1
|
Wang X, Wang Q, Gao Y, Jiang L, Tang L. Profile of STING agonist and inhibitor research: a bibliometric analysis. Front Pharmacol 2025; 16:1528459. [PMID: 40008133 PMCID: PMC11850258 DOI: 10.3389/fphar.2025.1528459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Background STING is a core signaling hub molecule in the innate immune system, involved in various diseases, including infectious diseases, autoimmune diseases, tumors, aging, organ fibrosis, and neurodegenerative diseases. Its activation has shown great potential in anti-tumor and anti-infective therapies, with STING agonists emerging as a promising approach in cancer immunotherapy in recent years. This study identifies research trends and potential directions in the field by collecting and analyzing relevant literature. Methods A total of 527 publications regarding STING agonists and 107 about inhibitors were retrieved from the WOS Core Collection database. Bibliometric information was extracted with CiteSpace and VOSviewer software for visualization. Results It shows that research on both STING agonists and inhibitors is burgeoning rapidly. The United States and China are leading contributors in this field. Application of STING agonists primarily focuses on cancer immunotherapy, while STING inhibitors target inflammation, particularly neuroinflammation and acute lung injury. Conclusion Current research emphasizes optimizing STING agonists for permeability, efficacy, and safety, with nanotechnology and lipid nanoparticles being prominent delivery techniques. Future research is expected to focus on drug development and clinical applications. This comprehensive bibliometric analysis provides clinical insights and a guide for further investigation to STING agonist/inhibitor.
Collapse
Affiliation(s)
| | | | | | | | - Lingli Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
2
|
Tian T, Zhu Y, Shi J, Shang K, Yin Z, Shi H, He Y, Ding J, Zhang F. The development of a human Brucella mucosal vaccine: What should be considered? Life Sci 2024; 355:122986. [PMID: 39151885 DOI: 10.1016/j.lfs.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Brucellosis is a chronic infectious disease that is zoonotic in nature. Brucella can infect humans through interactions with livestock, primarily via the digestive tract, respiratory tract, and oral cavity. This bacterium has the potential to be utilized as a biological weapon and is classified as a Category B pathogen by the Centers for Disease Control and Prevention. Currently, there is no approved vaccine for humans against Brucella, highlighting an urgent need for the development of a vaccine to mitigate the risks posed by this pathogen. Brucella primarily infects its host by adhering to and penetrating mucosal surfaces. Mucosal immunity plays a vital role in preventing local infections, clearing microorganisms from mucosal surfaces, and inhibiting the spread of pathogens. As mucosal vaccine strategies continue to evolve, the development of a safe and effective mucosal vaccine against Brucella appears promising.This paper reviews the immune mechanism of mucosal vaccines, the infection mechanism of Brucella, successful Brucella mucosal vaccines in animals, and mucosal adjuvants. Additionally, it elucidates targeting and optimization strategies for mucosal vaccines to facilitate the development of human vaccines against Brucella.
Collapse
Affiliation(s)
- Tingting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yuejie Zhu
- Reproductive Fertility Assistance Center, First Afffliated Hospital of Xinjiang Medical University, China
| | - Juan Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Kaiyu Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Zhengwei Yin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Huidong Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yueyue He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Jianbing Ding
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China; Department of Clinical laboratory, The First Affiliated hospital of Xinjiang Medical University, China.
| |
Collapse
|
3
|
Sefat KMSR, Kumar M, Kehl S, Kulkarni R, Leekha A, Paniagua MM, Ackart DF, Jones N, Spencer C, Podell BK, Ouellet H, Varadarajan N. An intranasal nanoparticle vaccine elicits protective immunity against Mycobacterium tuberculosis. Vaccine 2024; 42:125909. [PMID: 38704256 DOI: 10.1016/j.vaccine.2024.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
Mucosal vaccines have the potential to elicit protective immune responses at the point of entry of respiratory pathogens, thus preventing even the initial seed infection. Unlike licensed injectable vaccines, mucosal vaccines comprising protein subunits are only in development. One of the primary challenges associated with mucosal vaccines has been identifying and characterizing safe yet effective mucosal adjuvants that can effectively prime multi-factorial mucosal immunity. In this study, we tested NanoSTING, a liposomal formulation of the endogenous activator of the stimulator of interferon genes (STING) pathway, cyclic guanosine adenosine monophosphate (cGAMP), as a mucosal adjuvant. We formulated a vaccine based on the H1 antigen (fusion protein of Ag85b and ESAT-6) adjuvanted with NanoSTING. Intranasal immunization of NanoSTING-H1 elicited a strong T-cell response in the lung of vaccinated animals characterized by (a) CXCR3+ KLRG1- lung resident T cells that are known to be essential for controlling bacterial infection, (b) IFNγ-secreting CD4+ T cells which is necessary for intracellular bactericidal activity, and (c) IL17-secreting CD4+ T cells that can confer protective immunity against multiple clinically relevant strains of Mtb. Upon challenge with aerosolized Mycobacterium tuberculosis Erdman strain, intranasal NanoSTING-H1 provides protection comparable to subcutaneous administration of the live attenuated Mycobacterium bovis vaccine strain Bacille-Calmette-Guérin (BCG). Our results indicate that NanoSTING adjuvanted protein vaccines can elicit a multi-factorial immune response that protects from infection by M. tuberculosis.
Collapse
Affiliation(s)
- K M Samiur Rahman Sefat
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - Monish Kumar
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - Stephanie Kehl
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Rohan Kulkarni
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - Ankita Leekha
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - Melisa-Martinez Paniagua
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - David F Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Nicole Jones
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Charles Spencer
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Hugues Ouellet
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA.
| |
Collapse
|
4
|
Luo J, Zhang M, Ye Q, Gao F, Xu W, Li B, Wang Q, Zhao L, Tan WS. A synthetic TLR4 agonist significantly increases humoral immune responses and the protective ability of an MDCK-cell-derived inactivated H7N9 vaccine in mice. Arch Virol 2024; 169:163. [PMID: 38990396 DOI: 10.1007/s00705-024-06082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024]
Abstract
Antigenically divergent H7N9 viruses pose a potential threat to public health, with the poor immunogenicity of candidate H7N9 vaccines demonstrated in clinical trials underscoring the urgent need for more-effective H7N9 vaccines. In the present study, mice were immunized with various doses of a suspended-MDCK-cell-derived inactivated H7N9 vaccine, which was based on a low-pathogenic H7N9 virus, to assess cross-reactive immunity and cross-protection against antigenically divergent H7N9 viruses. We found that the CRX-527 adjuvant, a synthetic TLR4 agonist, significantly enhanced the humoral immune responses of the suspended-MDCK-cell-derived H7N9 vaccine, with significant antigen-sparing and immune-enhancing effects, including robust virus-specific IgG, hemagglutination-inhibiting (HI), neuraminidase-inhibiting (NI), and virus-neutralizing (VN) antibody responses, which are crucial for protection against influenza virus infection. Moreover, the CRX-527-adjuvanted H7N9 vaccine also elicited cross-protective immunity and cross-protection against a highly pathogenic H7N9 virus with a single vaccination. Notably, NI and VN antibodies might play an important role in cross-protection against lethal influenza virus infections. This study showed that a synthetic TLR4 agonist adjuvant has a potent immunopotentiating effect, which might be considered worth further development as a means of increasing vaccine effectiveness.
