1
|
Marques de Souza PR, Keenan CM, Wallace LE, Habibyan YB, Davoli-Ferreira M, Ohland C, Vicentini FA, McCoy KD, Sharkey KA. T cells regulate intestinal motility and shape enteric neuronal responses to intestinal microbiota. Gut Microbes 2025; 17:2442528. [PMID: 39704079 DOI: 10.1080/19490976.2024.2442528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
How the gut microbiota and immune system maintain intestinal homeostasis in concert with the enteric nervous system (ENS) remains incompletely understood. To address this gap, we assessed small intestinal transit, enteric neuronal density, enteric neurogenesis, intestinal microbiota, immune cell populations and cytokines in wildtype and T-cell deficient germ-free mice colonized with specific pathogen-free (SPF) microbiota, conventionally raised SPF and segmented filamentous bacteria (SFB)-monocolonized mice. SPF microbiota increased small intestinal transit in a T cell-dependent manner. SPF microbiota increased neuronal density in the myenteric and submucosal plexuses of the ileum and colon, similar to conventionally raised SPF mice, independently of T cells. SFB increased neuronal density in the ileum in a T cell-dependent manner, but independently of T cells in the colon. SPF microbiota stimulated enteric neurogenesis (Sox2 expression in enteric neurons) in the ileum in a T cell-dependent manner, but in the colon this effect was T cell-independent. T cells regulated nestin expression in the ENS. SPF colonization increased Th17 cells, RORγT+ Treg cells, and IL-1β and IL-17A levels in the ileum and colon. By neutralizing IL-1β and IL-17A, we observed that they control microbiota-mediated enteric neurogenesis but were not involved in the regulation of motility. Together, these findings provide new insights into the microbiota-neuroimmune dialog that regulates intestinal physiology.
Collapse
Affiliation(s)
- Patricia Rodrigues Marques de Souza
- Department of Health Education, Federal University of Sergipe, Aracaju, SE, Brazil
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Laurie E Wallace
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yasaman Bahojb Habibyan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcela Davoli-Ferreira
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christina Ohland
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fernando A Vicentini
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Overton E, Emelyanova A, Bunik VI. Thiamine, gastrointestinal beriberi and acetylcholine signaling. Front Nutr 2025; 12:1541054. [PMID: 40271433 PMCID: PMC12014454 DOI: 10.3389/fnut.2025.1541054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Research has highlighted numerous detrimental consequences of thiamine deficiency on digestive function. These range from impaired gastric and intestinal motility to aberrant changes in pancreatic exocrine function, gastric acidity and disturbances in gut barrier integrity and inflammation. Thiamine and its pharmacological forms, as a primary or adjunctive therapy, have been shown to improve symptoms such as nausea, constipation, dysphagia and intestinal dysmotility, in both humans and animals. This review aims to explore molecular mechanisms underlying the therapeutic action of thiamine in gastrointestinal dysfunction. Our analysis demonstrates that thiamine insufficiency restricted to the gastrointestinal system, i.e., lacking well-known symptoms of dry and wet beriberi, may arise through (i) a disbalance between the nutrient influx and efflux in the gastrointestinal system due to increased demands of thiamine by the organism; (ii) direct exposure of the gastrointestinal system to oral drugs and gut microbiome, targeting thiamine-dependent metabolism in the gastrointestinal system in the first line; (iii) the involvement of thiamine in acetylcholine (ACh) signaling and cholinergic activity in the enteric nervous system and non-neuronal cells of the gut and pancreas, employing both the coenzyme and non-coenzyme actions of thiamine. The coenzyme action relies on the requirement of the thiamine coenzyme form - thiamine diphosphate - for the production of energy and acetylcholine (ACh). The non-coenzyme action involves participation of thiamine and/or derivatives, including thiamine triphosphate, in the regulation of ACh synaptic function, consistent with the early data on thiamine as a co-mediator of ACh in neuromuscular synapses, and in allosteric action on metabolic enzymes. By examining the available evidence with a focus on the gastrointestinal system, we deepen the understanding of thiamine's contribution to overall gastrointestinal health, highlighting important implications of thiamine-dependent mechanisms in functional gastrointestinal disorders.
Collapse
Affiliation(s)
| | - Alina Emelyanova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, Sechenov University, Moscow, Russia
| |
Collapse
|
3
|
Zhang X, Qiao Y, Wang Y, Li T, Zhang M, Li L, Li D. Dexmedetomidine exerts a neuroprotective effect by inhibiting Th1 cells and actuating Tregs in postoperative inflammation: Molecular structure and mechanism of action of STAT1 protein. Int J Biol Macromol 2025; 306:141682. [PMID: 40032120 DOI: 10.1016/j.ijbiomac.2025.141682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/17/2025] [Accepted: 03/01/2025] [Indexed: 03/05/2025]
Abstract
Dexmedetomidine, an α2-adrenergic receptor agonist, has received attention in recent years for its role in reducing perioperative inflammatory response and neuroprotection. The aim of this study was to investigate how dexmedetomidine exerts neuroprotective effects by inhibiting Th1 cells and activating regulatory T cells (Tregs), and to analyze the molecular structure of STAT1 protein and its mechanism in this process. The number and function of Th1 cells and Tregs in peripheral blood and spleen were analyzed following treatment with dexmedetomidine. Additionally, the expression and activation of STAT1 were examined using western blot and immunofluorescence staining. Relevant cytokine levels were quantified in tandem with flow cytometry to evaluate alterations in immune response. The study revealed that dexmedetomidine significantly suppressed the activation of Th1 cells and enhanced the proliferation and function of Tregs. The activation of STAT1 played a crucial regulatory role in the effects of dexmedetomidine, with its expression level exhibiting a negative correlation with Th1 cell activation and a positive correlation with Treg activity. The phosphorylated state of STAT1 changes after treatment with dexmedetomidine, further supporting its key role in immune regulation.
Collapse
Affiliation(s)
- Xiyan Zhang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yong Qiao
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Yuelin Wang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Teng Li
- Department of Anesthesiology, Heze Hospital of Traditional Chinese Medicine, Heze City, Shandong Province, China
| | - Mengqing Zhang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Li
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Breßer M, Siemens KD, Schneider L, Lunnebach JE, Leven P, Glowka TR, Oberländer K, De Domenico E, Schultze JL, Schmidt J, Kalff JC, Schneider A, Wehner S, Schneider R. Macrophage-induced enteric neurodegeneration leads to motility impairment during gut inflammation. EMBO Mol Med 2025; 17:301-335. [PMID: 39762650 PMCID: PMC11822118 DOI: 10.1038/s44321-024-00189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 02/14/2025] Open
Abstract
Current studies pictured the enteric nervous system and macrophages as modulators of neuroimmune processes in the inflamed gut. Expanding this view, we investigated the impact of enteric neuron-macrophage interactions on postoperative trauma and subsequent motility disturbances, i.e., postoperative ileus. In the early postsurgical phase, we detected strong neuronal activation, followed by transcriptional and translational signatures indicating neuronal death and synaptic damage. Simultaneously, our study revealed neurodegenerative profiles in macrophage-specific transcriptomes after postoperative trauma. Validating the role of resident and monocyte-derived macrophages, we depleted macrophages by CSF-1R-antibodies and used CCR2-/- mice, known for reduced monocyte infiltration, in POI studies. Only CSF-1R-antibody-treated animals showed decreased neuronal death and lessened synaptic decay, emphasizing the significance of resident macrophages. In human gut samples taken early and late during abdominal surgery, we substantiated the mouse model data and found reactive and apoptotic neurons and dysregulation in synaptic genes, indicating a species' overarching mechanism. Our study demonstrates that surgical trauma activates enteric neurons and induces neurodegeneration, mediated by resident macrophages, introducing neuroprotection as an option for faster recovery after surgery.
Collapse
Affiliation(s)
- Mona Breßer
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Kevin D Siemens
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Linda Schneider
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Patrick Leven
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Tim R Glowka
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Kristin Oberländer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, 53127, Bonn, Germany
| | - Elena De Domenico
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Joachim Schmidt
- Department of General, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Jörg C Kalff
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, 53127, Bonn, Germany
| | - Sven Wehner
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
5
|
Li C, Zang N, Liu E. Neuropeptides or their receptors in pathogenesis of lung diseases and therapeutic potentials. Neuropeptides 2024; 108:102482. [PMID: 39520945 DOI: 10.1016/j.npep.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
There are complex interactions between the immune system and the nervous system in the lung. The nervous system perceives environmental stimuli and transmits these signals to immune cells via neurotransmitters, which is essential for effective immunity and environmental balance. Neuropeptides are important neurotransmitters in the lung, where they regulate immune responses through direct and indirect mechanisms, affecting the occurrence and development of lung diseases. In this review, we emphasize the role of neuropeptides in the pathogeneis of lung diseases and their potential therapeutic value for lung diseases.
Collapse
Affiliation(s)
- Changgen Li
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Na Zang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
6
|
Hanč P, Messou MA, Ajit J, von Andrian UH. Setting the tone: nociceptors as conductors of immune responses. Trends Immunol 2024; 45:783-798. [PMID: 39307581 PMCID: PMC11493364 DOI: 10.1016/j.it.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
Nociceptors have emerged as master regulators of immune responses in both homeostatic and pathologic settings; however, their seemingly contradictory effects on the functions of different immune cell subsets have been a source of confusion. Nevertheless, work by many groups in recent years has begun to identify patterns of the modalities and consequences of nociceptor-immune system communication. Here, we review recent findings of how nociceptors affect immunity and propose an integrated concept whereby nociceptors are neither inherently pro- nor anti-inflammatory. Rather, we propose that nociceptors have the role of a rheostat that, in a context-dependent manner, favors tissue homeostasis and fine-tunes immunity by preventing excessive histotoxic inflammation, promoting tissue repair, and potentiating anticipatory and adaptive immune responses.
