1
|
Hammel JH, Arneja A, Cunningham J, Wang M, Schumaecker S, Orihuela YM, Ozulumba T, Zatorski JM, Braciale TJ, Luckey CJ, Pompano RR, Munson JM. Interstitial fluid flow in an engineered human lymph node stroma model modulates T cell egress and stromal change. APL Bioeng 2025; 9:026105. [PMID: 40191604 PMCID: PMC11972091 DOI: 10.1063/5.0247363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/15/2025] [Indexed: 04/09/2025] Open
Abstract
The lymph node (LN) performs essential roles in immunosurveillance throughout the body. Developing in vitro models of this key tissue is of great importance to enhancing physiological relevance in immunoengineering. The LN consists of stromal populations and immune cells, which are highly organized and bathed in constant interstitial fluid flow (IFF). The stroma, notably the fibroblastic reticular cells (FRCs) and the lymphatic endothelial cells (LECs), play crucial roles in guiding T cell migration and are known to be sensitive to fluid flow. During inflammation, interstitial fluid flow rates drastically increase in the LN. It is unknown how these altered flow rates impact crosstalk and cell behavior in the LN, and most existing in vitro models focus on the interactions between T cells, B cells, and dendritic cells rather than with the stroma. To address this gap, we developed a human engineered model of the LN stroma consisting of FRC-laden hydrogel above a monolayer of LECs in a tissue culture insert with gravity-driven interstitial flow. We found that FRCs had enhanced coverage and proliferation in response to high flow rates, while LECs experienced decreased barrier integrity. We added CD4+ and CD8+ T cells and found that their egress was significantly decreased in the presence of interstitial flow, regardless of magnitude. Interestingly, 3.0 μm/s flow, but not 0.8 μm/s flow, correlated with enhanced inflammatory cytokine secretion in the LN stroma. Overall, we demonstrate that interstitial flow is an essential consideration in the lymph node for modulating LN stroma morphology, T cell migration, and inflammation.
Collapse
Affiliation(s)
| | - Abhinav Arneja
- University of Virginia Department of Pathology, 415 Lane Road, Charlottesville, Virginia 22908, USA
| | - Jessica Cunningham
- Virginia Tech Fralin Biomedical Research Institute, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | - Maosen Wang
- Virginia Tech Fralin Biomedical Research Institute, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | - Sophia Schumaecker
- Virginia Tech Fralin Biomedical Research Institute, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | | | - Tochukwu Ozulumba
- University of Virginia Department of Chemistry, 409 McCormick Road, Charlottesville, Virginia 22904, USA
| | - Jonathan M. Zatorski
- University of Virginia Department of Chemistry, 409 McCormick Road, Charlottesville, Virginia 22904, USA
| | - Thomas J. Braciale
- University of Virginia Department of Pathology, 415 Lane Road, Charlottesville, Virginia 22908, USA
| | - Chance John Luckey
- University of Virginia Department of Pathology, 415 Lane Road, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
2
|
Peterman E, Murphy A, Swinburne IA, Megason SG, Rasmussen JP. Microtubule-dependent cell polarity regulates skin-resident macrophage phagocytosis and directed cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.642867. [PMID: 40161838 PMCID: PMC11952491 DOI: 10.1101/2025.03.13.642867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Immune cells rapidly respond to tissue damage through dynamic properties of the cytoskeleton. How microtubules control immune cell functions during injury responses remains poorly understood. Within skin, tissue-resident macrophages known as Langerhans cells use dynamic dendrites to surveil the epidermis for damage and migrate through a densely packed epithelium to wounds. Here, we use Langerhans cells within the adult zebrafish epidermis as a model to investigate roles for microtubules in immune cell tissue surveillance, phagocytosis, and directed migration. We describe microtubule organization within Langerhans cells, and show that depolymerizing the microtubule cytoskeleton alters dendrite morphology, debris engulfment, and migration efficiency. We find that the microtubule organizing center positions adjacent to engulfed debris and that its position correlates with navigational pathfinding during directed cell migration. Stabilizing microtubules prevents Langerhans cell motility during directed cell migration by impairing navigation around cellular obstacles. Collectively, our work demonstrates requirements for microtubules in the dynamic actions of tissue-resident macrophages during epithelial surveillance and wound repair.
Collapse
|
3
|
Pylvänäinen JW, Jacquemet G, Marcotti S. Practical recommendations for developing software for life science applications. J Cell Sci 2025; 138:jcs263711. [PMID: 40091788 DOI: 10.1242/jcs.263711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Developing user-friendly image analysis software is essential for advancing biological and life science research. However, the interdisciplinary gap between software developers and life scientists presents challenges to software adoption. In this Essay, we provide practical recommendations to guide bioimage analysts and developers in creating accessible and usable software for biological research. These recommendations are presented in three phases, covering software design, user involvement in early development stages and the importance of software dissemination. Additionally, two software development case studies are presented to highlight the practical application of these principles, showing how thoughtful development, user-centric design and thorough documentation can bridge the gap between software developers and biologists, fostering wider adoption of the software and enabling further scientific discovery.
Collapse
Affiliation(s)
- Joanna W Pylvänäinen
- Biosciences, Faculty of Science and Engineering, Åbo Akademi University,Turku 20520, Finland
- InFLAMES Research Flagship Center , Åbo Akademi University, Turku 20520, Finland
| | - Guillaume Jacquemet
- Biosciences, Faculty of Science and Engineering, Åbo Akademi University,Turku 20520, Finland
- InFLAMES Research Flagship Center , Åbo Akademi University, Turku 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics , King's College London, London SE1 1UL, UK
| |
Collapse
|
4
|
Hammel JH, Arneja A, Cunningham J, Wang M, Schumaecker S, Orihuela YM, Ozulumba T, Zatorski J, Braciale TJ, Luckey CJ, Pompano RR, Munson JM. Engineered human lymph node stroma model for examining interstitial fluid flow and T cell egress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.622729. [PMID: 39677702 PMCID: PMC11642859 DOI: 10.1101/2024.12.03.622729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The lymph node (LN) performs essential roles in immunosurveillance throughout the body. Developing in vitro models of this key tissue is of great importance to enhancing physiological relevance in immunoengineering. The LN consists of stromal populations and immune cells, which are highly organized and bathed in constant interstitial flow. The stroma, notably the fibroblastic reticular cells (FRCs) and the lymphatic endothelial cells (LECs), play crucial roles in guiding T cell migration and are known to be sensitive to fluid flow. During inflammation, interstitial fluid flow rates drastically increase in the LN. It is unknown how these altered flow rates impact crosstalk and cell behavior in the LN, and most existing in vitro models focus on the interactions between T cells, B cells, and dendritic cells rather than with the stroma. To address this gap, we developed a human engineered model of the LN stroma consisting of FRC-laden hydrogel above a monolayer of LECs in a tissue culture insert with gravity-driven interstitial flow. We found that FRCs had enhanced coverage and proliferation in response to high flow rates, while LECs experienced decreased barrier integrity. We added CD4+ and CD8+ T cells and found that their egress was significantly decreased in the presence of interstitial flow, regardless of magnitude. Interestingly, 3.0 µm/s flow, but not 0.8 µm/s flow, correlated with enhanced inflammatory cytokine secretion in the LN stroma. Overall, we demonstrate that interstitial flow is an essential consideration in the lymph node for modulating LN stroma morphology, T cell migration, and inflammation.
Collapse
|
5
|
Balsini P, Weinzettl P, Samardzic D, Zila N, Buchberger M, Freystätter C, Tschandl P, Wielscher M, Weninger W, Pfisterer K. Stiffness-Dependent Lysyl Oxidase Regulation through Hypoxia-Inducing Factor 1 Drives Extracellular Matrix Modifications in Psoriasis. J Invest Dermatol 2024:S0022-202X(24)02958-0. [PMID: 39603411 DOI: 10.1016/j.jid.2024.10.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024]
Abstract
Psoriasis is a common chronic inflammatory skin disease characterized by a thickened epidermis with elongated rete ridges and massive immune cell infiltration. It is currently unclear what impact mechanoregulatory aspects may have on disease progression. Using multiphoton second harmonic generation microscopy, we found that the extracellular matrix was profoundly reorganized within psoriatic dermis. Collagen fibers were highly aligned and assembled into thick, long collagen bundles, whereas the overall fiber density was reduced. This was particularly pronounced within dermal papillae extending into the epidermis. Furthermore, the extracellular matrix-modifying enzyme lysyl oxidase was highly upregulated in the dermis of patients with psoriasis. In vitro experiments identified a previously unreported link between hypoxia-inducing factor 1 stabilization and lysyl oxidase protein regulation in mechanosensitive skin fibroblasts. Lysyl oxidase secretion and activity directly correlated with substrate stiffness and were independent of hypoxia and IL-17. Finally, single-cell RNA-sequencing analysis identified skin fibroblasts expressing high amounts of lysyl oxidase and confirmed elevated hypoxia-inducing factor 1 expression in psoriasis. Our findings suggest a potential yet undescribed mechanical aspect of psoriasis. Deregulated mechanical forces hence may be involved in initiating or maintaining of a positive feedback loop in fibroblasts and contribute to tissue stiffening and diminished skin elasticity in psoriasis, potentially exacerbating disease pathogenesis.
