1
|
Wang Q, Wei Y, Lan J, Bai C, Chen J, Zhao S, Wang T, Dong Y. A new perspective on antimicrobial therapeutic drug monitoring: Surface-enhanced Raman spectroscopy. Talanta 2025; 292:128017. [PMID: 40154051 DOI: 10.1016/j.talanta.2025.128017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Therapeutic drug monitoring (TDM) enables the personalization of treatment regimens, enhancing efficacy in combating infectious diseases while minimizing toxicity risks and reducing the potential for pathogenic resistance. However, existing TDM techniques still present certain limitations. Chromatographic analysis involves a prolonged detection period, which hampers its capacity for rapid multi-sample analysis. Immunoassay is constrained by poor specificity and stability, as well as a restricted range of detectable drugs. Surface-enhanced Raman spectroscopy (SERS) amplifies the Raman signals of target molecules via the local electromagnetic field and charge transfer effects on the surface of plasmonic materials, offering many significant advantages including high sensitivity, rapid detection, minimal sample requirements, and the ability to provide molecular fingerprints. SERS biosensing has demonstrated considerable potential in the field of blood drug concentration monitoring. This paper comprehensively reviews the research on the application of SERS in the TDM of antimicrobial agents. Beginning with the clinical practice of antimicrobial TDM, this review systematically introduces the principles of SERS techniques, the enhancement substrates, and the commonly used data processing methods including machine learning. It then provides a detailed discussion of the application of SERS in the TDM of various types of antimicrobials. Finally, it summarizes four major challenges currently faced by SERS techniques in antimicrobial TDM-namely protein corona effects, matrix interferences, substrate heterogeneity, and quantification reproducibility-and proposes potential future directions. This paper aims to offer new strategies and perspectives for the TDM and personalized dosage of antimicrobial agents.
Collapse
Affiliation(s)
- Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Wei
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jingjing Lan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chuqi Bai
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shidi Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Elalouf A, Elalouf H, Rosenfeld A, Maoz H. Artificial intelligence in drug resistance management. 3 Biotech 2025; 15:126. [PMID: 40235844 PMCID: PMC11996750 DOI: 10.1007/s13205-025-04282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/19/2025] [Indexed: 04/17/2025] Open
Abstract
This review highlights the application of artificial intelligence (AI), particularly deep learning and machine learning (ML), in managing antimicrobial resistance (AMR). Key findings demonstrate that AI models, such as Naïve Bayes, Decision Trees (DT), Random Forest (RF), Support Vector Machines (SVM), and Artificial Neural Networks (ANN), have significantly advanced the prediction of drug resistance patterns and the identification of novel antibiotics. These algorithms have effectively optimized antibiotic use, predicted resistance phenotypes, and identified new drug candidates. AI has also facilitated the detection of AMR-associated mutations, offering new insights into the spread of resistance and potential interventions. Despite data privacy and algorithm transparency challenges, AI presents a promising tool in combating AMR, with implications for improving patient outcomes, enhancing disease management, and addressing global public health concerns. However, realizing its full potential requires overcoming issues related to data scarcity, ethical considerations, and fostering interdisciplinary collaboration.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Hadas Elalouf
- Department of Management, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Ariel Rosenfeld
- Information Science Department, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Hanan Maoz
- Department of Management, Bar-Ilan University, 5290002 Ramat Gan, Israel
| |
Collapse
|
3
|
Nurjadi D, Schulenburg H, Niemann S, Zinkernagel AS, Rupp J. Are we overlooking the obvious? Bacterial evolution is at the heart of antimicrobial resistance. THE LANCET. MICROBE 2025; 6:101069. [PMID: 39904350 DOI: 10.1016/j.lanmic.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025]
Affiliation(s)
- Dennis Nurjadi
- Institute of Medical Microbiology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck 23562, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany.
| | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany; Antibiotic Resistance Group, Max-Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Stefan Niemann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany; Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan Rupp
- Institute of Medical Microbiology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck 23562, Germany; Infectious Diseases Clinic, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck 23562, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| |
Collapse
|
4
|
Li X, Dong S, Pan Q, Liu N, Zhang Y. Antibiotic conjugates: Using molecular Trojan Horses to overcome drug resistance. Biomed Pharmacother 2025; 186:118007. [PMID: 40268370 DOI: 10.1016/j.biopha.2025.118007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 04/25/2025] Open
Abstract
Antimicrobial resistance (AMR) has become a global health crisis due to the rapid emergence of multi-drug-resistant bacteria. The paucity of novel antibiotics in the clinical pipeline has exacerbated this issue, thereby warranting the development of new antibacterial therapies. The 'Trojan Horse' strategy entails conjugating antibiotics with bioactive components that not only facilitate the entry of antibiotic molecules into bacterial cells by circumventing the membrane barriers, but also augment the effects of conventional antibiotics against recalcitrant pathogens. These Trojan Horse elements can also serve as a promising tool for repurposing drugs with hitherto unexamined antimicrobial activity, or drugs with limited clinical utility due to considerable toxic side effects. In this review, we have discussed the current state of research on antibiotic conjugates with monoclonal antibodies (mAbs), antimicrobial peptides (AMPs) and the iron-chelating siderophores. The rationale and mechanisms of different antibiotic conjugates have been summarized, and the preclinical and clinical evidence pertaining to the activity of these conjugates against drug-resistant pathogens have been reviewed. Furthermore, the challenges associated with the clinical translation of these novel antimicrobials, and the future research directions have also been discussed. While antibiotic conjugates offer an attractive alternative to conventional antimicrobials, there are several obstacles to their clinical translation. A greater understanding of the mechanisms underlying AMR, and continuing advances in genetic engineering, synthetic biology, and bioinformatics will be crucial in designing more selective, potent, and safe antibiotic conjugates for tackling multi-drug resistant (MDR) infections.
Collapse
Affiliation(s)
- Xi Li
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siyuan Dong
- Department of Thoracic surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China
| | - Ning Liu
- Department of Rehabilitation, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Yijie Zhang
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China.
| |
Collapse
|
5
|
Poopedi E, Pierneef R, Singh T, Gomba A. Antibiotic resistance profiles and mutations that might affect drug susceptibility in metagenome-assembled genomes of Legionella pneumophila and Aeromonas species from municipal wastewater. BMC Microbiol 2025; 25:237. [PMID: 40269715 PMCID: PMC12016116 DOI: 10.1186/s12866-025-03957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Antibiotic resistance (AR) has emerged as a significant global health issue. Wastewater treatment plants (WWTPs) contain diverse bacterial communities, including pathogens, and have been identified as crucial reservoirs for the emergence and dissemination of AR. The present study aimed to identify antibiotic resistance genes (ARGs) and screen for the presence of mutations associated with AR in Legionella pneumophila and Aeromonas spp. from municipal wastewater. Metagenome-assembled genomes (MAGs) of L. pneumophila and Aeromonas spp. were reconstructed to investigate the molecular mechanisms of AR in these organisms. A total of 138 nonsynonymous single nucleotide variants (SNVs) in seven genes associated with AR and one deletion mutation in the lpeB gene were identified in L. pneumophila. In Aeromonas spp., two (aph(6)-Id and aph(3'')-Ib) and five (blaMOX-4, blaOXA-1143, blaOXA-724, cepH, and imiH) ARGs conferring resistance to aminoglycosides and β-lactams were identified, respectively. Moreover, this study presents β-lactam resistance genes, blaOXA-1143 and blaOXA-724, for the first time in Aeromonas spp. from a municipal WWTP. In conclusion, these findings shed light on the molecular mechanisms through which clinically relevant pathogenic bacteria such as L. pneumophila and Aeromonas spp. found in natural environments like municipal wastewater acquire AR.
Collapse
Affiliation(s)
- Evida Poopedi
- Department of Oral and Maxillofacial Pathology, Oral Microbiology and Oral Biology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa.
