. Together, these noteworthy views provide a solid platform for designing and developing therapeutic approaches that target hypersialylation of cancer cells.
Collapse
|
34
|
Nie Y, Liu D, Yang W, Li Y, Zhang L, Cheng X, Chen R, Yuan B, Zhang G, Wang H. Increased expression of TIGIT and KLRG1 correlates with impaired CD56 bright NK cell immunity in HPV16-related cervical intraepithelial neoplasia. Virol J 2022; 19:68. [PMID: 35413989 PMCID: PMC9003970 DOI: 10.1186/s12985-022-01776-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/03/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The onset and progression of cervical intraepithelial neoplasia (CIN) are closely associated with the persistent infection of high-risk HPV (especially type16), which is mainly caused by immune escape. Natural killer (NK) cells play an important role against virally infected cells and tumor cells through a fine balance of signals from multiple surface receptors. Overexpression of non-MHC-I specific inhibitory receptors TIGIT, KLRG1, Siglec-7, LAIR-1, and CD300a on NK cells correlates with cellular exhaustion and immune evasion, but these receptors have not been investigated in CIN. The aim of the present study was to examine the potential role of NK cell non-MHC-I specific inhibitory receptors expression in immune escape from HPV16(+)CIN patients. METHODS The subset distribution, IFN-γ and TNF-α expression levels and immunophenotype of TIGIT, KLRG1, Siglec-7, LAIR-1, and CD300a of NK cells were investigated in peripheral blood mononuclear cell samples by flow cytometry from 82 women who were HPV16(+) with CIN grades 0, I, II-III or HPV(-) CIN 0. Immunohistochemistry was applied to detect the expression of ligands for NK receptors in the cervical tissues. HPV types were identified by PCR assays. RESULTS The HPV16(+) subjects with high-grade lesions had an increased number of circulating peripheral blood CD56bright NK cells with reduced functionality and IFN-γ secretion. The expression levels of the inhibitory molecules TIGIT and KLRG1 on CD56bright NK cells increased in parallel with increasing CIN grade. In addition, TIGIT and KLRG1 related ligands, Poliovirus receptor (PVR), N-Cadherin and E-Cadherin expression level was also elevated with increasing CIN grade. CONCLUSIONS Our results suggest that up-regulation of the inhibitory TIGIT, KLRG1 and their ligands may negatively regulate cervical CD56bright NK-mediated immunity to HPV16 and contribute to the progression of CIN. These results may facilitate the development of early-warning immune predictors and therapeutic strategies for HPV16(+) CIN based on the TIGIT and KLRG1 inhibitory pathways of NK cells.
Collapse
Affiliation(s)
- You Nie
- Department of Pathology, Fourth Medical Centre of Chinese PLA (People's Liberation Army) General Hospital, 51 Fucheng Road, Beijing, China.,Basic Medicine College, Zhengzhou University, 100 Science Avenue, Henan, China
| | - Dandan Liu
- Department of Pathology, Fourth Medical Centre of Chinese PLA (People's Liberation Army) General Hospital, 51 Fucheng Road, Beijing, China
| | - Wen Yang
- Department of Gynaecology and Obstetrics, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Yazhuo Li
- Department of Pathology, Fourth Medical Centre of Chinese PLA (People's Liberation Army) General Hospital, 51 Fucheng Road, Beijing, China
| | - Lihua Zhang
- Department of Pathology, Fourth Medical Centre of Chinese PLA (People's Liberation Army) General Hospital, 51 Fucheng Road, Beijing, China
| | - Xia Cheng
- Department of Pathology, Fourth Medical Centre of Chinese PLA (People's Liberation Army) General Hospital, 51 Fucheng Road, Beijing, China
| | - Ruyu Chen
- Department of Pathology, Fourth Medical Centre of Chinese PLA (People's Liberation Army) General Hospital, 51 Fucheng Road, Beijing, China
| | - Bingbing Yuan
- Basic Medicine College, Zhengzhou University, 100 Science Avenue, Henan, China
| | - Guangzheng Zhang
- Basic Medicine College, Zhengzhou University, 100 Science Avenue, Henan, China.
| | - Hongwei Wang
- Department of Pathology, Fourth Medical Centre of Chinese PLA (People's Liberation Army) General Hospital, 51 Fucheng Road, Beijing, China.
