1
|
Hammouz RY, Baryła I, Styczeń-Binkowska E, Bednarek AK. Twenty-five years of WWOX insight in cancer: a treasure trove of knowledge. Funct Integr Genomics 2025; 25:100. [PMID: 40327201 PMCID: PMC12055895 DOI: 10.1007/s10142-025-01601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/01/2025] [Accepted: 04/12/2025] [Indexed: 05/07/2025]
Abstract
More than two decades ago, MD Anderson Cancer group discovered, characterised, and identified the WW domain-containing oxidoreductase (WWOX) as a genes of interest mapping to the chromosomal region 16q23.3-24.2. This was pioneering research since WWOX is a critical tumour suppressor gene implicated in various cancers, involving interactions with numerous signalling pathways and molecular mechanisms. Notably, it inhibits the Wnt/β-catenin pathway, which is often activated in tumours. This inhibition helps prevent tumour formation by regulating cell proliferation and promoting apoptosis. Restoration of WWOX expression in cancer cell lines has been shown to reduce tumour growth and increased sensitivity to treatments. In addition to its role in tumour suppression, WWOX has been found to interact with proteins involved in critical signalling pathways such as TGF-β. Recent advancements allowed to reveal its interactions with key proteins and microRNAs that regulate cellular adhesion, invasion, and motility. Proteomic studies have shown that WWOX directly interacts with signalling molecules like Dishevelled and SMAD3, further underscoring its role in antagonizing metastasis. Challenges remain in translating this knowledge into clinical applications. For instance, the mechanisms underlying WWOX loss in tumours and its role across diverse cancer types require further investigation. Overall, WWOX serves as a vital player in maintaining cellular stability and preventing cancer progression through its multifaceted functions. Here, we include an updated molecular function of WWOX in cancers to possibly contribute to the potential use of WWOX expression as a biomarker regarding prognosis and response to the treatment. CLINICAL TRIAL NUMBER: Not applicable.
Collapse
Affiliation(s)
- Raneem Y Hammouz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Izabela Baryła
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Ewa Styczeń-Binkowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland.
| |
Collapse
|
2
|
Froom ZSCS, Callaghan NI, Davenport Huyer L. Cellular crosstalk in fibrosis: insights into macrophage and fibroblast dynamics. J Biol Chem 2025:110203. [PMID: 40334985 DOI: 10.1016/j.jbc.2025.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Pathological fibrosis, the excessive deposition of extracellular matrix and tissue stiffening that causes progressive organ dysfunction, underlies diverse chronic diseases. The fibrotic microenvironment is driven by the dynamic microenvironmental interaction between various cell types; macrophages and fibroblasts play central roles in fibrotic disease initiation, maintenance, and progression. Macrophage functional plasticity to microenvironmental stimuli modulates fibroblast functionality by releasing pro-inflammatory cytokines, growth factors, and matrix remodeling enzymes that promote fibroblast proliferation, activation, and differentiation into myofibroblasts. Activated fibroblasts and myofibroblasts serve as the fibrotic effector cells, secreting extracellular matrix components and initiating microenvironmental contracture. Fibroblasts also modulate macrophage function through the release of their own pro-inflammatory cytokines and growth factors, creating bidirectional crosstalk that reinforces the chronic fibrotic cycle. The intricate interplay between macrophages and fibroblasts, including their secretomes and signaling interactions, leads to tissue damage and pathological loss of tissue function. In this review, we examine macrophage-fibroblast reciprocal dynamic interactions in pathological fibrotic conditions. We discuss the specific lineages and functionality of macrophages and fibroblasts implicated in fibrotic progression, with focus on their signal transduction pathways and secretory signalling that enables their pro-fibrotic behaviour. We then finish with a set of recommendations for future experimentation with the goal of developing a set of potential targets for anti-fibrotic therapeutic candidates. Understanding the cellular interactions between macrophages and fibroblasts provides valuable insights into potential therapeutic strategies to mitigate fibrotic disease progression.
Collapse
Affiliation(s)
- Zachary S C S Froom
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Neal I Callaghan
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Locke Davenport Huyer
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada; Nova Scotia Health, Halifax, NS B3S 0H6, Canada.
| |
Collapse
|
3
|
Shuai F, Yin Y, Yao Y, Deng L, Wen Y, Zhao H, Han X. A nucleoside-based supramolecular hydrogel integrating localized self-delivery and immunomodulation for periodontitis treatment. Biomaterials 2025; 316:123024. [PMID: 39705922 DOI: 10.1016/j.biomaterials.2024.123024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Periodontitis is a highly prevalent oral disease characterized by bacterial-induced hyperactivation of the host immune system, leading to a sustained inflammatory response and osteoclastic activity, which ultimately results in periodontal destruction. In this work, an immunomodulatory supramolecular hydrogel for the topical treatment of periodontitis was synthesized using a simple one-pot method. This phenylboronate ester-based 8AGPB hydrogel exhibited excellent stability, self-healing properties, injectability, and biocompatibility. During degradation, the 8AGPB hydrogel releases immunomodulatory agent 8-aminoguanosine (8AG), which regulates MAPK and NF-κB signaling pathways by modulation of second messengers in macrophages. In combination with 1,4-phenylenediboronic acid (PBA), which possesses antioxidant properties, 8AG effectively inhibits ROS production and oxidative damage in LPS-stimulated macrophages, lowering the M1/M2 macrophage polarization ratio and reducing the secretion of pro-inflammatory factors. In an experimental periodontitis model using C57BL/6 mice, periodontal injection of the 8AGPB hydrogel reduced inflammatory infiltration and osteoclastic activity through immunomodulation and inhibition of osteoclast differentiation, thereby ameliorating periodontal destruction during periodontitis progression. Overall, the 8AGPB supramolecular hydrogel, serving as an injectable self-delivery platform for 8AG, may represent a promising novel strategy for periodontitis treatment and offer insights for the development of future topical anti-inflammatory systems.
Collapse
Affiliation(s)
- Fangyuan Shuai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yufei Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Lanzhi Deng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yinghui Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
4
|
Yang J, des Rieux A, Malfanti A. Stimuli-Responsive Nanomedicines for the Treatment of Non-cancer Related Inflammatory Diseases. ACS NANO 2025; 19:15189-15219. [PMID: 40249331 PMCID: PMC12045021 DOI: 10.1021/acsnano.5c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Nanomedicines offer a means to overcome the limitations associated with traditional drug dosage formulations by affording drug protection, enhanced drug bioavailability, and targeted drug delivery to affected sites. Inflamed tissues possess unique microenvironmental characteristics (including excessive reactive oxygen species, low pH levels, and hypoxia) that stimuli-responsive nanoparticles can employ as triggers to support on-demand delivery, enhanced accumulation, controlled release, and activation of anti-inflammatory drugs. Stimuli-responsive nanomedicines respond to physicochemical and pathological factors associated with diseased tissues to improve the specificity of drug delivery, overcome multidrug resistance, ensure accurate diagnosis and precision therapy, and control drug release to improve efficacy and safety. Current stimuli-responsive nanoparticles react to intracellular/microenvironmental stimuli such as pH, redox, hypoxia, or specific enzymes and exogenous stimuli such as temperature, magnetic fields, light, and ultrasound via bioresponsive moieties. This review summarizes the general strategies employed to produce stimuli-responsive nanoparticles tailored for inflammatory diseases and all recent advances, reports their applications in drug delivery, and illustrates the progress made toward clinical translation.
Collapse
Affiliation(s)
- Jingjing Yang
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Anne des Rieux
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Alessio Malfanti
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
5
|
Zhai J, Fu R, Luo S, Liu X, Xie Y, Cao K, Ge W, Chen Y. Lactylation-related molecular subtyping reveals the immune heterogeneity and clinical characteristics in ulcerative colitis. Biochem Biophys Res Commun 2025; 756:151584. [PMID: 40081238 DOI: 10.1016/j.bbrc.2025.151584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory disease linked to early-onset colorectal cancer and metabolic abnormalities. While intestinal lactate disturbances are observed in UC, the role of lactate and lactylation in its pathogenesis remains unclear. The lack of specific biomarkers reflecting these processes limits understanding of their biological significance. METHODS UC subtypes were classified using ConsensusClusterPlus and NMF based on LRGs. Immune infiltration was assessed with ssGSEA, xCell, and CIBERSORT. WGCNA identified subtype-specific gene modules, and Lasso regression pinpointed hub genes. Single-cell analysis determined cellular localization, while WB and IHC validated findings in clinical, mouse, and cell models. Prognostic machine learning models evaluated the clinical significance of these results. RESULTS LRGs distinguished UC patients from controls and stratified them into high and low immune infiltration groups. MSN and MAPRE1, strongly linked to UC, showed elevated expression in vitro and in vivo. They aid in diagnosing UC and UC-associated colorectal cancer and serve as predictors of UC severity and response to immunosuppressants. CONCLUSION Using high-throughput transcriptomic data, we identified hub LRGs and highlighted the role of lactate-mediated lactylation in UC. MSN and MAPRE1 were confirmed to be upregulated in an inflammatory environment, underscoring their potential for personalized UC diagnosis and treatment.
Collapse
Affiliation(s)
- Jinyang Zhai
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Institute for Pediatric Research, Shanghai, 200092, PR China
| | - Shangjian Luo
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Xiaoman Liu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Yang Xie
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Kejing Cao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Wensong Ge
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Institute for Pediatric Research, Shanghai, 200092, PR China.
| |
Collapse
|
6
|
Jin Z, Xu H, Zhao W, Zhang K, Wu S, Shu C, Zhu L, Wang Y, Wang L, Zhang H, Yan B. Macrophage ATF6 accelerates corticotomy-assisted orthodontic tooth movement through promoting Tnfα transcription. Int J Oral Sci 2025; 17:28. [PMID: 40164575 PMCID: PMC11958779 DOI: 10.1038/s41368-025-00359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/15/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon (RAP). Despite its therapeutic effects, the surgical risk and unclear mechanism hamper the clinical application. Numerous evidences support macrophages as the key immune cells during bone remodeling. Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1CreERT2; R26GFP lineage tracing system. Fluorescence staining, flow cytometry analysis, and western blot determined the significantly enhanced expression of binding immunoglobulin protein (BiP) and emphasized the activation of sensor activating transcription factor 6 (ATF6) in macrophages. Then, we verified that macrophage specific ATF6 deletion (ATF6f/f; CX3CR1CreERT2 mice) decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy. In contrast, macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement. In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6. At the mechanism level, RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with Tnfα promotor and augmenting its transcription. Additionally, molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element (ERSE). Taken together, ATF6 may aggravate orthodontic bone remodeling by promoting Tnfα transcription in macrophages, suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.
Collapse
Affiliation(s)
- Zhichun Jin
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Hao Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Weiye Zhao
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Kejia Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shengnan Wu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Linlin Zhu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Lin Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| | - Hanwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Bin Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
7
|
Huang H, Xie Z, Li N, Zeng L, Zeng Q, Yang Z, Shen J, Yang H, Liu Y, Wu C. Biomimetic gold nano-modulator for deep-tumor NIR-II photothermal immunotherapy via gaseous microenvironment remodeling strategy. J Nanobiotechnology 2025; 23:220. [PMID: 40102878 PMCID: PMC11921542 DOI: 10.1186/s12951-025-03304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025] Open
Abstract
INTRODUCTION Effective immunotherapeutic treatment of solid tumors has been greatly challenged by the complex hostile tumor immunosuppressive microenvironment (TIME), which typically involves hypoxia and immunosuppression. METHODS Herein, a multifunctional biomimetic gold nano-modulator (denoted as GNR-SNO@MMT) was developed to realize the efficient second near-infrared (NIR-II) photothermal immunotherapy via tumor targeting and deep penetration, vascular normalization and immune reprogramming. NIR-II photothermal agent gold nanorods (GNR) were grafted with thermosensitive S-nitrosothiol (SNO) donors and camouflaged with the tumor-penetrating peptide tLyp-1-modified macrophage membrane (MM) to yield GNR-SNO@MMT. RESULTS The engineered membrane coating increased the capacity for tumor inflammatory tropism and deep penetration, which aided GNR-SNO@MMT in ablating tumors together with NIR-II laser irradiation. Moreover, hyperthermia-stimulated nitric oxide (NO) release in situ acted as a gas immunomodulator to effectively enhance blood perfusion and reprogram the TIME via multiple functions (e.g., decreasing PD-L1, repolarizing tumor-associated macrophages, and revitalizing cytotoxic T cells). Ultimately, the inhibition rate against 4T1 mouse mammary tumor model mediated by GNR-SNO@MMT plus NIR-II laser was 94.7% together with 2.4-fold CD8+ T cells infiltrated into tumors than that of the untreated counterpart. CONCLUSIONS The engineered biomimetic nano-modulator of GNR-SNO@MMT provides an effective and novel photoimmunotherapy candidate against deep-sited solid tumors through immune reconfiguration via NO-involved nanomedicine and external NIR-II laser assistance.