Collapse
Affiliation(s)
- Jian Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Institute of Biological Products, Shanghai, China
| | - Min Zhang
- Shanghai Institute of Biological Products, Shanghai, China
| | - Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Feixia Gao
- Shanghai Institute of Biological Products, Shanghai, China
| | - Wenting Xu
- Shanghai Institute of Biological Products, Shanghai, China
| | - Beibei Li
- Shanghai Institute of Biological Products, Shanghai, China
| | - Qi Wang
- Shanghai Institute of Biological Products, Shanghai, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
5
|
Qin L, Sun Y, Gao N, Ling G, Zhang P. Nanotechnology of inhalable vaccines for enhancing mucosal immunity. Drug Deliv Transl Res 2024; 14:597-620. [PMID: 37747597 DOI: 10.1007/s13346-023-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Vaccines are the cornerstone of world health. The majority of vaccines are formulated as injectable products, facing the drawbacks of cold chain transportation, needle-stick injuries, and primary systemic immunity. Inhalable vaccines exhibited unique advantages due to their small dose, easy to use, quick effect, and simultaneous induction of mucosal and systemic responses. Facing global pandemics, especially the coronavirus disease 2019 (COVID-19), a majority of inhalable vaccines are in preclinical or clinical trials. A better understanding of advanced delivery technologies of inhalable vaccines may provide new scientific insights for developing inhalable vaccines. In this review article, detailed immune mechanisms involving mucosal, cellular, and humoral immunity were described. The preparation methods of inhalable vaccines were then introduced. Advanced nanotechnologies of inhalable vaccines containing inhalable nucleic acid vaccines, inhalable adenovirus vector vaccines, novel adjuvant-assisted inhalable vaccines, and biomaterials for inhalable vaccine delivery were emphatically discussed. Meanwhile, the latest clinical progress in inhalable vaccines for COVID-19 and tuberculosis was discussed.
Collapse
Affiliation(s)
- Li Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co. Ltd., No. 243, Gongyebei Road, Jinan, 250100, China
| | - Nan Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
6
|
Liu J, Zhou J, Luan Y, Li X, Meng X, Liao W, Tang J, Wang Z. cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation. Cell Commun Signal 2024; 22:22. [PMID: 38195584 PMCID: PMC10775518 DOI: 10.1186/s12964-023-01466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Intracellular DNA-sensing pathway cGAS-STING, inflammasomes and pyroptosis act as critical natural immune signaling axes for microbial infection, chronic inflammation, cancer progression and organ degeneration, but the mechanism and regulation of the crosstalk network remain unclear. Cellular stress disrupts mitochondrial homeostasis, facilitates the opening of mitochondrial permeability transition pore and the leakage of mitochondrial DNA to cell membrane, triggers inflammatory responses by activating cGAS-STING signaling, and subsequently induces inflammasomes activation and the onset of pyroptosis. Meanwhile, the inflammasome-associated protein caspase-1, Gasdermin D, the CARD domain of ASC and the potassium channel are involved in regulating cGAS-STING pathway. Importantly, this crosstalk network has a cascade amplification effect that exacerbates the immuno-inflammatory response, worsening the pathological process of inflammatory and autoimmune diseases. Given the importance of this crosstalk network of cGAS-STING, inflammasomes and pyroptosis in the regulation of innate immunity, it is emerging as a new avenue to explore the mechanisms of multiple disease pathogenesis. Therefore, efforts to define strategies to selectively modulate cGAS-STING, inflammasomes and pyroptosis in different disease settings have been or are ongoing. In this review, we will describe how this mechanistic understanding is driving possible therapeutics targeting this crosstalk network, focusing on the interacting or regulatory proteins, pathways, and a regulatory mitochondrial hub between cGAS-STING, inflammasomes, and pyroptosis. SHORT CONCLUSION This review aims to provide insight into the critical roles and regulatory mechanisms of the crosstalk network of cGAS-STING, inflammasomes and pyroptosis, and to highlight some promising directions for future research and intervention.