| |
Collapse
|
35
|
Ruppel KE, Fricke S, Köhl U, Schmiedel D. Taking Lessons from CAR-T Cells and Going Beyond: Tailoring Design and Signaling for CAR-NK Cells in Cancer Therapy. Front Immunol 2022; 13:822298. [PMID: 35371071 PMCID: PMC8971283 DOI: 10.3389/fimmu.2022.822298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer immunotherapies utilize the capabilities of the immune system to efficiently target malignant cells. In recent years, chimeric antigen receptor (CAR) equipped T cells showed promising results against B cell lymphomas. Autologous CAR-T cells require patient-specific manufacturing and thus extensive production facilities, resulting in high priced therapies. Along with potentially severe side effects, these are the major drawbacks of CAR-T cells therapies. Natural Killer (NK) cells pose an alternative for CAR equipped immune cells. Since NK cells can be safely transferred from healthy donors to cancer patients, they present a suitable platform for an allogeneic “off-the-shelf” immunotherapy. However, administration of activated NK cells in cancer therapy has until now shown poor anti-cancer responses, especially in solid tumors. Genetic modifications such as CARs promise to enhance recognition of tumor cells, thereby increasing anti-tumor effects and improving clinical efficacy. Although the cell biology of T and NK cells deviates in many aspects, the development of CAR-NK cells frequently follows within the footsteps of CAR-T cells, meaning that T cell technologies are simply adopted to NK cells. In this review, we underline the unique properties of NK cells and their potential in CAR therapies. First, we summarize the characteristics of NK cell biology with a focus on signaling, a fine-tuned interaction of activating and inhibitory receptors. We then discuss why tailored NK cell-specific CAR designs promise superior efficacy compared to designs developed for T cells. We summarize current findings and developments in the CAR-NK landscape: different CAR formats and modifications to optimize signaling, to target a broader pool of antigens or to increase in vivo persistence. Finally, we address challenges beyond NK cell engineering, including expansion and manufacturing, that need to be addressed to pave the way for CAR-NK therapies from the bench to the clinics.
Collapse
Affiliation(s)
- Katharina Eva Ruppel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
- *Correspondence: Dominik Schmiedel,
| |
Collapse
|
36
|
Targeting hypersialylation in multiple myeloma represents a novel approach to enhance NK cell-mediated tumor responses. Blood Adv 2022; 6:3352-3366. [PMID: 35294519 PMCID: PMC9198929 DOI: 10.1182/bloodadvances.2021006805] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Hypersialylation in MM facilitates immune evasion of NK cells but can be overcome by targeted desialylation or genetic deletion of Siglec-7. Desialylation unmasks CD38 expression on MM cells, enhancing NK cell–mediated ADCC induced by CD38 targeting of monoclonal antibodies.
Abnormal glycosylation is a hallmark of cancer, and the hypersialylated tumor cell surface facilitates abnormal cell trafficking and drug resistance in several malignancies, including multiple myeloma (MM). Furthermore, hypersialylation has also been implicated in facilitating evasion of natural killer (NK) cell–mediated immunosurveillance but not in MM to date. In this study, we explore the role of hypersialylation in promoting escape from NK cells. We document strong expression of sialic acid-derived ligands for Siglec-7 (Siglec-7L) on primary MM cells and MM cell lines, highlighting the possibility of Siglec-7/Siglec-7L interactions in the tumor microenvironment. Interactomics experiments in MM cell lysates revealed PSGL-1 as the predominant Siglec-7L in MM. We show that desialylation, using both a sialidase and sialyltransferase inhibitor (SIA), strongly enhances NK cell–mediated cytotoxicity against MM cells. Furthermore, MM cell desialylation results in increased detection of CD38, a well-validated target in MM. Desialylation enhanced NK cell cytotoxicity against CD38+ MM cells after treatment with the anti-CD38 monoclonal antibody daratumumab. Additionally, we show that MM cells with low CD38 expression can be treated with all trans-retinoic acid (ATRA), SIA and daratumumab to elicit a potent NK cell cytotoxic response. Finally, we demonstrate that Siglec-7KO potentiates NK cell cytotoxicity against Siglec-7L+ MM cells. Taken together, our work shows that desialylation of MM cells is a promising novel approach to enhance NK cell efficacy against MM, which can be combined with frontline therapies to elicit a potent anti-MM response.