Collapse
Affiliation(s)
- Honglin Huang
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, P. R. China
| | - Zhengxin Xie
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, P. R. China
| | - Ningxi Li
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, P. R. China
| | - Li Zeng
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, P. R. China
| | - Qianyi Zeng
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, P. R. China
| | - Ziman Yang
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, P. R. China
| | - Jinyang Shen
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, P. R. China
| | - Hong Yang
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, P. R. China
| | - Yiyao Liu
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, P. R. China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China.
- Department of Urology, Deyang People's Hospital, Deyang, Sichuan, 618099, P. R. China.
| | - Chunhui Wu
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
8
|
Wang Y, Li B, Jian C, Gagaoua M, Estévez M, Puolanne E, Ertbjerg P. Oxidative stress-induced changes in wooden breast and mitigation strategies: A review. Compr Rev Food Sci Food Saf 2025; 24:e70148. [PMID: 40040485 DOI: 10.1111/1541-4337.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
Wooden breast (WB) is a multifactorial muscular abnormality resulting from the interplay between genetic predispositions for rapid growth, physiological stress, and anatomical impairments. This myopathy has been a persistent challenge in the poultry industry since its initial identification a decade ago. WB negatively impacts meat quality, leading to increased toughness and reduced nutritional value. Building on foundational research utilizing multiomics technologies, hypoxia-induced oxidative stress has been identified as a key early event driving the pathological processes of WB. This review provides a comprehensive overview and the state-of-the-art evidence on the pivotal role of oxidative stress in WB myopathy. It begins by examining the generation of reactive intermediates that induce oxidative damage and the host's defense mechanisms aimed at mitigating these threats. The discussion then focuses on the consequences of oxidative damage for mitochondria, protein and lipid oxidation, connective tissue remodeling, and inflammation-pathological hallmarks of WB-affected muscles. Additionally, the review highlights how oxidative stress influences satellite cell behavior, impairing the repair and regeneration of muscle tissues, a process implicated in WB. Finally, efforts to prevent or mitigate WB myopathy are summarized, with particular attention to potential intervention strategies targeting oxidative stress. These include innovative feed formulations and gut microbiota modulation, which show promise in alleviating the severity of the condition.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland
| | - Binbin Li
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Mario Estévez
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
| | - Eero Puolanne
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland
| | - Per Ertbjerg
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
He J, He M, Sun M, Chen H, Dou Z, Nie R, Zhou J, Tang Q, Che C, Liu J, Li T. The Mechanism of Acupuncture Regulating Autophagy: Progress and Prospect. Biomolecules 2025; 15:263. [PMID: 40001566 PMCID: PMC11852493 DOI: 10.3390/biom15020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Autophagy plays a crucial role in the physiopathological mechanisms of diseases by regulating cellular functions and maintaining cellular homeostasis, which has garnered extensive attention from researchers worldwide. The holistic regulation and bidirectional regulation effects of acupuncture can modulate cellular autophagy, promoting or restoring the homeostasis of the body's internal environment to achieve therapeutic outcomes. This paper systematically reviews the research progress on the use of acupuncture for treating various diseases via the autophagy pathway, summarizes signal pathways related to acupuncture regulating autophagy, and analyzes the deficiencies present in the existing research. The review results indicate that the mechanism of action of acupuncture on autophagy dysfunction is reflected in the changes in LC3, Beclin1, p53, and autophagy-associated (ATG) protein expression, and regulates signaling pathways and key proteins or genes. The regulatory effect of acupuncture on autophagy capacity is bidirectional: it inhibits the abnormal activation of autophagy to prevent exacerbation of injury and reduce apoptosis, while also activating or enhancing autophagy to promote the elimination of inflammation and reduce oxidative stress. Further analysis suggests that the mechanisms of acupuncture regulating autophagy are insufficiently explored. Future research should prioritize the development of more appropriate animal models, analyzing the accuracy of relevant pathways and the specificity of indicators, exploring the synergistic effects among targets and signaling pathways, clarifying the regulatory mechanisms of acupuncture at various stages of autophagy, and evaluating the efficacy of acupuncture in autophagy modulating. This paper offers valuable insights into the regulation of autophagy by acupuncture.
Collapse
Affiliation(s)
- Jing He
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Min He
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Mengmeng Sun
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Hongxiu Chen
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Zhiqiang Dou
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Ru Nie
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Jun Zhou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Qingqing Tang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Cong Che
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Jie Liu
- Academic Affairs Office, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Tie Li
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| |
Collapse
|
10
|
Yang H, Xue Y, Jiang Q, Tian Q, Xu J, Li J, Yang Q, Du M, Yang T, Wei X, Zhao M, Yan T, Chen X, Li L. HSPA5-mediated glioma hypoxia tolerance promotes M2 macrophage polarization under hypoxic microenvironment. Int Immunopharmacol 2025; 147:113856. [PMID: 39740502 DOI: 10.1016/j.intimp.2024.113856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND The tumor microenvironment (TME), with hallmark features of hypoxia and immunosuppression, plays a crucial role in the progression of various solid tumors. However, the intricate interplay between tumor hypoxia and the formation of tumor immune microenvironment in glioma remains incompletely understood. METHODS In the present study, we initially identified genes associated with tumor hypoxia and the immune microenvironment through GSEA and IMMPORT database analysis. We subsequently identified hypoxia- and immune-related genes associated with glioma prognosis through further cross-analysis and multidatabase integrated analysis. HSPA5 was ultimately identified as a potential target gene related to the formation of the hypoxic microenvironment and immune microenvironment in glioma. Furthermore, we conducted MTT, colony formation, EdU, migration and invasion assays and intracranial orthotopic tumor model analysis to further evaluate the impact of interfering with HSPA5 expression on the hypoxic and immune microenvironments of glioma. RESULTS We found that HSPA5 is highly expressed in glioma cells and tissues and is associated with a poor prognosis. Further investigation revealed that hypoxia promotes the malignant biological characteristics of glioma and reshaping the Immunosuppressive phenotype of tumor-associated macrophages (TAMs) through upregulation of the HIF-1α/HSPA5 axis. Silencing HSPA5 alleviated glioma hypoxia tolerance and induced the polarization of TAMs toward the M1 phenotype. The induced macrophages could exhibit a tumor-suppressive effect. CONCLUSION These observations suggest that HSPA5 upregulation promotes glioma progression by inducing hypoxia tolerance and reshaping the Immunosuppressive phenotype of TAMs. Therefore, targeting HSPA5 may be a novel therapeutic strategy for glioma.
Collapse
Affiliation(s)
- He Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin 150001, Heilongjiang Province, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yanpeng Xue
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin 150001, Heilongjiang Province, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Qing Jiang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin 150001, Heilongjiang Province, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Qingqing Tian
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin 150001, Heilongjiang Province, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jiayi Xu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin 150001, Heilongjiang Province, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jixuan Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin 150001, Heilongjiang Province, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Quan Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin 150001, Heilongjiang Province, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Mingdong Du
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin 150001, Heilongjiang Province, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Teng Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin 150001, Heilongjiang Province, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xingwang Wei
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin 150001, Heilongjiang Province, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Mei Zhao
- Department of Pharmacy, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya 572000, China
| | - Tao Yan
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong Province, China; Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi 276000, Shandong Province, China.
| | - Xin Chen
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin 150001, Heilongjiang Province, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| | - Lixian Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin 150001, Heilongjiang Province, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
11
|
Ham CH, Kim Y, Kwon WK, Sun W, Kim JH, Kim HJ, Moon HJ. Single-cell analysis reveals fibroblast heterogeneity and myofibroblast conversion in ligamentum flavum hypertrophy. Spine J 2024:S1529-9430(24)01175-6. [PMID: 39653186 DOI: 10.1016/j.spinee.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND CONTEXT The ligamentum flavum (LF) is a crucial structure in maintaining spinal stability; however, hypertrophy of the LF is a significant contributor to lumbar spinal canal stenosis (LSCS). The mechanisms linking LF hypertrophy to the exacerbation of LSCS remain incompletely understood. PURPOSE This study aimed to investigate the cellular proportions and signaling pathways observed in the hypertrophied LF. STUDY DESIGN LF tissues were obtained from 3 patients undergoing lumbar decompressive surgery. These patients had been diagnosed with LSCS prior to surgery and had an LF thickness exceeding 3.5 mm. METHODS Single-cell RNA sequencing was performed following LF tissue dissociation, and data were processed for quality control, dimensional reduction, and clustering. Differential gene expression and gene ontology analyses revealed key molecular pathways driving LF hypertrophy. Cell-cell communication analysis was analyzed to elucidate interactions among various cell types within the LF tissues. RESULTS Fibroblasts accounted for 75% of the total cells, followed by endothelial cells, T cells, macrophages, and B cells. Among heterogeneous types of fibroblasts, we identified that a subset of fibroblasts trans-differentiated into myofibroblasts. Two types of macrophages that exhibited phenotypic plasticity akin to M1 and M2 states were observed. We also identified novel signaling pathways involved in fibroblast and immune cell interaction in the hypertrophied LF, such as GAS and GRN, as well as known signaling pathways, such as TGF-β, PDGF, CXCL, and ANGPTL. CONCLUSION Our study shows the changing cellular composition and pathogenic signaling pathways involved during the process of chronic inflammation highlighting the transdifferentiation process from fibroblasts to myofibroblasts in the hypertrophied LF. CLINICAL SIGNIFICANCE The identification of pathways such as GAS, GRN, TGF-β, ANGPTL, and CXCL, which appear to potentially contribute to LF hypertrophy, could significantly enhance our understanding of the pathogenesis of LSCS.
Collapse
Affiliation(s)
- Chang Hwa Ham
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Neurosurgery, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Yiseul Kim
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Woo-Keun Kwon
- Department of Neurosurgery, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Woong Sun
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Joo Han Kim
- Department of Neurosurgery, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Hyun Jung Kim
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Hong Joo Moon
- Department of Neurosurgery, University of Virginia, 1300 Jefferson Park Ave, Charlottesville, VA 22903, USA
| |
Collapse
|
12
|
Wang Y, Gao S, Gao S, Li N, Huang H, Liu X, Yao H, Shen X. Pigment epithelium-derived factor exerts neuroprotection in oxygen-induced retinopathy by targeting endoplasmic reticulum stress and oxidative stress. Exp Eye Res 2024; 249:110147. [PMID: 39510404 DOI: 10.1016/j.exer.2024.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Endoplasmic reticulum (ER) stress and oxidative stress have been involved in the occurrence of neuronal apoptosis in ischemic retinopathy. Pigment epitheliu-derived factor (PEDF) is well known for its multifunctional properties, including neuroprotection, anti-inflammation and antioxidant. However, the association between PEDF and ER stress or oxidative stress in ischemic retinopathy remain incompletely understood. In this study, the concentration of the key factor of ER stress C/EBP homologous protein (CHOP) in aqueous humor (AqH) and vitreous samples of proliferative diabetic retinopathy (PDR) patients were measured by ELISA assays. Oxygen-induced retinopathy (OIR) mice model was established and PEDF intravitreal injections were conducted. Primary bone marrow derived macrophages (BMDMs) were isolated and cultured under hypoxic conditions in vitro. Western blotting, real-time RT-PCR, immunofluorescence, transmission electron microscopy (TEM), TUNEL assays were performed to explore roles of PEDF on ER stress and oxidative stress, as well as subsequently neuronal apoptosis under hypoxic conditions in vivo and in vitro. The results revealed that ER stress and oxidative stress were notably activated under hypoxic conditions. We also observed that hypoxia evoked ultrastructural damage of ER and mitochondrion in the retina. However, PEDF significantly prevented ER stress and oxidative stress, as well as the damage of ultrastructure, resulting in diminution of photoreceptor apoptosis in OIR retinas. These results indicate that PEDF may play its neuroprotection role through inhibiting ER stress and oxidative stress in ischemic retinopathy, which is a novel molecular mechanism of PEDF protecting photoreceptors from ischemic damage, thereby suggesting that PEDF is an effective therapeutic agent for the treatment of neuron damage in ischemic retinal diseases.