Collapse
Affiliation(s)
- Pavel Hanč
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jainu Ajit
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Barr J, Walz A, Restaino AC, Amit M, Barclay SM, Vichaya EG, Spanos WC, Dantzer R, Talbot S, Vermeer PD. Tumor-infiltrating nerves functionally alter brain circuits and modulate behavior in a mouse model of head-and-neck cancer. eLife 2024; 13:RP97916. [PMID: 39302290 DOI: 10.7554/elife.97916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing, we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated Fos as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.
Collapse
Affiliation(s)
- Jeffrey Barr
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
| | - Austin Walz
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
| | - Anthony C Restaino
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
- University of South Dakota, Sanford School of Medicine, Vermillion, United States
| | - Moran Amit
- University of Texas, MD Anderson Cancer Center, Houston, United States
| | - Sarah M Barclay
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
| | - Elisabeth G Vichaya
- Baylor University, Department of Psychology and Neuroscience, Waco, United States
| | - William C Spanos
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
- University of South Dakota, Sanford School of Medicine, Vermillion, United States
| | - Robert Dantzer
- University of Texas, MD Anderson Cancer Center, Houston, United States
| | - Sebastien Talbot
- Queen's University, Department of Biomedical and Molecular Sciences, Kingston, Canada
| | - Paola D Vermeer
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
- University of South Dakota, Sanford School of Medicine, Vermillion, United States
| |
Collapse
|
8
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Konopińska N, Gmyrek R, Bylewska N, Tchórzewska S, Nowicki G, Lubawy J, Walkowiak-Nowicka K, Urbański A. The allatotropin/orexin system as an example of immunomodulatory properties of neuropeptides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 171:104149. [PMID: 38871133 DOI: 10.1016/j.ibmb.2024.104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The central nervous system (CNS) plays a critical role in signal integration in animals and allows the orchestration of life processes to maintain homeostasis. Current research clearly shows that inflammatory processes can also be modulated by the CNS via the neuroendocrine system. One of the neuropeptide families that participate in vertebrates in this process is orexins (OXs). Interestingly, our previous results suggested that a similar dependency may also exist between neuropeptides and immune system activity in insects. Due to the structural homology of orexin and allatotropin receptors and the functional similarity between these two neuropeptide families, the main aim of this research was to perform a complex analysis of the relationships between allatotropin (AT) and the insect immune response. Our results revealed functional similarities between vertebrate OXs and insect ATs. Similar effects were observed in the profile of the expression level of the gene encoding the AT precursor in the Tenebrio molitor nervous system and in the general action of Tenmo-AT on selected immune parameters of the tested beetles. Moreover, for the first time in insects, we confirmed the role of cytokines in the modulation of neuroendocrine system by determining the effect of Spätzle-like protein injection on the expression of genes encoding AT precursor and receptor. All these results are important for understanding the evolutionary basis of hormonal regulation of the immune response.
Collapse
Affiliation(s)
- Natalia Konopińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Radosław Gmyrek
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Bylewska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sara Tchórzewska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
10
|
Pillitteri M, Brogi E, Piagnani C, Bozzetti G, Forfori F. Perioperative management of Takotsubo cardiomyopathy: an overview. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:45. [PMID: 39010210 PMCID: PMC11247845 DOI: 10.1186/s44158-024-00178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Resembling the morphology of Japanese polyp vessels, the classic form of Takotsubo cardiomyopathy is characterized by the presence of systolic dysfunction of the mid-apical portion of the left ventricle associated with basal hyperkinesia. It is believed that this may be due to a higher density of β-adrenergic receptors in the context of the apical myocardium, which could explain the greater sensitivity of the apex to fluctuations in catecholamine levels.The syndrome is precipitated by significant emotional stress or acute severe pathologies, and it is increasingly diagnosed during the perioperative period. Indeed, surgery, induction of general anaesthesia and critical illness represent potential harmful trigger of stress cardiomyopathy. No universally accepted guidelines are currently available, and, generally, the treatment of TTS relies on health care personal experience and/or local practice. In our daily practice, anaesthesiologists can be asked to manage patients with the diagnosis of new-onset Takotsubo before elective surgery or an emergent surgery in a patient with a concomitant stress cardiomyopathy. Even more, stress cardiomyopathy can arise as a complication during the operation.In this paper, we aim to provide an overview of Takotsubo syndrome and to discuss how to manage Takotsubo during surgery and in anaesthesiologic special settings.
Collapse
Affiliation(s)
- Marta Pillitteri
- Department of Anaesthesia and Intensive Care, University of Pisa, Pisa, Italy
| | - Etrusca Brogi
- Neuroscience Intensive Care Unit, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore, 3, 20162, Milan, Italy.
| | - Chiara Piagnani
- Department of Anaesthesia and Intensive Care, University of Pisa, Pisa, Italy
| | - Giuseppe Bozzetti
- Department of Anaesthesia, Peri Operative Medicine and Critical Care, NHS Golden Jubilee, Glasgow, UK
| | - Francesco Forfori
- Department of Anaesthesia and Intensive Care, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Guo J, Kong Z, Yang S, Da J, Chu L, Han G, Liu J, Tan Y, Zhang J. Therapeutic effects of orexin-A in sepsis-associated encephalopathy in mice. J Neuroinflammation 2024; 21:131. [PMID: 38760784 PMCID: PMC11102217 DOI: 10.1186/s12974-024-03111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) causes acute and long-term cognitive deficits. However, information on the prevention and treatment of cognitive dysfunction after sepsis is limited. The neuropeptide orexin-A (OXA) has been shown to play a protective role against neurological diseases by modulating the inflammatory response through the activation of OXR1 and OXR2 receptors. However, the role of OXA in mediating the neuroprotective effects of SAE has not yet been reported. METHODS A mouse model of SAE was induced using cecal ligation perforation (CLP) and treated via intranasal administration of exogenous OXA after surgery. Mouse survival, in addition to cognitive and anxiety behaviors, were assessed. Changes in neurons, cerebral edema, blood-brain barrier (BBB) permeability, and brain ultrastructure were monitored. Levels of pro-inflammatory factors (IL-1β, TNF-α) and microglial activation were also measured. The underlying molecular mechanisms were investigated by proteomics analysis and western blotting. RESULTS Intranasal OXA treatment reduced mortality, ameliorated cognitive and emotional deficits, and attenuated cerebral edema, BBB disruption, and ultrastructural brain damage in mice. In addition, OXA significantly reduced the expression of the pro-inflammatory factors IL-1β and TNF-α, and inhibited microglial activation. In addition, OXA downregulated the expression of the Rras and RAS proteins, and reduced the phosphorylation of P-38 and JNK, thus inhibiting activation of the MAPK pathway. JNJ-10,397,049 (an OXR2 blocker) reversed the effect of OXA, whereas SB-334,867 (an OXR1 blocker) did not. CONCLUSION This study demonstrated that the intranasal administration of moderate amounts of OXA protects the BBB and inhibits the activation of the OXR2/RAS/MAPK pathway to attenuate the outcome of SAE, suggesting that OXA may be a promising therapeutic approach for the management of SAE.
Collapse
Affiliation(s)
- Jing Guo
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Zhuo Kong
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Sha Yang
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Jingjing Da
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Liangzhao Chu
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
12
|
Huang YC, Ko PH, Wu LL. Age-dependent effects of acute stress on the behavior, blood parameters, immunity, and enteric nerves of mice. Behav Brain Res 2024; 461:114848. [PMID: 38185382 DOI: 10.1016/j.bbr.2024.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The impact of stress on mental and digestive health has been extensively studied, with chronic stress being associated with various disorders. However, age-related differences in the response to acute stress, both behaviorally and physiologically, remain poorly understood. Therefore, this study aimed to develop a model to detect transient stress in mice of different ages. The stressor employed in our experiments was a restraint stress procedure, where mice were subjected to brief periods of immobilization to induce an acute stress response. Male C3H/HeN mice aged 3, 6, 12, and 30 weeks were subjected to acute restrain stress (ARS) by being placed in a 50 ml conical centrifuge tube for 15 min. Subsequently, their behavior, organ tissues, hematological parameters, cortisol concentration, and immune responses were assessed. Following ARS, the increased in time and entries into the center by the 12-week-old mice following stress. In comparison to mice of other ages, those aged 6 weeks demonstrated notable elevations in erythrocytes, platelets, hemoglobin, and hematocrit, all of which were influenced by the time-dependent changes and the recovery process of ARS. Blood corticosterone levels were substantially elevated in all age groups after ARS. Furthermore, ARS induced a notable increase in leukocytes, basophils, residential macrophages, and CD4+ T cells in all age groups except for 3-week-old mice. However, the number of monocyte-derived macrophages and CD8+ T cells did not change significantly. Additionally, mice aged 3 and 6 weeks demonstrated an increase in GFAP+ cells following ARS, whereas NeuN+ cells decreased across all ages. These results suggest that ARS has varying effects on the behavior, cortisol concentration, and quantity of blood cells as well as hepatic immune cells in mice of different ages. These age-dependent responses shed light on the complex interplay between stress and physiological systems and contribute to the broader understanding of stress-related diseases.
Collapse
Affiliation(s)
- Yi-Chen Huang
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Pin-Hao Ko
- Department of Traditional Chinese Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330215, Taiwan
| | - Li-Ling Wu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Health Innovation Center, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan; Microbiota Research Center, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
13
|
Bao R, Wang S, Liu X, Tu K, Liu J, Huang X, Liu C, Zhou P, Liu S. Neuromorphic electro-stimulation based on atomically thin semiconductor for damage-free inflammation inhibition. Nat Commun 2024; 15:1327. [PMID: 38351088 PMCID: PMC10864345 DOI: 10.1038/s41467-024-45590-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Inflammation, caused by accumulation of inflammatory cytokines from immunocytes, is prevalent in a variety of diseases. Electro-stimulation emerges as a promising candidate for inflammatory inhibition. Although electroacupuncture is free from surgical injury, it faces the challenges of imprecise pathways/current spikes, and insufficiently defined mechanisms, while non-optimal pathway or spike would require high current amplitude, which makes electro-stimulation usually accompanied by damage and complications. Here, we propose a neuromorphic electro-stimulation based on atomically thin semiconductor floating-gate memory interdigital circuit. Direct stimulation is achieved by wrapping sympathetic chain with flexible electrodes and floating-gate memory are programmable to fire bionic spikes, thus minimizing nerve damage. A substantial decrease (73.5%) in inflammatory cytokine IL-6 occurred, which also enabled better efficacy than commercial stimulator at record-low currents with damage-free to sympathetic neurons. Additionally, using transgenic mice, the anti-inflammation effect is determined by β2 adrenergic signaling from myeloid cell lineage (monocytes/macrophages and granulocytes).