Collapse
Affiliation(s)
- Parvaneh Balsini
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Pauline Weinzettl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - David Samardzic
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Section Biomedical Science, University of Applied Sciences FH Campus Wien, Wien, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christian Freystätter
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Philipp Tschandl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Wielscher
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Karin Pfisterer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Caillier A, Oleksyn D, Fowell DJ, Miller J, Oakes PW. T cells use focal adhesions to pull themselves through confined environments. J Cell Biol 2024; 223:e202310067. [PMID: 38889096 PMCID: PMC11187980 DOI: 10.1083/jcb.202310067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Immune cells are highly dynamic and able to migrate through environments with diverse biochemical and mechanical compositions. Their migration has classically been defined as amoeboid under the assumption that it is integrin independent. Here, we show that activated primary Th1 T cells require both confinement and extracellular matrix proteins to migrate efficiently. This migration is mediated through small and dynamic focal adhesions that are composed of the same proteins associated with canonical mesenchymal cell focal adhesions, such as integrins, talin, and vinculin. These focal adhesions, furthermore, localize to sites of contractile traction stresses, enabling T cells to pull themselves through confined spaces. Finally, we show that Th1 T cells preferentially follow tracks of other T cells, suggesting that these adhesions modify the extracellular matrix to provide additional environmental guidance cues. These results demonstrate not only that the boundaries between amoeboid and mesenchymal migration modes are ambiguous, but that integrin-mediated focal adhesions play a key role in T cell motility.
Collapse
Affiliation(s)
- Alexia Caillier
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - David Oleksyn
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Deborah J. Fowell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jim Miller
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Patrick W. Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
7
|
Xu C, Nedergaard M, Fowell DJ, Friedl P, Ji N. Multiphoton fluorescence microscopy for in vivo imaging. Cell 2024; 187:4458-4487. [PMID: 39178829 PMCID: PMC11373887 DOI: 10.1016/j.cell.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024]
Abstract
Multiphoton fluorescence microscopy (MPFM) has been a game-changer for optical imaging, particularly for studying biological tissues deep within living organisms. MPFM overcomes the strong scattering of light in heterogeneous tissue by utilizing nonlinear excitation that confines fluorescence emission mostly to the microscope focal volume. This enables high-resolution imaging deep within intact tissue and has opened new avenues for structural and functional studies. MPFM has found widespread applications and has led to numerous scientific discoveries and insights into complex biological processes. Today, MPFM is an indispensable tool in many research communities. Its versatility and effectiveness make it a go-to technique for researchers investigating biological phenomena at the cellular and subcellular levels in their native environments. In this Review, the principles, implementations, capabilities, and limitations of MPFM are presented. Three application areas of MPFM, neuroscience, cancer biology, and immunology, are reviewed in detail and serve as examples for applying MPFM to biological research.
Collapse
Affiliation(s)
- Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 3B, 2200 Copenhagen, Denmark; University of Rochester Medical School, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Deborah J Fowell
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Peter Friedl
- Department of Medical BioSciences, Radboud University Medical Centre, Geert Grooteplein 26-28, Nijmegen HB 6500, the Netherlands
| | - Na Ji
- Department of Neuroscience, Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Bonadio JD, Bashiri G, Halligan P, Kegel M, Ahmed F, Wang K. Delivery technologies for therapeutic targeting of fibronectin in autoimmunity and fibrosis applications. Adv Drug Deliv Rev 2024; 209:115303. [PMID: 38588958 PMCID: PMC11111362 DOI: 10.1016/j.addr.2024.115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibronectin (FN) is a critical component of the extracellular matrix (ECM) contributing to various physiological processes, including tissue repair and immune response regulation. FN regulates various cellular functions such as adhesion, proliferation, migration, differentiation, and cytokine release. Alterations in FN expression, deposition, and molecular structure can profoundly impact its interaction with other ECM proteins, growth factors, cells, and associated signaling pathways, thus influencing the progress of diseases such as fibrosis and autoimmune disorders. Therefore, developing therapeutics that directly target FN or its interaction with cells and other ECM components can be an intriguing approach to address autoimmune and fibrosis pathogenesis.
Collapse
Affiliation(s)
- Jacob D Bonadio
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Patrick Halligan
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Michael Kegel
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Fatima Ahmed
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Peng G, Li Y, Zeng Y, Sun B, Zhang L, Liu Q. Effect of glabridin combined with bakuchiol on UVB-induced skin damage and its underlying mechanism: An experimental study. J Cosmet Dermatol 2024; 23:2256-2269. [PMID: 38497297 DOI: 10.1111/jocd.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Research has demonstrated the anti-photoaging properties of glabridin and bakuchiol. METHODS The impact of glabridin, glabridin + bakuchiol, and bakuchiol on the levels of tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in mice skin fibroblasts was observed. Furthermore, we investigated the potential roles of fibronectin (FN), interferon-γ (IFN-γ), interleukin-22 (IL-22), and transforming growth factor-β (TGF-β) in the tissues, and evaluated their impact on the enzymatic levels in the skin. In conjunction with transcriptomic analysis, metabolomic profiling, and network pharmacology, all samples underwent comprehensive metabolomic and principal component analysis. The Venny2.1 method was utilized to identify variances in shared metabolites between the treatment group and the UVB group, as well as between the UVB group and the control group. Subsequently, a cluster heat map was generated to forecast and analyze metabolic pathways and targets. RESULTS The outcomes from the hematoxylin and eosin and toluidine blue staining revealed that glabridin and bakuchiol markedly decreased dermal thickness and suppressed mast cell infiltration in photoaged mice. Immunohistochemistry and Elisa analysis revealed that glabridin and bakuchiol effectively attenuated the levels of pro-inflammatory factors, including IL-1β, tumor necrosis factor-α, IL-22, and IFN-γ. Furthermore, an increase in the levels of anti-inflammatory factors such as FN and TGF-β was also observed. The determination of the contents of superoxide dismutase, hydroxypropyltransferase and malondialdehyde in mice dorsal skin revealed that glabridin and bakuchiol not only elevated the levels of superoxide dismutase and hydroxyproline, but also reduced malondialdehyde content. Due to the limited number of shared differential metabolites exclusively within Kyoto Encyclopedia of Genes and Genomes, comprehensive pathway enrichment analysis was not feasible. CONCLUSION This study demonstrates that glabridin and bakuchiol effectively impede photoaging and alleviate skin inflammation in mice.