Collapse
Affiliation(s)
- Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Zhou
- The Second Hospital of Ningbo, Ningbo, 315099, China
| | - Yuling Luan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zheilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
7
|
Kawai A, Tokunoh N, Kawahara E, Tamiya S, Okamura S, Ono C, Anindita J, Tanaka H, Akita H, Yamasaki S, Kunisawa J, Okamoto T, Matsuura Y, Hirai T, Yoshioka Y. Intranasal immunization with an RBD-hemagglutinin fusion protein harnesses preexisting immunity to enhance antigen-specific responses. J Clin Invest 2023; 133:e166827. [PMID: 38038133 PMCID: PMC10688985 DOI: 10.1172/jci166827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/27/2023] [Indexed: 12/02/2023] Open
Abstract
Intranasal vaccines are anticipated to be powerful tools for combating many infectious diseases, including SARS-CoV-2, because they induce not only systemic immunity but also mucosal immunity at the site of initial infection. However, they are generally inefficient in inducing an antigen-specific immune response without adjuvants. Here, we developed an adjuvant-free intranasal vaccine platform that utilizes the preexisting immunity induced by previous infection or vaccination to enhance vaccine effectiveness. We made RBD-HA, a fusion of the receptor-binding domain (RBD) of spike derived from SARS-CoV-2 as a vaccine target with HA derived from influenza A virus (IAV) as a carrier protein. Intranasal immunization of previously IAV-infected mice with RBD-HA without an adjuvant elicited robust production of RBD-specific systemic IgG and mucosal IgA by utilizing both HA-specific preexisting IgG and CD4+ T cells. Consequently, the mice were efficiently protected from SARS-CoV-2 infection. Additionally, we demonstrated the high versatility of this intranasal vaccine platform by assessing various vaccine antigens and preexisting immunity associated with a variety of infectious diseases. The results of this study suggest the promising potential of this intranasal vaccine platform to address problems associated with intranasal vaccines.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, and
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nagisa Tokunoh
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Eigo Kawahara
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, and
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shigeyuki Tamiya
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Shinya Okamura
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Chikako Ono
- Center for Infectious Disease Education and Research and
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jessica Anindita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Hidetaka Akita
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Sho Yamasaki
- Center for Infectious Disease Education and Research and
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, and
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Toru Okamoto
- Center for Infectious Disease Education and Research and
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research and
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Toshiro Hirai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, and
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, and
| | - Yasuo Yoshioka
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, and
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research and
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, and
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Huang C, Shao N, Huang Y, Chen J, Wang D, Hu G, Zhang H, Luo L, Xiao Z. Overcoming challenges in the delivery of STING agonists for cancer immunotherapy: A comprehensive review of strategies and future perspectives. Mater Today Bio 2023; 23:100839. [PMID: 38024837 PMCID: PMC10630661 DOI: 10.1016/j.mtbio.2023.100839] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
STING (Stimulator of Interferon Genes) agonists have emerged as promising agents in the field of cancer immunotherapy, owing to their excellent capacity to activate the innate immune response and combat tumor-induced immunosuppression. This review provides a comprehensive exploration of the strategies employed to develop effective formulations for STING agonists, with particular emphasis on versatile nano-delivery systems. The recent advancements in delivery systems based on lipids, natural/synthetic polymers, and proteins for STING agonists are summarized. The preparation methodologies of nanoprecipitation, self-assembly, and hydrogel, along with their advantages and disadvantages, are also discussed. Furthermore, the challenges and opportunities in developing next-generation STING agonist delivery systems are elaborated. This review aims to serve as a reference for researchers in designing novel and effective STING agonist delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Cuiqing Huang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Duo Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Genwen Hu
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Radiology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Hong Zhang
- Department of Interventional Vascular Surgery, The Sixth Affiliated Hospital of Jinan University, Dongguan, 523560, China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
9
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
10
|
Blest HTW, Chauveau L. cGAMP the travelling messenger. Front Immunol 2023; 14:1150705. [PMID: 37287967 PMCID: PMC10242147 DOI: 10.3389/fimmu.2023.1150705] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 06/09/2023] Open
Abstract
2'3'-cGAMP is a key molecule in the cGAS-STING pathway. This cyclic dinucleotide is produced by the cytosolic DNA sensor cGAS in response to the presence of aberrant dsDNA in the cytoplasm which is associated with microbial invasion or cellular damage. 2'3'-cGAMP acts as a second messenger and activates STING, the central hub of DNA sensing, to induce type-I interferons and pro-inflammatory cytokines necessary for responses against infection, cancer or cellular stress. Classically, detection of pathogens or danger by pattern recognition receptors (PRR) was thought to signal and induce the production of interferon and pro-inflammatory cytokines in the cell where sensing occurred. These interferon and cytokines then signal in both an autocrine and paracrine manner to induce responses in neighboring cells. Deviating from this dogma, recent studies have identified multiple mechanisms by which 2'3'-cGAMP can travel to neighboring cells where it activates STING independent of DNA sensing by cGAS. This observation is of great importance, as the cGAS-STING pathway is involved in immune responses against microbial invaders and cancer while its dysregulation drives the pathology of a wide range of inflammatory diseases to which antagonists have been elusive. In this review, we describe the fast-paced discoveries of the mechanisms by which 2'3'-cGAMP can be transported. We further highlight the diseases where they are important and detail how this change in perspective can be applied to vaccine design, cancer immunotherapies and treatment of cGAS-STING associated disease.
Collapse
Affiliation(s)
- Henry T. W. Blest
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lise Chauveau
- Institut de Recherche en Infectiologie de Montpellier (IRIM) - CNRS UMR 9004, Université de Montpellier, Montpellier, France
| |
Collapse
|
11
|
de Moura Rodrigues D, Lacerda-Queiroz N, Couillin I, Riteau N. STING Targeting in Lung Diseases. Cells 2022; 11:3483. [PMID: 36359882 PMCID: PMC9657237 DOI: 10.3390/cells11213483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 01/30/2024] Open
Abstract
The cGAS-STING pathway displays important functions in the regulation of innate and adaptive immunity following the detection of microbial and host-derived DNA. Here, we briefly summarize biological functions of STING and review recent literature highlighting its important contribution in the context of respiratory diseases. Over the last years, tremendous progress has been made in our understanding of STING activation, which has favored the development of STING agonists or antagonists with potential therapeutic benefits. Antagonists might alleviate STING-associated chronic inflammation and autoimmunity. Furthermore, pharmacological activation of STING displays strong antiviral properties, as recently shown in the context of SARS-CoV-2 infection. STING agonists also elicit potent stimulatory activities when used as an adjuvant promoting antitumor responses and vaccines efficacy.
Collapse
Affiliation(s)
- Dorian de Moura Rodrigues
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| | | | - Isabelle Couillin
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| | - Nicolas Riteau
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| |
Collapse
|
12
|
Padron-Regalado E, Ulaszewska M, Douglas AD, Hill AVS, Spencer AJ. STING-pathway modulation to enhance the immunogenicity of adenoviral-vectored vaccines. Sci Rep 2022; 12:14464. [PMID: 36002507 PMCID: PMC9401198 DOI: 10.1038/s41598-022-18750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
Traditional chemical adjuvants remain a practical means of enhancing the immunogenicity of vaccines. Nevertheless, it is recognized that increasing the immunogenicity of viral vectors is challenging. Recently, STING ligands have been shown to enhance the efficacy of different vaccine platforms, but their affectivity on viral-vectored vaccination has not been fully assessed. In this study we used a multi-pronged approach to shed light on the immunological properties and potential mechanisms of action of this type of adjuvant and focused our study on replication-deficient human adenovirus serotype 5 (AdHu5). When the STING ligand 2'3'-cGAMP was mixed with AdHu5, the adjuvant enhanced anti-vector immune responses while decreasing the transgene-specific CD8+ T cell response. Studies employing STING-knockout mice and a 2'3'-cGAMP inactive analogue confirmed the aforementioned effects were STING dependent. In vitro assays demonstrated 2'3'-cGAMP induced the production of IFN-β which in turn negatively affected AdHu5 transgene expression and CD8+ T cell immunogenicity. In an effort to overcome the negative impact of early 2'3'-cGAMP signaling on AdHu5 transgene immunogenicity, we generated a bicistronic vector encoding the 2'3'-cGAMP together with a model antigen. Intracellular production of 2'3'-cGAMP after AdHu5 infection was able to enhance transgene-specific CD8+ T cell immunogenicity, although not to a level that would warrant progression of this adjuvant to clinical assessment. This work highlights the importance of timing of 2'3'-cGAMP administration when assessing its adjuvant capacity with different vaccine modalities.