Collapse
Affiliation(s)
- Rong Bao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuiyuan Wang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
| | - Xiaoxian Liu
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Kejun Tu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong university, Shanghai, 200240, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong university, Shanghai, 200240, China
| | - Xiaohe Huang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Chunsen Liu
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Peng Zhou
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
| | - Shen Liu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
14
|
Abraham MN, Nedeljkovic-Kurepa A, Fernandes TD, Yaipen O, Brewer MR, Leisman DE, Taylor MD, Deutschman CS. M1 cholinergic signaling in the brain modulates cytokine levels and splenic cell sub-phenotypes following cecal ligation and puncture. Mol Med 2024; 30:22. [PMID: 38317082 PMCID: PMC10845657 DOI: 10.1186/s10020-024-00787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The contribution of the central nervous system to sepsis pathobiology is incompletely understood. In previous studies, administration of endotoxin to mice decreased activity of the vagus anti-inflammatory reflex. Treatment with the centrally-acting M1 muscarinic acetylcholine (ACh) receptor (M1AChR) attenuated this endotoxin-mediated change. We hypothesize that decreased M1AChR-mediated activity contributes to inflammation following cecal ligation and puncture (CLP), a mouse model of sepsis. METHODS In male C57Bl/6 mice, we quantified basal forebrain cholinergic activity (immunostaining), hippocampal neuronal activity, serum cytokine/chemokine levels (ELISA) and splenic cell subtypes (flow cytometry) at baseline, following CLP and following CLP in mice also treated with the M1AChR agonist xanomeline. RESULTS At 48 h. post-CLP, activity in basal forebrain cells expressing choline acetyltransferase (ChAT) was half of that observed at baseline. Lower activity was also noted in the hippocampus, which contains projections from ChAT-expressing basal forebrain neurons. Serum levels of TNFα, IL-1β, MIP-1α, IL-6, KC and G-CSF were higher post-CLP than at baseline. Post-CLP numbers of splenic macrophages and inflammatory monocytes, TNFα+ and ILβ+ neutrophils and ILβ+ monocytes were higher than baseline while numbers of central Dendritic Cells (cDCs), CD4+ and CD8+ T cells were lower. When, following CLP, mice were treated with xanomeline activity in basal forebrain ChAT-expressing neurons and in the hippocampus was significantly higher than in untreated animals. Post-CLP serum concentrations of TNFα, IL-1β, and MIP-1α, but not of IL-6, KC and G-CSF, were significantly lower in xanomeline-treated mice than in untreated mice. Post-CLP numbers of splenic neutrophils, macrophages, inflammatory monocytes and TNFα+ neutrophils also were lower in xanomeline-treated mice than in untreated animals. Percentages of IL-1β+ neutrophils, IL-1β+ monocytes, cDCs, CD4+ T cells and CD8+ T cells were similar in xanomeline-treated and untreated post-CLP mice. CONCLUSION Our findings indicate that M1AChR-mediated responses modulate CLP-induced alterations in serum levels of some, but not all, cytokines/chemokines and affected splenic immune response phenotypes.
Collapse
Affiliation(s)
- Mabel N Abraham
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ana Nedeljkovic-Kurepa
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Tiago D Fernandes
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Omar Yaipen
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Mariana R Brewer
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Daniel E Leisman
- Department of Medicine, Massachusetts General Hospital, Boston, USA
| | - Matthew D Taylor
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Clifford S Deutschman
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA.
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
15
|
Matkivska R, Samborska I, Maievskyi O. Effect of animal venom toxins on the main links of the homeostasis of mammals (Review). Biomed Rep 2024; 20:16. [PMID: 38144889 PMCID: PMC10739175 DOI: 10.3892/br.2023.1704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The human body is affected by environmental factors. The dynamic balance between the organism and its environment results from the influence of natural, anthropogenic and social aspects. The factors of exogenous origin determine development of adaptive changes. The present article summarises the mechanisms of animal venom toxins and homeostasis disruption in the body of mammals. The mechanisms underlying pathological changes are associated with shifts in biochemical reactions. Components of the immune, nervous and endocrine systems are key in the host defense and adaptation processes in response to venom by triggering signalling pathways (PI3kinase pathway, arachidonic acid cascade). Animal venom toxins initiate the development of inflammatory processes, the synthesis of pro-inflammatory mediators (cytokines), ROS, proteolytic enzymes, activate the migration of leukocytes and macrophages. Keratinocytes and endothelial cells act as protective barriers under the action of animal venom toxins on the body of mammals. In addition, the formation of pores in cell membranes, structural changes in cell ion channels are characteristic of the action of animal venom toxins.
Collapse
Affiliation(s)
- Ruzhena Matkivska
- Department of Descriptive and Clinical Anatomy, Bogomolets National Medical University, Kyiv 03680, Ukraine
| | - Inha Samborska
- Department of Biological and General Chemistry, National Pirogov Memorial Medical University, Vinnytsya 21018, Ukraine
| | - Oleksandr Maievskyi
- Department of Clinical Medicine, Educational and Scientific Center ‘Institute of Biology and Medicine’ of Taras Shevchenko National University of Kyiv, Kyiv 03127, Ukraine
| |
Collapse
|
16
|
Boem F, Greslehner GP, Konsman JP, Chiu L. Minding the gut: extending embodied cognition and perception to the gut complex. Front Neurosci 2024; 17:1172783. [PMID: 38260022 PMCID: PMC10800657 DOI: 10.3389/fnins.2023.1172783] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/30/2023] [Indexed: 01/24/2024] Open
Abstract
Scientific and philosophical accounts of cognition and perception have traditionally focused on the brain and external sense organs. The extended view of embodied cognition suggests including other parts of the body in these processes. However, one organ has often been overlooked: the gut. Frequently conceptualized as merely a tube for digesting food, there is much more to the gut than meets the eye. Having its own enteric nervous system, sometimes referred to as the "second brain," the gut is also an immune organ and has a large surface area interacting with gut microbiota. The gut has been shown to play an important role in many physiological processes, and may arguably do so as well in perception and cognition. We argue that proposals of embodied perception and cognition should take into account the role of the "gut complex," which considers the enteric nervous, endocrine, immune, and microbiota systems as well as gut tissue and mucosal structures. The gut complex is an interface between bodily tissues and the "internalized external environment" of the gut lumen, involved in many aspects of organismic activity beyond food intake. We thus extend current embodiment theories and suggest a more inclusive account of how to "mind the gut" in studying cognitive processes.
Collapse
Affiliation(s)
- Federico Boem
- Section Philosophy, University of Twente, Enschede, Netherlands
| | | | - Jan Pieter Konsman
- IMMUNOlogy from CONcepts and ExPeriments to Translation, CNRS UMR, University of Bordeaux, Bordeaux, France
| | - Lynn Chiu
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Courchesne M, Wakefield C, Nygard K, Burns P, Fecteau G, Desrochers A, Cao M, Frasch MG. Vagus Nerve Manipulation and Microglial Plasticity in the Prenatal Brain. NEUROMETHODS 2024:69-94. [DOI: 10.1007/978-1-0716-3465-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Mori A, Ohno H, Satoh-Takayama N. Disease pathogenesis and barrier functions regulated by group 3 innate lymphoid cells. Semin Immunopathol 2024; 45:509-519. [PMID: 38305897 DOI: 10.1007/s00281-024-01000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
The mucosal surface is in constant contact with foreign antigens and is regulated by unique mechanisms that are different from immune responses in the peripheral organs. For the last several decades, only adaptive immune cells such as helper T (Th) cells, Th1, Th2, or Th17 were targeted to study a wide variety of immune responses in the mucosal tissues. However, since their discovery, innate lymphoid cells (ILCs) have been attracting attention as a unique subset of immune cells that provide border defense with various functions and tissue specificity. ILCs are classified into different groups based on cell differentiation and functions. Group 3 innate lymphoid cells (ILC3s) are particularly in close proximity to mucosal surfaces and therefore have the opportunity to be exposed to a variety of bacteria including pathogenic bacteria. In recent years, studies have also provided much evidence that ILC3s contribute to disease pathogenesis as well as the defense of mucosal surfaces by rapidly responding to pathogens and coordinating other immune cells. As the counterpart of helper T cells, ILC3s together with other ILC subsets establish the immune balance between adaptive and innate immunity in protecting us from invasion or encounter with non-self-antigens for maintaining a complex homeostasis. In this review, we summarize recent advances in our understanding of ILCs, with a particular focus on the function of ILC3s in their involvement in bacterial infection and disease pathogenesis.
Collapse
Affiliation(s)
- Ayana Mori
- Immunobiology Laboratory, School of Science, Yokohama City University, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro, Tsurumi, Yokohama City, Kanagawa, 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro, Tsurumi, Yokohama City, Kanagawa, 230-0045, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
- Laboratory for Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro, Tsurumi, Yokohama City, Kanagawa, 230-0045, Japan.