Collapse
Affiliation(s)
- Guanjie Peng
- Fankol Biotechnology (Guangzhou) Co., Ltd., guangzhou, China
| | - Yangsi Li
- Fankol Biotechnology (Guangzhou) Co., Ltd., guangzhou, China
| | - Yiyan Zeng
- The First Affiliated Hospital Guizhou University of Chinese Medicine, Guiyang, China
| | - Bowen Sun
- Fankol Biotechnology (Guangzhou) Co., Ltd., guangzhou, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Qingqing Liu
- School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Chung YH, Zhao Z, Jung E, Omole AO, Wang H, Sutorus L, Steinmetz NF. Systemic Administration of Cowpea Mosaic Virus Demonstrates Broad Protection Against Metastatic Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308237. [PMID: 38430536 PMCID: PMC11095214 DOI: 10.1002/advs.202308237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Indexed: 03/04/2024]
Abstract
The key challenge in cancer treatment is prevention of metastatic disease which is therapeutically resistant and carries poor prognoses necessitating efficacious prophylactic approaches that prevent metastasis and recurrence. It is previously demonstrated that cowpea mosaic virus (CPMV) induces durable antitumor responses when used in situ, i.e., intratumoral injection. As a new direction, it is showed that CPMV demonstrates widespread effectiveness as an immunoprophylactic agent - potent efficacy is demonstrated in four metastatic models of colon, ovarian, melanoma, and breast cancer. Systemic administration of CPMV stimulates the innate immune system, enabling attack of cancer cells; processing of the cancer cells and associated antigens leads to systemic, durable, and adaptive antitumor immunity. Overall, CPMV demonstrated broad efficacy as an immunoprophylactic agent in the rejection of metastatic cancer.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
| | - Zhongchao Zhao
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Eunkyeong Jung
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Anthony O. Omole
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Hanyang Wang
- Department of BiologyUniversity of California, San DiegoLa JollaCA92093USA
| | - Lucas Sutorus
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Nicole F. Steinmetz
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Department of RadiologyUniversity of California, San DiegoLa JollaCA92093USA
- Institute for Materials Discovery and DesignUniversity of California, San DiegoLa JollaCA92093USA
- Center for Engineering in CancerUniversity of California, San DiegoLa JollaCA92093USA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
11
|
Fierro Morales JC, Redfearn C, Titus MA, Roh-Johnson M. Reduced PaxillinB localization to cell-substrate adhesions promotes cell migration in Dictyostelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585764. [PMID: 38562712 PMCID: PMC10983970 DOI: 10.1101/2024.03.19.585764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many cells adhere to extracellular matrix for efficient cell migration. This adhesion is mediated by focal adhesions, a protein complex linking the extracellular matrix to the intracellular cytoskeleton. Focal adhesions have been studied extensively in mesenchymal cells, but recent research in physiological contexts and amoeboid cells suggest focal adhesion regulation differs from the mesenchymal focal adhesion paradigm. We used Dictyostelium discoideum to uncover new mechanisms of focal adhesion regulation, as Dictyostelium are amoeboid cells that form focal adhesion-like structures for migration. We show that PaxillinB, the Dictyostelium homologue of Paxillin, localizes to dynamic focal adhesion-like structures during Dictyostelium migration. Unexpectedly, reduced PaxillinB recruitment to these structures increases Dictyostelium cell migration. Quantitative analysis of focal adhesion size and dynamics show that lack of PaxillinB recruitment to focal adhesions does not alter focal adhesion size, but rather increases focal adhesion turnover. These findings are in direct contrast to Paxillin function at focal adhesions during mesenchymal migration, challenging the established focal adhesion model.
Collapse
Affiliation(s)
| | - Chandler Redfearn
- Department of Kinesiology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Kinesiology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Zhang Y, Tian H. Telocytes and inflammation: A review. Medicine (Baltimore) 2023; 102:e35983. [PMID: 37986278 PMCID: PMC10659634 DOI: 10.1097/md.0000000000035983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
Telocytes are a new type of interstitial cell with a diverse morphology and important functions, such as mechanical support, signal transduction, immune regulation, and tissue repair. In this paper, the origin and physiological and pathological functions of telocytes as well as their role in inflammation will be discussed, and the functions and targets of telocytes in inflammation will be fully reviewed, which may contribute to a new therapeutic strategy for inflammatory diseases in the future.
Collapse
Affiliation(s)
- Yuhua Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Hu Tian
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Key Laboratory of Metabolism and Gastrointestinal Tumor, Jinan, Shandong, China
| |
Collapse
|
13
|
Torres DJ, Mrass P, Byrum J, Gonzales A, Martinez DN, Juarez E, Thompson E, Vezys V, Moses ME, Cannon JL. Quantitative analyses of T cell motion in tissue reveals factors driving T cell search in tissues. eLife 2023; 12:e84916. [PMID: 37870221 PMCID: PMC10672806 DOI: 10.7554/elife.84916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/22/2023] [Indexed: 10/24/2023] Open
Abstract
T cells are required to clear infection, and T cell motion plays a role in how quickly a T cell finds its target, from initial naive T cell activation by a dendritic cell to interaction with target cells in infected tissue. To better understand how different tissue environments affect T cell motility, we compared multiple features of T cell motion including speed, persistence, turning angle, directionality, and confinement of T cells moving in multiple murine tissues using microscopy. We quantitatively analyzed naive T cell motility within the lymph node and compared motility parameters with activated CD8 T cells moving within the villi of small intestine and lung under different activation conditions. Our motility analysis found that while the speeds and the overall displacement of T cells vary within all tissues analyzed, T cells in all tissues tended to persist at the same speed. Interestingly, we found that T cells in the lung show a marked population of T cells turning at close to 180o, while T cells in lymph nodes and villi do not exhibit this "reversing" movement. T cells in the lung also showed significantly decreased meandering ratios and increased confinement compared to T cells in lymph nodes and villi. These differences in motility patterns led to a decrease in the total volume scanned by T cells in lung compared to T cells in lymph node and villi. These results suggest that the tissue environment in which T cells move can impact the type of motility and ultimately, the efficiency of T cell search for target cells within specialized tissues such as the lung.
Collapse
Affiliation(s)
| | - Paulus Mrass
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Janie Byrum
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | | | | | | | - Emily Thompson
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Vaiva Vezys
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Melanie E Moses
- Department of Computer Science, University of New MexicoAlbuquerqueUnited States
| | - Judy L Cannon
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
| |
Collapse
|
14
|
Caillier A, Oleksyn D, Fowell DJ, Miller J, Oakes PW. T cells Use Focal Adhesions to Pull Themselves Through Confined Environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562587. [PMID: 37904911 PMCID: PMC10614902 DOI: 10.1101/2023.10.16.562587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Immune cells are highly dynamic and able to migrate through environments with diverse biochemical and mechanical composition. Their migration has classically been defined as amoeboid under the assumption that it is integrin-independent. Here we show that activated primary Th1 T cells require both confinement and extracellular matrix protein to migrate efficiently. This migration is mediated through small and dynamic focal adhesions that are composed of the same proteins associated with canonical mesenchymal focal adhesions, such as integrins, talin, and vinculin. These focal adhesions, furthermore, localize to sites of contractile traction stresses, enabling T cells to pull themselves through confined spaces. Finally, we show that Th1 T cell preferentially follows tracks of other T cells, suggesting that these adhesions are modifying the extracellular matrix to provide additional environmental guidance cues. These results demonstrate not only that the boundaries between amoeboid and mesenchymal migration modes are ambiguous, but that integrin-mediated adhesions play a key role in T cell motility.
Collapse
Affiliation(s)
- Alexia Caillier
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - David Oleksyn
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Deborah J Fowell
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jim Miller
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Patrick W Oakes
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| |
Collapse
|
15
|
Pruitt HC, Guan Y, Liu H, Carey AE, Brennen WN, Lu J, Joshu C, Weeraratna A, Lotan TL, Karin Eisinger-Mathason TS, Gerecht S. Collagen VI deposition mediates stromal T cell trapping through inhibition of T cell motility in the prostate tumor microenvironment. Matrix Biol 2023; 121:90-104. [PMID: 37331435 DOI: 10.1016/j.matbio.2023.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/11/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The tumor extracellular matrix (ECM) is a barrier to anti-tumor immunity in solid tumors by disrupting T cell-tumor cell interaction underlying the need for elucidating mechanisms by which specific ECM proteins impact T cell motility and activity within the desmoplastic stroma of solid tumors. Here, we show that Collagen VI (Col VI) deposition correlates with stromal T cell density in human prostate cancer specimens. Furthermore, motility of CD4+ T cells is completely ablated on purified Col VI surfaces when compared with Fibronectin and Collagen I. Importantly, T cells adhered to Col VI surfaces displayed reduced cell spreading and fibrillar actin, indicating a reduction in traction force generation accompanied by a decrease in integrin β1 clustering. We found that CD4+ T cells largely lack expression of integrin α1 in the prostate tumor microenvironment and that blockade of α1β1 integrin heterodimers inhibited CD8+ T cell motility on prostate fibroblast-derived matrix, while re-expression of ITGA1 improved motility. Taken together, we show that the Col VI-rich microenvironment in prostate cancer reduces the motility of CD4+ T cells lacking integrin α1, leading to their accumulation in the stroma, thus putatively inhibiting anti-tumor T cell responses.