Collapse
Affiliation(s)
- Ya'nuo Wang
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sha Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hanwen Huang
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiping Yao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Ophthalmology, Ruijin Hospital, Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Shan X, Ji Z, Wang B, Zhang Y, Dong H, Jing W, Zhou Y, Hu P, Cui Y, Li Z, Yu S, Zhou J, Wang T, Shen L, Liu Y, Yu Q. Riboflavin kinase binds and activates inducible nitric oxide synthase to reprogram macrophage polarization. Redox Biol 2024; 78:103413. [PMID: 39536592 PMCID: PMC11605425 DOI: 10.1016/j.redox.2024.103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Riboflavin kinase (RFK) is essential in riboflavin metabolism, converting riboflavin to flavin mononucleotide (FMN), which is further processed to flavin adenine dinucleotide (FAD). While RFK enhances macrophage phagocytosis of Listeria monocytogenes, its role in macrophage polarization is not well understood. Our study reveals that RFK deficiency impairs M(IFN-γ) and promotes M(IL-4) polarization, both in vitro and in vivo. Mechanistically, RFK interacts with inducible nitric oxide (NO) synthase (iNOS), which requires FMN and FAD as cofactors for activation, leading to increased NO production that alters energy metabolism by inhibiting the tricarboxylic acid cycle and mitochondrial electron transport chain. Exogenous FAD reverses the metabolic and polarization changes caused by RFK deficiency. Furthermore, bone marrow adoptive transfer from high-riboflavin-fed mice into wild-type tumor-bearing mice reprograms tumor-associated macrophage polarization and inhibits tumor growth. These results suggest that targeting RFK-iNOS or modulating riboflavin metabolism could be potential therapies for macrophage-related immune diseases.
Collapse
Affiliation(s)
- Xiao Shan
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China; Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Zemin Ji
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Baochen Wang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yanan Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hongyuan Dong
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Weijia Jing
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yanzhao Zhou
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China; University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Penghui Hu
- Department of Critical Care Medicine, Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan Cui
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zihan Li
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Sujun Yu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ting Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin 300070, China
| | - Long Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Yuping Liu
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Qiujing Yu
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| |
Collapse
|
14
|
Hani U, Choudhary VT, Ghazwani M, Alghazwani Y, Osmani RAM, Kulkarni GS, Shivakumar HG, Wani SUD, Paranthaman S. Nanocarriers for Delivery of Anticancer Drugs: Current Developments, Challenges, and Perspectives. Pharmaceutics 2024; 16:1527. [PMID: 39771506 PMCID: PMC11679327 DOI: 10.3390/pharmaceutics16121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer, the most common condition worldwide, ranks second in terms of the number of human deaths, surpassing cardiovascular diseases. Uncontrolled cell multiplication and resistance to cell death are the traditional features of cancer. The myriad of treatment options include surgery, chemotherapy, radiotherapy, and immunotherapy to treat this disease. Conventional chemotherapy drug delivery suffers from issues such as the risk of damage to benign cells, which can cause toxicity, and a few tumor cells withstand apoptosis, thereby increasing the likelihood of developing tolerance. The side effects of cancer chemotherapy are often more pronounced than its benefits. Regarding drugs used in cancer chemotherapy, their bioavailability and stability in the tumor microenvironment are the most important issues that need immediate addressing. Hence, an effective and reliable drug delivery system through which both rapid and precise targeting of treatment can be achieved is urgently needed. In this work, we discuss the development of various nanobased carriers in the advancement of cancer therapy-their properties, the potential of polymers for drug delivery, and recent advances in formulations. Additionally, we discuss the use of tumor metabolism-rewriting nanomedicines in strengthening antitumor immune responses and mRNA-based nanotherapeutics in inhibiting tumor progression. We also examine several issues, such as nanotoxicological studies, including their distribution, pharmacokinetics, and toxicology. Although significant attention is being given to nanotechnology, equal attention is needed in laboratories that produce nanomedicines so that they can record themselves in clinical trials. Furthermore, these medicines in clinical trials display overwhelming results with reduced side effects, as well as their ability to modify the dose of the drug.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (M.G.)
| | - Vikram T. Choudhary
- Department of Pharmaceutics, The Oxford College of Pharmacy, Hongsandra, Bengaluru 560068, India;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (M.G.)
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India; (R.A.M.O.); (H.G.S.)
| | - Gururaj S. Kulkarni
- Department of Pharmaceutics, The Oxford College of Pharmacy, Hongsandra, Bengaluru 560068, India;
| | - Hosakote G. Shivakumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India; (R.A.M.O.); (H.G.S.)
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India;
| | - Sathishbabu Paranthaman
- Department of Cell Biology and Molecular Genetics, Sri Devraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563103, India;
| |
Collapse
|
15
|
Yang K, Zhang P, Li J, Zhang G, Chang X. Potential of natural drug modulation of endoplasmic reticulum stress in the treatment of myocardial injury. J Pharm Anal 2024; 14:101034. [PMID: 39720623 PMCID: PMC11667710 DOI: 10.1016/j.jpha.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/09/2024] [Accepted: 06/29/2024] [Indexed: 12/26/2024] Open
Abstract
Myocardial injury (MI) is a common occurrence in clinical practice caused by various factors such as ischemia, hypoxia, infection, metabolic abnormalities, and inflammation. Such damages are characterized by a reduction in myocardial function and cardiomyocyte death that can result in dangerous outcomes such as cardiac failure and arrhythmias. An endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) is triggered by several stressors, and its intricate signaling networks are instrumental in both cell survival and death. Cardiac damage frequently triggers ERS in response to different types of injuries and stress. High levels of ERS can exacerbate myocardial damage by inducing necrosis and apoptosis. To target ERS in MI prevention and treatment, current medical research is focused on identifying effective therapy approaches. Traditional Chinese medicine (TCM) is frequently used because of its vast range of applications and low risk of adverse effects. Various studies have demonstrated that active components of Chinese medicines, including polyphenols, saponins, and alkaloids, can reduce myocardial cell death, inflammation, and modify the ERS pathway, thus preventing and mitigating cardiac injury. Thus, this paper aims to provide a new direction and scientific basis for targeting ERS in MI prevention and treatment. We specifically summarize recent research progress on the regulation mechanism of ERS in MI by active ingredients of TCM.
Collapse
Affiliation(s)
- Kai Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ping Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jixin Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Genming Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
16
|
Wang L, Ren Z, Wu L, Zhang X, Wang M, Niu H, He X, Wang H, Chen Y, Shi G, Qian X. HRD1 reduction promotes cholesterol-induced vascular smooth muscle cell phenotypic change via endoplasmic reticulum stress. Mol Cell Biochem 2024; 479:3021-3036. [PMID: 38145449 DOI: 10.1007/s11010-023-04902-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/07/2023] [Indexed: 12/26/2023]
Abstract
Phenotypic change of vascular smooth muscle cells (VSMCs) is the main contributor of vascular pathological remodeling in atherosclerosis. The endoplasmic reticulum (ER) is critical for maintaining VSMC function through elimination of misfolded proteins that impair VSMC cellular function. ER-associated degradation (ERAD) is an ER-mediated process that controls protein quality by clearing misfolded proteins. One of the critical regulators of ERAD is HRD1, which also plays a vital role in lipid metabolism. However, the function of HRD1 in VSMCs of atherosclerotic vessels remains poorly understood. The level of HRD1 expression was analyzed in aortic tissues of mice fed with a high-fat diet (HFD). The H&E and EVG (VERHOEFF'S VAN GIESON) staining were used to demonstrate pathological vascular changes. IF (immunofluorescence) and WB (western blot) were used to explore the signaling pathways in vivo and in vitro. The wound closure and transwell assays were also used to test the migration rate of VSMCs. CRISPR gene editing and transcriptomic analysis were applied in vitro to explore the cellular mechanism. Our data showed significant reduction of HRD1 in aortic tissues of mice under HFD feeding. VSMC phenotypic change and HRD1 downregulation were detected by cholesterol supplement. Transcriptomic and further analysis of HRD1-KO VSMCs showed that HRD1 deficiency induced the expression of genes related to ER stress response, proliferation and migration, but reduced the contractile-related genes in VSMCs. HRD1 deficiency also exacerbated the proliferation, migration and ROS production of VSMCs induced by cholesterol, which promoted the VSMC dedifferentiation. Our results showed that HRD1 played an essential role in the contractile homeostasis of VSMCs by negatively regulating ER stress response. Thus, HRD1 in VSMCs could serve as a potential therapeutic target in metabolic disorder-induced vascular remodeling.
Collapse
Affiliation(s)
- Linli Wang
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhitao Ren
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Lin Wu
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ximei Zhang
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Min Wang
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Haiming Niu
- Department of Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, 528400, China
| | - Xuemin He
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Heting Wang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yanming Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Xiaoxian Qian
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
17
|
Zhao Q, Feng W, Gao P, Han Y, Zhang S, Zhou A, Shi L, Zhang J. Deoxynivalenol-Induced Spleen Toxicity in Mice: Inflammation, Endoplasmic Reticulum Stress, Macrophage Polarization, and the Dysregulation of LncRNA Expression. Toxins (Basel) 2024; 16:432. [PMID: 39453208 PMCID: PMC11511314 DOI: 10.3390/toxins16100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
The spleen is a primary target of deoxynivalenol (DON) toxicity, but its underlying molecular mechanisms remain unclear. This study investigates the effects of DON on inflammation, splenic macrophage polarization, endoplasmic reticulum (ER) stress, and transcriptome changes (mRNA and lncRNAs) in mouse spleen. We found that DON exposure at doses of 2.5 or 5 mg/kg BW significantly induced inflammation and polarized splenic macrophages towards the M1 phenotype. Additionally, DON activated PERK-eIF2α-ATF4-mediated ER stress and upregulated apoptosis-related proteins (caspase-12, caspase-3). The ER stress inhibitor, 4-Phenylbutyric acid, significantly alleviated DON-induced ER stress, apoptosis, and the M1 polarization of splenic macrophages. Transcriptome analysis identified 1968 differentially expressed (DE) lncRNAs and 2664 DE mRNAs in mouse spleen following DON exposure. Functional enrichment analysis indicated that the upregulated genes were involved in pathways associated with immunity, including Th17 cell differentiation, TNF signaling, and IL-17 signaling, while downregulated mRNAs were linked to cell survival and growth pathways. Furthermore, 370 DE lncRNAs were predicted to target 255 DE target genes associated with immune processes, including the innate immune response, interferon-beta response, cytokine production regulation, leukocyte apoptosis, and NF-κB signaling genes. This study provides new insights into the mechanisms underlying DON toxicity and its effects on the immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.Z.); (W.F.); (P.G.); (Y.H.); (S.Z.); (A.Z.); (L.S.)
| |
Collapse
|
18
|
Xz Q, Zq S, L L, Hs O. Zoledronic Acid Accelerates ER Stress-Mediated Inflammation by Increasing PDE4B Expression in Bisphosphonate-Related Osteonecrosis of the Jaw. Appl Biochem Biotechnol 2024; 196:7362-7374. [PMID: 38523176 DOI: 10.1007/s12010-024-04859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 03/26/2024]
Abstract
Long-term administration of bisphosphonates can lead to a significant side effect known as bisphosphonate-related osteonecrosis of the jaw (BRONJ). Although macrophage-mediated inflammation has been established as an important factor in BRONJ, the underlying mechanism remains elusive. In the current study, the roles of endoplasmic reticulum (ER) stress in zoledronic acid (ZOL)-induced inflammation were analyzed in macrophages, and the regulatory mechanism of ER stress activation was next investigated. An in vitro model of BRONJ was established by treating RAW264.7 cells with ZOL. The activation of ER stress was analyzed by western blotting and transmission electron microscopy, and inflammation was assessed by quantitative real-time PCR and enzyme-linked immunosorbent assay. ER stress was significantly activated in ZOL-treated macrophages, and inhibition of ER stress by TUDCA, an ER stress inhibitor, suppressed ZOL-induced inflammation in macrophages. Mechanistically, phosphodiesterase 4B (PDE4B) was significantly increased in ZOL-treated macrophages. Forced expression of PDE4B promoted ER stress and inflammation, whereas PDE4B knockdown decreased ZOL-induced ER stress and inflammation in macrophages. More importantly, PDE4B inhibitor could improve ZOL-induced BRONJ in vivo. These data suggest that ZOL accelerates ER stress-mediated inflammation in BRONJ by increasing PDE4B expression. PDE4B inhibition may represent a potential therapeutic strategy for BRONJ. Subsequent research should concentrate on formulating medications that selectively target PDE4B, thereby mitigating the risk of BRONJ in patients undergoing bisphosphonate treatment.