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
19
|
Shi C, Yu Z, Wang Z, Ning R, Huang C, Gao Y, Wang F. Dietary supplementation with pyrroloquinoline quinone promotes growth, relieves weaning stress, and regulates metabolism of piglets compared with adding zinc oxide. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:409-419. [PMID: 38046955 PMCID: PMC10689886 DOI: 10.1016/j.aninu.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 06/14/2023] [Indexed: 12/05/2023]
Abstract
Hindered growth often occurs because of psychological and environmental stress during the weaning period of piglets. This study aimed to compare the effects of growth performance, diarrhea indices, digestibility of nutrients, antioxidant capacity, neurotransmitters levels and metabolism of weaned pigs fed diets supplemented with pyrroloquinoline quinone (PQQ) and zinc oxide (ZnO). Pigs weaned at d 28 (n = 108) were fed with three different diets including: the basal diet (CTRL group), the basal diet supplemented with 3.0 mg/kg PQQ (PQQ group) and the basal diet containing 1,600 mg/kg ZnO (ZNO group). During the first 14 d, weaned pigs fed the diet supplemented with PQQ and ZnO decreased feed to gain ratio and diarrhea rate (P < 0.01). Compared with the CTRL group, average daily gain was increased in weaned pigs in the PQQ group from d 15 to 28 (P = 0.03). Compared with the CTRL group, pigs fed PQQ and ZnO supplemented diets showed improved apparent total tract digestibility (ATTD) of nutrients (P ≤ 0.05). During the overall experimental period, the concentration of malondialdehyde was decreased in plasma of pigs in the PQQ and ZNO groups compared with the CTRL group (P < 0.05). At d 28, the concentration of vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) was lower in plasma of weaned pigs in the PQQ and ZNO groups compared with the CTRL group (P < 0.05). There was no difference between the PQQ and ZNO group in growth performance, ATTD of nutrition, antioxidant capacity and neurotransmitters levels. PQQ increased 3-methoxy-4-hydroxymandelate (P < 0.05) compared with the CTRL group. According to metabolomic analysis, erucamide, formononetin and 3-methyl-L-histidine were up-regulated in the PQQ group (P < 0.05). Compared with the CTRL group, aloesin and dibutyl adipate were down-regulated in the PQQ group (P < 0.05). In conclusion, similar to ZnO, PQQ improves growth performance, digestibility of nutrients, antioxidant capacity, neuromodulation and metabolism of weaned pigs. Thus, like ZnO, PQQ can be effectively applied in weaned pigs.
Collapse
Affiliation(s)
- Chenyu Shi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zirou Yu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zijie Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ran Ning
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youjun Gao
- Changmao Biochemical Engineering Company, Changzhou 213000, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Jiang S, Fu Y, Cheng HW. Daylight exposure and circadian clocks in broilers: part I-photoperiod effect on broiler behavior, skeletal health, and fear response. Poult Sci 2023; 102:103162. [PMID: 37924580 PMCID: PMC10654592 DOI: 10.1016/j.psj.2023.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023] Open
Abstract
The aim of this study was to examine effects of various daylight exposure during the 24-h light-dark (L-D) cycle on growth performance, skeletal health, and welfare state in broilers. Environmental photoperiod and related circadian clock, the 24-h L-D cycle, are important factors in maintaining productive performance, pathophysiological homeostasis, and psychological reaction in humans and animals. Currently, various lighting programs as management tools for providing a satisfactory environmental condition have been used in commercial broiler production. Four hundred thirty-two 1-day-old Rose 308 broiler chicks were assigned to 24 pens (18 birds/pen). The pens were randomly assigned to 1 of 4 thermal and lighting control rooms, then the birds were exposed to (n = 6): 1) 12L, 2) 16L, 3) 18L, or 4) 20L at 15 d of age. Lighting program effects on bird body weight, behavioral patterns, bone health, and stress levels were evaluated from d 35 to d 45, respectively. The birds of 12L as well as 16L groups, reared under short photoperiods close to the natural 24-h L-D cycle, had improved production performance, leg bone health, and suppressed stress reaction compared to the birds of both 18L and 20L groups. Especially, 12L birds had heavier final body weight and averaged daily weight gain (P < 0.05), higher BMD and BMC with longer and wider femur (P < 0.05), lower H/L ratio (P < 0.05), and more birds reached the observer during the touch test (P < 0.05) but spent shorter latency during the tonic immobility test (P < 0.05). Taken together, the data suggest that supplying 12 h as well as 16L of daily light improves performance and health while decreasing stress levels in broilers, making it a potentially suitable approach for broiler production.
Collapse
Affiliation(s)
- Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuechi Fu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Heng-Wei Cheng
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907, USA.
| |
Collapse
|
21
|
Abraham MN, Nedeljkovic-Kurepa A, Fernandes T, Yaipen O, Brewer MR, Taylor MD, Deutschman C. M1 Cholinergic Signaling Modulates Cytokine Levels and Splenocyte Sub-Phenotypes Following Cecal Ligation and Puncture. RESEARCH SQUARE 2023:rs.3.rs-3353062. [PMID: 37886474 PMCID: PMC10602092 DOI: 10.21203/rs.3.rs-3353062/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background The contribution of the central nervous system to sepsis pathobiology is incompletely understood. In previous studies, administration of endotoxin to mice decreased activity of the vagus anti-inflammatory reflex. Treatment with the centrally-acting M1/M4 muscarinic acetylcholine (ACh) receptor (M1/M4AChR) attenuated this endotoxin-mediated change. We hypothesize that decreased M1/M4AChR-mediated activity contributes to inflammation following cecal ligation and puncture (CLP), a mouse model of sepsis. Methods Basal forebrain cholinergic activity (immunostaining), serum cytokine/chemokine levels (ELISA) and splenocyte subtypes (flow cytometry) were examined at baseline and following CLP in male C57BL/6 male mice. Rersults At 48hrs. post-CLP, activity in basal forebrain cells expressing choline acetyltransferase (ChAT) was half of that observed at baseline. Lower activity was also noted in the hippocampus, which contains projections from ChAT-expressing basal forebrain neurons. Serum levels of TNFα, IL-1β, MIP-1α, IL-6, KC and G-CSF were higher post-CLP than at baseline. Post-CLP numbers of splenic macrophages and inflammatory monocytes, TNFa+ and ILb+ neutrophils and ILb+ monocytes were higher than baseline while numbers of central Dendritic Cells (cDCs), CD4+ and CD8+ T cells were lower. When, following CLP, mice were treated with xanomeline, a central-acting M1AChR agonist, activity in basal forebrain ChAT-expressing neurons and in the hippocampus was significantly higher than in untreated animals. Post-CLP serum concentrations of TNFα, IL-1β, and MIP-1α, but not of IL-6, KC and G-CSF, were significantly lower in xanomline-treated mice than in untreated mice. Post-CLP numbers of splenic neutrophils, macrophages, inflammatory monocytes and TNFα+ neutrophils also were lower in xanomeline-treated mice than in untreated animals. The effects of CLP on percentages of IL-1β+ neutrophils, IL-1β+ monocytes, cDCs, CD4+ T cells and CD8+ T cells were similar in xanomeline - treated and untreated post-CLP mice. Conclusion Our findings indicate that M1/M4AChR-mediated responses modulate CLP-induced alterations in the distribution of some, but not all, leukocyte phenotypes and certain cytokines and chemokines.
Collapse
Affiliation(s)
| | | | | | - Omar Yaipen
- Northwell Health Feinstein Institutes for Medical Research
| | | | | | - Clifford Deutschman
- Hofstra Northwell School of Medicine at Hofstra University: Donald and Barbara Zucker School of Medicine at Hofstra/Northwell
| |
Collapse
|
22
|
Bastos V, Pacheco V, Rodrigues ÉDL, Moraes CNS, Nóbile AL, Fonseca DLM, Souza KBS, do Vale FYN, Filgueiras IS, Schimke LF, Giil LM, Moll G, Cabral-Miranda G, Ochs HD, Vasconcelos PFDC, de Melo GD, Bourhy H, Casseb LMN, Cabral-Marques O. Neuroimmunology of rabies: New insights into an ancient disease. J Med Virol 2023; 95:e29042. [PMID: 37885152 DOI: 10.1002/jmv.29042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Rabies is an ancient neuroinvasive viral (genus Lyssavirus, family Rhabdoviridae) disease affecting approximately 59,000 people worldwide. The central nervous system (CNS) is targeted, and rabies has a case fatality rate of almost 100% in humans and animals. Rabies is entirely preventable through proper vaccination, and thus, the highest incidence is typically observed in developing countries, mainly in Africa and Asia. However, there are still cases in European countries and the United States. Recently, demographic, increasing income levels, and the coronavirus disease 2019 (COVID-19) pandemic have caused a massive raising in the animal population, enhancing the need for preventive measures (e.g., vaccination, surveillance, and animal control programs), postexposure prophylaxis, and a better understanding of rabies pathophysiology to identify therapeutic targets, since there is no effective treatment after the onset of clinical manifestations. Here, we review the neuroimmune biology and mechanisms of rabies. Its pathogenesis involves a complex and poorly understood modulation of immune and brain functions associated with metabolic, synaptic, and neuronal impairments, resulting in fatal outcomes without significant histopathological lesions in the CNS. In this context, the neuroimmunological and neurochemical aspects of excitatory/inhibitory signaling (e.g., GABA/glutamate crosstalk) are likely related to the clinical manifestations of rabies infection. Uncovering new links between immunopathological mechanisms and neurochemical imbalance will be essential to identify novel potential therapeutic targets to reduce rabies morbidity and mortality.