- Department of Clinical Microbiology and Infectious Diseases, University of the Witwatersrand, Johannesburg, South Africa.
| | - Rian Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Tanusha Singh
- National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
- Department of Environmental Health, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Annancietar Gomba
- National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
6
|
Sanyal D, Shivram A, Pandey D, Banerjee S, Uversky VN, Muzata D, Chivukula AS, Jasuja R, Chattopadhyay K, Chowdhury S. Mapping dihydropteroate synthase evolvability through identification of a novel evolutionarily critical substructure. Int J Biol Macromol 2025; 311:143325. [PMID: 40254194 DOI: 10.1016/j.ijbiomac.2025.143325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Protein evolution shapes pathogen adaptation-landscape, particularly in developing drug resistance. The rapid evolution of target proteins under antibiotic pressure leads to escape mutations, resulting in antibiotic resistance. A deep understanding of the evolutionary dynamics of antibiotic target proteins presents a plausible intervention strategy for disrupting the resistance trajectory. Mutations in Dihydropteroate synthase (DHPS), an essential folate pathway protein and sulfonamide antibiotic target, reduce antibiotic binding leading to anti-folate resistance. Deploying statistical analyses on the DHPS sequence-space and integrating deep mutational analysis with structure-based network-topology models, we identified critical DHPS subsequences. Our frustration landscape analysis suggests how conformational and mutational changes redistribute energy within DHPS substructures. We present an epistasis-based fitness prediction model that simulates DHPS adaptive walks, identifying residue positions that shape evolutionary constraints. Our optimality analysis revealed a substructure central to DHPS evolvability, and we assessed its druggability. Combining evolution and structure, this integrated framework identifies a DHPS substructure with significant evolutionary and structural impact. Targeting this region may constrain DHPS evolvability and slow resistance emergence, offering new directions for antibiotic development.
Collapse
Affiliation(s)
- Dwipanjan Sanyal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - A Shivram
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Deeptanshu Pandey
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | | | - Vladimir N Uversky
- USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Danny Muzata
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Aneesh Sreevallabh Chivukula
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Ravi Jasuja
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| | - Sourav Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad, India.
| |
Collapse
|
7
|
Hsu CY, Moradkasani S, Suliman M, Uthirapathy S, Zwamel AH, Hjazi A, Vashishth R, Beig M. Global patterns of antibiotic resistance in group B Streptococcus: a systematic review and meta-analysis. Front Microbiol 2025; 16:1541524. [PMID: 40342597 PMCID: PMC12060732 DOI: 10.3389/fmicb.2025.1541524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/14/2025] [Indexed: 05/11/2025] Open
Abstract
Objectives Streptococcus agalactiae, or group B Streptococcus (GBS), is a significant pathogen associated with severe infections in neonates, particularly sepsis and meningitis. The increasing prevalence of antibiotic resistance among GBS strains is a growing public health concern, necessitating a comprehensive meta-analysis to evaluate the prevalence of this resistance globally. Methods We conducted a comprehensive systematic search across four major scientific databases: Scopus, PubMed, Web of Science, and EMBASE, targeting articles published until December 13, 2023. This meta-analysis focused on studies that examined antibiotic resistance in GBS strains. The Joanna Briggs Institute tool was employed to assess the quality of the included studies. This meta-analysis applied a random-effects model to synthesize data on antibiotic resistance in GBS, incorporating subgroup analyses and regression techniques to explore heterogeneity and trends in resistance rates over time. Outliers and influential studies were identified using statistical methods such as Cook's distance, and funnel plot asymmetry was assessed to evaluate potential publication bias. All analyses were conducted using R software (version 4.2.1) and the metafor package (version 3.8.1). Results This study included 266 studies from 57 countries, revealing significant variability in GBS antibiotic resistance rates. The highest resistance rates were observed for tetracycline (80.1, 95% CI: 77.1-82.8%), while tedizolid (0.1, 95% CI: 0.0-0.8%) showed the lowest resistance rates. Significant heterogeneity in resistance rates was observed, particularly for antibiotics such as azithromycin and gentamicin (I 2 = 97.29%), variability across studies. On the other hand, tigecycline and ceftaroline exhibited no heterogeneity (I 2 = 0%), suggesting consistent resistance patterns. Subgroup analyses revealed disparities in resistance rates based on country, continent, and methodological categories. Significant increase in resistance rates for several antibiotics over time, including clindamycin, erythromycin, ceftriaxone, cefuroxime, ciprofloxacin, levofloxacin, moxifloxacin, chloramphenicol, and ofloxacin. Ofloxacin and cefuroxime showed particularly steep trends. Conversely, a declining resistance trend was observed for oxacillin. Conclusion This study emphasizes the growing issue of antibiotic resistance in GBS strains. Notable resistance to older and newer antibiotics, increasing resistance over time, regional disparities, and methodological variations are noted. Rising resistance trends for multiple antibiotics underscore the urgent need for global surveillance and improved antibiotic stewardship. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024566269, CRD42024566269.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | | | - Muath Suliman