Collapse
Affiliation(s)
- Qu Xz
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sun Zq
- Department of Stomatology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Liu L
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ong Hs
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Li X, Zhong W, Jiang H, Wang P, Chai M, Zhu T, Liu J, Huang C, Yang S, Mou D, Zhou X, Cai Y. Endoplasmic reticulum stress is attenuated by glycolysis in lymphatic malformations. Pediatr Res 2024; 96:1210-1219. [PMID: 38710942 DOI: 10.1038/s41390-024-03181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND This study aims to investigate the role of endoplasmic reticulum stress (ER stress) in human dermal lymphatic endothelial cells (HDLECs) and lymphatic malformations (LMs) and its relationship with aerobic glycolysis and inflammation. METHODS The proliferation and apoptosis of HDLECs were examined with lipopolysaccharide (LPS) treatment. ER stress-associated proteins and glycolysis-related markers were detected by western blot. Glycolysis indexes were detected by seahorse analysis and lactic acid production assay kits. Immunohistochemistry was used to reveal the ER stress state of lymphatic endothelial cells (LECs) in LMs. RESULTS LPS induced ER stress in HDLECs but did not trigger detectable apoptosis. Intriguingly, LPS-treated HDLECs also showed increased glycolysis flux. Knockdown of Hexokinase 2, a key enzyme for aerobic glycolysis, significantly inhibited the ability of HDLECs to resist ER stress-induced apoptosis. Moreover, compared to normal skin, glucose-regulated protein 78 (GRP78/BIP), and phosphorylation protein kinase R-like kinase (p-PERK), two key ER stress-associated markers, were upregulated in LECs of LMs, which was correlated with the inflected state. In addition, excessively activated ER stress inhibited the progression of LMs in rat models. CONCLUSIONS These data indicate that glycolysis could rescue activated ER stress in HDLECs, which is required for the accelerated development of LMs. IMPACT Inflammation enhances both ER stress and glycolysis in LECs while glycolysis is required to attenuate the pro-apoptotic effect of ER stress. Endoplasmic reticulum (ER) stress is activated in lymphatic endothelial cells (LECs) of LMs, especially in inflammatory condition. The expression of ER stress-related proteins is increased in LMs and correlated with Hexokinase 2 expression. Pharmacological activation of ER stress suppresses the formation of LM lesions in the rat model. ER stress may be a promising and effective therapeutic target for the treatment of LMs.
Collapse
Affiliation(s)
- Xuecong Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wenqun Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Peipei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Maosheng Chai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Tianshuang Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Congfa Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shaodong Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Pathology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | | | - Yu Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Su Z, Lu W, Cao J, Xie Z, Zhao P. Endoplasmic reticulum stress in abdominal aortic aneurysm. INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VASCULATURE 2024; 54:101500. [PMID: 39280692 PMCID: PMC11402186 DOI: 10.1016/j.ijcha.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by permanent dilatation of the abdominal aorta, which is accompanied by inflammation, degradation of the extracellular matrix (ECM) and disruption of vascular smooth muscle cell (VSMC) homeostasis. Endoplasmic reticulum (ER) stress is involved in the regulation of inflammation, oxidative stress and VSMC apoptosis, all of which are critical factors in AAA development. Although several studies have revealed the occurrence of ER stress in AAA development, the specific biological functions of ER stress in AAA development remain largely unknown. Given that targeting ER stress is a promising strategy for treating AAAs, further investigation of the physiological and pathological roles of ER stress in AAA development is warranted.
Collapse
Affiliation(s)
- Zhaohai Su
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Weiling Lu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Jun Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Zheng Xie
- Department of General Practice, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Pei Zhao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
| |
Collapse
|
21
|
Liu Z, Zeinalzadeh Z, Huang T, Han Y, Peng L, Wang D, Zhou Z, Ousmane D, Wang J. Identification of endoplasmic reticulum stress-associated genes and subtypes for predicting risk signature and depicting immune features in inflammatory bowel disease. Heliyon 2024; 10:e37053. [PMID: 39296237 PMCID: PMC11409092 DOI: 10.1016/j.heliyon.2024.e37053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) becomes a significant factor in inflammatory bowel disease (IBD), like Crohn's disease (CD) and ulcerative colitis (UC). Our research was aimed at identifying molecular markers to enhance our understanding of ERS and inflammation in IBD, recognizing risk factors and high-risk groups at the molecular level, and developing a predictive model on the grounds of based on ERS-associated genes. This research adopted the least absolute shrinkage and selection operator (LASSO) regression and logistic regression to build a predictive model, and categorized IBD patients into high- and low-risk groups, and then identified four gene clusters. Our key findings included a significant increase in drug target gene expression in high-risk groups, notable discrepancies in immune levels, and functions between high-risk and low-risk groups. Notably, the TAP1 gene emerged as a strong predictor with the highest diagnostic value (area under the curve [AUC] = 0.941). TAP1 encodes proteins required for antigenic peptide transfer across the endoplasmic reticulum (ER) membrane, and its potential as a diagnostic marker and therapeutic target is reflected by its overexpression in IBD tissues. Our study established a new ERS-associated gene model which could forecast the risk, immunological status, and treatment efficacy of patients with IBD. These findings suggest potential targets for personalized therapy and highlight the significance of ERS in the etiology and therapy of IBD. Future studies should explore the therapeutic potential of targeting TAP1 and other ERS-related genes for IBD management.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Zahra Zeinalzadeh
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yingying Han
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Lushan Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Dan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Zongjiang Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Diabate Ousmane
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
22
|
Mohamud Yusuf A, Borbor M, Hussner T, Weghs C, Kaltwasser B, Pillath-Eilers M, Walkenfort B, Kolesnick R, Gulbins E, Hermann DM, Brockmeier U. Acid sphingomyelinase inhibition induces cerebral angiogenesis post-ischemia/reperfusion in an oxidative stress-dependent way and promotes endothelial survival by regulating mitochondrial metabolism. Cell Death Dis 2024; 15:650. [PMID: 39231943 PMCID: PMC11374893 DOI: 10.1038/s41419-024-06935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Acid sphingomyelinase (ASM) inhibitors are widely used for the treatment of post-stroke depression. They promote neurological recovery in animal stroke models via neurorestorative effects. In a previous study, we found that antidepressants including amitriptyline, fluoxetine, and desipramine increase cerebral angiogenesis post-ischemia/reperfusion (I/R) in an ASM-dependent way. To elucidate the underlying mechanisms, we investigated the effects of the functional ASM inhibitor amitriptyline in two models of I/R injury, that is, in human cerebral microvascular endothelial hCMEC/D3 cells exposed to oxygen-glucose deprivation and in mice exposed to middle cerebral artery occlusion (MCAO). In addition to our earlier studies, we now show that amitriptyline increased mitochondrial reactive oxygen species (ROS) formation in hCMEC/D3 cells and increased ROS formation in the vascular compartment of MCAO mice. ROS formation was instrumental for amitriptyline's angiogenic effects. ROS formation did not result in excessive endothelial injury. Instead, amitriptyline induced a profound metabolic reprogramming of endothelial cells that comprised reduced endothelial proliferation, reduced mitochondrial energy metabolism, reduced endoplasmic reticulum stress, increased autophagy/mitophagy, stimulation of antioxidant responses and inhibition of apoptotic cell death. Specifically, the antioxidant heme oxygenase-1, which was upregulated by amitriptyline, mediated amitriptyline's angiogenic effects. Thus, heme oxygenase-1 knockdown severely compromised angiogenesis and abolished amitriptyline's angiogenic responses. Our data demonstrate that ASM inhibition reregulates a complex network of metabolic and mitochondrial responses post-I/R that contribute to cerebral angiogenesis without compromising endothelial survival.
Collapse
Affiliation(s)
- Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mina Borbor
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Hussner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carolin Weghs
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Britta Kaltwasser
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Pillath-Eilers
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (Electron Microscopy), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Erich Gulbins
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ulf Brockmeier
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
23
|
Sak F, Sengul F, Vatansev H. The Role of Endoplasmic Reticulum Stress in Metabolic Diseases. Metab Syndr Relat Disord 2024; 22:487-493. [PMID: 38666441 DOI: 10.1089/met.2024.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
The endoplasmic reticulum (ER), the center of protein folding, also controls the cell's life-and-death signaling mechanisms. ER stress caused by unfolded or misfolded proteins leads to the activation of the unfolded protein response (UPR) in the cell. The UPR utilizes three main signaling pathways to restore disrupted ER homeostasis. These signaling pathways are protein kinase R-like endoplasmic reticulum kinase, inositol-requiring enzyme 1, and activating transcription factor 6. Studies have reported that ER stress (ERS) plays a role in the pathogenesis of metabolic disorders such as diabetes, obesity, atherosclerosis, and nonalcoholic liver disease. This review will briefly discuss the ERS response in these metabolic diseases.
Collapse
Affiliation(s)
- Firdevs Sak
- Faculty of Medicine, Department of Medical Biochemistry, University of Selçuk, Konya, Turkey
| | - Fatma Sengul
- Faculty of Pharmacy, Department of Biochemistry, University of Adiyaman, Adiyaman, Turkey
| | - Husamettin Vatansev
- Faculty of Medicine, Department of Medical Biochemistry, University of Selçuk, Konya, Turkey
| |
Collapse
|
24
|
Liu Y, Xu C, Gu R, Han R, Li Z, Xu X. Endoplasmic reticulum stress in diseases. MedComm (Beijing) 2024; 5:e701. [PMID: 39188936 PMCID: PMC11345536 DOI: 10.1002/mco2.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle in eukaryotic cells, responsible for a wide range of vital functions, including the modification, folding, and trafficking of proteins, as well as the biosynthesis of lipids and the maintenance of intracellular calcium homeostasis. A variety of factors can disrupt the function of the ER, leading to the aggregation of unfolded and misfolded proteins within its confines and the induction of ER stress. A conserved cascade of signaling events known as the unfolded protein response (UPR) has evolved to relieve the burden within the ER and restore ER homeostasis. However, these processes can culminate in cell death while ER stress is sustained over an extended period and at elevated levels. This review summarizes the potential role of ER stress and the UPR in determining cell fate and function in various diseases, including cardiovascular diseases, neurodegenerative diseases, metabolic diseases, autoimmune diseases, fibrotic diseases, viral infections, and cancer. It also puts forward that the manipulation of this intricate signaling pathway may represent a novel target for drug discovery and innovative therapeutic strategies in the context of human diseases.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| | - Chunling Xu
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Renjun Gu
- School of Chinese MedicineNanjing University of Chinese MedicineNanjingChina
- Department of Gastroenterology and HepatologyJinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular BiologyDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziyu Li
- School of Acupuncture and TuinaSchool of Regimen and RehabilitationNanjing University of Chinese MedicineNanjingChina
| | - Xianrong Xu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| |
Collapse
|
25
|
Capatina AL, Malcolm JR, Stenning J, Moore RL, Bridge KS, Brackenbury WJ, Holding AN. Hypoxia-induced epigenetic regulation of breast cancer progression and the tumour microenvironment. Front Cell Dev Biol 2024; 12:1421629. [PMID: 39282472 PMCID: PMC11392762 DOI: 10.3389/fcell.2024.1421629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The events that control breast cancer progression and metastasis are complex and intertwined. Hypoxia plays a key role both in oncogenic transformation and in fueling the metastatic potential of breast cancer cells. Here we review the impact of hypoxia on epigenetic regulation of breast cancer, by interfering with multiple aspects of the tumour microenvironment. The co-dependent relationship between oxygen depletion and metabolic shift to aerobic glycolysis impacts on a range of enzymes and metabolites available in the cell, promoting posttranslational modifications of histones and chromatin, and changing the gene expression landscape to facilitate tumour development. Hormone signalling, particularly through ERα, is also tightly regulated by hypoxic exposure, with HIF-1α expression being a prognostic marker for therapeutic resistance in ER+ breast cancers. This highlights the strong need to understand the hypoxia-endocrine signalling axis and exploit it as a therapeutic target. Furthermore, hypoxia has been shown to enhance metastasis in TNBC cells, as well as promoting resistance to taxanes, radiotherapy and even immunotherapy through microRNA regulation and changes in histone packaging. Finally, several other mediators of the hypoxic response are discussed. We highlight a link between ionic dysregulation and hypoxia signalling, indicating a potential connection between HIF-1α and tumoural Na+ accumulation which would be worth further exploration; we present the role of Ca2+ in mediating hypoxic adaptation via chromatin remodelling, transcription factor recruitment and changes in signalling pathways; and we briefly summarise some of the findings regarding vesicle secretion and paracrine induced epigenetic reprogramming upon hypoxic exposure in breast cancer. By summarising these observations, this article highlights the heterogeneity of breast cancers, presenting a series of pathways with potential for therapeutic applications.