Collapse
Affiliation(s)
- Eriko Padron-Regalado
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Marta Ulaszewska
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alexander D Douglas
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alexandra J Spencer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Recent progress in application of nanovaccines for enhancing mucosal immune responses. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
The STING Ligand and Delivery System Synergistically Enhance the Immunogenicity of an Intranasal Spike SARS-CoV-2 Vaccine Candidate. Biomedicines 2022; 10:biomedicines10051142. [PMID: 35625879 PMCID: PMC9138454 DOI: 10.3390/biomedicines10051142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
The respiratory organ serves as a primary target site for SARS-CoV-2. Thus, the vaccine-stimulating immune response of the respiratory tract is significant in controlling SARS-CoV-2 transmission and disease development. In this study, mucoadhesive nanoparticles were used to deliver SARS-CoV-2 spike proteins (S-NPs) into the nasal tracts of mice. The responses in the respiratory organ and the systemic responses were monitored. The administration of S-NPs along with cGAMP conferred a robust stimulation of antibody responses in the respiratory tract, as demonstrated by an increase of IgA and IgG antibodies toward the spike proteins in bronchoalveolar lavages (BALs) and the lungs. Interestingly, the elicited antibodies were able to neutralize both the wild-type and Delta variant strains of SARS-CoV-2. Significantly, the intranasal immunization also stimulated systemic responses. This is evidenced by the increased production of circulating IgG and IgA, which were able to neutralize and bind specifically to the SARS-CoV-2 virion and spike protein. Additionally, this intranasal administration potently activated a splenic T cell response and the production of Th-1 cytokines, suggesting that this vaccine may well activate a cellular response in the respiratory tract. The results demonstrate that STING agonist strongly acts as an adjuvant to the immunogenicity of S-NPs. This platform may be an ideal vaccine against SARS-CoV-2.
Collapse
|
15
|
Jiang W, Wang X, Su Y, Cai L, Li J, Liang J, Gu Q, Sun M, Shi L. Intranasal Immunization With a c-di-GMP-Adjuvanted Acellular Pertussis Vaccine Provides Superior Immunity Against Bordetella pertussis in a Mouse Model. Front Immunol 2022; 13:878832. [PMID: 35493458 PMCID: PMC9043693 DOI: 10.3389/fimmu.2022.878832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pertussis, caused by the gram-negative bacterium Bordetella pertussis, is a highly contagious respiratory disease. Intranasal vaccination is an ideal strategy to prevent pertussis, as the nasal mucosa represents the first-line barrier to B. pertussis infection. The current intramuscular acellular pertussis (aP) vaccines elicit strong antibody and Th2-biased responses but not necessary cellular and mucosal immunity. Here, we formulated two cyclic dinucleotide (CDN)-adjuvanted aP subunit vaccines, a mammalian 2’,3’-cGAMP-adjuvanted aP vaccine and a bacterial-derived c-di-GMP-adjuvanted aP vaccine, and evaluated their immunogenicity in a mouse model. We found that the aP vaccine alone delivered intranasally (IN) induced moderate systemic and mucosal humoral immunity but weak cellular immunity, whereas the alum-adjuvanted aP vaccine administered intraperitoneally elicited higher Th2 and systemic humoral immune responses but weaker Th1 and Th17 and mucosal immune responses. In contrast, both CDN-adjuvanted aP vaccines administered via the IN route induced robust humoral and cellular immunity systemically and mucosally. Furthermore, the c-di-GMP-adjuvanted aP vaccine generated better antibody production and stronger Th1 and Th17 responses than the 2′,3′-cGAMP-adjuvanted aP vaccine. In addition, following B. pertussis challenge, the group of mice that received IN immunization with the c-di-GMP-adjuvanted aP vaccine showed better protection than all other groups of vaccinated mice, with decreased inflammatory cell infiltration in the lung and reduced bacterial burden in both the upper and lower respiratory tracts. In summary, the c-di-GMP-adjuvanted aP vaccine can elicit a multifaceted potent immune response resulting in robust bacterial clearance in the respiratory tract, which indicates that c-di-GMP can serve as a potential mucosal adjuvant for the pertussis vaccine.
Collapse
Affiliation(s)
- Wenwen Jiang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Xiaoyu Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Yuhao Su
- Laboratory of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Lukui Cai
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Jingyan Li
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Jiangli Liang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Qin Gu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Mingbo Sun
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.,Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Li Shi
- Laboratory of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| |
Collapse
|
16
|
Varma DM, Batty CJ, Stiepel RT, Graham-Gurysh EG, Roque JA, Pena ES, Hasan Zahid MS, Qiu K, Anselmo A, Hill DB, Ross TM, Bachelder EM, Ainslie KM. Development of an Intranasal Gel for the Delivery of a Broadly Acting Subunit Influenza Vaccine. ACS Biomater Sci Eng 2022; 8:1573-1582. [PMID: 35353486 PMCID: PMC9627116 DOI: 10.1021/acsbiomaterials.2c00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Influenza virus is a major cause of death on a global scale. Seasonal vaccines have been developed to combat influenza; however, they are not always highly effective. One strategy to develop a more broadly active influenza vaccine is the use of multiple rounds of layered consensus buildings to generate recombinant antigens, termed computationally optimized broadly reactive antigen (COBRA). Immunization with the COBRA hemagglutinin (HA) can elicit broad protection against multiple strains of a single influenza subtype (e.g., H1N1). We formulated a COBRA H1 HA with a stimulator of interferon genes agonist cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) into a nasal gel for vaccination against influenza. The gel formulation was designed to increase mucoadhesion and nasal retention of the antigen and adjuvant to promote a strong mucosal response. It consisted of a Schiff base-crosslinked hydrogel between branched polyethyleneimine and oxidized dextran. Following a prime-boost-boost schedule, an intranasal gel containing cGAMP and model antigen ovalbumin (OVA) led to the faster generation of serum IgG, IgG1, and IgG2c and significantly greater serum IgG1 levels on day 42 compared to soluble controls. Additionally, OVA-specific IgA was detected in nasal, vaginal, and fecal samples for all groups, except the vehicle control. When the COBRA HA was given intranasally in a prime-boost schedule, the mice receiving the gel containing the COBRA and cGAMP had significantly higher serum IgG and IgG2c at day 41 compared to all groups, and only this group had IgA levels above the background in vaginal, nasal, and fecal samples. Overall, this study indicates the utility of an intranasal gel for the delivery of COBRAs for the generation of serum and mucosal humoral responses.