Collapse
Affiliation(s)
- Victor Bastos
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Vinicius Pacheco
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Érika D L Rodrigues
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Cássia N S Moraes
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Adriel L Nóbile
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo, São Paulo, Brazil
| | - Kamilla B S Souza
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Fernando Y N do Vale
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Igor S Filgueiras
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | | | - Hans D Ochs
- School of Medicine and Seattle Children's Research Institute, University of Washington, Seattle, Washington, USA
| | - Pedro F da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
- Department of Pathology, University of the State of Pará, Belem, Brazil
| | - Guilherme D de Melo
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Livia M N Casseb
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Otavio Cabral-Marques
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Graves CL, Norloff E, Thompson D, Kosyk O, Sang Y, Chen A, Zannas AS, Wallet SM. Chronic early life stress alters the neuroimmune profile and functioning of the developing zebrafish gut. Brain Behav Immun Health 2023; 31:100655. [PMID: 37449287 PMCID: PMC10336164 DOI: 10.1016/j.bbih.2023.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Chronic early life stress (ELS) potently impacts the developing central nervous and immune systems and is associated with the onset of gastrointestinal disease in humans. Though the gut-brain axis is appreciated to be a major target of the stress response, the underlying mechanisms linking ELS to gut dysfunction later in life is incompletely understood. Zebrafish are a powerful model validated for stress research and have emerged as an important tool in delineating neuroimmune mechanisms in the developing gut. Here, we developed a novel model of ELS and utilized a comparative transcriptomics approach to assess how chronic ELS modulated expression of neuroimmune genes in the developing gut and brain. Zebrafish exposed to ELS throughout larval development exhibited anxiety-like behavior and altered expression of neuroimmune genes in a time- and tissue-dependent manner. Further, the altered gut neuroimmune profile, which included increased expression of genes associated with neuronal modulation, correlated with a reduction in enteric neuronal density and delayed gut transit. Together, these findings provide insights into the mechanisms linking ELS with gastrointestinal dysfunction and highlight the zebrafish model organism as a valuable tool in uncovering how "the body keeps the score."
Collapse
Affiliation(s)
- Christina L. Graves
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Stress Initiative, University of North Carolina School of Medicine, Chapel Hill, NC, 27514, USA
| | - Erik Norloff
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Darius Thompson
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Oksana Kosyk
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yingning Sang
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Angela Chen
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anthony S. Zannas
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Carolina Stress Initiative, University of North Carolina School of Medicine, Chapel Hill, NC, 27514, USA
| | - Shannon M. Wallet
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
24
|
Xie Y, Tao S, Pan B, Yang W, Shao W, Fang X, Han D, Li J, Zhang Y, Chen R, Li W, Xu Y, Kan H. Cholinergic anti-inflammatory pathway mediates diesel exhaust PM 2.5-induced pulmonary and systemic inflammation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131951. [PMID: 37392642 DOI: 10.1016/j.jhazmat.2023.131951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Previous research has indicated that the cholinergic anti-inflammatory pathway (CAP) can regulate the duration and intensity of inflammatory responses. A wide range of research has demonstrated that PM2.5 exposure may induce various negative health effects via pulmonary and systemic inflammations. To study the potential role of the CAP in mediating PM2.5-induced effects, mice were treated with vagus nerve electrical stimulation (VNS) to activate the CAP before diesel exhaust PM2.5 (DEP) instillation. Analysis of pulmonary and systemic inflammations in mice demonstrated that VNS significantly reduced the inflammatory responses triggered by DEP. Meanwhile, inhibition of the CAP by vagotomy aggravated DEP-induced pulmonary inflammation. The flow cytometry results showed that DEP influenced the CAP by altering the Th cell balance and macrophage polarization in spleen, and in vitro cell co-culture experiments indicated that this DEP-induced change on macrophage polarization may act via the splenic CD4+ T cells. To further confirm the effect of alpha7 nicotinic acetylcholine receptor (α7nAChR) in this pathway, mice were then treated with α7nAChR inhibitor (α-BGT) or agonist (PNU282987). Our results demonstrated that specific activation of α7nAChR with PNU282987 effectively alleviated DEP-induced pulmonary inflammation, while specific inhibition of α7nAChR with α-BGT exacerbated the inflammatory markers. The present study suggests that PM2.5 have an impact on the CAP, and CAP may play a critical function in mediating PM2.5 exposure-induced inflammatory response. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Yuanting Xie
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Shimin Tao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Bin Pan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenhui Yang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenpu Shao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xinyi Fang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Dongyang Han
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jingyu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| |
Collapse
|
25
|
Chen Y, Liu Z, Gong Y. Neuron-immunity communication: mechanism of neuroprotective effects in EGCG. Crit Rev Food Sci Nutr 2023; 64:9333-9352. [PMID: 37216484 DOI: 10.1080/10408398.2023.2212069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epigallocatechin gallate (EGCG), a naturally occurring active ingredient unique to tea, has been shown to have neuroprotective potential. There is growing evidence of its potential advantages in the prevention and treatment of neuroinflammation, neurodegenerative diseases, and neurological damage. Neuroimmune communication is an important physiological mechanism in neurological diseases, including immune cell activation and response, cytokine delivery. EGCG shows great neuroprotective potential by modulating signals related to autoimmune response and improving communication between the nervous system and the immune system, effectively reducing the inflammatory state and neurological function. During neuroimmune communication, EGCG promotes the secretion of neurotrophic factors into the repair of damaged neurons, improves intestinal microenvironmental homeostasis, and ameliorates pathological phenotypes through molecular and cellular mechanisms related to the brain-gut axis. Here, we discuss the molecular and cellular mechanisms of inflammatory signaling exchange involving neuroimmune communication. We further emphasize that the neuroprotective role of EGCG is dependent on the modulatory role between immunity and neurology in neurologically related diseases.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
26
|
Zhang S, He H, Wang Y, Wang X, Liu X. Transcutaneous auricular vagus nerve stimulation as a potential novel treatment for polycystic ovary syndrome. Sci Rep 2023; 13:7721. [PMID: 37173458 PMCID: PMC10182028 DOI: 10.1038/s41598-023-34746-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of childbearing age. The etiology of PCOS is multifactorial, and current treatments for PCOS are far from satisfactory. Recently, an imbalanced autonomic nervous system (ANS) with sympathetic hyperactivity and reduced parasympathetic nerve activity (vagal tone) has aroused increasing attention in the pathogenesis of PCOS. In this paper, we review an innovative therapy for the treatment of PCOS and related co-morbidities by targeting parasympathetic modulation based on non-invasive transcutaneous auricular vagal nerve stimulation (ta-VNS). In this work, we present the role of the ANS in the development of PCOS and describe a large number of experimental and clinical reports that support the favorable effects of VNS/ta-VNS in treating a variety of symptoms, including obesity, insulin resistance, type 2 diabetes mellitus, inflammation, microbiome dysregulation, cardiovascular disease, and depression, all of which are also commonly present in PCOS patients. We propose a model focusing on ta-VNS that may treat PCOS by (1) regulating energy metabolism via bidirectional vagal signaling; (2) reversing insulin resistance via its antidiabetic effect; (3) activating anti-inflammatory pathways; (4) restoring homeostasis of the microbiota-gut-brain axis; (5) restoring the sympatho-vagal balance to improve CVD outcomes; (6) and modulating mental disorders. ta-VNS is a safe clinical procedure and it might be a promising new treatment approach for PCOS, or at least a supplementary treatment for current therapeutics.
Collapse
Affiliation(s)
- Shike Zhang
- Southern University of Science and Technology Yantian Hospital, Shenzhen, 518081, China
- Shenzhen Yantian District People's Hospital, Shenzhen, 518081, China
| | - Hui He
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Yu Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiao Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaofang Liu
- Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| |
Collapse
|
27
|
TRPV1 is involved in abdominal hyperalgesia in a mouse model of lipopolysaccharide-induced peritonitis and influences the immune response via peripheral noradrenergic neurons. Life Sci 2023; 317:121472. [PMID: 36750138 DOI: 10.1016/j.lfs.2023.121472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
AIMS The transient receptor potential vanilloid subfamily 1 (TRPV1) not only plays a role as a nociceptor but also has some regulatory effects on the immune system. We investigated the effects of TRPV1 on abdominal pain and the immune system in lipopolysaccharide (LPS)-induced peritonitis and the association between TRPV1 and peripheral noradrenergic neurons. MAIN METHODS Experiments were performed in 8- to 14-week-old male wild-type (WT) and TRPV1 knockout (KO) mice. The mice were intraperitoneally injected with a non-lethal dose of LPS. Pain assessment and investigation of changes in the immune system were performed. Denervation of sympathetic nerves and the noradrenergic splenic nerve was induced by intraperitoneal administration of 6-hydroxydopamine. KEY FINDINGS The levels of serum cytokines were not significantly different in WT mice and TRPV1 KO mice. Abdominal mechanical hyperalgesia was greater in WT mice than in TRPV1 KO mice from 6 h to 3 days. The numbers of macrophages, neutrophils, dendritic cells, and CD4 T cells in the spleens of TRPV1 KO mice were significantly increased compared to those in WT mice 4 days after LPS administration. By noradrenergic denervation, the numbers of those cells in WT mice increased to levels comparable to those in TRPV1 KO mice. SIGNIFICANCE In LPS-induced peritonitis, abdominal inflammatory pain was transmitted via TRPV1. In addition, TRPV1 had an anti-inflammatory effect on the spleen in the late phase of peritonitis. This anti-inflammatory effect was thought to be mediated by activation of the sympathetic nervous system and/or noradrenergic splenic nerve induced by TRPV1 activation.
Collapse
|
28
|
Li Y, Li YR, Jin Y, Li MY, Zhang Q, Cao J, Li F, Zhang H, Chen J, Li YQ. Involvement of enteric glial cells in colonic motility in a rat model of irritable bowel syndrome with predominant diarrhea. J Chem Neuroanat 2023; 128:102235. [PMID: 36669707 DOI: 10.1016/j.jchemneu.2023.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The enteric nervous system (ENS) is one of the important systems that regulate gastrointestinal function. The ENS is made up of enteric glial cells (EGCs) and neurons. For a long time, it was believed that the function of EGCs was only to give structural support to neurons. However, recent evidence indicates EGCs are involved in most gut functions, including the development and plasticity of the ENS, epithelial barrier, and motility. However, it remains unclear whether EGCs have the potential to modify colonic motility following irritable bowel syndrome (IBS) with predominant diarrhea (IBS-D). This study aimed to investigate changes in EGCs during IBS-D and assessed the effects of manipulating EGCs. An IBS-D rat model was constructed using acetic acid and restraint stress, and DL-fluorocitric acid (FC), an inhibitor of EGCs, was administered. The changes in EGCs and colonic motility were studied by employing techniques comprising morphological, molecular biological and functional experiments. The results showed significant activation of EGCs in the myenteric plexus (MP) of the IBS-D-induced rat colon with accelerated colonic motility. FC significantly reduced the activation of EGCs and colonic motility caused by acetic acid and restraint stress. Hypercontraction of the colon caused by IBS-D may be associated with activation of EGCs in the MP of the colon and this was prevented by FC. Therefore, regulating colon hypercontraction through interference with the activation of EGCs has significant prospects for clinical application to alleviate diarrhea in patients with IBS-D.