Collapse
Affiliation(s)
- Hawley C Pruitt
- Institute for NanoBioTechnology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ya Guan
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Hudson Liu
- Institute for NanoBioTechnology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexis E Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - W Nathaniel Brennen
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Corrine Joshu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ashani Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T S Karin Eisinger-Mathason
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon Gerecht
- Institute for NanoBioTechnology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
16
|
Lee HJ, Tomasini-Johansson BR, Gupta N, Kwon GS. Fibronectin-targeted FUD and PEGylated FUD peptides for fibrotic diseases. J Control Release 2023; 360:69-81. [PMID: 37315694 PMCID: PMC10527082 DOI: 10.1016/j.jconrel.2023.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Tissue fibrosis is characterized by excessive deposition of extracellular matrix (ECM) molecules. Fibronectin (FN) is a glycoprotein found in the blood and tissues, a key player in the assembly of ECM through interaction with cellular and extracellular components. Functional Upstream Domain (FUD), a peptide derived from an adhesin protein of bacteria, has a high binding affinity for the N-terminal 70-kDa domain of FN that plays a crucial role in FN polymerization. In this regard, FUD peptide has been characterized as a potent inhibitor of FN matrix assembly, reducing excessive ECM accumulation. Furthermore, PEGylated FUD was developed to prevent rapid elimination of FUD and enhance its systemic exposure in vivo. Herein, we summarize the development of FUD peptide as a potential anti-fibrotic agent and its application in experimental fibrotic diseases. In addition, we discuss how modification of the FUD peptide via PEGylation impacts pharmacokinetic profiles of the FUD peptide and can potentially contribute to anti-fibrosis therapy.
Collapse
Affiliation(s)
- Hye Jin Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Bianca R Tomasini-Johansson
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Avenue, WIMRII, Madison, WI 53705, USA
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, 777 Highland Avenue, Madison, WI 53705, USA; Carbone Cancer Center, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
17
|
Huang LH, Rau CS, Liu YW, Wu CJ, Chien PC, Lin HP, Wu YC, Huang CY, Hsieh TM, Hsieh CH. Exploring the Regulatory Role of XIST-microRNAs/mRNA Network in Circulating CD4 + T Cells of Hepatocellular Carcinoma Patients. Biomedicines 2023; 11:1848. [PMID: 37509488 PMCID: PMC10376435 DOI: 10.3390/biomedicines11071848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and the main cause of cancer-related death globally. Immune dysregulation of CD4+ T cells has been identified to play a role in the development of HCC. Nevertheless, the underlying molecular pathways of CD4+ T cells in HCC are not completely known. Thus, a better understanding of the dysregulation of the lncRNA-miRNA/mRNA network may yield novel insights into the etiology or progression of HCC. In this study, circulating CD4+ T cells were isolated from the whole blood of 10 healthy controls and 10 HCC patients for the next-generation sequencing of the expression of lncRNAs, miRNAs, and mRNAs. Our data showed that there were different expressions of 34 transcripts (2 lncRNAs, XISTs, and MIR222HGs; 29 mRNAs; and 3 other types of RNA) and 13 miRNAs in the circulating CD4+ T cells of HCC patients. The expression of lncRNA-XIST-related miRNAs and their target mRNAs was confirmed using real-time quantitative polymerase chain reaction (qPCR) on samples from 100 healthy controls and 60 HCC patients. The lncRNA-miRNA/mRNA regulation network was created using interaction data generated from ENCORI and revealed there are positive correlations in the infiltration of total CD4+ T cells, particularly resting memory CD4+ T cells, and negative correlations in the infiltration of Th1 CD4+ T cells.
Collapse
Affiliation(s)
- Lien-Hung Huang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yueh-Wei Liu
- Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chia-Jung Wu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Peng-Chen Chien
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Hui-Ping Lin
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yi-Chan Wu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chun-Ying Huang
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Ting-Min Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Ching-Hua Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
18
|
Almagro J, Messal HA. Volume imaging to interrogate cancer cell-tumor microenvironment interactions in space and time. Front Immunol 2023; 14:1176594. [PMID: 37261345 PMCID: PMC10228654 DOI: 10.3389/fimmu.2023.1176594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Volume imaging visualizes the three-dimensional (3D) complexity of tumors to unravel the dynamic crosstalk between cancer cells and the heterogeneous landscape of the tumor microenvironment (TME). Tissue clearing and intravital microscopy (IVM) constitute rapidly progressing technologies to study the architectural context of such interactions. Tissue clearing enables high-resolution imaging of large samples, allowing for the characterization of entire tumors and even organs and organisms with tumors. With IVM, the dynamic engagement between cancer cells and the TME can be visualized in 3D over time, allowing for acquisition of 4D data. Together, tissue clearing and IVM have been critical in the examination of cancer-TME interactions and have drastically advanced our knowledge in fundamental cancer research and clinical oncology. This review provides an overview of the current technical repertoire of fluorescence volume imaging technologies to study cancer and the TME, and discusses how their recent applications have been utilized to advance our fundamental understanding of tumor architecture, stromal and immune infiltration, vascularization and innervation, and to explore avenues for immunotherapy and optimized chemotherapy delivery.
Collapse
Affiliation(s)
- Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, United States
| | - Hendrik A. Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, Netherlands
| |
Collapse
|
19
|
Sutherland TE, Dyer DP, Allen JE. The extracellular matrix and the immune system: A mutually dependent relationship. Science 2023; 379:eabp8964. [PMID: 36795835 DOI: 10.1126/science.abp8964] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/22/2022] [Indexed: 02/18/2023]
Abstract
For decades, immunologists have studied the role of circulating immune cells in host protection, with a more recent appreciation of immune cells resident within the tissue microenvironment and the intercommunication between nonhematopoietic cells and immune cells. However, the extracellular matrix (ECM), which comprises at least a third of tissue structures, remains relatively underexplored in immunology. Similarly, matrix biologists often overlook regulation of complex structural matrices by the immune system. We are only beginning to understand the scale at which ECM structures determine immune cell localization and function. Additionally, we need to better understand how immune cells dictate ECM complexity. This review aims to highlight the potential for biological discovery at the interface of immunology and matrix biology.
Collapse
Affiliation(s)
- Tara E Sutherland
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
- School of Medicine, Medical Sciences and Dentistry, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Salford M6 8HD, UK
| | - Judith E Allen
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
20
|
Díaz-Flores L, Gutiérrez R, González-Gómez M, García MDP, Palmas M, Carrasco JL, Madrid JF, Díaz-Flores L. Delimiting CD34+ Stromal Cells/Telocytes Are Resident Mesenchymal Cells That Participate in Neovessel Formation in Skin Kaposi Sarcoma. Int J Mol Sci 2023; 24:ijms24043793. [PMID: 36835203 PMCID: PMC9962853 DOI: 10.3390/ijms24043793] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Kaposi sarcoma (KS) is an angioproliferative lesion in which two main KS cell sources are currently sustained: endothelial cells (ECs) and mesenchymal/stromal cells. Our objective is to establish the tissue location, characteristics and transdifferentiation steps to the KS cells of the latter. For this purpose, we studied specimens of 49 cases of cutaneous KS using immunochemistry and confocal and electron microscopy. The results showed that delimiting CD34+ stromal cells/Telocytes (CD34+SCs/TCs) in the external layer of the pre-existing blood vessels and around skin appendages form small convergent lumens, express markers for ECs of blood and lymphatic vessels, share ultrastructural characteristics with ECs and participate in the origin of two main types of neovessels, the evolution of which gives rise to lymphangiomatous or spindle-cell patterns-the substrate of the main KS histopathological variants. Intraluminal folds and pillars (papillae) are formed in the neovessels, which suggests they increase by vessel splitting (intussusceptive angiogenesis and intussusceptive lymphangiogenesis). In conclusion, delimiting CD34+SCs/TCs are mesenchymal/stromal cells that can transdifferentiate into KS ECs, participating in the formation of two types of neovessels. The subsequent growth of the latter involves intussusceptive mechanisms, originating several KS variants. These findings are of histogenic, clinical and therapeutic interest.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Correspondence: ; Tel.: +34-922-319317
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | | | - Marta Palmas
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| |
Collapse
|
21
|
Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation. Immunity 2023; 56:289-306.e7. [PMID: 36750099 PMCID: PMC9942876 DOI: 10.1016/j.immuni.2023.01.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/27/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Granulomas are lumps of immune cells that can form in various organs. Most granulomas appear unstructured, yet they have some resemblance to lymphoid organs. To better understand granuloma formation, we performed single-cell sequencing and spatial transcriptomics on granulomas from patients with sarcoidosis and bioinformatically reconstructed the underlying gene regulatory networks. We discovered an immune stimulatory environment in granulomas that repurposes transcriptional programs associated with lymphoid organ development. Granuloma formation followed characteristic spatial patterns and involved genes linked to immunometabolism, cytokine and chemokine signaling, and extracellular matrix remodeling. Three cell types emerged as key players in granuloma formation: metabolically reprogrammed macrophages, cytokine-producing Th17.1 cells, and fibroblasts with inflammatory and tissue-remodeling phenotypes. Pharmacological inhibition of one of the identified processes attenuated granuloma formation in a sarcoidosis mouse model. We show that human granulomas adopt characteristic aspects of normal lymphoid organ development in aberrant combinations, indicating that granulomas constitute aberrant lymphoid organs.