- Department of Laboratory Medicine, School of Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Subasini Uthirapathy
- Pharmacy Department Tishk International University Erbil, Kurdistan Region, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Niculescu AG, Mitache MM, Grumezescu AM, Chifiriuc MC, Mihai MM, Tantu MM, Tantu AC, Popa LG, Grigore GA, Cristian RE, Popa MI, Vrancianu CO. From Microbial Ecology to Clinical Challenges: The Respiratory Microbiome's Role in Antibiotic Resistance. Pathogens 2025; 14:355. [PMID: 40333133 PMCID: PMC12030467 DOI: 10.3390/pathogens14040355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Antibiotic resistance represents a growing public health threat, with airborne drug-resistant strains being especially alarming due to their ease of transmission and association with severe respiratory infections. The respiratory microbiome plays a pivotal role in maintaining respiratory health, influencing the dynamics of antibiotic resistance among airborne pathogenic microorganisms. In this context, this review proposes the exploration of the complex interplay between the respiratory microbiota and antimicrobial resistance, highlighting the implications of microbiome diversity in health and disease. Moreover, strategies to mitigate antibiotic resistance, including stewardship programs, alternatives to traditional antibiotics, probiotics, microbiota restoration techniques, and nanotechnology-based therapeutic interventions, are critically presented, setting an updated framework of current management options. Therefore, through a better understanding of respiratory microbiome roles in antibiotic resistance, alongside emerging therapeutic strategies, this paper aims to shed light on how the global health challenges posed by multi-drug-resistant pathogens can be addressed.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
| | - Mihaela Magdalena Mitache
- Department of Preclinical Disciplines, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- Biological Sciences Division, Romanian Academy, Calea Victoriei 125, Sector 1, 010071 Bucharest, Romania
| | - Mara Madalina Mihai
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Oncologic Dermatology, “Elias” University Emergency Hospital, 010024 Bucharest, Romania
| | - Monica Marilena Tantu
- Department of Medical Assistance and Physical Therapy, Pitesti University Center, Târgu din Vale 1, 110040 Pitești, Romania;
- Faculty of Science, Physical Education and Informatics, National University of Science and Technology, Politehnica, Splaiul Independenței 313, District 6, 060042 Bucharest, Romania
| | - Ana Catalina Tantu
- Doctoral School, University of Medicine and Pharmacy of Craiova, Petru Rareș 2, 200349 Craiova, Romania;
- Emergency Clinical County Hospital of Craiova, Tabaci 1, 200642 Craiova, Romania
| | - Loredana Gabriela Popa
- Microbiology Discipline II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.G.P.); (M.I.P.)
| | - Georgiana Alexandra Grigore
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031 Bucharest, Romania
| | - Roxana-Elena Cristian
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031 Bucharest, Romania
| | - Mircea Ioan Popa
- Microbiology Discipline II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.G.P.); (M.I.P.)
- Preclinical Testing Unit, Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031 Bucharest, Romania
- Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari 8, District 5, 050474 Bucharest, Romania
| |
Collapse
|
9
|
He LX, He LY, Tang YJ, Qiao LK, Xu MC, Zhou ZY, Bai H, Zhang M, Ying GG. Deciphering spread of quinolone resistance in mariculture ponds: Cross-species and cross-environment transmission of resistome. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137198. [PMID: 39827796 DOI: 10.1016/j.jhazmat.2025.137198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Mariculture is known to harbor antibiotic resistance genes (ARGs), which can be released into marine ecosystems via oceanic farming ponds, posing a public health concern. In this study, metagenomic sequencing was used to decipher the profiles of quinolone-resistant microbiomes and the mechanisms of quinolone resistance in sediment, seawater, and fish gill samples from five mariculture ponds. Residues of both veterinary-specific (enrofloxacin and sarafloxacin) and prohibited quinolones (ofloxacin, ciprofloxacin, pefloxacin, norfloxacin, and lomefloxacin) were detected. We identified a total of 285 subtypes of ARGs across all samples. Pathogens played a crucial role in the prevalence and distribution of these ARGs. Out of the annotated 629 bacterial species, 42 were identified as pathogenic, predominantly belonging to the Proteobacteria phylum. Notably, the Acinetobacter genus was prevalent in the gills and exhibited correlations with various ARGs. The presence of the plasmid-mediated quinolone resistance (PMQR) genes in various bacterial species and the identification of sulfonamide resistance genes across different samples indicated the potential for cross-species and cross-environment transmission of ARGs. Metagenomic binning revealed that Exiguobacterium harbored five ARGs (vanA, vanB, fexA, msr(G), mefF), while Shewanella carried six ARGs (blaOXA-436, adeF, qacl, ANT (2'')-Ia, dfrA1, rsmA). Mutations in gyrA and parC contributed to quinolone resistance in these multidrug-resistant Exiguobacterium and Shewanella. Our findings suggest a potential for ARG transmission across various bacterial species and environments in mariculture. This study emphasized the risk of resistance spread within the mariculture ecosystem.