Collapse
|
37
|
Volkhina IV, Butolin EG. [Clinical and diagnostic significance of sialic acids determination in biological material]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:7-17. [PMID: 35221292 DOI: 10.18097/pbmc20226801007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sialic acids (SA) are derivatives of neuraminic acid; they are located at the terminal position in the chains of monosaccharide residues of various glycoconjugates. SA play a dual role, they either mask recognition sites, or, on the contrary, represent biological targets that can be recognized by receptor proteins and serve as ligands. The desialylation/sialylation processes can be viewed as a dynamic modification regulated by sialyltransferases and sialidases in response to external or internal stimuli. This review describes the structural and functional diversity and the potential use of SA fractions as biomarkers for various pathological conditions. Almost any extreme effects on the body and inflammatory processes lead to an increase in the level of both total and free SA in the blood and tissues. Possible reasons for the increase of sialoglycoconjugate metabolism indicators in biological material include activation of the hepatocyte synthesis and secretion of various acute-phase proteins, many of which are sialoglycoproteins, violation of the membrane integrity and destruction of body cells, and also high activity of sialidases (neurominidases) and sialyltransferases. Most acute and chronic liver diseases are characterized by the decrease in the total level of SA in the blood serum (because many plasma proteins are synthesized and glycosylated in hepatocytes). Aberrant sialylation results in changes of sialoglycoconjugate structure, its ability to perform biological functions and half-life. Glycosylation is the most common post-translational modification of proteins in the virus, which not only promotes the formation of specific conformation of viral proteins, but also modulates their interaction with receptors and affects host cell recognition, viral replication and infectivity. Serum total SA concentration increases in some benign and inflammatory conditions, which indicates a lack of specificity and limits their use for early detection and screening of neoplastic diseases. Nevertheless, determining blood SA level and measuring concentration of existing biomarkers can be used to improve diagnostic indicators, to stage and monitor therapeutic response in some types of cancer, when the need for specificity is less than for diagnosis. Clinical and diagnostic value of determining the sialoglycoconjugate metabolic indicators, including changes in the content of both SA fractions and specific proteins in various biological fluids and tissues, lies in establishing the causes and mechanisms of biochemical changes in the body in certain diseases.
Collapse
Affiliation(s)
- I V Volkhina
- Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - E G Butolin
- Izhevsk State Medical Academy, Izhevsk, Russia
| |
Collapse
|
38
|
Choi Y, Kim J, Chae J, Hong J, Park J, Jeong E, Kim H, Tanaka M, Okochi M, Choi J. Surface glycan targeting for cancer nano-immunotherapy. J Control Release 2022; 342:321-336. [PMID: 34998918 DOI: 10.1016/j.jconrel.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy is an emerging therapeutic strategy for cancer treatment. Most of the immunotherapeutics approved by the FDA regulate the innate immune system and associated immune cell activity, with immune check inhibitors in particular having transformed the field of cancer immunotherapy due to their significant clinical potential. However, previously reported immunotherapeutics have exhibited undesirable side effects, including autoimmune toxicity and inflammation. Controlling these deleterious responses and designing therapeutics that can precisely target specific regions are thus crucial to improving the efficacy of cancer immunotherapies. Recent studies have reported that cancer cells employ glycan-immune checkpoint interactions to modulate immune cell activity. Thus, the recognition of cancer glycan moieties such as sialoglycans may improve the anticancer activity of immune cells. In this review, we discuss recent advances in cancer immunotherapies involving glycans and glycan-targeting technologies based on nanomaterial-assisted local delivery systems.
Collapse
Affiliation(s)
- Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jayoung Chae
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Joohye Hong
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jongjun Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Eunseo Jeong
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Hayoung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Koide R, Hirane N, Kambe D, Yokoi Y, Otaki M, Nishimura SI. Antiadhesive nanosome elicits role of glycocalyx of tumor cell-derived exosomes in the organotropic cancer metastasis. Biomaterials 2021; 280:121314. [PMID: 34906850 DOI: 10.1016/j.biomaterials.2021.121314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Despite emerging importance of tumor cells-derived exosomes in cancer metastasis, the heterogeneity of exosome populations has largely hampered systemic characterization of their molecular composition, biogenesis, and functions. This study communicates a novel method for predicting and targeting pre-metastatic sites based on an exosome model "fluorescent cancer glyconanosomes" displaying N-glycans of cultured tumor cells. Glycoblotting by antiadhesive quantum dots provides a nice tool to shed light on the pivotal functions of the glycocalyx reconstructed from four cancer cell types without bias due to other compositions of exosomes. In vivo imaging revealed that circulation, clearance, and organotropic biodistribution of cancer glyconanosomes in mice depend strongly on cancer cell-type-specific N-glycosylation patterns, the compositions of key glycotypes, particularly dominant abundances of high mannose-type N-glycans and the position-specific sialylation. Notably, organ biodistribution of cancer glyconanosomes is reproducible artificially by mimicking cancer cell-type-specific N-glycosylation patterns, demonstrating that nanosomal glycoblotting method serves as promising tools for predicting and targeting pre-metastatic sites determined by the glycocalyx of extracellular vesicles disseminated from the primary cancer site.