Collapse
|
22
|
Hamoudi C, Muheidli A, Aoudjit F. β1 Integrin induces adhesion and migration of human Th17 cells via Pyk2-dependent activation of P2X4 receptor. Immunology 2023; 168:83-95. [PMID: 36054607 DOI: 10.1111/imm.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022] Open
Abstract
Integrin-mediated T-cell adhesion and migration is a crucial step in immune response and autoimmune diseases. However, the underlying signalling mechanisms are not fully elucidated. In this study, we examined the implication of purinergic signalling, which has been associated with T-cell activation, in the adhesion and migration of human Th17 cells across fibronectin, a major matrix protein associated with inflammatory diseases. We showed that the adhesion of human Th17 cells to fibronectin induces, via β1 integrin, a sustained release of adenosine triphosphate (ATP) from the mitochondria through the pannexin-1 hemichannels. Inhibition of ATP release or its degradation with apyrase impaired the capacity of the cells to attach and migrate across fibronectin. Inhibition studies identified a major role for the purinergic receptor P2X4 in T-cell adhesion and migration but not for P2X7 or P2Y11 receptors. Blockade of P2X4 but not P2X7 or P2Y11 receptors reduced cell adhesion and migration by inhibiting activation of β1 integrins, which is essential for ligand binding. Furthermore, we found that β1 integrin-induced ATP release, P2X4 receptor transactivation, cell adhesion and migration were dependent on the focal adhesion kinase Pyk2 but not FAK. Finally, P2X4 receptor inhibition also blocked fibronectin-induced Pyk2 activation suggesting the existence of a positive feedback loop of activation between β1 integrin/Pyk2 and P2X4 purinergic signalling pathways. Our findings uncovered an unrecognized link between β1 integrin and P2X4 receptor signalling pathways for promoting T-cell adhesion and migration across the extracellular matrix.
Collapse
Affiliation(s)
- Chakib Hamoudi
- Division of Immune and Infectious Diseases, CHU de Quebec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Québec City, Quebec, Canada
| | - Abbas Muheidli
- Division of Immune and Infectious Diseases, CHU de Quebec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Québec City, Quebec, Canada
| | - Fawzi Aoudjit
- Division of Immune and Infectious Diseases, CHU de Quebec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Québec City, Quebec, Canada.,Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
23
|
Shah T, Leurgans SE, Mehta RI, Yang J, Galloway CA, de Mesy Bentley KL, Schneider JA, Mehta RI. Arachnoid granulations are lymphatic conduits that communicate with bone marrow and dura-arachnoid stroma. J Exp Med 2022; 220:213737. [PMID: 36469302 PMCID: PMC9728136 DOI: 10.1084/jem.20220618] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022] Open
Abstract
Arachnoid granulations (AG) are poorly investigated. Historical reports suggest that they regulate brain volume by passively transporting cerebrospinal fluid (CSF) into dural venous sinuses. Here, we studied the microstructure of cerebral AG in humans with the aim of understanding their roles in physiology. We discovered marked variations in AG size, lobation, location, content, and degree of surface encapsulation. High-resolution microscopy shows that AG consist of outer capsule and inner stromal core regions. The fine and porous framework suggests uncharacterized functions of AG in mechanical CSF filtration. Moreover, internal cytokine and immune cell enrichment imply unexplored neuroimmune properties of these structures that localize to the brain-meningeal lymphatic interface. Dramatic age-associated changes in AG structure are additionally identified. This study depicts for the first time microscopic networks of internal channels that communicate with perisinus spaces, suggesting that AG subserve important functions as transarachnoidal flow passageways. These data raise new theories regarding glymphatic-lymphatic coupling and mechanisms of CSF antigen clearance, homeostasis, and diseases.
Collapse
Affiliation(s)
- Trishna Shah
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL
| | - Sue E. Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Rashi I. Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV,Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV
| | - Jingyun Yang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Chad A. Galloway
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | | | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL,Department of Pathology, Rush University Medical Center, Chicago, IL
| | - Rupal I. Mehta
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL,Department of Pathology, Rush University Medical Center, Chicago, IL,Correspondence to Rupal I. Mehta:
| |
Collapse
|
24
|
DeDreu J, Le PM, Menko AS. The ciliary zonules provide a pathway for immune cells to populate the avascular lens during eye development. Exp Biol Med (Maywood) 2022; 247:2251-2273. [PMID: 36633170 PMCID: PMC9899985 DOI: 10.1177/15353702221140411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/20/2022] [Indexed: 01/13/2023] Open
Abstract
The eye is an immune-privileged site, with both vasculature and lymphatics absent from the central light path. Unique adaptations have made it possible for immune cells to be recruited to this region of the eye in response to ocular injuries and pathogenic insults. The induction of such immune responses is typically activated by tissue resident immune cells, considered the sentinels of the immune system. We discovered that, despite the absence of an embedded vasculature, the embryonic lens becomes populated by resident immune cells. The paths by which they travel to the lens during development were not known. However, our previous studies show that in response to corneal wounding immune cells travel to the lens from the vascular-rich ciliary body across the zonules that link these two tissues. We now examined whether the zonule fibers provide a path for immune cells to the embryonic lens, and the zonule-associated matrix molecules that could promote immune cell migration. The vitreous also was examined as a potential source of lens resident immune cells. This matrix-rich site in the posterior of the eye harbors hyalocytes, an immune cell type with macrophage-like properties. We found that both the zonules and the vitreous of the embryonic eye contained fibrillin-2-based networks and that migration-promoting matrix proteins like fibronectin and tenascin-C were linked to these fibrils. Immune cells were seen emerging from the ciliary body, migrating along the ciliary zonules to the lens, and invading through the lens capsule at its equator. This is just adjacent to where immune cells take up residence in the embryonic lens. In contrast, the immune cells of the vitreous were not detected in the region of the lens. These results strongly suggest that the ciliary zonules are a primary path of immune cell delivery to the developing lens.
Collapse
Affiliation(s)
- JodiRae DeDreu
- Department of Pathology and Genomic
Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia,
PA 19107, USA
| | - Phuong M Le
- Department of Pathology and Genomic
Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia,
PA 19107, USA
| | - A. Sue Menko
- Department of Pathology and Genomic
Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia,
PA 19107, USA
- Department of Ophthalmology, Sidney
Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107,
USA
| |
Collapse
|
25
|
Lin SN, Musso A, Wang J, Mukherjee PK, West GA, Mao R, Lyu R, Li J, Zhao S, Elias M, Haberman Y, Denson LA, Kugathasan S, Chen MH, Czarnecki D, Dejanovic D, Le HT, Chandra J, Lipman J, Steele SR, Nguyen QT, Fiocchi C, Rieder F. Human intestinal myofibroblasts deposited collagen VI enhances adhesiveness for T cells - A novel mechanism for maintenance of intestinal inflammation. Matrix Biol 2022; 113:1-21. [PMID: 36108990 PMCID: PMC10043923 DOI: 10.1016/j.matbio.2022.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Inflammatory bowel diseases (IBD) cause chronic intestinal damage and extracellular matrix (ECM) remodeling. The ECM may play an active role in inflammation by modulating immune cell functions, including cell adhesion, but this hypothesis has not been tested in IBD. DESIGN Primary human intestinal myofibroblast (HIMF)-derived ECM from IBD and controls, 3D decellularized colon or ECM molecule-coated scaffolds were tested for their adhesiveness for T cells. Matrisome was analysed via proteomics. Functional integrin blockade was used to investigate the underlying mechanism. Analysis of the pediatric Crohn's disease (CD) RISK inception cohort was used to explore an altered ECM gene expression as a potential predictor for a future complicated disease course. RESULTS HIMF-derived ECM and 3D decellularized colonic ECM from IBD bound more T cells compared to control. Control HIMFs exposed to the pro-inflammatory cytokines Iinterleukin-1β (IL-1β) and tumor necrosis factor (TNF) increased, and to transforming growth factor-β1 (TGF-β1) decreased ECM adhesiveness to T cells. Matrisome analysis of the HIMF-derived ECM revealed collagen VI as a major culprit for differences in T cell adhesion. Collagen VI knockdown in HIMF reduced adhesion T cell as did the blockage of integrin αvβ1. Elevated gene expression of collagen VI in biopsies of pediatric CD patients was linked to risk for future stricturing disease. CONCLUSION HIMF-derived ECM in IBD binds a remarkably enhanced number of T cells, which is dependent on Collagen VI and integrin αvβ1. Collagen VI expression is a risk factor for a future complicated CD course. Blocking immune cells retention may represent a novel approach to treatment in IBD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alessandro Musso
- Division of Gastroenterology, Città della Salute e della Scienza di Torino, Molinette Hospital, Turin, Italy
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gail A West
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ruishen Lyu
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shuai Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yael Haberman
- Sheba Medical Center, Tel Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Min-Hu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Doug Czarnecki
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dina Dejanovic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy Lipman
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Scott R Steele
- Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Avenue - NC22, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Avenue - NC22, Cleveland, OH, USA.