Collapse
Affiliation(s)
- Devika M Varma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cole J Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John A Roque
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erik S Pena
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - M Shamim Hasan Zahid
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David B Hill
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30605, United States.,Department of Infectious Diseases, University of Georgia, Athens, Georgia 30605, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
Yoshikawa E, Tamiya S, Inoue Y, Suzuki K, Yoshioka Y. Vaccine using community-acquired respiratory distress syndrome toxin as an antigen against Mycoplasma pneumoniae in mice. Biochem Biophys Res Commun 2022; 594:81-87. [PMID: 35078111 DOI: 10.1016/j.bbrc.2022.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 11/02/2022]
Abstract
Mycoplasma pneumoniae (Mp) is one of the most common causes of bacterial community-acquired pneumonia in humans. Because of the frequent epidemics and the emergence of antibiotic-resistant Mp, vaccines for Mp are urgently needed to ameliorate the pneumonia and secondary complications. The community-acquired respiratory distress syndrome (CARDS) toxin produced by Mp is a pathogenic factor that induces severe inflammatory responses in lung. Although blocking CARDS toxin is expected to mitigate the severity of Mp pneumonia, the potential of CARDS toxin as a vaccine antigen has not been assessed. Here, we examined the effectiveness of vaccine using recombinant CARDS toxin (rCARDS toxin) as an antigen in mice. Immunization with rCARDS toxin induced both rCARDS toxin- and Mp-specific antibody responses, indicating that CARDS toxin is located on the surface of Mp. In addition, immunization with rCARDS toxin decreased not only lung injury, neutrophil infiltration, and the production of inflammatory cytokines but also the persistence of Mp in lung after Mp challenge. Furthermore, we elucidated that the CARDS toxin on the surface of Mp facilitates the adherence of Mp to epithelial cells. In conclusion, we have demonstrated the potential of rCARDS toxin as a vaccine antigen to ameliorate Mp pneumonia by suppressing the inflammatory responses induced by Mp and the persistence of Mp in lung. These data support the development of novel vaccines for Mp pneumonia.
Collapse
Affiliation(s)
- Eisuke Yoshikawa
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeyuki Tamiya
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Inoue
- The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
18
|
Pelletier AN, Sekaly RP, Tomalka JA. Translating known drivers of COVID-19 disease severity to design better SARS-CoV-2 vaccines. Curr Opin Virol 2022; 52:89-101. [PMID: 34902803 PMCID: PMC8664555 DOI: 10.1016/j.coviro.2021.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 01/17/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted how an emergent disease can spread globally and how vaccines are once again the most important public health policy to combat infectious disease. Despite promising initial protection, the rise of new viral variants calls into question how effective current SARS-CoV-2 vaccines will be moving forward. Improving on vaccine platforms represents an opportunity to stay ahead of SARS-CoV-2 and keep the human population protected. Many researchers focus on modifying delivery platforms or altering the antigen(s) presented to improve the efficacy of the vaccines. Identifying mechanisms of natural immunity that result in the control of infection and prevent poor clinical outcomes provides an alternative approach to the development of efficacious vaccines. Early and current evidence shows that SARS-CoV-2 infection is marked by potent lung inflammation and relatively diminished antiviral signaling which leads to impaired immune recognition and viral clearance, essentially making SARS-CoV-2 'too hot to handle'.
Collapse
Affiliation(s)
| | - Rafick P Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey A Tomalka
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
19
|
Jiang W, Shi L, Cai L, Wang X, Li J, Li H, Liang J, Gu Q, Ji G, Li J, Liu L, Sun M. A two-adjuvant multiantigen candidate vaccine induces superior protective immune responses against SARS-CoV-2 challenge. Cell Rep 2021; 37:110112. [PMID: 34863353 PMCID: PMC8610932 DOI: 10.1016/j.celrep.2021.110112] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/06/2021] [Accepted: 11/18/2021] [Indexed: 01/22/2023] Open
Abstract
An ideal vaccine against SARS-CoV-2 is expected to elicit broad immunity to prevent viral infection and disease, with efficient viral clearance in the upper respiratory tract (URT). Here, the N protein and prefusion-full S protein (SFLmut) are combined with flagellin (KF) and cyclic GMP-AMP (cGAMP) to generate a candidate vaccine, and this vaccine elicits stronger systemic and mucosal humoral immunity than vaccines containing other forms of the S protein. Furthermore, the candidate vaccine administered via intranasal route can enhance local immune responses in the respiratory tract. Importantly, human ACE2 transgenic mice given the candidate vaccine are protected against lethal SARS-CoV-2 challenge, with superior protection in the URT compared with that in mice immunized with an inactivated vaccine. In summary, the developed vaccine can elicit a multifaceted immune response and induce robust viral clearance in the URT, which makes it a potential vaccine for preventing disease and infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Wenwen Jiang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Li Shi
- Laboratory of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Lukui Cai
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Xiaoyu Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Jingyan Li
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Heng Li
- Laboratory of Respiratory Infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Jiangli Liang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Qin Gu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Guang Ji
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Jing Li
- Laboratory of Respiratory Infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Longding Liu
- Laboratory of Respiratory Infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China.
| | - Mingbo Sun
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China; Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China.
| |
Collapse
|
20
|
Van Herck S, Feng B, Tang L. Delivery of STING agonists for adjuvanting subunit vaccines. Adv Drug Deliv Rev 2021; 179:114020. [PMID: 34756942 DOI: 10.1016/j.addr.2021.114020] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
Adjuvant is an essential component in subunit vaccines. Many agonists of pathogen recognition receptors have been developed as potent adjuvants to optimize the immunogenicity and efficacy of vaccines. Recently discovered cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has attracted much attention as it is a key mediator for modulating immune responses. Vaccines adjuvanted with STING agonists are found to mediate a robust immune defense against infections and cancer. In this review, we first discuss the mechanisms of STING agonists in the context of vaccination. Next, we present recent progress in novel STING agonist discovery and the delivery strategies. We next highlight recent work in optimizing the efficacy while minimizing toxicity of STING agonist-assisted subunit vaccines for protection against infectious diseases or treatment of cancer. Finally, we share our perspectives of current issues and future directions in further developing STING agonists for adjuvanting subunit vaccines.