Collapse
Affiliation(s)
- Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Yan-Jun Tang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lu-Kai Qiao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Meng-Chao Xu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Yin Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min Zhang
- Guangdong Provincial Engineering Technology Research Center for Life and Health 15 of River&Lake, Pearl River Hydraulic Research Institute, Pearl River Water 16 Resources Commission of the Ministry of Water Resources, Guangzhou 510611-17, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
10
|
Omar RF, Trottier S, Sato S, Ouellette M, Bergeron MG. Advances in the Management of Infectious Diseases. Infect Dis Rep 2025; 17:26. [PMID: 40126332 PMCID: PMC11932235 DOI: 10.3390/idr17020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
The landscape of infectious diseases has dramatically evolved since the 1970s and the advent of antimicrobials, which heralded a new era in medical history [...].
Collapse
Affiliation(s)
| | | | | | - Marc Ouellette
- Centre de Recherche en Infectiologie (CRI) de l’Université Laval, CHU de Québec-Université Laval (CHUL), Quebec City, QC G1V 4G2, Canada; (R.F.O.); (S.T.); (S.S.); (M.G.B.)
| | | |
Collapse
|
11
|
Wang Y, Yuan P, Gao P. Microplastics accelerate nitrification, shape the microbial community, and alter antibiotic resistance during the nitrifying process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178306. [PMID: 39740624 DOI: 10.1016/j.scitotenv.2024.178306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.2 % - 15.5 % and 8.0 % - 11.6 %, respectively, via enrichment of nitrifying microorganisms, Nitrospira and Nitrosomonas. Moreover, ARGs were selectively enriched in nitrifying sludge and microplastic biofilms under stress from different MPs. Compared with PE-MPs (23.9 %) and PVC-MPs (21.4 %), exposure to PLA-MPs significantly increased intI1 abundance by 51.6 %. The results of the variance decomposition analysis implied that MPs and the microbial community play important roles in the behavior of ARGs. Network analysis indicated that Nitrosomonas and potentially pathogenic bacteria emerged as possible hosts, harboring ARGs and intI1 genes in the nitrifying sludge and microplastic biofilms. Critically, PLA-MPs were found to enrich both ARGs and potential pathogenic bacteria during nitrification, which should be considered in their promotion of application processes due to their biodegradability.