| |
Collapse
|
26
|
Xiong Y, Cai M, Xu Y, Dong P, Chen H, He W, Zhang J. Joint together: The etiology and pathogenesis of ankylosing spondylitis. Front Immunol 2022; 13:996103. [PMID: 36325352 PMCID: PMC9619093 DOI: 10.3389/fimmu.2022.996103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/28/2022] [Indexed: 08/16/2023] Open
Abstract
Spondyloarthritis (SpA) refers to a group of diseases with inflammation in joints and spines. In this family, ankylosing spondylitis (AS) is a rare but classic form that mainly involves the spine and sacroiliac joint, leading to the loss of flexibility and fusion of the spine. Compared to other diseases in SpA, AS has a very distinct hereditary disposition and pattern of involvement, and several hypotheses about its etiopathogenesis have been proposed. In spite of significant advances made in Th17 dynamics and AS treatment, the underlying mechanism remains concealed. To this end, we covered several topics, including the nature of the immune response, the microenvironment in the articulation that is behind the disease's progression, and the split between the hypotheses and the evidence on how the intestine affects arthritis. In this review, we describe the current findings of AS and SpA, with the aim of providing an integrated view of the initiation of inflammation and the development of the disease.
Collapse
Affiliation(s)
- Yuehan Xiong
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Menghua Cai
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yi Xu
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Hui Chen
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Wei He
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Jianmin Zhang
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| |
Collapse
|
27
|
Thompson SB, Waldman MM, Jacobelli J. Polymerization power: effectors of actin polymerization as regulators of T lymphocyte migration through complex environments. FEBS J 2022; 289:6154-6171. [PMID: 34273243 PMCID: PMC8761786 DOI: 10.1111/febs.16130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/24/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022]
Abstract
During their life span, T cells are tasked with patrolling the body for potential pathogens. To do so, T cells migrate through numerous distinct anatomical sites and tissue environments with different biophysical characteristics. To migrate through these different environments, T cells use various motility strategies that rely on actin network remodeling to generate shape changes and mechanical forces. In this review, we initially discuss the migratory journey of T cells and then cover the actin polymerization effectors at play in T cells, and finally, we focus on the function of these effectors of actin cytoskeleton remodeling in mediating T-cell migration through diverse tissue environments. Specifically, we will discuss the current state of the field pertaining to our understanding of the roles in T-cell migration played by members of the three main families of actin polymerization machinery: the Arp2/3 complex; formin proteins; and Ena/VASP proteins.
Collapse
Affiliation(s)
- Scott B. Thompson
- Department of Immunology and Microbiology, University of Colorado School of Medicine
| | - Monique M. Waldman
- Department of Immunology and Microbiology, University of Colorado School of Medicine
- Barbara Davis Research Center, University of Colorado School of Medicine
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado School of Medicine
- Barbara Davis Research Center, University of Colorado School of Medicine
| |
Collapse
|
28
|
Garcia SG, Sandoval-Hellín N, Clos-Sansalvador M, Carreras-Planella L, Morón-Font M, Guerrero D, Borràs FE, Franquesa M. Mesenchymal stromal cells induced regulatory B cells are enriched in extracellular matrix genes and IL-10 independent modulators. Front Immunol 2022; 13:957797. [PMID: 36189264 PMCID: PMC9515545 DOI: 10.3389/fimmu.2022.957797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory B cells (Breg) are essential players in tolerance and immune homeostasis. However, lack of specific Breg markers limit their potential in clinical settings. Mesenchymal stromal cells (MSC) modulate B cell responses and are described to induce Breg in vitro. The aim of this work was to characterize MSC induced Breg (iBreg) and identify specific Breg biomarkers by RNAseq. After 7-day coculture with adipose tissue-derived MSC, B cells were enriched in transitional B cell populations, with increased expression and secretion of IL-10 and no TNFα. In addition, iBreg showed potential to modulate T cell proliferation at 2 to 1 cell ratios and their phenotype remained stable for 72h. RNAseq analysis of sorted IL-10 positive and negative iBreg populations identified over 1500 differentially expressed genes (DEG) among both populations. Analysis of biological processes of DEG highlighted an enrichment of immune regulation and extracellular matrix genes in IL-10- iBreg populations, while IL-10+ iBreg DEG were mostly associated with cell activation. This was supported by T cells modulation assays performed in the presence of anti-IL-10 neutralizing antibodies showing the non-essential role of IL-10 in the immunomodulatory capacity of iBregs on T cells. However, based on RNAseq results we explored the role of TGF-β and found out that it plays a major role on iBreg induction and iBreg immunomodulatory properties. Therefore, we report that MSC induce B cell populations characterized by the generation of extracellular matrix and immune modulation independently of IL-10.
Collapse
Affiliation(s)
- Sergio G. Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Noelia Sandoval-Hellín
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Marta Clos-Sansalvador
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Laura Carreras-Planella
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Miriam Morón-Font
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Dolores Guerrero
- Otorhinolaryngology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Francesc E. Borràs
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
- *Correspondence: Marcella Franquesa, ; Francesc E. Borràs,
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
- *Correspondence: Marcella Franquesa, ; Francesc E. Borràs,
| |
Collapse
|
29
|
Kolesnikoff N, Chen CH, Samuel M. Interrelationships between the extracellular matrix and the immune microenvironment that govern epithelial tumour progression. Clin Sci (Lond) 2022; 136:361-377. [PMID: 35260891 PMCID: PMC8907655 DOI: 10.1042/cs20210679] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
Abstract
Solid tumours are composed of cancer cells characterised by genetic mutations that underpin the disease, but also contain a suite of genetically normal cells and the extracellular matrix (ECM). These two latter components are constituents of the tumour microenvironment (TME), and are key determinants of tumour biology and thereby the outcomes for patients. The tumour ECM has been the subject of intense research over the past two decades, revealing key biochemical and mechanobiological principles that underpin its role in tumour cell proliferation and survival. However, the ECM also strongly influences the genetically normal immune cells within the microenvironment, regulating not only their proliferation and survival, but also their differentiation and access to tumour cells. Here we review recent advances in our knowledge of how the ECM regulates the tumour immune microenvironment and vice versa, comparing normal skin wound healing to the pathological condition of tumour progression.