Collapse
Affiliation(s)
- Ryosuke Koide
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Nozomi Hirane
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Daiki Kambe
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Yasuhiro Yokoi
- ENU Pharma, Co., Ltd., N7 W6, Kita-ku, Sapporo, 060-0807, Japan
| | - Michiru Otaki
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 001-0021, Japan; ENU Pharma, Co., Ltd., N7 W6, Kita-ku, Sapporo, 060-0807, Japan.
| |
Collapse
|
40
|
Choi H, Ho M, Adeniji OS, Giron L, Bordoloi D, Kulkarni AJ, Puchalt AP, Abdel-Mohsen M, Muthumani K. Development of Siglec-9 Blocking Antibody to Enhance Anti-Tumor Immunity. Front Oncol 2021; 11:778989. [PMID: 34869028 PMCID: PMC8640189 DOI: 10.3389/fonc.2021.778989] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Sialic acid-binding Immunoglobulin-like lectin-9 (Siglec-9) is a glyco-immune negative checkpoint expressed on several immune cells. Siglec-9 exerts its inhibitory effects by binding to sialoglycan ligands expressed on cancer cells, enabling them to evade immunosurveillance. We developed a panel of human anti-Siglec-9 hybridoma clones by immunizing mice with Siglec-9-encoding DNA and Siglec-9 protein. The lead antibodies, with high specificity and functionality against Siglec-9, were identified through screening of clones. The in vitro cytotoxicity assays showed that our lead antibody enhances anti-tumor immune activity. Further, in vivo testing utilizing ovarian cancer humanized mouse model showed a drastic reduction in tumor volume. Together, we developed novel antibodies that augment anti-tumor immunity through interference with Siglec-9-mediated immunosuppression.
Collapse
Affiliation(s)
- Hyeree Choi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Michelle Ho
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Opeyemi S Adeniji
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Leila Giron
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Devivasha Bordoloi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Abhijeet J Kulkarni
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | | | - Mohamed Abdel-Mohsen
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
41
|
Cao X, Cordova AF, Li L. Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act. Chem Rev 2021; 122:3414-3458. [PMID: 34870969 DOI: 10.1021/acs.chemrev.1c00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The innate immune system is an organism's first line of defense against an onslaught of internal and external threats. The downstream adaptive immune system has been a popular target for therapeutic intervention, while there is a relative paucity of therapeutics targeting the innate immune system. However, the innate immune system plays a critical role in many human diseases, such as microbial infection, cancer, and autoimmunity, highlighting the need for ongoing therapeutic research. In this review, we discuss the major innate immune pathways and detail the molecular strategies underpinning successful therapeutics targeting each pathway as well as previous and ongoing efforts. We will also discuss any recent discoveries that could inform the development of novel therapeutic strategies. As our understanding of the innate immune system continues to develop, we envision that therapies harnessing the power of the innate immune system will become the mainstay of treatment for a wide variety of human diseases.