Collapse
Affiliation(s)
| | - Jodie R Malcolm
- Department of Biology, University of York, York, United Kingdom
| | - Jack Stenning
- Department of Biology, University of York, York, United Kingdom
| | - Rachael L Moore
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Katherine S Bridge
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew N Holding
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
26
|
Zhang X, Li M, Tang YL, Zheng M, Liang XH. Advances in H 2O 2-supplying materials for tumor therapy: synthesis, classification, mechanisms, and applications. Biomater Sci 2024; 12:4083-4102. [PMID: 39010783 DOI: 10.1039/d4bm00366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Hydrogen peroxide (H2O2) as a reactive oxygen species produced by cellular metabolism can be used in antitumor therapy. However, the concentration of intracellular H2O2 limits its application. Some materials could enhance the concentration of intracellular H2O2 to strengthen antitumor therapy. In this review, the recent advances in H2O2-supplying materials in terms of promoting intracellular H2O2 production and exogenous H2O2 supply are summarized. Then the mechanism of H2O2-supplying materials for tumor therapy is discussed from three aspects: reconstruction of the tumor hypoxia microenvironment, enhancement of oxidative stress, and the intrinsic anti-tumor ability of H2O2-supplying materials. In addition, the application of H2O2-supplying materials for tumor therapy is discussed. Finally, the future of H2O2-supplying materials is presented. This review aims to provide a novel idea for the application of H2O2-supplying materials in tumor therapy.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Mao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
27
|
Dmytriv TR, Duve KV, Storey KB, Lushchak VI. Vicious cycle of oxidative stress and neuroinflammation in pathophysiology of chronic vascular encephalopathy. Front Physiol 2024; 15:1443604. [PMID: 39161701 PMCID: PMC11330875 DOI: 10.3389/fphys.2024.1443604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Chronic vascular encephalopathy (CVE) is a frequent cause of vascular mild cognitive impairment and dementia, which significantly worsens the quality of life, especially in the elderly population. CVE is a result of chronic cerebral hypoperfusion, characterized by prolonged limited blood flow to the brain. This causes insufficient oxygenation of the brain leading to hypoxia. The latter can trigger a series of events associated with the development of oxidative/reductive stresses and neuroinflammation. Addressing the gap in knowledge regarding oxidative and reductive stresses in the development of vascular disorders and neuroinflammation can give a start to new directions of research in the context of CVE. In this review, we consider the hypoxia-induced molecular challenges involved in the pathophysiology of CVE, focusing on oxidative stress and neuroinflammation, which are combined in a vicious cycle of neurodegeneration. We also briefly describe therapeutic approaches to the treatment of CVE and outline the prospects for the use of sulforaphane, an isothiocyanate common in cruciferous plants, and vitamin D to break the vicious cycle and alleviate the cognitive impairments characteristic of patients with CVE.
Collapse
Affiliation(s)
- Tetiana R. Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | - Khrystyna V. Duve
- Department of Neurology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | | | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
28
|
Tóth A, Lente G, Csiki DM, Balogh E, Szöőr Á, Nagy B, Jeney V. Activation of PERK/eIF2α/ATF4/CHOP branch of endoplasmic reticulum stress response and cooperation between HIF-1α and ATF4 promotes Daprodustat-induced vascular calcification. Front Pharmacol 2024; 15:1399248. [PMID: 39144616 PMCID: PMC11322142 DOI: 10.3389/fphar.2024.1399248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction: Vascular calcification is accelerated in patients with chronic kidney disease (CKD) and increases the risk of cardiovascular events. CKD is frequently associated with anemia. Daprodustat (DPD) is a prolyl hydroxylase inhibitor for the treatment of CKD-associated anemia that enhances erythropoiesis through the activation of the hypoxia-inducible factor 1 (HIF-1) pathway. Studies showed that DPD promotes osteogenic differentiation of human aortic smooth muscle cells (HAoSMCs) and increases aorta calcification in mice with CKD. HIF-1 activation has been linked with endoplasmic reticulum (ER) stress; therefore, here we investigated the potential contribution of ER stress, particularly activating transcription factor 4 (ATF4), to the pro-calcification effect of DPD. Methods: Here, we used an adenine-induced CKD mouse model and HAoSMCs as an in vitro vascular calcification model to study the effect of DPD. Results: DPD treatment (15 mg/kg/day) corrects anemia but increases the expression of hypoxia (Glut1, VEGFA), ER stress (ATF4, CHOP, and GRP78), and osteo-/chondrogenic (Runx2, Sox9, BMP2, and Msx2) markers and accelerates aorta and kidney calcification in CKD mice. DPD activates the PERK/eIF2α/ATF4/CHOP pathway and promotes high phosphate-induced osteo-/chondrogenic differentiation of HAoSMCs. Inhibition of ER stress with 4-PBA or silencing of ATF4 attenuates HAoSMC calcification. DPD-induced ATF4 expression is abolished in the absence of HIF-1α; however, knockdown of ATF4 does not affect HIF-1α expression. Conclusion: We concluded that DPD induces ER stress in vitro and in vivo, in which ATF4 serves as a downstream effector of HIF-1 activation. Targeting ATF4 could be a potential therapeutic approach to attenuate the pro-calcific effect of DPD.
Collapse
Affiliation(s)
- Andrea Tóth
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gréta Lente
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dávid Máté Csiki
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Enikő Balogh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
29
|
Mustakim KR, Eo MY, Seo MH, Yang HC, Kim MK, Myoung H, Kim SM. Ultrastructural and immunohistochemical evaluation of hyperplastic soft tissues surrounding dental implants in fibular jaws. Sci Rep 2024; 14:10717. [PMID: 38730018 PMCID: PMC11087521 DOI: 10.1038/s41598-024-60474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
In reconstructive surgery, complications post-fibula free flap (FFF) reconstruction, notably peri-implant hyperplasia, are significant yet understudied. This study analyzed peri-implant hyperplastic tissue surrounding FFF, alongside peri-implantitis and foreign body granulation (FBG) tissues from patients treated at the Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital. Using light microscopy, pseudoepitheliomatous hyperplasia, anucleate and pyknotic prickle cells, and excessive collagen deposition were observed in FFF hyperplastic tissue. Ultrastructural analyses revealed abnormal structures, including hemidesmosome dilation, bacterial invasion, and endoplasmic reticulum (ER) swelling. In immunohistochemical analysis, unfolded protein-response markers ATF6, PERK, XBP1, inflammatory marker NFκB, necroptosis marker MLKL, apoptosis marker GADD153, autophagy marker LC3, epithelial-mesenchymal transition, and angiogenesis markers were expressed variably in hyperplastic tissue surrounding FFF implants, peri-implantitis, and FBG tissues. NFκB expression was higher in peri-implantitis and FBG tissues compared to hyperplastic tissue surrounding FFF implants. PERK expression exceeded XBP1 significantly in FFF hyperplastic tissue, while expression levels of PERK, XBP1, and ATF6 were not significantly different in peri-implantitis and FBG tissues. These findings provide valuable insights into the interconnected roles of ER stress, necroptosis, apoptosis, and angiogenesis in the pathogenesis of oral pathologies, offering a foundation for innovative strategies in dental implant rehabilitation management and prevention.
Collapse
Affiliation(s)
- Kezia Rachellea Mustakim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Mi Young Eo
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Mi Hyun Seo
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Hyeong-Cheol Yang
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Min-Keun Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea
| | - Hoon Myoung
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Soung Min Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Oral and Maxillofacial Microvascular Reconstruction LAB, Brong Ahafo Regional Hospital, P.O.Box 27, Sunyani, Ghana.
| |
Collapse
|
30
|
Zhuang D, Wang S, Deng H, Shi Y, Liu C, Leng X, Zhang Q, Bai F, Zheng B, Guo J, Wu X. Phenformin activates ER stress to promote autophagic cell death via NIBAN1 and DDIT4 in oral squamous cell carcinoma independent of AMPK. Int J Oral Sci 2024; 16:35. [PMID: 38719825 PMCID: PMC11079060 DOI: 10.1038/s41368-024-00297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 05/12/2024] Open
Abstract
The efficient clinical treatment of oral squamous cell carcinoma (OSCC) is still a challenge that demands the development of effective new drugs. Phenformin has been shown to produce more potent anti-tumor activities than metformin on different tumors, however, not much is known about the influence of phenformin on OSCC cells. We found that phenformin suppresses OSCC cell proliferation, and promotes OSCC cell autophagy and apoptosis to significantly inhibit OSCC cell growth both in vivo and in vitro. RNA-seq analysis revealed that autophagy pathways were the main targets of phenformin and identified two new targets DDIT4 (DNA damage inducible transcript 4) and NIBAN1 (niban apoptosis regulator 1). We found that phenformin significantly induces the expression of both DDIT4 and NIBAN1 to promote OSCC autophagy. Further, the enhanced expression of DDIT4 and NIBAN1 elicited by phenformin was not blocked by the knockdown of AMPK but was suppressed by the knockdown of transcription factor ATF4 (activation transcription factor 4), which was induced by phenformin treatment in OSCC cells. Mechanistically, these results revealed that phenformin triggers endoplasmic reticulum (ER) stress to activate PERK (protein kinase R-like ER kinase), which phosphorylates the transitional initial factor eIF2, and the increased phosphorylation of eIF2 leads to the increased translation of ATF4. In summary, we discovered that phenformin induces its new targets DDIT4 and especially NIBAN1 to promote autophagic and apoptotic cell death to suppress OSCC cell growth. Our study supports the potential clinical utility of phenformin for OSCC treatment in the future.
Collapse
Affiliation(s)
- Dexuan Zhuang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
| | - Shuangshuang Wang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Huiting Deng
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
| | - Yuxin Shi
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
| | - Chang Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Xue Leng
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Qun Zhang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Fuxiang Bai
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Bin Zheng
- Cedars-Sinai Cancer Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jing Guo
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China.
| | - Xunwei Wu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China.
| |
Collapse
|
31
|
Wan L, Fan Y, Wu T, Liu Y, Zhang R, Chen S, Zhao C, Xue Y. Endoplasmic reticulum stress-related genes as prognostic and immunogenic biomarkers in prostate cancer. Eur J Med Res 2024; 29:242. [PMID: 38643190 PMCID: PMC11031923 DOI: 10.1186/s40001-024-01818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND The metastasis and aggressive nature of prostate cancer (PCa) has become a major malignancy related threat that concerns men's health. The efficacy of immune monotherapy against PCa is questionable due to its lymphocyte-suppressive nature. METHOD Endoplasmic reticulum stress- (ERS-) and PCa-prognosis-related genes were obtained from the Molecular Signatures Database and the Cancer Genome Atlas database. The expression, prognosis and immune infiltration values of key genes were explored by "survival R package", "rms", "xCELL algorithm", and univariate-multivariate Cox and LASSO regression analyses. The "consensus cluster plus R package" was used for cluster analysis. RESULT As ERS-related genes, ERLIN2 and CDK5RAP3 showed significant expressional, prognostic and clinic-pathologic values. They were defined as the key genes significantly correlated with immune infiltration and response. The nomogram was constructed with T-stage and primary treatment outcome, and the risk-prognostic model was constructed in the following way: Riskscore = (- 0.1918) * ERLIN2 + (0.5254) * CDK5RAP3. Subsequently, prognostic subgroups based on key genes classified the high-risk group as a pro-cancer subgroup that had lower mutation rates of critical genes (SPOP and MUC16), multiple low-expression immune-relevant molecules, and differences in macrophages (M1 and M2) expressions. Finally, ERLIN2 as an anti-oncogene and CDK5RAP3 as a pro-oncogene were further confirmed by cell phenotype assays and immunohistochemistry. CONCLUSION We identified ERLIN2 and CDK5RAP3 as ERS-related genes with important prognostic and immunologic values, and classified patients between high- and low-risk subgroups, which provided new prognostic markers, immunotherapeutic targets, and basis for prognostic assessments.