Collapse
Affiliation(s)
- Yan Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China; Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, China
| | - Yan-Rong Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Yuan Jin
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, China
| | - Meng-Ying Li
- Department of Endocrinology and Metabolism, Xijing Hospital, The Fourth Medical University, Xi'an 710032, China
| | - Qian Zhang
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, China
| | - Jing Cao
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China
| | - Hua Zhang
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China.
| | - Jing Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China; Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, China; Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
29
|
Harvey AR. Injury, illness, and emotion: A review of the motivational continuum from trauma through recovery from an ecological perspective. Brain Behav Immun Health 2023; 27:100586. [PMID: 36655055 PMCID: PMC9841046 DOI: 10.1016/j.bbih.2022.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Image 1.
Collapse
|
30
|
Madrid M, Bojalil R, Brianza-Padilla M, Zapoteco-Nava J, Márquez-Velasco R, Rivera-González R. The molecular profile of the inflammatory process differs among various neurodevelopmental disorders with or without cognitive component: A hypothesis of persistent systemic dysfunction and hyper-resolution. Front Pediatr 2023; 11:1132175. [PMID: 37152315 PMCID: PMC10157392 DOI: 10.3389/fped.2023.1132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Challenges of diverse origin in childhood can alter the growth and development of the central nervous system, affecting structures and functions. As a consequence of the damage suffered during the perinatal period, long periods of dysfunctionality may occur, such as regulatory disorders, which may result in remaining in a process of low-grade inflammation. We previously found that perinatal risks and neurological signs are associated with long-term changes in circulating concentrations of molecules of the inflammatory process, findings that are consistent with the postulate that long periods of dysfunction may condition long-lasting low-grade inflammation or parainflammation. The aim of this study was to assess whether different expressions of neurological disorders show variations in their inflammatory molecule profiles or whether there is a common pattern. Methods We included screening for (a) caregiver-perceived risk detection of regulatory disturbances, using the DeGangi instrument; (b) dysautonomia or asymmetries, through neurodevelopmental assessments; (c) cognitive developmental disturbances (using the Bailey instrument). We assessed protein molecules on a multiplex system, and lipid molecules by ELISA. Results We found a similar, although not identical, pattern of cytokine profiles with the presence of risk of regulatory disturbances, dysautonomia and asymmetries; but an opposite inflammatory profile was associated with cognitive impairment. Discussion Our results suggest that there are diverse, probably limited, molecular footprints associated with impaired function, and that these footprints may depend on the response requirements necessary to adjust to the altered internal environment. Here we propose a theoretical model that suggests possible scenarios for inflammatory outcomes associated with chronic challenges.
Collapse
Affiliation(s)
- Miriam Madrid
- Department of Health Care, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Rafael Bojalil
- Department of Health Care, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
- Correspondence: Rafael Bojalil
| | | | - Jasbet Zapoteco-Nava
- Neurodevelopmental Research Center, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Ricardo Márquez-Velasco
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | |
Collapse
|
31
|
Hernandez S, Serrano AG, Solis Soto LM. The Role of Nerve Fibers in the Tumor Immune Microenvironment of Solid Tumors. Adv Biol (Weinh) 2022; 6:e2200046. [PMID: 35751462 DOI: 10.1002/adbi.202200046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/12/2022] [Indexed: 01/28/2023]
Abstract
The importance of neurons and nerve fibers in the tumor microenvironment (TME) of solid tumors is now acknowledged after being unexplored for a long time; this is possible due to the development of new technologies that allow in situ characterization of the TME. Recent studies have shown that the density and types of nerves that innervate tumors can predict a patient's clinical outcome and drive several processes of tumor biology. Nowadays, several efforts in cancer research and neuroscience are taking place to elucidate the mechanisms that drive tumor-associated innervation and nerve-tumor and nerve-immune interaction. Assessment of neurons and nerves within the context of the TME can be performed in situ, in tumor tissue, using several pathology-based strategies that utilize histochemical and immunohistochemistry principles, hi-plex technologies, and computational pathology approaches to identify measurable histopathological characteristics of nerves. These features include the number and type of tumor associated nerves, topographical location and microenvironment of neural invasion of malignant cells, and investigation of neuro-related biomarker expression in nerves, tumor cells, and cells of the TME. A deeper understanding of these complex interactions and the impact of nerves in tumor biology will guide the design of better strategies for targeted therapy in clinical trials.
Collapse
Affiliation(s)
- Sharia Hernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| | - Alejandra G Serrano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| |
Collapse
|
32
|
Jiang Q, Li J, Pan Y, Wang J, Yang J, Shen S, Hou Y. Melatonin-primed MSCs alleviate intrauterine adhesions by affecting MSC-expressed galectin-3 on macrophage polarization. Stem Cells 2022; 40:919-931. [PMID: 35866866 DOI: 10.1093/stmcls/sxac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022]
Abstract
Intrauterine adhesion (IUA) is characterized by the presence of fibrosis on the uterine cavity. It is mainly caused by infection or trauma to the endometrium, and it imposes a great challenge to female reproductive health. Mesenchymal stem cells (MSCs) have been used to regenerate the human endometrium in patients with IUA, but stem cell therapy is not curative in some patients. Melatonin (MT) was reported as a potential modulator of MSCs. However, it remains unclear whether MSCs pretreated with MT exert an improved therapeutic effect on IUA. In this study, an IUA model was established using our invented electric scratching tool. Our results illustrated that MT-pretreated MSCs significantly attenuated the development of IUA. Moreover, MT-pretreated MSCs highly expressed galectin-3 (Gal-3), which enhanced MSC proliferation and migration and influenced macrophage polarization. Of note, IUA mice exhibited colonic injury, and MT-pretreated MSCs alleviated this injury by normalizing colonic microbial communities and recruiting macrophages. Furthermore, inhibition of sympathetic nerves had no effect on IUA progression but delayed colonic injury, and Gal-3 combined with norepinephrine better promoted M2-like macrophage polarization and inhibited M1-like macrophage polarization. Together, these data indicated that MT-primed MSCs can ameliorate injury of both the uterus and colon in an IUA model through high Gal-3 expression to influence sympathetic nerves and in turn affect the polarization and recruitment of macrophages.
Collapse
Affiliation(s)
- Qi Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jingjing Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| |
Collapse
|
33
|
Zhu L, Huang L, Le A, Wang TJ, Zhang J, Chen X, Wang J, Wang J, Jiang C. Interactions between the Autonomic Nervous System and the Immune System after Stroke. Compr Physiol 2022; 12:3665-3704. [PMID: 35766834 DOI: 10.1002/cphy.c210047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute stroke is one of the leading causes of morbidity and mortality worldwide. Stroke-induced immune-inflammatory response occurs in the perilesion areas and the periphery. Although stroke-induced immunosuppression may alleviate brain injury, it hinders brain repair as the immune-inflammatory response plays a bidirectional role after acute stroke. Furthermore, suppression of the systemic immune-inflammatory response increases the risk of life-threatening systemic bacterial infections after acute stroke. Therefore, it is essential to explore the mechanisms that underlie the stroke-induced immune-inflammatory response. Autonomic nervous system (ANS) activation is critical for regulating the local and systemic immune-inflammatory responses and may influence the prognosis of acute stroke. We review the changes in the sympathetic and parasympathetic nervous systems and their influence on the immune-inflammatory response after stroke. Importantly, this article summarizes the mechanisms on how ANS regulates the immune-inflammatory response through neurotransmitters and their receptors in immunocytes and immune organs after stroke. To facilitate translational research, we also discuss the promising therapeutic approaches modulating the activation of the ANS or the immune-inflammatory response to promote neurologic recovery after stroke. © 2022 American Physiological Society. Compr Physiol 12:3665-3704, 2022.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Anh Le
- Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuemei Chen
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.,Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
34
|
Shi C, Xu S, Huang C, Wang Z, Wang W, Ming D, Yin X, Liu H, Wang F. Pyrroloquinoline Quinone Regulates Enteric Neurochemical Plasticity of Weaned Rats Challenged With Lipopolysaccharide. Front Neurosci 2022; 16:878541. [PMID: 35592257 PMCID: PMC9112857 DOI: 10.3389/fnins.2022.878541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The enteric nervous system (ENS) is important for the intestinal barrier to defend and regulate inflammation in the intestine. The aim of this study was to investigate the effect of pyrroloquinoline quinone (PQQ) on regulating neuropeptide secretion by ENS neurons of rats challenged with lipopolysaccharide (LPS) to create enteritis. Thirty Sprague Dawley rats were divided into five groups, namely, basal (CTRL), basal plus LPS challenge (LPS), basal with 2.5 mg/kg b.w./day of PQQ plus challenge with LPS (PQQ 2.5), basal with 5.0 mg/kg b.w./day PQQ plus challenge with LPS (PQQ 5), and basal with 10.0 mg/kg b.w./day PQQ plus challenge with LPS (PQQ 10). After treatment with basal diet or PQQ for 14 days, rats were challenged with LPS except for the CTRL group. Rats were euthanized 6 h after the LPS challenge. Rats showed an increased average daily gain in PQQ treatment groups (P < 0.05). Compared with the LPS group, PQQ 5 and PQQ 10 rats showed increased villus height and villus height/crypt depth of jejunum (P < 0.05). In PQQ treatment groups, concentrations of IL-1β and TNF-α in serum and intestine of rats were decreased, and IL-10 concentration was increased in serum compared with the LPS group (P < 0.05). Compared with the LPS group, the concentration of neuropeptide Y (NPY), nerve growth factor (NGF), vasoactive intestinal peptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), and brain-derived neurotropic factor (BDNF) in serum were decreased in PQQ treatment groups (P < 0.05). Compared with the LPS group, ileal mRNA levels of BDNF, NPY, and NGF were decreased in PQQ treatment groups (P < 0.05). Jejunal concentrations of SP, CGRP, VIP, BDNF, NPY, and NGF were decreased in PQQ treatment groups compared with the LPS group (P < 0.05). Compared with the LPS group, phosphor-protein kinase B (p-Akt)/Akt levels in jejunum and colon were decreased in PQQ treatment groups (P < 0.05). In conclusion, daily treatment with PQQ improved daily gain, jejunal morphology, immune responses. PQQ-regulated enteric neurochemical plasticity of ENS via the Akt signaling pathway of weaned rats suffering from enteritis.