Collapse
Affiliation(s)
- Yang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Peikun Yuan
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
12
|
Chizimu JY, Mudenda S, Yamba K, Lukwesa C, Chanda R, Nakazwe R, Simunyola B, Shawa M, Kalungia AC, Chanda D, Chola U, Mateele T, Thapa J, Kapolowe K, Mazaba ML, Mpundu M, Masaninga F, Azam K, Nakajima C, Suzuki Y, Bakyaita NN, Wesangula E, Matu M, Chilengi R. Antimicrobial stewardship situation analysis in selected hospitals in Zambia: findings and implications from a national survey. Front Public Health 2024; 12:1367703. [PMID: 39399696 PMCID: PMC11466898 DOI: 10.3389/fpubh.2024.1367703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Background Antimicrobial stewardship (AMS) programs are critical in combating antimicrobial resistance (AMR). In Zambia, there is little information regarding the capacity of hospitals to establish and implement AMS programs. The objective of this study was to conduct a baseline assessment of WHO core elements for an AMS program implementation in eight hospitals in Zambia. Materials and methods We conducted an exploratory cross-sectional study from September 2023 to December 2023 using a self-scoring Periodic National and Healthcare Facility Assessment Tool from the World Health Organization (WHO) policy guidance on integrated AMS activities in human health. Eight public hospitals were surveyed across the five provinces of Zambia. Data was analyzed using the WHO self-scoring tool and thematic analysis. Results Overall, 62.5% (6/8) of the facilities scored low (below 60%) in implementing AMS programs. Most facilities had challenges with reporting AMS feedback within the hospital (average score = 46%), Drugs and Therapeutics Committee (DTC) functionality (average score = 49%), AMS actions (average score = 50%), education and training (average score = 54%), and leadership commitment to AMS activities (average score = 56%). The overall score for all AMS core elements was average (56%). All the hospitals (100%) did not have an allocated budget for AMS programs. Finally, there were neither antibiograms to guide antimicrobial utilization nor AMS-trained staff in more than 50% of the hospitals surveyed. Conclusion This study found low AMS implementation in these public hospitals, especially where DTCs were non-functional. The identified challenges and gaps require urgent attention for sustainable multidisciplinary AMS programs.
Collapse
Affiliation(s)
- Joseph Yamweka Chizimu
- Antimicrobial Resistance Coordinating Committee (AMRCC), Zambia National Public Health Institute, Lusaka, Zambia
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Kaunda Yamba
- Antimicrobial Resistance Coordinating Committee (AMRCC), Zambia National Public Health Institute, Lusaka, Zambia
| | | | | | | | - Bwalya Simunyola
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University, Lusaka, Zambia
| | - Misheck Shawa
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University, Lusaka, Zambia
- Department of Pharmacy, Ministry of Health, Lusaka, Zambia
| | | | | | | | - Tebuho Mateele
- Levy Mwanawasa University Teaching Hospital, Lusaka, Zambia
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | | | - Mazyanga Lucy Mazaba
- Antimicrobial Resistance Coordinating Committee (AMRCC), Zambia National Public Health Institute, Lusaka, Zambia
- Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Kita-ku, Sapporo, Hokkaido, Japan
| | - Mirfin Mpundu
- Action on Antibiotic Resistance (ReAct) Africa, Lusaka, Zambia
| | | | - Khalid Azam
- Strengthening Pandemic Preparedness, Eastern, Central, and Southern Africa Health Community, Arusha, Tanzania
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Kita-ku, Sapporo, Hokkaido, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Kita-ku, Sapporo, Hokkaido, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Nathan Nsubuga Bakyaita
- Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Kita-ku, Sapporo, Hokkaido, Japan
| | - Evelyn Wesangula
- Strengthening Pandemic Preparedness, Eastern, Central, and Southern Africa Health Community, Arusha, Tanzania
| | - Martin Matu
- Strengthening Pandemic Preparedness, Eastern, Central, and Southern Africa Health Community, Arusha, Tanzania
| | - Roma Chilengi
- Antimicrobial Resistance Coordinating Committee (AMRCC), Zambia National Public Health Institute, Lusaka, Zambia
| |
Collapse
|
13
|
Nyhoegen C, Bonhoeffer S, Uecker H. The many dimensions of combination therapy: How to combine antibiotics to limit resistance evolution. Evol Appl 2024; 17:e13764. [PMID: 39100751 PMCID: PMC11297101 DOI: 10.1111/eva.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/30/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024] Open
Abstract
In combination therapy, bacteria are challenged with two or more antibiotics simultaneously. Ideally, separate mutations are required to adapt to each of them, which is a priori expected to hinder the evolution of full resistance. Yet, the success of this strategy ultimately depends on how well the combination controls the growth of bacteria with and without resistance mutations. To design a combination treatment, we need to choose drugs and their doses and decide how many drugs get mixed. Which combinations are good? To answer this question, we set up a stochastic pharmacodynamic model and determine the probability to successfully eradicate a bacterial population. We consider bacteriostatic and two types of bactericidal drugs-those that kill independent of replication and those that kill during replication. To establish results for a null model, we consider non-interacting drugs and implement the two most common models for drug independence-Loewe additivity and Bliss independence. Our results show that combination therapy is almost always better in limiting the evolution of resistance than administering just one drug, even though we keep the total drug dose constant for a 'fair' comparison. Yet, exceptions exist for drugs with steep dose-response curves. Combining a bacteriostatic and a bactericidal drug which can kill non-replicating cells is particularly beneficial. Our results suggest that a 50:50 drug ratio-even if not always optimal-is usually a good and safe choice. Applying three or four drugs is beneficial for treatment of strains with large mutation rates but adding more drugs otherwise only provides a marginal benefit or even a disadvantage. By systematically addressing key elements of treatment design, our study provides a basis for future models which take further factors into account. It also highlights conceptual challenges with translating the traditional concepts of drug independence to the single-cell level.