Collapse
Affiliation(s)
- Lilin Wan
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Department of Urology, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Yunxia Fan
- Department of Urology, Jintan Affiliated Hospital of Jiangsu University, No.500, Jintan Avenue, Jintan District, Changzhou, 213200, China
| | - Tiange Wu
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Department of Urology, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Yifan Liu
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Department of Urology, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Ruixin Zhang
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Saisai Chen
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China.
- Department of Urology, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China.
| | - Chenggui Zhao
- Department of Laboratory, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China.
| | - Yifeng Xue
- Department of Urology, Jintan Affiliated Hospital of Jiangsu University, No.500, Jintan Avenue, Jintan District, Changzhou, 213200, China.
| |
Collapse
|
32
|
Wu Y, Zhang P, Shi T, Cao D, Pan W. Deficiency of immunoglobulin IgSF6 enhances antibacterial effects by promoting endoplasmic reticulum stress and the inflammatory response in intestinal macrophages. Mucosal Immunol 2024; 17:288-302. [PMID: 38387824 DOI: 10.1016/j.mucimm.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/19/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Immunoglobulin superfamily (IgSF) members are known for their role as glycoproteins expressed on the surface of immune cells, enabling protein-protein interactions to sense external signals during immune responses. However, the functions of immunoglobulins localized within subcellular compartments have been less explored. In this study, we identified an endoplasmic reticulum (ER)-localized immunoglobulin, IgSF member 6 (IgSF6), that regulates ER stress and the inflammatory response in intestinal macrophages. Igsf6 expression is sustained by microbiota and significantly upregulated upon bacterial infection. Mice lacking Igsf6 displayed resistance to Salmonella typhimurium challenge but increased susceptibility to dextran sulfate sodium-induced colitis. Mechanistically, deficiency of Igsf6 enhanced inositol-requiring enzyme 1α/-X-box binding protein 1 pathway, inflammatory response, and reactive oxygen species production leading to increased bactericidal activity of intestinal macrophages. Inhibition of reactive oxygen species or inositol-requiring enzyme 1α-X-box binding protein 1 pathway reduced the advantage of Igsf6 deficiency in bactericidal capacity. Together, our findings provide insight into the role of IgSF6 in intestinal macrophages that modulate the ER stress response and maintain intestinal homeostasis.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Panrui Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tianlu Shi
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dan Cao
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Wen Pan
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
33
|
Guo J, Li R, Ouyang Z, Tang J, Zhang W, Chen H, Zhu Q, Zhang J, Zhu G. Insights into the mechanism of transcription factors in Pb 2+-induced apoptosis. Toxicology 2024; 503:153760. [PMID: 38387706 DOI: 10.1016/j.tox.2024.153760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The health risks associated with exposure to heavy metals, such as Pb2+, are increasingly concerning the public. Pb2+ can cause significant harm to the human body through oxidative stress, autophagy, inflammation, and DNA damage, disrupting cellular homeostasis and ultimately leading to cell death. Among these mechanisms, apoptosis is considered crucial. It has been confirmed that transcription factors play a central role as mediators during the apoptosis process. Interestingly, these transcription factors have different effects on apoptosis depending on the concentration and duration of Pb2+ exposure. In this article, we systematically summarize the significant roles of several transcription factors in Pb2+-induced apoptosis. This information provides insights into therapeutic strategies and prognostic biomarkers for diseases related to Pb2+ exposure.
Collapse
Affiliation(s)
- Jingchong Guo
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Ruikang Li
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Zhuqing Ouyang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Jiawen Tang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Hui Chen
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Qian Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Jing Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| | - Gaochun Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
34
|
Rahane D, Dhingra T, Chalavady G, Datta A, Ghosh B, Rana N, Borah A, Saraf S, Bhattacharya P. Hypoxia and its effect on the cellular system. Cell Biochem Funct 2024; 42:e3940. [PMID: 38379257 DOI: 10.1002/cbf.3940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Eukaryotic cells utilize oxygen for different functions of cell organelles owing to cellular survival. A balanced oxygen homeostasis is an essential requirement to maintain the regulation of normal cellular systems. Any changes in the oxygen level are stressful and can alter the expression of different homeostasis regulatory genes and proteins. Lack of oxygen or hypoxia results in oxidative stress and formation of hypoxia inducible factors (HIF) and reactive oxygen species (ROS). Substantial cellular damages due to hypoxia have been reported to play a major role in various pathological conditions. There are different studies which demonstrated that the functions of cellular system are disrupted by hypoxia. Currently, study on cellular effects following hypoxia is an important field of research as it not only helps to decipher different signaling pathway modulation, but also helps to explore novel therapeutic strategies. On the basis of the beneficial effect of hypoxia preconditioning of cellular organelles, many therapeutic investigations are ongoing as a promising disease management strategy in near future. Hence, the present review discusses about the effects of hypoxia on different cellular organelles, mechanisms and their involvement in the progression of different diseases.
Collapse
Affiliation(s)
- Dipali Rahane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Tannu Dhingra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Guruswami Chalavady
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Nikita Rana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Shailendra Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
35
|
Wang Y, Xiong Z, Qiao Y, Zhang Q, Zhou G, Zhou C, Ma X, Jiang X, Yu W. Acetyl-11-keto-beta-boswellic acid modulates macrophage polarization and Schwann cell migration to accelerate spinal cord injury repair in rats. CNS Neurosci Ther 2024; 30:e14642. [PMID: 38430464 PMCID: PMC10908365 DOI: 10.1111/cns.14642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Inhibiting secondary inflammatory damage caused by glial cells and creating a stable microenvironment is one of the main strategies to investigate drugs for the treatment of spinal cord injury. Acetyl-11-keto-beta-boswellic acid (AKBA) is the active component of the natural drug boswellia, which has anti-inflammatory and antioxidant effects and offers a possible therapeutic option for spinal cord injury. METHODS In this study, a spinal cord injury model was established by crushing spinal cord, respectively, to detect the M1 macrophage inflammatory markers: iNOS, TNF-α, IL-1β, and the M2 macrophage markers CD206, ARG-1, IL-10, and the detection of antioxidant enzymes and MDA. In vitro, macrophages were cultured to verify the main mechanism of the macrophage switch from Nrf2/HO-1 to M2 type by flow cytometry, immunofluorescence, and other techniques. Macrophage and Schwann cell co-culture validated the migration mechanism of Schwann cells promoted by AKBA. RESULTS AKBA significantly enhanced the antioxidant enzyme activities of CAT, GSH-Px, T-AOC, and SOD, reduced MDA content, and reduced oxidative damage caused by spinal cord injury via the Nrf2/HO-1 signaling pathway; AKBA mediates Nrf2/HO-1/IL-10, converts macrophages from M1 to M2 type, reduces inflammation, and promotes Schwann cell migration, thereby accelerating the repair of spinal cord injury in rats. CONCLUSIONS Our work demonstrates that AKBA can attenuate oxidative stress as well as the secondary inflammatory injury caused by macrophages after SCI, promote Schwann cell migration to the injury site, and thus accelerate the repair of the injured spinal cord.
Collapse
Affiliation(s)
- Yao Wang
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Zongliang Xiong
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Yuncong Qiao
- School of Life SciencesNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Qiyuan Zhang
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Guanghu Zhou
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Chong Zhou
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Xianglin Ma
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Xiaowen Jiang
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Wenhui Yu
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and TreatmentNortheast Agricultural UniversityHarbinHeilongjiangChina
- Institute of Chinese Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| |
Collapse
|
36
|
Fan X, Liu Y, Li S, Yang Y, Zhao Y, Li W, Hao J, Xu Z, Zhang B, Liu W, Zhang S. Comprehensive landscape-style investigation of the molecular mechanism of acupuncture at ST36 single acupoint on different systemic diseases. Heliyon 2024; 10:e26270. [PMID: 38375243 PMCID: PMC10875596 DOI: 10.1016/j.heliyon.2024.e26270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
The principle of acupoint stimulation efficacy is based on traditional meridian theory. However, the molecular mechanisms underlying the therapeutic effects of acupoints in treating diseases remain unclear in modern scientific understanding. In this study, we selected the ST36 acupoint for investigation and summarized all relevant literature from the PubMed database over the past 10 years. The results indicate that stimulation of ST36 single acupoints has therapeutic effects mainly in models of respiratory, neurological, digestive, endocrine and immune system diseases. And it can affect the inflammatory state, oxidative stress, respiratory mucus secretion, intestinal flora, immune cell function, neurotransmitter transmission, hormone secretion, the network of Interstitial Cells of Cajal (ICC) and glucose metabolism of the organism in these pathological states. Among them, acupuncture at the ST36 single point has the most prominent function in regulating the inflammatory state, which can mainly affect the activation of MAPK signaling pathway and drive the "molecular-cellular" mode involving macrophages, T-lymphocytes, mast cells (MCs) and neuroglial cells as the core to trigger the molecular level changes of the acupuncture point locally or in the target organ tissues, thereby establishing a multi-system, multi-target, multi-level molecular regulating mechanism. This article provides a comprehensive summary and discussion of the molecular mechanisms and effects of acupuncture at the ST36 acupoint, laying the groundwork for future in-depth research on acupuncture point theory.
Collapse
Affiliation(s)
- Xiaojing Fan
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Yunlong Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shanshan Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Chinese Medicine, Tianjin, 301617, China
| | - Yongrui Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yinghui Zhao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wenxi Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jiaxin Hao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Chinese Medicine, Tianjin, 301617, China
| | - Bo Zhang
- Department of Automation, Tsinghua University, Institute for TCM-X, Beijing, 100084, China
| | - Wei Liu
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Province Hospital of Chinese Medicine, Hebei Shijiazhuang, 050011, China
| | - Suzhao Zhang
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Province Hospital of Chinese Medicine, Hebei Shijiazhuang, 050011, China
| |
Collapse
|
37
|
Liu X, Li T, Sun J, Wang Z. The Role of Endoplasmic Reticulum Stress in Calcific Aortic Valve Disease. Can J Cardiol 2023; 39:1571-1580. [PMID: 37516250 DOI: 10.1016/j.cjca.2023.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023] Open
Abstract
Calcific aortic valve disease (CAVD), which is involved in osteogenic reprogramming of valvular interstitial cells, is the most common form of valve disease. It still lacks effective pharmacologic intervention, as its cellular biological mechanisms remain unclear. Congenital abnormality (bicuspid valve) and older age are considered to be the most powerful risk factors for CAVD. Aortic valve sclerosis (AVS) and calcific aortic stenosis (CAS), 2 subclinical forms of CAVD, represent 2 distinct stages of aortic valve calcification. During the AVS stage, the disease is characterised by endothelial activation/damage, inflammatory response, and lipid infiltration accompanied by microcalcification. The CAS stage is dominated by calcification, resulting in valvular dysfunction and severe obstruction to cardiac outflow, which is life threatening if surgery is not performed in time. Endoplasmic reticulum (ER) stress, a state in which conditions disrupting ER homeostasis cause an accumulation of unfolded and misfolded proteins in the ER lumen, has been shown to promote osteogenic differentiation and aortic valve calcification. Therefore, identifying targets or drugs for suppressing ER stress may be a novel approach for CAVD treatment.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Medicial Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Ting Li
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Jun Sun
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhengjun Wang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
38
|
Kozlov D, Rodimova S, Kuznetsova D. The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review). Sovrem Tekhnologii Med 2023; 15:54-79. [PMID: 39967915 PMCID: PMC11832066 DOI: 10.17691/stm2023.15.5.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 01/03/2025] Open
Abstract
Molecular diagnostics based on small non-coding RNA molecules (in particular microRNA) is a new direction in modern biomedicine and is considered a promising method for identification of a wide range of pathologies at an early stage, clinical phenotype assessment, as well as monitoring the course of the disease, evaluation of therapy efficacy and the risk of the disease recurrence. Currently, the role of microRNAs as the most important epigenetic regulator in cancer development has been proven within the studies of normal and pathogenic processes. However, currently, there are insignificant studies devoted to studying the role of microRNAs in functioning of other organs and tissues, as well as to development of possible therapeutic approaches based on microRNAs. A huge number of metabolic processes in the liver are controlled by microRNAs, which creates enormous potential for the use of microRNAs as a diagnostic marker and makes it a target for therapeutic intervention in metabolic, oncological, and even viral diseases of this organ. This review examines various aspects of biological functions of microRNAs in different types of liver cells. Both canonical and non-canonical pathways of biogenesis, epigenetic regulation mediated by microRNAs, as well as the microRNAs role in intercellular communication and the course of viral diseases are shown. The potential of microRNAs as a diagnostic marker for various liver pathologies is described, as well as therapeutic approaches and medicines based on microRNAs, which are approved for clinical use and currently being developed.