Collapse
Affiliation(s)
- Chenyu Shi
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Song Xu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zijie Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenhui Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongxu Ming
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xindi Yin
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Hu Liu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fenglai Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Wang K, Qi Y, Gu R, Dai Q, Shan A, Li Z, Gong C, Chang L, Hao H, Duan J, Xu J, Hu J, Mu D, Zhang N, Lu J, Wang L, Wu H, Li L, Kang L, Xu B. Renal Denervation Attenuates Adverse Remodeling and Intramyocardial Inflammation in Acute Myocardial Infarction With Ischemia–Reperfusion Injury. Front Cardiovasc Med 2022; 9:832014. [PMID: 35571187 PMCID: PMC9095912 DOI: 10.3389/fcvm.2022.832014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Inhibition of sympathetic activity and renin–angiotensin system with renal denervation (RDN) was proved to be effective in managing refractory hypertension, and improving left ventricular (LV) performance in chronic heart failure. The inhibition of sustained sympathetic activation prevents or delays the development of cardiac fibrosis and dysfunction that occurs after myocardial infarction and ischemia–reperfusion (I/R) injury. The translational efficiency of RDN remains to be defined in preclinical animal studies. Objectives This study investigated the therapeutic role of RDN in adverse remodeling and intramyocardial inflammation in myocardial ischemia–reperfusion (MI/R) injury. Methods Herein, 15 minipigs were subjected to 90-min percutaneous occlusion of the left anterior descending artery followed by reperfusion. Eight animals received simultaneous RDN using catheter-based radiofrequency ablation (MI/R-RDN). Cardiac function and infarct volume were measured in vivo, followed by histological and biochemical analyses. Results The infarct volume in I/R-RDN pigs reduced at 30 days postreperfusion, compared to I/R-Sham animals. The levels of catecholamine and cytokines in the serum, kidney cortex, the border, and infarcted regions of the heart were significantly reduced in I/R-RDN group. Moreover, the gene expression of collagen and the protein expression of adrenergic receptor beta 1 in heart were also decreased in I/R-RDN mice. Additionally, RDN therapy alleviated myocardial oxidative stress. Conclusion RDN is an effective therapeutic strategy for counteracting postreperfusion myocardial injury and dysfunction, and the application of RDN holds promising prospects in clinical practice.
Collapse
|
36
|
Wenjie L, Fazhi Q. Hypothesis of immune homeostasis regulator: the nervous system regulates glucose immunometabolism to control immunity. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Singh T, Khan H, Gamble DT, Scally C, Newby DE, Dawson D. Takotsubo Syndrome: Pathophysiology, Emerging Concepts, and Clinical Implications. Circulation 2022; 145:1002-1019. [PMID: 35344411 PMCID: PMC7612566 DOI: 10.1161/circulationaha.121.055854] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Takotsubo syndrome is a condition characterized by acute transient left ventricular systolic dysfunction, which at presentation can be challenging to distinguish from acute myocardial infarction. Although previously thought to be a benign, self-limiting condition, recent studies have confirmed that patients with takotsubo syndrome have persistent subtle ongoing cardiac dysfunction, and many continue to have limiting symptoms despite restoration of left ventricular ejection fraction. Moreover, these patients have a substantial burden of morbidity as well as mortality with high rates of subsequent major adverse cardiovascular events that approach those of patients with acute coronary syndrome. The mechanisms behind this condition remain elusive. Despite substantial research, the medical community continues to have an incomplete understanding of its underlying etiology and pathophysiology. Catecholamine-induced myocardial injury is the most established and well-known theory, but this does not explain all of the clinical features and presentations of the condition, and numerous other pathways and abnormalities are emerging. Because of the poor understanding of its underlying pathophysiology, there is a lack of evidence-based interventions to treat the acute episode, to avoid recurrences and to prevent major adverse cardiovascular events. This highlights the need for further research to gain a better understanding of the underlying pathophysiology in order to inform appropriate randomized controlled trials of interventions targeting the causative pathways. Only then can evidence-based management strategies be established to improve clinical outcomes of this potentially lethal condition.
Collapse
Affiliation(s)
- Trisha Singh
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (T.S., C.S., D.E.N.).,Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, United Kingdom (H.K., D.T.G., D.D.)
| | - Hilal Khan
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (T.S., C.S., D.E.N.).,Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, United Kingdom (H.K., D.T.G., D.D.)
| | - David T Gamble
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (T.S., C.S., D.E.N.).,Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, United Kingdom (H.K., D.T.G., D.D.)
| | - Caroline Scally
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (T.S., C.S., D.E.N.).,Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, United Kingdom (H.K., D.T.G., D.D.)
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (T.S., C.S., D.E.N.).,Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, United Kingdom (H.K., D.T.G., D.D.)
| | - Dana Dawson
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (T.S., C.S., D.E.N.).,Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, United Kingdom (H.K., D.T.G., D.D.)
| |
Collapse
|
38
|
Restaino AC, Vermeer PD. Neural regulations of the tumor microenvironment. FASEB Bioadv 2022; 4:29-42. [PMID: 35024571 PMCID: PMC8728107 DOI: 10.1096/fba.2021-00066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
The identification of nerves in the tumor microenvironment has ushered in a new area of research in cancer biology. Numerous studies demonstrate the presence of various types of peripheral nerves (sympathetic, parasympathetic, sensory) within the tumor microenvironment; moreover, an increased density of nerves in the tumor microenvironment correlates with worse prognosis. In this review, we address the current understanding of nerve-mediated alterations of the tumor microenvironment and how they impact disease through a variety of processes, including direct nerve-cancer cell communication, alteration of the infiltrative immune population, and alteration of stromal components.
Collapse
Affiliation(s)
- Anthony C. Restaino
- Sanford ResearchCancer Biology and Immunotherapies GroupSioux FallsSouth DakotaUSA
- University of South Dakota Sanford School of MedicineVermillionSouth DakotaUSA
| | - Paola D. Vermeer
- Sanford ResearchCancer Biology and Immunotherapies GroupSioux FallsSouth DakotaUSA
- University of South Dakota Sanford School of MedicineVermillionSouth DakotaUSA
| |
Collapse
|
39
|
Berthelot JM, Lioté F, Sibilia J. Tissue microbiota: a 'secondary-self', first target of autoimmunity? Joint Bone Spine 2021; 89:105337. [PMID: 34968748 DOI: 10.1016/j.jbspin.2021.105337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Department, Nantes University Hospital, Hôtel-Dieu, Place Alexis-Ricordeau, 44093, Nantes Cedex 01, France.
| | - Frédéric Lioté
- Rheumatology Department & Inserm UMR 1132 (centre Viggo Petersen), Hôpital Lariboisière, 2 rue Ambroise Paré, F-75010 Paris, France; Université de Paris, UFR de Médecine, F-75010 Paris, France
| | - Jean Sibilia
- Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France; RESO: Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, France; INSERM UMR_S1109, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
40
|
Harvey AR. Integrated neuroimmune processing of threat, injury, and illness: An ecological framework mapping social alienation onto lifetime health vulnerability. Brain Behav Immun Health 2021; 18:100349. [PMID: 34723222 PMCID: PMC8531850 DOI: 10.1016/j.bbih.2021.100349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022] Open
Abstract
Social alienation is a pre-eminent ecological threat for humans. In clinical and social care settings its impact is acknowledged in conditions as diverse as severe mood disturbance, chronic pain, and metabolic non-communicable diseases. An integrated psychoneuroimmune perspective shows how threat, injury, healing, and recovery follow through as a continuous process, but accepted cultural and clinical paradigms separating mental from physical illness provide little common ground on which to analyse and apply this continuum in practice. By reviewing the ecological relationships between emotional threat, tissue dyshomeostasis and injury, infection, pain, and mood this article explores not only how primeval somatic responses underpin the evolutionary foundations of depression and somatisation, but also links them to escalating physical non-communicable disease through archived socioeconomic adversity (allostatic load). Social alienation (in the absence of trauma) may prime and activate this ancient repertoire in which sensitised responses lay the foundation for persistent maladaptive states of aversive sensory misinterpretation, behavioural avoidance, anhedonia, and neuroinflammation presenting as widespread non-nociceptive pain, non-pain somatisation, and severe depression. The ecological perspective illuminates perverse clinical presentations, shows how some approaches to care may facilitate self-reinforcement in maladaptive syndromes, and offers pointers for inclusive rehabilitative clinical and social care.
Collapse
Affiliation(s)
- Andrew R. Harvey
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, LS2 9JT, UK
| |
Collapse
|
41
|
Neuro-immune-metabolism: The tripod system of homeostasis. Immunol Lett 2021; 240:77-97. [PMID: 34655659 DOI: 10.1016/j.imlet.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
Homeostatic regulation of cellular and molecular processes is essential for the efficient physiological functioning of body organs. It requires an intricate balance of several networks throughout the body, most notable being the nervous, immune and metabolic systems. Several studies have reported the interactions between neuro-immune, immune-metabolic and neuro-metabolic pathways. Current review aims to integrate the information and show that neuro, immune and metabolic systems form the triumvirate of homeostasis. It focuses on the cellular and molecular interactions occurring in the extremities and intestine, which are innervated by the peripheral nervous system and for the intestine in particular the enteric nervous system. While the interdependence of neuro-immune-metabolic pathways provides a fallback mechanism in case of disruption of homeostasis, in chronic pathologies of continued disequilibrium, the collapse of one system spreads to the other interacting networks as well. Current review illustrates this domino-effect using diabetes as the main example. Together, this review attempts to provide a holistic picture of the integrated network of neuro-immune-metabolism and attempts to broaden the outlook when devising a scientific study or a treatment strategy.