Collapse
|
42
|
Jung J, Enterina JR, Bui DT, Mozaneh F, Lin PH, Nitin, Kuo CW, Rodrigues E, Bhattacherjee A, Raeisimakiani P, Daskhan GC, St. Laurent CD, Khoo KH, Mahal LK, Zandberg WF, Huang X, Klassen JS, Macauley MS. Carbohydrate Sulfation As a Mechanism for Fine-Tuning Siglec Ligands. ACS Chem Biol 2021; 16:2673-2689. [PMID: 34661385 DOI: 10.1021/acschembio.1c00501] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The immunomodulatory family of Siglecs recognizes sialic acid-containing glycans as "self", which is exploited in cancer for immune evasion. The biochemical nature of Siglec ligands remains incompletely understood, with emerging evidence suggesting the importance of carbohydrate sulfation. Here, we investigate how specific sulfate modifications affect Siglec ligands by overexpressing eight carbohydrate sulfotransferases (CHSTs) in five cell lines. Overexpression of three CHSTs─CHST1, CHST2, or CHST4─significantly enhance the binding of numerous Siglecs. Unexpectedly, two other CHSTs (Gal3ST2 and Gal3ST3) diminish Siglec binding, suggesting a new mode to modulate Siglec ligands via sulfation. Results are cell type dependent, indicating that the context in which sulfated glycans are presented is important. Moreover, a pharmacological blockade of N- and O-glycan maturation reveals a cell-type-specific pattern of importance for either class of glycan. Production of a highly homogeneous Siglec-3 (CD33) fragment enabled a mass-spectrometry-based binding assay to determine ≥8-fold and ≥2-fold enhanced affinity for Neu5Acα2-3(6-O-sulfo)Galβ1-4GlcNAc and Neu5Acα2-3Galβ1-4(6-O-sulfo)GlcNAc, respectively, over Neu5Acα2-3Galβ1-4GlcNAc. CD33 shows significant additivity in affinity (≥28-fold) for the disulfated ligand, Neu5Acα2-3(6-O-sulfo)Galβ1-4(6-O-sulfo)GlcNAc. Moreover, joint overexpression of CHST1 with CHST2 in cells greatly enhanced the binding of CD33 and several other Siglecs. Finally, we reveal that CHST1 is upregulated in numerous cancers, correlating with poorer survival rates and sodium chlorate sensitivity for the binding of Siglecs to cancer cell lines. These results provide new insights into carbohydrate sulfation as a general mechanism for tuning Siglec ligands on cells, including in cancer.
Collapse
Affiliation(s)
- Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Jhon R. Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2J7, Canada
| | - Duong T. Bui
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Fahima Mozaneh
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Po-Han Lin
- Departments of Chemistry and Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Nitin
- Department of Chemistry, The University of British Columbia, Kelowna, V1V 1V7, Canada
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Emily Rodrigues
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | | | | | - Gour C. Daskhan
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | | | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Wesley F. Zandberg
- Department of Chemistry, The University of British Columbia, Kelowna, V1V 1V7, Canada
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - John S. Klassen
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Matthew S. Macauley
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2J7, Canada
| |
Collapse
|
43
|
Lim J, Sari-Ak D, Bagga T. Siglecs as Therapeutic Targets in Cancer. BIOLOGY 2021; 10:1178. [PMID: 34827170 PMCID: PMC8615218 DOI: 10.3390/biology10111178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023]
Abstract
Hypersialylation is a common post-translational modification of protein and lipids found on cancer cell surfaces, which participate in cell-cell interactions and in the regulation of immune responses. Sialic acids are a family of nine-carbon α-keto acids found at the outermost ends of glycans attached to cell surfaces. Given their locations on cell surfaces, tumor cells aberrantly overexpress sialic acids, which are recognized by Siglec receptors found on immune cells to mediate broad immunomodulatory signaling. Enhanced sialylation exposed on cancer cell surfaces is exemplified as "self-associated molecular pattern" (SAMP), which tricks Siglec receptors found on leukocytes to greatly down-regulate immune responsiveness, leading to tumor growth. In this review, we focused on all 15 human Siglecs (including Siglec XII), many of which still remain understudied. We also highlighted strategies that disrupt the course of Siglec-sialic acid interactions, such as antibody-based therapies and sialic acid mimetics leading to tumor cell depletion. Herein, we introduced the central roles of Siglecs in mediating pro-tumor immunity and discussed strategies that target these receptors, which could benefit improved cancer immunotherapy.