Collapse
Affiliation(s)
- D.S. Kozlov
- Laboratory Assistant, Scientific Laboratory of Molecular Biotechnologies, I Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Student, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - S.A. Rodimova
- Junior Researcher, Laboratory of Regenerative Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Junior Researcher, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D.S. Kuznetsova
- PhD, Head of the Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Head of the Research Laboratory for Molecular Genetic Researches, Institute of Clinical Medicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
39
|
Dong X, Xia S, Du S, Zhu MH, Lai X, Yao SQ, Chen HZ, Fang C. Tumor Metabolism-Rewriting Nanomedicines for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2023; 9:1864-1893. [PMID: 37901179 PMCID: PMC10604035 DOI: 10.1021/acscentsci.3c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 10/31/2023]
Abstract
Cancer immunotherapy has become an established therapeutic paradigm in oncologic therapy, but its therapeutic efficacy remains unsatisfactory in the majority of cancer patients. Accumulating evidence demonstrates that the metabolically hostile tumor microenvironment (TME), characterized by acidity, deprivation of oxygen and nutrients, and accumulation of immunosuppressive metabolites, promotes the dysfunction of tumor-infiltrating immune cells (TIICs) and thereby compromises the effectiveness of immunotherapy. This indicates the potential role of tumor metabolic intervention in the reinvigoration of antitumor immunity. With the merits of multiple drug codelivery, cell and organelle-specific targeting, controlled drug release, and multimodal therapy, tumor metabolism-rewriting nanomedicines have recently emerged as an attractive strategy to strengthen antitumor immune responses. This review summarizes the current progress in the development of multifunctional tumor metabolism-rewriting nanomedicines for evoking antitumor immunity. A special focus is placed on how these nanomedicines reinvigorate innate or adaptive antitumor immunity by regulating glucose metabolism, amino acid metabolism, lipid metabolism, and nucleotide metabolism at the tumor site. Finally, the prospects and challenges in this emerging field are discussed.
Collapse
Affiliation(s)
- Xiao Dong
- Department
of Pharmacy, School of Medicine, Shanghai
University, Shanghai 200444, China
| | - Shu Xia
- Department
of Pharmacy, School of Medicine, Shanghai
University, Shanghai 200444, China
| | - Shubo Du
- School
of Bioengineering, Dalian University of
Technology, Dalian 116024, China
| | - Mao-Hua Zhu
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
| | - Xing Lai
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
| | - Shao Q. Yao
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Hong-Zhuan Chen
- Institute
of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Chao Fang
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
- Key
Laboratory of Basic Pharmacology of Ministry of Education & Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
40
|
Qi H, Zheng Z, Liu Q. Activation of BZW1 by CEBPB in macrophages promotes eIF2α phosphorylation-mediated metabolic reprogramming and endoplasmic reticulum stress in MRL/lpr lupus-prone mice. Cell Mol Biol Lett 2023; 28:79. [PMID: 37828427 PMCID: PMC10571419 DOI: 10.1186/s11658-023-00494-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is associated with significant mortality and morbidity, while effective therapeutics and biomarkers are limited since the pathogenesis is complex. This study investigated the roles of the CEBPB/BZW1/eIF2α axis in metabolic reprogramming and endoplasmic reticulum stress in LN. METHOD The differentially expressed genes in LN were screened using bioinformatics tools. The expression of CEBPB in the renal tissue of patients with LN and its correlation with the levels of creatinine and urinary protein were analyzed. We used adenoviral vectors to construct LN mice with knockdown CEBPB using MRL/lpr lupus-prone mice and analyzed the physiological and autoimmune indices in mice. Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and dual-luciferase reporter assays were conducted to explore the regulation of BZW1 by CEBPB, followed by glycolytic flux analysis, glucose uptake, and enzyme-linked immunosorbent assay (ELISA). Finally, the role of eIF2α phosphorylation by BZW1 in bone marrow-derived macrophages (BMDM) was explored using eIF2α phosphorylation and endoplasmic reticulum stress inhibitors. RESULTS CEBPB was significantly increased in renal tissues of patients with LN and positively correlated with creatinine and urine protein levels in patients. Downregulation of CEBPB alleviated the autoimmune response and the development of nephritis in LN mice. Transcriptional activation of BZW1 by CEBPB-mediated glucose metabolic reprogramming in macrophages, and upregulation of BZW1 reversed the mitigating effect of CEBPB knockdown on LN. Regulation of eIF2α phosphorylation levels by BZW1 promoted endoplasmic reticulum stress-amplified inflammatory responses in BMDM. CONCLUSION Transcriptional activation of BZW1 by CEBPB promoted phosphorylation of eIF2α to promote macrophage glycolysis and endoplasmic reticulum stress in the development of LN.
Collapse
Affiliation(s)
- Huimeng Qi
- Department of General Practice, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, People's Republic of China
| | - Zhaoguo Zheng
- Department of Nephrology, Guangdong Second Provincial General Hospital, Haizhu District, No. 466, Xingang Zhong, Guangzhou, 510317, Guangdong, People's Republic of China
| | - Qiang Liu
- Department of Nephrology, Guangdong Second Provincial General Hospital, Haizhu District, No. 466, Xingang Zhong, Guangzhou, 510317, Guangdong, People's Republic of China.
| |
Collapse
|
41
|
Maurmann RM, Schmitt BL, Mosalmanzadeh N, Pence BD. Mitochondrial dysfunction at the cornerstone of inflammatory exacerbation in aged macrophages. EXPLORATION OF IMMUNOLOGY 2023; 3:442-452. [PMID: 38831878 PMCID: PMC11147369 DOI: 10.37349/ei.2023.00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/18/2023] [Indexed: 06/05/2024]
Abstract
Immunosenescence encompasses multiple age-related adaptations that result in increased susceptibility to infections, chronic inflammatory disorders, and higher mortality risk. Macrophages are key innate cells implicated in inflammatory responses and tissue homeostasis, functions progressively compromised by aging. This process coincides with declining mitochondrial physiology, whose integrity is required to sustain and orchestrate immune responses. Indeed, multiple insults observed in aged macrophages have been implied as drivers of mitochondrial dysfunction, but how this translates into impaired immune function remains sparsely explored. This review provides a perspective on recent studies elucidating the underlying mechanisms linking dysregulated mitochondria homeostasis to immune function in aged macrophages. Genomic stress alongside defective mitochondrial turnover accounted for the progressive accumulation of damaged mitochondria in aged macrophages, thus resulting in a higher susceptibility to excessive mitochondrial DNA (mtDNA) leakage and reactive oxygen species (ROS) production. Increased levels of these mitochondrial products following infection were demonstrated to contribute to exacerbated inflammatory responses mediated by overstimulation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and cyclic GMP-ATP synthase (cGAS)-stimulator of interferon genes (STING) pathways. While these mechanisms are not fully elucidated, the present evidence provides a promising area to be explored and a renewed perspective of potential therapeutic targets for immunological dysfunction.
Collapse
Affiliation(s)
| | | | - Negin Mosalmanzadeh
- College of Health Sciences, University of Memphis, Memphis, Tennessee, 38152, USA
| | - Brandt D. Pence
- College of Health Sciences, University of Memphis, Memphis, Tennessee, 38152, USA
| |
Collapse
|
42
|
Zhenyu L, Ying W, Zhuang T, Yongchao X, Kim J. Exercise-mediated macrophage polarization modulates the targeted therapeutic effect of NAFLD: a review. Phys Act Nutr 2023; 27:10-16. [PMID: 37946441 PMCID: PMC10636506 DOI: 10.20463/pan.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/29/2023] [Accepted: 08/27/2023] [Indexed: 11/12/2023] Open
Abstract
PURPOSE This review aims to explore the exercise-mediated hepatic macrophage polarization mechanism and its effect on improving and regulating non-alcoholic fatty liver disease (NAFLD) by analyzing the pathogenesis of NAFLD and the cause of the influence of hepatic macrophage polarization. In addition to exploring the varied effects of different exercise types on macrophage polarization regulation in NAFLD, to provide a direction and basis for the treatment of NAFLD. METHODS The research methodology involved a comprehensive search of the PubMed database using specific keywords such as "NAFLD", "macrophage polarization", and "exercise", to retrieve relevant literature published. RESULTS (1) The main factors inducing NAFLD were high-fat diet, obesity, insulin resistance (IR), changes in gut microbiota, and genetic variation in susceptibility. (2) Drug treatment, nutrient induction, microfactor induction, physiological environment induction, and other factors can induce the polarization of hepatic macrophages and affect NAFLD. (3) Different intensities, types, and frequencies of exercise have different effects on polarization macrophages, and may also differently effects improving liver inflammation, fibrosis, and NAFLD. Curently, regular moderate-intensity aerobic exercise is the most effective therapy for treating NAFLD. CONCLUSION Approaches to ameliorate NAFLD with exercise involve strategies to alter macrophage polarization by inhibiting M1 or driving M2 activation. However, research on the different types of exercise-mediated macrophage polarization mechanisms and differences in therapeutic effects is not yet sufficient. Future research is necessary to explore the exact mechanisms and differences in the effects of different exercises on the treatment of NAFLD.