Collapse
|
42
|
Yip JL, Balasuriya GK, Spencer SJ, Hill-Yardin EL. The Role of Intestinal Macrophages in Gastrointestinal Homeostasis: Heterogeneity and Implications in Disease. Cell Mol Gastroenterol Hepatol 2021; 12:1701-1718. [PMID: 34506953 PMCID: PMC8551786 DOI: 10.1016/j.jcmgh.2021.08.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022]
Abstract
Intestinal macrophages play a key role in the gut immune system and the regulation of gastrointestinal physiology, including gut motility and secretion. Their ability to keep the gut from chronic inflammation despite constantly facing foreign antigens has been an important focus in gastrointestinal research. However, the heterogeneity of intestinal macrophages has impeded our understanding of their specific roles. It is now becoming clear that subsets of intestinal macrophages play diverse roles in various gastrointestinal diseases. This occurs through a complex interplay between cytokine production and enteric nervous system activation that differs for each pathologic condition. Key diseases and disorders in which intestinal macrophages play a role include postoperative ileus, inflammatory bowel disease, necrotizing enterocolitis, as well as gastrointestinal disorders associated with human immunodeficiency virus and Parkinson's disease. Here, we review the identification of intestinal macrophage subsets based on their origins and functions, how specific subsets regulate gut physiology, and the potential for these heterogeneous subpopulations to contribute to disease states. Furthermore, we outline the potential for these subpopulations to provide unique targets for the development of novel therapies for these disorders.
Collapse
Affiliation(s)
| | | | - Sarah J. Spencer
- School of Health and Biomedical Sciences,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Royal Melbourne Instutite of Technology, Melbourne, Victoria, Australia
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences,Correspondence Address correspondence to: Elisa L. Hill-Yardin, PhD, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia.
| |
Collapse
|
43
|
Jakob MO, Kofoed-Branzk M, Deshpande D, Murugan S, Klose CSN. An Integrated View on Neuronal Subsets in the Peripheral Nervous System and Their Role in Immunoregulation. Front Immunol 2021; 12:679055. [PMID: 34322118 PMCID: PMC8312561 DOI: 10.3389/fimmu.2021.679055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The peripheral nervous system consists of sensory circuits that respond to external and internal stimuli and effector circuits that adapt physiologic functions to environmental challenges. Identifying neurotransmitters and neuropeptides and the corresponding receptors on immune cells implies an essential role for the nervous system in regulating immune reactions. Vice versa, neurons express functional cytokine receptors to respond to inflammatory signals directly. Recent advances in single-cell and single-nuclei sequencing have provided an unprecedented depth in neuronal analysis and allowed to refine the classification of distinct neuronal subsets of the peripheral nervous system. Delineating the sensory and immunoregulatory capacity of different neuronal subsets could inform a better understanding of the response happening in tissues that coordinate physiologic functions, tissue homeostasis and immunity. Here, we summarize current subsets of peripheral neurons and discuss neuronal regulation of immune responses, focusing on neuro-immune interactions in the gastrointestinal tract. The nervous system as a central coordinator of immune reactions and tissue homeostasis may predispose for novel promising therapeutic approaches for a large variety of diseases including but not limited to chronic inflammation.
Collapse
Affiliation(s)
- Manuel O Jakob
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Kofoed-Branzk
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Divija Deshpande
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shaira Murugan
- Department of BioMedical Research, Group of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
44
|
Interactive regulation of laryngeal cancer and neuroscience. Biochim Biophys Acta Rev Cancer 2021; 1876:188580. [PMID: 34129916 DOI: 10.1016/j.bbcan.2021.188580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 01/11/2023]
Abstract
Nerve fibres are distributed throughout the body along with blood and lymphatic vessels. The intrinsic morphological characteristics of nerves and the general characteristics of secretions in the tumour microenvironment provide a solid theoretical basis for exploring how neuronal tissue can influence the progression of laryngeal cancer (LC). The central nervous system (CNS) and the peripheral nervous system (PNS) jointly control many aspects of cancer and have attracted widespread attention in the study of the progression, invasion and metastasis of tumour tissue banks. Stress activates the neuroendocrine response of the human hypothalamus-pituitary-adrenal (HPA) axis. LC cells induce nerve growth in the microenvironment by releasing neurotrophic factors (NTFs), and they can also stimulate neurite formation by secreting axons and axon guides. Conversely, nerve endings secrete factors that attract LC cells; this is known as perineural invasion (PNI) and promotes the progression of the associated cancer. In this paper, we summarize the systematic understanding of the role of neuroregulation in the LC tumour microenvironment (TME) and ways in which the TME accelerates nerve growth, which is closely related to the occurrence of LC.
Collapse
|
45
|
Klose CSN, Veiga-Fernandes H. Neuroimmune interactions in peripheral tissues. Eur J Immunol 2021; 51:1602-1614. [PMID: 33895990 DOI: 10.1002/eji.202048812] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Neuroimmune interactions have been revealed to be at the centre stage of tissue defence, organ homeostasis, and organismal physiology. Neuronal and immune cell subsets have been shown to colocalize in discrete tissue environments, forming neuroimmune cell units that constitute the basis for bidirectional interactions. These multitissue units drive coordinated neuroimmune responses to local and systemic signals, which represents an important challenge to our current views of mucosal physiology and immune regulation. In this review, we focus on the impact of reciprocal neuroimmune interactions, focusing on the anatomy of neuronal innervation and on the neuronal regulation of immune cells in peripheral tissues. Finally, we shed light on recent studies that explore how neuroimmune interactions maximise sensing and integration of environmental aggressions, modulating immune function in health and disease.
Collapse
Affiliation(s)
- Christoph S N Klose
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, 12203, Germany
| | | |
Collapse
|
46
|
Douglas B, Oyesola O, Cooper MM, Posey A, Tait Wojno E, Giacomin PR, Herbert DR. Immune System Investigation Using Parasitic Helminths. Annu Rev Immunol 2021; 39:639-665. [PMID: 33646858 DOI: 10.1146/annurev-immunol-093019-122827] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections. A particular emphasis is placed on the emerging areas within helminth immunology where the most growth is possible, including the advent of genetic manipulation of parasites to study immunology and the use of engineered T cells for therapeutic options. Lastly,we cover the status of human challenge trials with helminths as treatment for autoimmune disease, which taken together, stand to keep the study of parasitic worms at the forefront of immunology for years to come.
Collapse
Affiliation(s)
- Bonnie Douglas
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - Oyebola Oyesola
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA; ,
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; ,
| | - Avery Posey
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Elia Tait Wojno
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA; ,
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; ,
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| |
Collapse
|
47
|
Conde SV, Sacramento JF, Martins FO. Immunity and the carotid body: implications for metabolic diseases. Bioelectron Med 2020; 6:24. [PMID: 33353562 PMCID: PMC7756955 DOI: 10.1186/s42234-020-00061-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Neuro-immune communication has gained enormous interest in recent years due to increasing knowledge of the way in which the brain coordinates functional alterations in inflammatory and autoimmune responses, and the mechanisms of neuron-immune cell interactions in the context of metabolic diseases such as obesity and type 2 diabetes. In this review, we will explain how this relationship between the nervous and immune system impacts the pro- and anti-inflammatory pathways with specific reference to the hypothalamus-pituitary-adrenal gland axis and the vagal reflex and will explore the possible involvement of the carotid body (CB) in the neural control of inflammation. We will also highlight the mechanisms of vagal anti-inflammatory reflex control of immunity and metabolism, and the consequences of functional disarrangement of this reflex in settlement and development of metabolic diseases, with special attention to obesity and type 2 diabetes. Additionally, the role of CB in the interplay between metabolism and immune responses will be discussed, with specific reference to the different stimuli that promote CB activation and the balance between sympathetic and parasympathetic in this context. In doing so, we clarify the multivarious neuronal reflexes that coordinate tissue-specific responses (gut, pancreas, adipose tissue and liver) critical to metabolic control, and metabolic disease settlement and development. In the final section, we will summarize how electrical modulation of the carotid sinus nerve may be utilized to adjust these reflex responses and thus control inflammation and metabolic diseases, envisioning new therapeutics horizons.
Collapse
Affiliation(s)
- Silvia V Conde
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal.
| | - Joana F Sacramento
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal
| | - Fatima O Martins
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal
| |
Collapse
|
48
|
Innate Lymphoid Cells: Important Regulators of Host-Bacteria Interaction for Border Defense. Microorganisms 2020; 8:microorganisms8091342. [PMID: 32887435 PMCID: PMC7563982 DOI: 10.3390/microorganisms8091342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a recently discovered type of innate immune lymphocyte. They include three different groups classified by the nature of the transcription factors required for their development and by the cytokines they produce. ILCs mainly reside in tissues close to the mucosal barrier such as the respiratory and gastrointestinal tracts. Due to their close proximity to the mucosal surface, ILCs are exposed to a variety of both commensal and pathogenic bacteria. Under non-pathological conditions, ILCs have been shown to be important regulators for the maintenance of tissue homeostasis by mutual interactions with the microbiome. Besides these important functions at homeostasis, several studies have also provided emerging evidence that ILCs contribute to defense against pathogenic bacterial infection by responding rapidly to the pathogens as well as orchestrating other immune cells. In this review, we summarize recent advances in our understanding of the interactions of ILCs and bacteria, with special focus on the function of the different ILC subsets in bacterial infections.
Collapse
|