Collapse
Affiliation(s)
- Natasha Kolesnikoff
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Chun-Hsien Chen
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Michael Susithiran Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
30
|
Chou KC, Chen CT, Cherng JH, Li MC, Wen CC, Hu SI, Wang YW. Cutaneous Regeneration Mechanism of β-Sheet Silk Fibroin in a Rat Burn Wound Healing Model. Polymers (Basel) 2021; 13:3537. [PMID: 34685296 PMCID: PMC8537970 DOI: 10.3390/polym13203537] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Therapeutic dressings to enhance burn wound repair and regeneration are required. Silk fibroin (SF), a natural protein, induces cell migration and serves as a biomaterial in various dressings. SF dressings usually contain α-helices and β-sheets. The former has been confirmed to improve cell proliferation and migration, but the wound healing effect and related mechanisms of β-sheet SF remain unclear. We investigated the effects of β-sheet SF in vivo and in vitro. Alcohol-treated α-helix SF transformed into the β-sheet form, which promoted granulation formation and re-epithelialization when applied as lyophilized SF dressing (LSFD) in a rat burn model. Our in vitro results showed that β-sheet SF increased human dermal fibroblast (HDF) migration and promoted the expression of extracellular matrix (ECM) proteins (fibronectin and type III collagen), matrix metalloproteinase-12, and the cell adhesion molecule, integrin β1, in rat granulation tissue and HDFs. This confirms the role of crosstalk between integrin β1 and ECM proteins in cell migration. In summary, we demonstrated that β-sheet SF facilitates tissue regeneration by modulating cell adhesion molecules in dermal fibroblasts. LSFD could find clinical application for burn wound regeneration. Moreover, β-sheet SF could be combined with anti-inflammatory materials, growth factors, or antibiotics to develop novel dressings.
Collapse
Affiliation(s)
- Kai-Chieh Chou
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-C.C.); (J.-H.C.)
| | - Chun-Ting Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital Penghu Branch, National Defense Medical Center, Taipei 114, Taiwan;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Juin-Hong Cherng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-C.C.); (J.-H.C.)
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 114, Taiwan
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| | - Ming-Chia Li
- Department of Biological Science and Technology, Center For Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
| | - Chia-Cheng Wen
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-C.W.); (S.-I.H.)
| | - Sheng-I Hu
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-C.W.); (S.-I.H.)
| | - Yi-Wen Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-C.C.); (J.-H.C.)
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
31
|
Marcotti S, de Freitas DB, Troughton LD, Kenny FN, Shaw TJ, Stramer BM, Oakes PW. A workflow for rapid unbiased quantification of fibrillar feature alignment in biological images. FRONTIERS IN COMPUTER SCIENCE 2021; 3:745831. [PMID: 34888522 PMCID: PMC8654057 DOI: 10.3389/fcomp.2021.745831] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Measuring the organisation of the cellular cytoskeleton and the surrounding extracellular matrix (ECM) is currently of wide interest as changes in both local and global alignment can highlight alterations in cellular functions and material properties of the extracellular environment. Different approaches have been developed to quantify these structures, typically based on fibre segmentation or on matrix representation and transformation of the image, each with its own advantages and disadvantages. Here we present AFT-Alignment by Fourier Transform, a workflow to quantify the alignment of fibrillar features in microscopy images exploiting 2D Fast Fourier Transforms (FFT). Using pre-existing datasets of cell and ECM images, we demonstrate our approach and compare and contrast this workflow with two other well-known ImageJ algorithms to quantify image feature alignment. These comparisons reveal that AFT has a number of advantages due to its grid-based FFT approach. 1) Flexibility in defining the window and neighbourhood sizes allows for performing a parameter search to determine an optimal length scale to carry out alignment metrics. This approach can thus easily accommodate different image resolutions and biological systems. 2) The length scale of decay in alignment can be extracted by comparing neighbourhood sizes, revealing the overall distance that features remain anisotropic. 3) The approach is ambivalent to the signal source, thus making it applicable for a wide range of imaging modalities and is dependent on fewer input parameters than segmentation methods. 4) Finally, compared to segmentation methods, this algorithm is computationally inexpensive, as high-resolution images can be evaluated in less than a second on a standard desktop computer. This makes it feasible to screen numerous experimental perturbations or examine large images over long length scales. Implementation is made available in both MATLAB and Python for wider accessibility, with example datasets for single images and batch processing. Additionally, we include an approach to automatically search parameters for optimum window and neighbourhood sizes, as well as to measure the decay in alignment over progressively increasing length scales.
Collapse
Affiliation(s)
- Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | | | - Lee D Troughton
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, US
| | - Fiona N Kenny
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, King’s College London, London, UK
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | - Patrick W Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, US
| |
Collapse
|
32
|
Fowell DJ, Kim M. The spatio-temporal control of effector T cell migration. Nat Rev Immunol 2021; 21:582-596. [PMID: 33627851 PMCID: PMC9380693 DOI: 10.1038/s41577-021-00507-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Effector T cells leave the lymph nodes armed with specialized functional attributes. Their antigenic targets may be located anywhere in the body, posing the ultimate challenge: how to efficiently identify the target tissue, navigate through a complex tissue matrix and, ultimately, locate the immunological insult. Recent advances in real-time in situ imaging of effector T cell migratory behaviour have revealed a great degree of mechanistic plasticity that enables effector T cells to push and squeeze their way through inflamed tissues. This process is shaped by an array of 'stop' and 'go' guidance signals including target antigens, chemokines, integrin ligands and the mechanical cues of the inflamed microenvironment. Effector T cells must sense and interpret these competing signals to correctly position themselves to mediate their effector functions for complete and durable responses in infectious disease and malignancy. Tuning T cell migration therapeutically will require a new understanding of this complex decision-making process.
Collapse
Affiliation(s)
- Deborah J. Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute for Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY.,Department of Microbiology and Immunology, Cornell University, Ithaca, NY
| | - Minsoo Kim
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute for Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
33
|
Wang Y, Zhao M, Zhang Y. Identification of fibronectin 1 (FN1) and complement component 3 (C3) as immune infiltration-related biomarkers for diabetic nephropathy using integrated bioinformatic analysis. Bioengineered 2021; 12:5386-5401. [PMID: 34424825 PMCID: PMC8806822 DOI: 10.1080/21655979.2021.1960766] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Immune cell infiltration (ICI) plays a pivotal role in the development of diabetic nephropathy (DN). Evidence suggests that immune-related genes play an important role in the initiation of inflammation and the recruitment of immune cells. However, the underlying mechanisms and immune-related biomarkers in DN have not been elucidated. Therefore, this study aimed to explore immune-related biomarkers in DN and the underlying mechanisms using bioinformatic approaches. In this study, four DN glomerular datasets were downloaded, merged, and divided into training and test cohorts. First, we identified 55 differentially expressed immune-related genes; their biological functions were mainly enriched in leukocyte chemotaxis and neutrophil migration. The CIBERSORT algorithm was then used to evaluate the infiltrated immune cells; macrophages M1/M2, T cells CD8, and resting mast cells were strongly associated with DN. The ICI-related gene modules as well as 25 candidate hub genes were identified to construct a protein-protein interactive network and conduct molecular complex detection using the GOSemSim algorithm. Consequently, FN1, C3, and VEGFC were identified as immune-related biomarkers in DN, and a related transcription factor-miRNA-target network was constructed. Receiver operating characteristic curve analysis was estimated in the test cohort; FN1 and C3 had large area under the curve values (0.837 and 0.824, respectively). Clinical validation showed that FN1 and C3 were negatively related to the glomerular filtration rate in patients with DN. Six potential therapeutic small molecule compounds, such as calyculin, phenamil, and clofazimine, were discovered in the connectivity map. In conclusion, FN1 and C3 are immune-related biomarkers of DN.