Collapse
Affiliation(s)
- Jackwee Lim
- Singapore Immunology Network, A*STAR, 8a Biomedical Grove, Singapore 138648, Singapore;
| | - Duygu Sari-Ak
- Department of Medical Biology, School of Medicine, University of Health Sciences, Istanbul 34668, Turkey;
| | - Tanaya Bagga
- Singapore Immunology Network, A*STAR, 8a Biomedical Grove, Singapore 138648, Singapore;
| |
Collapse
|
44
|
Adeniji OS, Kuri-Cervantes L, Yu C, Xu Z, Ho M, Chew GM, Shikuma C, Tomescu C, George AF, Roan NR, Ndhlovu LC, Liu Q, Muthumani K, Weiner DB, Betts MR, Xiao H, Abdel-Mohsen M. Siglec-9 defines and restrains a natural killer subpopulation highly cytotoxic to HIV-infected cells. PLoS Pathog 2021; 17:e1010034. [PMID: 34762717 PMCID: PMC8584986 DOI: 10.1371/journal.ppat.1010034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Siglec-9 is an MHC-independent inhibitory receptor expressed on a subset of natural killer (NK) cells. Siglec-9 restrains NK cytotoxicity by binding to sialoglycans (sialic acid-containing glycans) on target cells. Despite the importance of Siglec-9 interactions in tumor immune evasion, their role as an immune evasion mechanism during HIV infection has not been investigated. Using in vivo phenotypic analyses, we found that Siglec-9+ CD56dim NK cells, during HIV infection, exhibit an activated phenotype with higher expression of activating receptors and markers (NKp30, CD38, CD16, DNAM-1, perforin) and lower expression of the inhibitory receptor NKG2A, compared to Siglec-9- CD56dim NK cells. We also found that levels of Siglec-9+ CD56dim NK cells inversely correlate with viral load during viremic infection and CD4+ T cell-associated HIV DNA during suppressed infection. Using in vitro cytotoxicity assays, we confirmed that Siglec-9+ NK cells exhibit higher cytotoxicity towards HIV-infected cells compared to Siglec-9- NK cells. These data are consistent with the notion that Siglec-9+ NK cells are highly cytotoxic against HIV-infected cells. However, blocking Siglec-9 enhanced NK cells' ability to lyse HIV-infected cells, consistent with the known inhibitory function of the Siglec-9 molecule. Together, these data support a model in which the Siglec-9+ CD56dim NK subpopulation is highly cytotoxic against HIV-infected cells even whilst being restrained by the inhibitory effects of Siglec-9. To harness the cytotoxic capacity of the Siglec-9+ NK subpopulation, which is dampened by Siglec-9, we developed a proof-of-concept approach to selectively disrupt Siglec/sialoglycan interactions between NK and HIV-infected cells. We achieved this goal by conjugating Sialidase to several HIV broadly neutralizing antibodies. These conjugates selectively desialylated HIV-infected cells and enhanced NK cells' capacity to kill them. In summary, we identified a novel, glycan-based interaction that may contribute to HIV-infected cells' ability to evade NK immunosurveillance and developed an approach to break this interaction.
Collapse
Affiliation(s)
- Opeyemi S. Adeniji
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Chenfei Yu
- Rice University, Houston, Texas, United States of America
| | - Ziyang Xu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michelle Ho
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Glen M. Chew
- University of Hawaii, Honolulu, Hawaii, United States of America
| | - Cecilia Shikuma
- University of Hawaii, Honolulu, Hawaii, United States of America
| | - Costin Tomescu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Ashley F. George
- Gladstone Institutes, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
| | - Nadia R. Roan
- Gladstone Institutes, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
| | - Lishomwa C. Ndhlovu
- University of Hawaii, Honolulu, Hawaii, United States of America
- Weill Cornell Medicine, New York, New York, United States of America
| | - Qin Liu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Kar Muthumani
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David B. Weiner
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Betts
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Han Xiao
- Rice University, Houston, Texas, United States of America
| | - Mohamed Abdel-Mohsen
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
45
|
Karmakar S, Pal P, Lal G. Key Activating and Inhibitory Ligands Involved in the Mobilization of Natural Killer Cells for Cancer Immunotherapies. Immunotargets Ther 2021; 10:387-407. [PMID: 34754837 PMCID: PMC8570289 DOI: 10.2147/itt.s306109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are the most potent arm of the innate immune system and play an important role in immunity, alloimmunity, autoimmunity, and cancer. NK cells recognize “altered-self” cells due to oncogenic transformation or stress due to viral infection and target to kill them. The effector functions of NK cells depend on the interaction of the activating and inhibitory receptors on their surface with their cognate ligand expressed on the target cells. These activating and inhibitory receptors interact with major histocompatibility complex I (MHC I) expressed on the target cells and make decisions to mount an immune response. NK cell immune response includes cytolytic activity and secretion of cytokines to help with the ongoing immune response. The advancement of our knowledge on the expression of inhibitory and activating molecules led us to exploit these molecules in the treatment of cancer. This review discusses the importance of activating and inhibitory receptors on NK cells and their clinical importance in cancer immunotherapy.