Collapse
Affiliation(s)
- Simon Van Herck
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Bing Feng
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland.
| |
Collapse
|
21
|
An X, Martinez-Paniagua M, Rezvan A, Sefat SR, Fathi M, Singh S, Biswas S, Pourpak M, Yee C, Liu X, Varadarajan N. Single-dose intranasal vaccination elicits systemic and mucosal immunity against SARS-CoV-2. iScience 2021; 24:103037. [PMID: 34462731 PMCID: PMC8388188 DOI: 10.1016/j.isci.2021.103037] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/21/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
Despite remarkable progress in the development and authorization of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is a need to validate vaccine platforms for broader application. The current intramuscular vaccines are designed to elicit systemic immunity without conferring mucosal immunity in the nasal compartment, which is the first barrier that SARS-CoV-2 virus breaches before dissemination to the lung. We report the development of an intranasal subunit vaccine that uses lyophilized spike protein and liposomal STING agonist as an adjuvant. This vaccine induces systemic neutralizing antibodies, IgA in the lung and nasal compartments, and T-cell responses in the lung of mice. Single-cell RNA sequencing confirmed the coordinated activation of T/B-cell responses in a germinal center-like manner within the nasal-associated lymphoid tissues, confirming its role as an inductive site to enable durable immunity. The ability to elicit immunity in the respiratory tract can prevent the establishment of infection in individuals and prevent disease transmission.
Collapse
Affiliation(s)
- Xingyue An
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Melisa Martinez-Paniagua
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Ali Rezvan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Samiur Rahman Sefat
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Mohsen Fathi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Shailbala Singh
- Department of Melanoma Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Sujit Biswas
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | | | - Cassian Yee
- Department of Melanoma Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
22
|
Bacillus subtilis Spore-Trained Dendritic Cells Enhance the Generation of Memory T Cells via ICAM1. Cells 2021; 10:cells10092267. [PMID: 34571913 PMCID: PMC8469252 DOI: 10.3390/cells10092267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Immunological memory is a cardinal feature of the immune system. The intestinal mucosa is the primary exposure and entry site of infectious organisms. For an effective and long-lasting safeguard, a robust immune memory system is required, especially by the mucosal immunity. It is well known that tissue-resident memory T cells (Trms) provide a first response against infections reencountered at mucosal tissues surfaces, where they accelerate pathogen clearance. However, their function in intestinal immunization remains to be investigated. Here, we report enhanced local mucosal and systemic immune responses through oral administration of H9N2 influenza whole inactivated virus (H9N2 WIV) plus Bacillus subtilis spores. Subsequently, H9N2 WIV plus spores led to the generation of CD103+ CD69+ Trms, which were independent of circulating T cells during the immune period. Meanwhile, we also found that Bacillus subtilis spores could stimulate Acrp30 expression in 3T3-L1 adipocytes. Moreover, spore-stimulated adipocyte supernatant also upregulated the expression of intercellular adhesion molecule-1 (ICAM1) in dendritic cells (DCs). Furthermore, the proportion of HA-tetramer+ cells was severely curtailed upon suppressed ICAM1 expression, which also depended on HA-loaded DCs. Taken together, our data demonstrated that spore-promoted H9N2 WIV induced an immune response by enhancing Trms populations, which were associated with the activation of ICAM1 in DCs.
Collapse
|
23
|
Yan H, Chen W. The Promise and Challenges of Cyclic Dinucleotides as Molecular Adjuvants for Vaccine Development. Vaccines (Basel) 2021; 9:917. [PMID: 34452042 PMCID: PMC8402453 DOI: 10.3390/vaccines9080917] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Cyclic dinucleotides (CDNs), originally discovered as bacterial second messengers, play critical roles in bacterial signal transduction, cellular processes, biofilm formation, and virulence. The finding that CDNs can trigger the innate immune response in eukaryotic cells through the stimulator of interferon genes (STING) signalling pathway has prompted the extensive research and development of CDNs as potential immunostimulators and novel molecular adjuvants for induction of systemic and mucosal innate and adaptive immune responses. In this review, we summarize the chemical structure, biosynthesis regulation, and the role of CDNs in enhancing the crosstalk between host innate and adaptive immune responses. We also discuss the strategies to improve the efficient delivery of CDNs and the recent advance and future challenges in the development of CDNs as potential adjuvants in prophylactic vaccines against infectious diseases and in therapeutic vaccines against cancers.
Collapse
Affiliation(s)
- Hongbin Yan
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Wangxue Chen
- Human Health and Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
24
|
The potential of neuraminidase as an antigen for nasal vaccines to increase cross-protection against influenza viruses. J Virol 2021; 95:e0118021. [PMID: 34379511 DOI: 10.1128/jvi.01180-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the availability of vaccines that efficiently reduce the severity of clinical symptoms, influenza viruses still cause substantial morbidity and mortality worldwide. In this regard, nasal influenza vaccines-because they induce virus-specific IgA-may be more effective than traditional parenteral formulations in preventing infection of the upper respiratory tract. In addition, the neuraminidase (NA) of influenza virus has shown promise as a vaccine antigen to confer broad cross-protection, in contrast to hemagglutinin (HA), the target of most current vaccines, which undergoes frequent antigenic changes leading to vaccine ineffectiveness against mismatched heterologous strains. However, the usefulness of NA as an antigen for nasal vaccines is unclear. Here, we compared NA and HA as antigens for nasal vaccines in mice. Intranasal immunization with recombinant NA (rNA) plus adjuvant protected mice against not only homologous but also heterologous virus challenge in the upper respiratory tract, whereas intranasal immunization with rHA failed to protect against heterologous challenge. In addition, intranasal immunization with rNA, but not rHA, conferred cross-protection even in the absence of adjuvant in virus infection-experienced mice; this strong cross-protection was due to the broader binding capacity of NA-specific antibodies to heterologous virus. Furthermore, the NA-specific IgA in the upper respiratory tract that was induced through rNA intranasal immunization recognized more epitopes than did the NA-specific IgG and IgA in plasma, again increasing cross-protection. Together, our findings suggest the potential of NA as an antigen for nasal vaccines to provide broad cross-protection against both homologous and heterologous influenza viruses. IMPORTANCE Because mismatch between vaccine strains and epidemic strains cannot always be avoided, the development of influenza vaccines that induce broad cross-protection against antigenically mismatched heterologous strains is needed. Although the importance of NA-specific antibodies to cross-protection in humans and experimental animals is becoming clear, the potential of NA as an antigen for providing cross-protection through nasal vaccines is unknown. We show here that intranasal immunization with NA confers broad cross-protection in the upper respiratory tract, where virus transmission is initiated, by inducing NA-specific IgA that recognizes a wide range of epitopes. These data shed new light on NA-based nasal vaccines as powerful anti-influenza tools that confer broad cross-protection.