Collapse
Affiliation(s)
- Li Zhenyu
- Department of Sport Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Wang Ying
- Department of Sport Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Tian Zhuang
- Department of Sport Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Xie Yongchao
- Department of Sport Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jaecheol Kim
- Department of Sport Science, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
43
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
44
|
Hu K, Shang Z, Yang X, Zhang Y, Cao L. Macrophage Polarization and the Regulation of Bone Immunity in Bone Homeostasis. J Inflamm Res 2023; 16:3563-3580. [PMID: 37636272 PMCID: PMC10460180 DOI: 10.2147/jir.s423819] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023] Open
Abstract
Bone homeostasis is a dynamic equilibrium state of bone formation and absorption, ensuring skeletal development and repair. Bone immunity encompasses all aspects of the intersection between the skeletal and immune systems, including various signaling pathways, cytokines, and the crosstalk between immune cells and bone cells under both homeostatic and pathological conditions. Therefore, as key cell types in bone immunity, macrophages can polarize into classical pro-inflammatory M1 macrophages and alternative anti-inflammatory M2 macrophages under the influence of the body environment, participating in the regulation of bone metabolism and playing various roles in bone homeostasis. M1 macrophages can not only act as precursors of osteoclasts (OCs), differentiate into mature OCs, but also secrete pro-inflammatory cytokines to promote bone resorption; while M2 macrophages secrete osteogenic factors, stimulating the differentiation and mineralization of osteoblast precursors and mesenchymal stem cells (MSCs), and subsequently increase bone formation. Once the polarization of macrophages is imbalanced, the resulting immune dysregulation will cause inflammatory stimulation, and release a large amount of inflammatory factors affecting bone metabolism, leading to pathological conditions such as osteoporosis (OP), rheumatoid arthritis (RA), and steroid-induced femoral head necrosis (SANFH). In this review, we introduce the signaling pathways and related factors of macrophage polarization, as well as their relationships with immune factors, OB, OC, and MSC. We also discuss the roles of macrophage polarization and bone immunity in various diseases of bone homeostasis imbalance, as well as the factors regulating them, which may help to develop new methods for treating bone metabolic disorders.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Zhengya Shang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Xiaorui Yang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjie Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Linzhong Cao
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
45
|
Wang W, Hawkridge AM, Ma Y, Zhang B, Mangrum JB, Hassan ZH, He T, Blat S, Guo C, Zhou H, Liu J, Wang XY, Fang X. Ubiquitin-like protein 5 is a novel player in the UPR-PERK arm and ER stress-induced cell death. J Biol Chem 2023; 299:104915. [PMID: 37315790 PMCID: PMC10339194 DOI: 10.1016/j.jbc.2023.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
Biological functions of the highly conserved ubiquitin-like protein 5 (UBL5) are not well understood. In Caenorhabditis elegans, UBL5 is induced under mitochondrial stress to mount the mitochondrial unfolded protein response (UPR). However, the role of UBL5 in the more prevalent endoplasmic reticulum (ER) stress-UPR in the mammalian system is unknown. In the present work, we demonstrated that UBL5 was an ER stress-responsive protein, undergoing rapid depletion in mammalian cells and livers of mice. The ER stress-induced UBL5 depletion was mediated by proteasome-dependent yet ubiquitin-independent proteolysis. Activation of the protein kinase R-like ER kinase arm of the UPR was essential and sufficient for inducing UBL5 degradation. RNA-Seq analysis of UBL5-regulated transcriptome revealed that multiple death pathways were activated in UBL5-silenced cells. In agreement with this, UBL5 knockdown induced severe apoptosis in culture and suppressed tumorigenicity of cancer cells in vivo. Furthermore, overexpression of UBL5 protected specifically against ER stress-induced apoptosis. These results identify UBL5 as a physiologically relevant survival regulator that is proteolytically depleted by the UPR-protein kinase R-like ER kinase pathway, linking ER stress to cell death.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Adam M Hawkridge
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yibao Ma
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bei Zhang
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John B Mangrum
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zaneera H Hassan
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Tianhai He
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sofiya Blat
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human & Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Huiping Zhou
- Department of Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA; Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Jinze Liu
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiang-Yang Wang
- Department of Human & Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA; Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Xianjun Fang
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
46
|
Mo L, Liu Y, Xu X, Wang X, Zhang S, Hu S, Wu Y, Tang Z, Huang Q, Li J, Sun X, Yang P. Endoplasmic reticulum stress impairs the immune regulation property of macrophages in asthmatic patients. Clin Immunol 2023; 252:109639. [PMID: 37172666 DOI: 10.1016/j.clim.2023.109639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The current study aims to characterize the counteraction of M2 cells in response to Endoplasmic reticulum (ER) stress. ER stress was detected in bronchoalveolar lavage fluids (BALF) Mϕs, which was at unresolved state in asthma patients. A positive correlation was detected between ER stress in Mϕs and lung functions/allergic mediators/Th2 cytokines in BALF or specific IgE in the serum. Levels of immune regulatory mediator in the BALF were negatively correlated to ER stress in BALF Mϕs. The ER stress state influenced the immune regulatory property of BALF Mϕ. Exposure to environmental pollutant, 3-metheyl-4-nitrophenol, exacerbated ER stress in Mϕ, which affected the Mϕ phenotyping. Exacerbation of ER stress suppressed the expression of IL-10 and programmed cell death protein-1 (PD-1) in Mϕs by increasing the expression of the ring finger protein 20 (Rnf20). Conditional inhibition of Rnf20 in Mϕs attenuated experimental airway allergy.
Collapse
Affiliation(s)
- Lihua Mo
- Department of General Practice Medicine and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China; Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of General Practice Medicine and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xuejie Xu
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Xinxin Wang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Shuang Zhang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Suqin Hu
- Department of General Practice Medicine and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yongjin Wu
- Department of Allergy, Longgang ENT Hospital, Shenzhen, China
| | - Zhiyuan Tang
- Department of Allergy, Longgang ENT Hospital, Shenzhen, China
| | - Qinmiao Huang
- Department of General Practice Medicine and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jing Li
- Department of Allergy, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xizhuo Sun
- Department of General Practice Medicine and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Pingchang Yang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China.
| |
Collapse
|
47
|
Lin S, Long H, Hou L, Zhang M, Ting J, Lin H, Zheng P, Lei W, Yin K, Zhao G. Crosstalk between endoplasmic reticulum stress and non-coding RNAs in cardiovascular diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1767. [PMID: 36420580 DOI: 10.1002/wrna.1767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 07/20/2023]
Abstract
Cells are exposed to various pathological stimulus within the cardiovascular system that challenge cells to adapt and survive. Several of these pathological stimulus alter the normal function of the endoplasmic reticulum (ER), leading to the accumulation of unfolded and misfolded proteins, thus triggering the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. Downstream components of the UPR regulate transcription and translation reprogramming to ensure selective gene expression in response to pathological stimulus, including the expression of non-coding RNAs (ncRNAs). The ncRNAs play crucial roles in regulating transcription and translation, and their aberrant expression is associated with the development of cardiovascular disease (CVD). Notably, ncRNAs and ER stress can modulate each other and synergistically affect the development of CVD. Therefore, studying the interaction between ER stress and ncRNAs is necessary for effective prevention and treatment of CVD. In this review, we discuss the UPR signaling pathway and ncRNAs followed by the interplay regulation of ER stress and ncRNAs in CVD, which provides further insights into the understanding of the pathogenesis of CVD and therapeutic strategies. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Shuyun Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haijiao Long
- Xiangya Hospital, Central South University, Changsha, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ming Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Jiang Ting
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haiyue Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Pan Zheng
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Weixing Lei
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
48
|
Zou Y, Shi H, Lin H, Wang X, Wang G, Gao Y, Yi F, Yin Y, Li D, Li M. The abrogation of GRP78 sensitizes liver cancer cells to lysionotin by enhancing ER stress-mediated pro-apoptotic pathway. Cell Stress Chaperones 2023; 28:409-422. [PMID: 37326827 PMCID: PMC10352479 DOI: 10.1007/s12192-023-01358-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Glucose-regulated protein 78 (GRP78) is frequently and highly expressed in various human malignancies and protects cancer cells against apoptosis induced by multifarious stresses, particularly endoplasmic reticulum stress (ER stress). The inhibition of GRP78 expression or activity could enhance apoptosis induced by anti-tumor drugs or compounds. Herein, we will evaluate the efficacy of lysionotin in the treatment of human liver cancer as well as the molecular mechanism. Moreover, we will examine whether inhibition of GRP78 enhanced the sensitivity of hepatocellular carcinoma cells to lysionotin. We found that lysionotin significantly suppressed proliferation and induced apoptosis of liver cancer cells. TEM showed that lysionotin-treated liver cancer cells showed an extensively distended and dilated endoplasmic reticulum lumen. Meanwhile, the levels of the ER stress hallmark GRP78 and UPR hallmarks (e.g., IRE1α and CHOP) were significantly increased in response to lysionotin treatment in liver cancer cells. Moreover, the reactive oxygen species (ROS) scavenger NAC and caspase-3 inhibitor Ac-DEVD-CHO visibly attenuated the induction of GRP78 and attenuated the decrease in cell viability induced by lysionotin. More importantly, the knockdown of GRP78 expression by siRNAs or treatment with EGCG, both induced remarkable increase in lysionotin-induced PARP and pro-caspase-3 cleavage and JNK phosphorylation. In addition, knockdown of GRP78 expression by siRNA or suppression GRP78 activity by EGCG both significantly improved the effectiveness of lysionotin. These data indicated that pro-survival GRP78 induction may contribute to lysionotin resistance. The combination of EGCG and lysionotin is suggested to represent a novel approach in cancer chemo-prevention and therapeutics.
Collapse
Affiliation(s)
- Ying Zou
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Hewen Shi
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Haiyan Lin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xiaoxue Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Guoli Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Yijia Gao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Fan Yi
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
- Collaborative innovation platform for modernization and industrialization of regional characteristic traditional Chinese medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
- Collaborative innovation platform for modernization and industrialization of regional characteristic traditional Chinese medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
49
|
Mijit M, Boner M, Cordova RA, Gampala S, Kpenu E, Klunk AJ, Zhang C, Kelley MR, Staschke KA, Fishel ML. Activation of the integrated stress response (ISR) pathways in response to Ref-1 inhibition in human pancreatic cancer and its tumor microenvironment. Front Med (Lausanne) 2023; 10:1146115. [PMID: 37181357 PMCID: PMC10174294 DOI: 10.3389/fmed.2023.1146115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Pancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is characterized by a profound inflammatory tumor microenvironment (TME) with high heterogeneity, metastatic propensity, and extreme hypoxia. The integrated stress response (ISR) pathway features a family of protein kinases that phosphorylate eukaryotic initiation factor 2 (eIF2) and regulate translation in response to diverse stress conditions, including hypoxia. We previously demonstrated that eIF2 signaling pathways were profoundly affected in response to Redox factor-1 (Ref-1) knockdown in human PDAC cells. Ref-1 is a dual function enzyme with activities of DNA repair and redox signaling, responds to cellular stress, and regulates survival pathways. The redox function of Ref-1 directly regulates multiple transcription factors including HIF-1α, STAT3, and NF-κB, which are highly active in the PDAC TME. However, the mechanistic details of the crosstalk between Ref-1 redox signaling and activation of ISR pathways are unclear. Following Ref-1 knockdown, induction of ISR was observed under normoxic conditions, while hypoxic conditions were sufficient to activate ISR irrespective of Ref-1 levels. Inhibition of Ref-1 redox activity increased expression of p-eIF2 and ATF4 transcriptional activity in a concentration-dependent manner in multiple human PDAC cell lines, and the effect on eIF2 phosphorylation was PERK-dependent. Treatment with PERK inhibitor, AMG-44 at high concentrations resulted in activation of the alternative ISR kinase, GCN2 and induced levels of p-eIF2 and ATF4 in both tumor cells and cancer-associated fibroblasts (CAFs). Combination treatment with inhibitors of Ref-1 and PERK enhanced cell killing effects in both human pancreatic cancer lines and CAFs in 3D co-culture, but only at high doses of PERK inhibitors. This effect was completely abrogated when Ref-1 inhibitors were used in combination with GCN2 inhibitor, GCN2iB. We demonstrate that targeting of Ref-1 redox signaling activates the ISR in multiple PDAC lines and that this activation of ISR is critical for inhibition of the growth of co-culture spheroids. Combination effects were only observed in physiologically relevant 3D co-cultures, suggesting that the model system utilized can greatly affect the outcome of these targeted agents. Inhibition of Ref-1 signaling induces cell death through ISR signaling pathways, and combination of Ref-1 redox signaling blockade with ISR activation could be a novel therapeutic strategy for PDAC treatment.
Collapse
Affiliation(s)
- Mahmut Mijit
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Megan Boner
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Ricardo A Cordova
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Silpa Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Eyram Kpenu
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Angela J Klunk
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chi Zhang
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of BioHealth Informatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - MarK R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kirk A Staschke
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
50
|
Feng B, Xu L, Song S, Liu H, Li Y, Hu S, Shu Q, Liu J, Liu Z, Yu H, Yang P. ER stress modulates the immune regulatory ability in gut M2 cells of patients with ulcerative colitis. iScience 2023; 26:106498. [PMID: 37091242 PMCID: PMC10113856 DOI: 10.1016/j.isci.2023.106498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/28/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
This study aims to characterize the impaired immune regulatory function of Mφ obtained from UC patient colon lavage fluid (CLF). Mφs were the largest proportion (21.3 4.0%) of the CLF-derived cellular components. Less abundant and weaker immune suppressive function were observed in M2 Mφs (M2 cells) of the ulcerative colitis (UC) group. High levels of endoplasmic reticulum (ER) stress associated molecules were detected in UC M2 cells. The spliced X box binding protein-1 (XBP1) gene was negatively correlated with programmed death ligand-1 (PD-L1) in UC M2 cells. XBP1 promoted the expression of ring-finger protein 20 (Rnf20) in M2 cells. Rnf20 reduced PD-L1 abundance in UC M2 cells and impaired the immune suppressive ability. Inhibition of Rnf20 restored the immune regulating capacity of M2 cells and suppressed experimental colitis.
Collapse
Affiliation(s)
- Baisui Feng
- Department of Gastroenterology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingzhi Xu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Shuo Song
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Division at Shenzhen University, Shenzhen, China
| | - Huazhen Liu
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Division at Shenzhen University, Shenzhen, China
| | - Yan Li
- Department of Gastroenterology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suqin Hu
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Division at Shenzhen University, Shenzhen, China
| | - Qing Shu
- Department of Gastroenterology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiangqi Liu
- Department of Allergy, Longgang ENT Hospital, Shenzhen, China
| | - Zhiqiang Liu
- Department of Allergy, Longgang ENT Hospital, Shenzhen, China
| | - Haiqiong Yu
- Department of Pulmonary and Critical Care Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen518033, China
| | - Pingchang Yang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Division at Shenzhen University, Shenzhen, China
| |
Collapse
|