Collapse
Affiliation(s)
- Yuejun Wang
- Department of Nephrology, Zhejiang Aged Care Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Rodríguez-Rodriguez R, Hernández-León N, Díaz-Flores L, Carrasco JL. Cd34+ Stromal Cells/Telocytes in Normal and Pathological Skin. Int J Mol Sci 2021; 22:ijms22147342. [PMID: 34298962 PMCID: PMC8307573 DOI: 10.3390/ijms22147342] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022] Open
Abstract
We studied CD34+ stromal cells/telocytes (CD34+SCs/TCs) in pathologic skin, after briefly examining them in normal conditions. We confirm previous studies by other authors in the normal dermis regarding CD34+SC/TC characteristics and distribution around vessels, nerves and cutaneous annexes, highlighting their practical absence in the papillary dermis and presence in the bulge region of perifollicular groups of very small CD34+ stromal cells. In non-tumoral skin pathology, we studied examples of the principal histologic patterns in which CD34+SCs/TCs have (1) a fundamental pathophysiological role, including (a) fibrosing/sclerosing diseases, such as systemic sclerosis, with loss of CD34+SCs/TCs and presence of stromal cells co-expressing CD34 and αSMA, and (b) metabolic degenerative processes, including basophilic degeneration of collagen, with stromal cells/telocytes in close association with degenerative fibrils, and cutaneous myxoid cysts with spindle-shaped, stellate and bulky vacuolated CD34+ stromal cells, and (2) a secondary reactive role, encompassing dermatitis—e.g., interface (erythema multiforme), acantholytic (pemphigus, Hailey–Hailey disease), lichenoid (lichen planus), subepidermal vesicular (bullous pemphigoid), psoriasiform (psoriasis), granulomatous (granuloma annulare)—vasculitis (leukocytoclastic and lymphocytic vasculitis), folliculitis, perifolliculitis and inflammation of the sweat and sebaceous glands (perifolliculitis and rosacea) and infectious dermatitis (verruca vulgaris). In skin tumor and tumor-like conditions, we studied examples of those in which CD34+ stromal cells are (1) the neoplastic component (dermatofibrosarcoma protuberans, sclerotic fibroma and solitary fibrous tumor), (2) a neoplastic component with varying presentation (fibroepithelial polyp and superficial myxofibrosarcoma) and (3) a reactive component in other tumor/tumor-like cell lines, such as those deriving from vessel periendothelial cells (myopericytoma), epithelial cells (trichoepithelioma, nevus sebaceous of Jadassohn and seborrheic keratosis), Merkel cells (Merkel cell carcinoma), melanocytes (dermal melanocytic nevi) and Schwann cells (neurofibroma and granular cell tumor).
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
- Correspondence: ; Tel.: +34-922-319-317; Fax: +34-922-319-279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain;
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - Rosa Rodríguez-Rodriguez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - Nieves Hernández-León
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - José Luís Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| |
Collapse
|
35
|
Moreau JM, Gouirand V, Rosenblum MD. T-Cell Adhesion in Healthy and Inflamed Skin. JID INNOVATIONS 2021; 1:100014. [PMID: 35024681 PMCID: PMC8669513 DOI: 10.1016/j.xjidi.2021.100014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
The diverse populations of tissue-resident and transitory T cells present in the skin share a common functional need to enter, traverse, and interact with their environment. These processes are largely dependent on the regulated expression of adhesion molecules, such as selectins and integrins, which mediate bidirectional interactions between immune cells and skin stroma. Dysregulation and engagement of adhesion pathways contribute to ectopic T-cell activity in tissues, leading to the initiation and/or exacerbation of chronic inflammation. In this paper, we review how the molecular interactions supported by adhesion pathways contribute to T-cell dynamics and function in the skin. A comprehensive understanding of the molecular mechanisms underpinning T-cell adhesion in inflammatory skin disorders will facilitate the development of novel tissue-specific therapeutic strategies.
Collapse
Key Words
- AD, atopic dermatitis
- BM, basement membrane
- DC, dendritic cell
- DETC, dendritic epidermal γδ T cell
- ECM, extracellular matrix
- HF, hair follicle
- JC, John Cunningham
- LAD, leukocyte adhesion deficiency
- PML, progressive multifocal leukoencephalopathy
- Th, T helper
- Treg, regulatory T cell
- Trm, tissue-resident memory
Collapse
Affiliation(s)
- Joshua M. Moreau
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Victoire Gouirand
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Michael D. Rosenblum
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
36
|
Norman MU, Chow Z, Snelgrove SL, Prakongtham P, Hickey MJ. Dynamic Regulation of the Molecular Mechanisms of Regulatory T Cell Migration in Inflamed Skin. Front Immunol 2021; 12:655499. [PMID: 34040606 PMCID: PMC8143438 DOI: 10.3389/fimmu.2021.655499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
The presence of regulatory T cells (Tregs) in skin is important in controlling inflammatory responses in this peripheral tissue. Uninflamed skin contains a population of relatively immotile Tregs often located in clusters around hair follicles. Inflammation induces a significant increase both in the abundance of Tregs within the dermis, and in the proportion of Tregs that are highly migratory. The molecular mechanisms underpinning Treg migration in the dermis are unclear. In this study we used multiphoton intravital microscopy to examine the role of RGD-binding integrins and signalling through phosphoinositide 3-kinase P110δ (PI3K p110δ) in intradermal Treg migration in resting and inflamed skin. We found that inflammation induced Treg migration was dependent on RGD-binding integrins in a context-dependent manner. αv integrin was important for Treg migration 24 hours after induction of inflammation, but contributed to Treg retention at 48 hours, while β1 integrin played a role in Treg retention at the later time point but not during the peak of inflammation. In contrast, inhibition of signalling through PI3K p110δ reduced Treg migration throughout the entire inflammatory response, and also in the absence of inflammation. Together these observations demonstrate that the molecular mechanisms controlling intradermal Treg migration vary markedly according to the phase of the inflammatory response.
Collapse
Affiliation(s)
- M Ursula Norman
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Zachary Chow
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Sarah L Snelgrove
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Peemapat Prakongtham
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| |
Collapse
|
37
|
Stromal Protein-Mediated Immune Regulation in Digestive Cancers. Cancers (Basel) 2021; 13:cancers13010146. [PMID: 33466303 PMCID: PMC7795083 DOI: 10.3390/cancers13010146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Solid cancers are surrounded by a network of non-cancerous cells comprising different cell types, including fibroblasts, and acellular protein structures. This entire network is called the tumor microenvironment (TME) and it provides a physical barrier to the tumor shielding it from infiltrating immune cells, such as lymphocytes, or therapeutic agents. In addition, the TME has been shown to dampen efficient immune responses of infiltrated immune cells, which are key in eliminating cancer cells from the organism. In this review, we will discuss how TME proteins in particular are involved in this dampening effect, known as immunosuppression. We will focus on three different types of digestive cancers: pancreatic cancer, colorectal cancer, and gastric cancer. Moreover, we will discuss current therapeutic approaches using TME proteins as targets to reverse their immunosuppressive effects. Abstract The stromal tumor microenvironment (TME) consists of immune cells, vascular and neural structures, cancer-associated fibroblasts (CAFs), as well as extracellular matrix (ECM), and favors immune escape mechanisms promoting the initiation and progression of digestive cancers. Numerous ECM proteins released by stromal and tumor cells are crucial in providing physical rigidity to the TME, though they are also key regulators of the immune response against cancer cells by interacting directly with immune cells or engaging with immune regulatory molecules. Here, we discuss current knowledge of stromal proteins in digestive cancers including pancreatic cancer, colorectal cancer, and gastric cancer, focusing on their functions in inhibiting tumor immunity and enabling drug resistance. Moreover, we will discuss the implication of stromal proteins as therapeutic targets to unleash efficient immunotherapy-based treatments.
Collapse
|
38
|
Park EJ, Myint PK, Ito A, Appiah MG, Darkwah S, Kawamoto E, Shimaoka M. Integrin-Ligand Interactions in Inflammation, Cancer, and Metabolic Disease: Insights Into the Multifaceted Roles of an Emerging Ligand Irisin. Front Cell Dev Biol 2020; 8:588066. [PMID: 33195249 PMCID: PMC7649757 DOI: 10.3389/fcell.2020.588066] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/05/2020] [Indexed: 01/10/2023] Open
Abstract
Integrins are transmembrane proteins that mediate cellular adhesion and migration to neighboring cells or the extracellular matrix, which is essential for cells to undertake diverse physiological and pathological pathways. For integrin activation and ligand binding, bidirectional signaling across the cell membrane is needed. Integrins aberrantly activated under pathologic conditions facilitate cellular infiltration into tissues, thereby causing inflammatory or tumorigenic progressions. Thus, integrins have emerged to the forefront as promising targets for developing therapeutics to treat autoimmune and cancer diseases. In contrast, it remains a fact that integrin-ligand interactions are beneficial for improving the health status of different tissues. Among these ligands, irisin, a myokine produced mainly by skeletal muscles in an exercise-dependent manner, has been shown to bind to integrin αVβ5, alleviating symptoms under unfavorable conditions. These findings may provide insights into some of the underlying mechanisms by which exercise improves quality of life. This review will discuss the current understanding of integrin-ligand interactions in both health and disease. Likewise, we not only explain how diverse ligands play different roles in mediating cellular functions under both conditions via their interactions with integrins, but also specifically highlight the potential roles of the emerging ligand irisin in inflammation, cancer, and metabolic disease.
Collapse
Affiliation(s)
- Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Phyoe Kyawe Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Atsushi Ito
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Samuel Darkwah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|