Collapse
Affiliation(s)
- Surojit Karmakar
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| | - Pradipta Pal
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| |
Collapse
|
46
|
Buckle I, Guillerey C. Inhibitory Receptors and Immune Checkpoints Regulating Natural Killer Cell Responses to Cancer. Cancers (Basel) 2021; 13:cancers13174263. [PMID: 34503073 PMCID: PMC8428224 DOI: 10.3390/cancers13174263] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recent years marked the discovery and increased understanding of the role immune checkpoints play in immunity against cancer. This has revolutionized cancer treatment, saving the lives of many patients. For numerous years the spotlight of success has been directed towards T cells; however, it is now appreciated that other cells play vital roles in this protection. In this review we focused on cytotoxic lymphocytes Natural Killer (NK) cells, which are known to be well equipped in the fight against cancer. We explored the role of well-described and newly emerging inhibitory receptors, including immune checkpoints in regulating NK cell activity against cancer. The knowledge summarized in this review should guide the development of immunotherapies targeting inhibitory receptors with the aim of restoring NK cell responses in cancer patients. Abstract The discovery of immune checkpoints provided a breakthrough for cancer therapy. Immune checkpoints are inhibitory receptors that are up-regulated on chronically stimulated lymphocytes and have been shown to hinder immune responses to cancer. Monoclonal antibodies against the checkpoint molecules PD-1 and CTLA-4 have shown early clinical success against melanoma and are now approved to treat various cancers. Since then, the list of potential candidates for immune checkpoint blockade has dramatically increased. The current paradigm stipulates that immune checkpoint blockade therapy unleashes pre-existing T cell responses. However, there is accumulating evidence that some of these immune checkpoint molecules are also expressed on Natural Killer (NK) cells. In this review, we summarize our latest knowledge about targetable NK cell inhibitory receptors. We discuss the HLA-binding receptors KIRS and NKG2A, receptors binding to nectin and nectin-like molecules including TIGIT, CD96, and CD112R, and immune checkpoints commonly associated with T cells such as PD-1, TIM-3, and LAG-3. We also discuss newly discovered pathways such as IL-1R8 and often overlooked receptors such as CD161 and Siglecs. We detail how these inhibitory receptors might regulate NK cell responses to cancer, and, where relevant, we discuss their implications for therapeutic intervention.
Collapse
|
47
|
Volkhina IV, Butolin EG, Danilova LA. Prospects for the use of indicators of sialic acid metabolism in medicine (review of literature). Klin Lab Diagn 2021; 66:389-395. [PMID: 34292679 DOI: 10.51620/0869-2084-2021-66-7-389-395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sialic acids (SA) determine the degree of molecular hydrophilia, relieve binding together and their transportation, they increase mucin viscosity, stabilize the protein and membrane structure. Apart from that, SA are structural components of gangliosides participating in the formation of the outer layer of the plasma membrane. The degree of silyliation of glycoproteins and glycolipids is an important factor of molecular recognition in the cell, between the cells, between a cell and territorial matrix, as well as between a cell and some outer pathogenic factors. They can either mask the sites of recognition or be determinants of recognition. The most well-studied enzymes taking part in the SA metabolism and sialo-containing compounds are N-acetylneuraminate, cythydiltransferase, sialyltransferase, sialydase, aldolase SA and sialyl-O-acetylesterase. Numerous investigations have shown that aberrant sialylation is a specific feature of various changes and disorders of metabolism. Besides that, sialic acids are the first point of contact for different pathogenic microorganisms and the host's body due to their presence on the external surface of the cells and tissue of the mucous membrane. That is why the study of the above-mentioned various sialic acids fractions as well as of the activity of the enzymes participating in their metabolism in the blood plasma and tissues, and of the influence on the activity of these enzymes with the help of medicine can make an essential contribution to the diagnosis and treatment of many diseases.
Collapse
Affiliation(s)
- I V Volkhina
- Saint-Petersburg State Pediatric Medical University
| | | | - L A Danilova
- Saint-Petersburg State Pediatric Medical University
| |
Collapse
|
48
|
The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect Immun 2021; 89:e0011621. [PMID: 34031129 DOI: 10.1128/iai.00116-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp. are the leading cause of bacterium-derived gastroenteritis worldwide, impacting 96 million individuals annually. Unlike other bacterial pathogens of the gastrointestinal tract, Campylobacter spp. lack many of the classical virulence factors that are often associated with the ability to induce disease in humans, including an array of canonical secretion systems and toxins. Consequently, the clinical manifestations of human campylobacteriosis and its resulting gastrointestinal pathology are believed to be primarily due to the host immune response toward the bacterium. Further, while gastrointestinal infection is usually self-limiting, numerous postinfectious disorders can occur, including the development of Guillain-Barré syndrome, reactive arthritis, and irritable bowel syndrome. Because gastrointestinal disease likely results from the host immune response, the development of these postinfectious disorders may be due to dysregulation or misdirection of the same inflammatory response. As a result, it is becoming increasingly important to the Campylobacter field, and human health, that the cellular immune responses toward Campylobacter be better understood, including which immunological events are critical to the development of disease and the postinfectious disorders mentioned above. In this review, we collectively cover the cellular immune responses across susceptible hosts to Campylobacter jejuni infection, along with the tissue pathology and postinfectious disorders which may develop.