Collapse
|
25
|
Chauveau L, Bridgeman A, Tan TK, Beveridge R, Frost JN, Rijal P, Pedroza‐Pacheco I, Partridge T, Gilbert‐Jaramillo J, Knight ML, Liu X, Russell RA, Borrow P, Drakesmith H, Townsend AR, Rehwinkel J. Inclusion of cGAMP within virus-like particle vaccines enhances their immunogenicity. EMBO Rep 2021; 22:e52447. [PMID: 34142428 PMCID: PMC8339669 DOI: 10.15252/embr.202152447] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/30/2023] Open
Abstract
Cyclic GMP-AMP (cGAMP) is an immunostimulatory molecule produced by cGAS that activates STING. cGAMP is an adjuvant when administered alongside antigens. cGAMP is also incorporated into enveloped virus particles during budding. Here, we investigate whether inclusion of cGAMP within viral vaccine vectors enhances their immunogenicity. We immunise mice with virus-like particles (VLPs) containing HIV-1 Gag and the vesicular stomatitis virus envelope glycoprotein G (VSV-G). cGAMP loading of VLPs augments CD4 and CD8 T-cell responses. It also increases VLP- and VSV-G-specific antibody titres in a STING-dependent manner and enhances virus neutralisation, accompanied by increased numbers of T follicular helper cells. Vaccination with cGAMP-loaded VLPs containing haemagglutinin induces high titres of influenza A virus neutralising antibodies and confers protection upon virus challenge. This requires cGAMP inclusion within VLPs and is achieved at markedly reduced cGAMP doses. Similarly, cGAMP loading of VLPs containing the SARS-CoV-2 Spike protein enhances Spike-specific antibody titres. cGAMP-loaded VLPs are thus an attractive platform for vaccination.
Collapse
Affiliation(s)
- Lise Chauveau
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Present address:
Institut de recherche en infectiologie de Montpellier (IRIM)CNRS UMR 9004MontpellierFrance
| | - Anne Bridgeman
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Tiong K Tan
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Ryan Beveridge
- MRC Molecular Hematology UnitMRC Weatherall Institute of Molecular MedicineJohn Radcliffe HospitalUniversity of OxfordOxfordUK
- Virus Screening FacilityMRC Weatherall Institute of Molecular MedicineJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Joe N Frost
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Pramila Rijal
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | | | - Thomas Partridge
- Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - Javier Gilbert‐Jaramillo
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Michael L Knight
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Xu Liu
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC), Institute of Laboratory Animal SciencePeking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | | | - Persephone Borrow
- Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - Hal Drakesmith
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Alain R Townsend
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
26
|
Broadly Protective CD8 + T Cell Immunity to Highly Conserved Epitopes Elicited by Heat Shock Protein gp96-Adjuvanted Influenza Monovalent Split Vaccine. J Virol 2021; 95:JVI.00507-21. [PMID: 33827939 DOI: 10.1128/jvi.00507-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/20/2022] Open
Abstract
Currently, immunization with inactivated influenza virus vaccines is the most prevalent method to prevent infections. However, licensed influenza vaccines provide only strain-specific protection and need to be updated and administered yearly; thus, new vaccines that provide broad protection against multiple influenza virus subtypes are required. In this study, we demonstrated that intradermal immunization with gp96-adjuvanted seasonal influenza monovalent H1N1 split vaccine could induce cross-protection against both group 1 and group 2 influenza A viruses in BALB/c mouse models. Vaccination in the presence of gp96 induced an apparently stronger antigen-specific T cell response than split vaccine alone. Immunization with the gp96-adjuvanted vaccine also elicited an apparent cross-reactive CD8+ T cell response that targeted the conserved epitopes across different influenza virus strains. These cross-reactive CD8+ T cells might be recalled from a pool of memory cells established after vaccination and recruited from extrapulmonary sites to facilitate viral clearance. Of note, six highly conserved CD8+ T epitopes from the viral structural proteins hemagglutinin (HA), M1, nucleoprotein (NP), and PB1 were identified to play a synergistic role in gp96-mediated cross-protection. Comparative analysis showed that most of conservative epitope-specific cytotoxic T lymphocytes (CTLs) apparently induced by heterologous virus infection were also activated by gp96-adjuvanted vaccine, thus resulting in broader protective CD8+ T cell responses. Our results demonstrated the advantage of adding gp96 to an existing seasonal influenza vaccine to improve its ability to provide better cross-protection.IMPORTANCE Owing to continuous mutations in hemagglutinin (HA) or neuraminidase (NA) or recombination of the gene segments between different strains, influenza viruses can escape the immune responses developed by vaccination. Thus, new strategies aimed to efficiently activate immune response that targets to conserved regions among different influenza viruses are urgently needed in designing broad-spectrum influenza vaccine. Heat shock protein gp96 is currently the only natural T cell adjuvant with special ability to cross-present coupled antigen to major histocompatibility complex class I (MHC-I) molecule and activate the downstream antigen-specific CTL response. In this study, we demonstrated the advantages of adding gp96 to monovalent split influenza virus vaccine to improve its ability to provide cross-protection in the BALB/c mouse model and proved that a gp96-activated cross-reactive CTL response is indispensable in our vaccine strategy. Due to its unique adjuvant properties, gp96 might be a promising adjuvant for designing new broad-spectrum influenza vaccines.