Collapse
|
49
|
Yang L, Feng Y, Wang S, Jiang S, Tao L, Li J, Wang X. Siglec-7 is an indicator of natural killer cell function in acute myeloid leukemia. Int Immunopharmacol 2021; 99:107965. [PMID: 34273636 DOI: 10.1016/j.intimp.2021.107965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Immune dysfunction is an established risk factor in acute myeloid leukemia (AML). The cytotoxicity of natural killer (NK) cells is greatly impaired in AML, and the profile of NK cell receptors is markedly altered in AML; however, this is not yet well characterized. In this study, we found the downregulation of Siglec-7 could be utilized as a potential marker of NK cell dysfunction in AML. The absolute numbers and percentages of NK cells were declined in the peripheral blood of patients with AML, and the levels of activating receptors NKG2D, NKp46, and NKp30 were reduced in NK cells from patients with AML compared with healthy controls. In contrast, the levels of inhibitory receptors TIM-3, ILT-4, ILT-5, and PD-1 were increased in NK cells from patients with AML. Of note, the level of Siglec-7 in NK cells from patients with AML was significantly lower than that in NK cells from healthy controls, and Siglec-7+ NK cells displayed higher levels of activating receptors and stronger cytotoxicity when compared with Siglec-7- NK cells. Our data indicate that decreased Siglec-7 level may predict NK cell dysfunction in AML, and NK cells may be promising targets of immunotherapy for AML.
Collapse
Affiliation(s)
- Liu Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanyuan Feng
- Department of Hematology, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - Shanshan Wang
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Shanyue Jiang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Longxiang Tao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Jing Li
- School of Life Sciences, Anhui Medical University, Hefei 230032, Anhui, China.
| | - Xuefu Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
50
|
Xiao N, Zhu X, Li K, Chen Y, Liu X, Xu B, Lei M, Xu J, Sun HC. Blocking siglec-10 hi tumor-associated macrophages improves anti-tumor immunity and enhances immunotherapy for hepatocellular carcinoma. Exp Hematol Oncol 2021; 10:36. [PMID: 34112250 PMCID: PMC8191104 DOI: 10.1186/s40164-021-00230-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) promote key processes in the modulation of tumor microenvironment (TME). However, the clinical significance of heterogeneous subpopulations of TAMs in hepatocellular carcinoma (HCC) remains unknown. METHODS HCC tissues from Zhongshan Hospital and data from The Cancer Genome Atlas were obtained and analyzed. Immunohistochemistry and flow cytometry were performed to detect the characteristics of sialic acid-binding immunoglobulin-like lectin 10high (Siglec-10hi) TAMs and explore their impact on the TME of HCC. The effect of Siglec-10 blockade was evaluated in vitro based on fresh human tumor tissues. RESULTS Our data revealed that Siglec-10 was abundant in a large proportion of HCC specimens and prominently distributed on macrophages. Kaplan-Meier curves and Cox regression analysis showed that intratumoral Siglec-10+ cell enrichment was associated with unfavorable prognosis in patients with HCC. Notably, multiple anti-inflammatory cytokines and inhibitory receptors were enriched in Siglec-10hi TAMs. RNA sequencing data also revealed that numerous M2-like signaling pathways were significantly upregulated in Siglec-10hi TAMs. High infiltration of Siglec-10hi TAMs was associated with impaired CD8+ T cell function in HCC. Of note, blocking Siglec-10 with the competitive binding antibody Siglec-10 Fc led to decreased expression of immunosuppressive molecules and increased the cytotoxic effects of CD8+ T cells against HCC cells. Moreover, blocking Siglec-10 promoted the anti-tumor efficacy of the programmed cell death protein 1 (PD-1) inhibitor pembrolizumab. CONCLUSIONS Siglec-10hi TAMs are associated with immune suppression in the TME, and indicate poor prognosis in patients with HCC. Targeting Siglec-10hi TAMs may serve as a promising immunotherapy approach for HCC.
Collapse
Affiliation(s)
- Nan Xiao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Xiaodong Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Kangshuai Li
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yifan Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuefeng Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Bin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ming Lei
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China.
| |
Collapse
|