Collapse
|
27
|
Hu Z, Yang Y, Fang L, Zhou J, Zhang H. Insight into the dichotomous regulation of STING activation in immunotherapy. Immunopharmacol Immunotoxicol 2021; 43:126-137. [PMID: 33618600 DOI: 10.1080/08923973.2021.1890118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway (cGAS-STING) is a hub linking innate immunity and adaptive immunity against pathogen infection by inducing the production of type I interferon (IFN-I). It also plays pivotal roles in modulating tumorigenesis by ensuring the antigen presentation, T cell priming, activation, and tumor regression. Given its antitumor immune properties, cGAS-STING has attracted intense focus and several STING agonists have entered into clinical trials. However, some problems still exist when activating STING for use in oncological indications. It is remarkable that multiple downstream cytokines such as TNF-α, IL-6 may lead to inflammatory disease and even tumor metastasis in practical trials. Besides, there is a synergistic effect when STING agonists are combined with other immunotherapies. In this review, we discussed the advanced understanding between STING and anti-tumor immunity, as well as a variety of promising clinical treatment strategies.
Collapse
Affiliation(s)
- Zhaoxue Hu
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Yifei Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lincheng Fang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Huibin Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
28
|
Hazlewood JE, Dumenil T, Le TT, Slonchak A, Kazakoff SH, Patch AM, Gray LA, Howley PM, Liu L, Hayball JD, Yan K, Rawle DJ, Prow NA, Suhrbier A. Injection site vaccinology of a recombinant vaccinia-based vector reveals diverse innate immune signatures. PLoS Pathog 2021; 17:e1009215. [PMID: 33439897 PMCID: PMC7837487 DOI: 10.1371/journal.ppat.1009215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/26/2021] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Poxvirus systems have been extensively used as vaccine vectors. Herein a RNA-Seq analysis of intramuscular injection sites provided detailed insights into host innate immune responses, as well as expression of vector and recombinant immunogen genes, after vaccination with a new multiplication defective, vaccinia-based vector, Sementis Copenhagen Vector. Chikungunya and Zika virus immunogen mRNA and protein expression was associated with necrosing skeletal muscle cells surrounded by mixed cellular infiltrates. The multiple adjuvant signatures at 12 hours post-vaccination were dominated by TLR3, 4 and 9, STING, MAVS, PKR and the inflammasome. Th1 cytokine signatures were dominated by IFNγ, TNF and IL1β, and chemokine signatures by CCL5 and CXCL12. Multiple signatures associated with dendritic cell stimulation were evident. By day seven, vaccine transcripts were absent, and cell death, neutrophil, macrophage and inflammation annotations had abated. No compelling arthritis signatures were identified. Such injection site vaccinology approaches should inform refinements in poxvirus-based vector design. Poxvirus vector systems have been widely developed for vaccine applications. Despite considerable progress, so far only one recombinant poxvirus vectored vaccine has to date been licensed for human use, with ongoing efforts seeking to enhance immunogenicity whilst minimizing reactogenicity. The latter two characteristics are often determined by early post-vaccination events at the injection site. We therefore undertook an injection site vaccinology approach to analyzing gene expression at the vaccination site after intramuscular inoculation with a recombinant, multiplication defective, vaccinia-based vaccine. This provided detailed insights into inter alia expression of vector-encoded immunoregulatory genes, as well as host innate and adaptive immune responses. We propose that such injection site vaccinology can inform rational vaccine vector design, and we discuss how the information and approach elucidated herein might be used to improve immunogenicity and limit reactogenicity of poxvirus-based vaccine vector systems.
Collapse
Affiliation(s)
- Jessamine E. Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Thuy T. Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Stephen H. Kazakoff
- Clinical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ann-Marie Patch
- Clinical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lesley-Ann Gray
- Australian Genome Research Facility Ltd., Melbourne, Australia
| | | | - Liang Liu
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - John D. Hayball
- Sementis Ltd., Hackney, Australia
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Natalie A. Prow
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Australian Infectious Disease Research Centre, Brisbane, Australia
- * E-mail:
| |
Collapse
|
29
|
Zhu W, Dong C, Wei L, Wang BZ. Promising Adjuvants and Platforms for Influenza Vaccine Development. Pharmaceutics 2021; 13:pharmaceutics13010068. [PMID: 33430259 PMCID: PMC7825707 DOI: 10.3390/pharmaceutics13010068] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Influenza is one of the major threats to public health. Current influenza vaccines cannot provide effective protection against drifted or shifted influenza strains. Researchers have considered two important strategies to develop novel influenza vaccines with improved immunogenicity and broader protective efficacy. One is applying fewer variable viral antigens, such as the haemagglutinin stalk domain. The other is including adjuvants in vaccine formulations. Adjuvants are promising and helpful boosters to promote more rapid and stronger immune responses with a dose-sparing effect. However, few adjuvants are currently licensed for human influenza vaccines, although many potential candidates are in different trials. While many advantages have been observed using adjuvants in influenza vaccine formulations, an improved understanding of the mechanisms underlying viral infection and vaccination-induced immune responses will help to develop new adjuvant candidates. In this review, we summarize the works related to adjuvants in influenza vaccine research that have been used in our studies and other laboratories. The review will provide perspectives for the utilization of adjuvants in developing next-generation and universal influenza vaccines.
Collapse
|
30
|
An X, Martinez-Paniagua M, Rezvan A, Fathi M, Singh S, Biswas S, Pourpak M, Yee C, Liu X, Varadarajan N. Single-dose intranasal vaccination elicits systemic and mucosal immunity against SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32743568 DOI: 10.1101/2020.07.23.212357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A safe and durable vaccine is urgently needed to tackle the COVID19 pandemic that has infected >15 million people and caused >620,000 deaths worldwide. As with other respiratory pathogens, the nasal compartment is the first barrier that needs to be breached by the SARS-CoV-2 virus before dissemination to the lung. Despite progress at remarkable speed, current intramuscular vaccines are designed to elicit systemic immunity without conferring mucosal immunity. We report the development of an intranasal subunit vaccine that contains the trimeric or monomeric spike protein and liposomal STING agonist as adjuvant. This vaccine induces systemic neutralizing antibodies, mucosal IgA responses in the lung and nasal compartments, and T-cell responses in the lung of mice. Single-cell RNA-sequencing confirmed the concomitant activation of T and B cell responses in a germinal center-like manner within the nasal-associated lymphoid tissues (NALT), confirming its role as an inductive site that can lead to long-lasting immunity. The ability to elicit immunity in the respiratory tract has can prevent the initial establishment of infection in individuals and prevent disease transmission across humans.
Collapse
|