Collapse
Affiliation(s)
- Christin Nyhoegen
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical BiologyMax Planck Institute for Evolutionary BiologyPlonGermany
| | - Sebastian Bonhoeffer
- Department of Environmental Systems Science, Institute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Hildegard Uecker
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical BiologyMax Planck Institute for Evolutionary BiologyPlonGermany
| |
Collapse
|
14
|
Baines JF, Baldus CD, Bertels F, Brüggemann M, Kaleta C, Laudes M, Mueller FJ, Odenthal-Hesse L, Poyet M, Rainey PB, Rosenstiel P, Scheffold A, Sebens S, Thiery J, Traulsen A. Advancing evolutionary medicine in Northern Germany: Collaboration between Kiel University's Medical Faculty and the Max Planck Institute for Evolutionary Biology. Evol Med Public Health 2024; 12:117-121. [PMID: 39114444 PMCID: PMC11304943 DOI: 10.1093/emph/eoae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- John F Baines
- Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Claudia D Baldus
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Frederic Bertels
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Monika Brüggemann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Franz-Josef Mueller
- Department of Psychiatry and Psychotherapy, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Linda Odenthal-Hesse
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Mathilde Poyet
- Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Paul B Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Laboratory of Biophysics and Evolution, ESPCI, Université Paris Sciences et Lettres, Paris, France
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Joachim Thiery
- Faculty of Medicine, Kiel University and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Arne Traulsen
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
15
|
Sreekumaran S, V K P, Premnath M, P R P, M N A, Mathew J, K J, E K R. Novel in-genome based analysis demonstrates the evolution of OmpK37, antimicrobial resistance gene from a potentially pathogenic pandrug resistant Klebsiella pneumoniae MS1 isolated from healthy broiler feces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172713. [PMID: 38657814 DOI: 10.1016/j.scitotenv.2024.172713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Antimicrobial resistance transmission from farm animals to humans is a critical health concern and hence a detailed molecular surveillance is essential for tracking the spread and consequent evolution of antimicrobial resistance. In this study, a pan-drug resistant Klebsiella pneumoniae MS1 strain was isolated from a healthy broiler farm and studied. From the results of the study, MS1 was found to be is resistant to 18 tested antibiotics and has a high-risk to be pathogenic to humans with a probability of 0.80. The whole genome sequencing data of MS1 was used to predict the presence of antimicrobial resistance genes and pathogenicity. The genome analysis has revealed MS1 to have 34 AMR genes. Out of these, the AMR gene OmpK37 codes for an important protein involved in cell permeability and hence in antibiotic resistance. Further analysis was carried out by using an in-genome analysis method to understand the evolution of OmpK37 and the underlying reason for the emergence of resistance. From the detailed analysis, the current study could demonstrate for the first time the evolution of OmpK37 from OmpC. Though structurally OmpK37 was very similar to other porins present in MS1, it was found to have higher mutability as a distinguishing feature which makes it an important protein in monitoring the evolving resistances in microorganisms.
Collapse
Affiliation(s)
- Sreejith Sreekumaran
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Priya V K
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Manjusha Premnath
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Prathiush P R
- State Institute of Animal Diseases, Thiruvananthapuram, Kerala 695563, India
| | - Anisha M N
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Jayachandran K
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Radhakrishnan E K
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India.
| |
Collapse
|
16
|
Quek ZBR, Ng SH. Hybrid-Capture Target Enrichment in Human Pathogens: Identification, Evolution, Biosurveillance, and Genomic Epidemiology. Pathogens 2024; 13:275. [PMID: 38668230 PMCID: PMC11054155 DOI: 10.3390/pathogens13040275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionised the field of pathogen genomics, enabling the direct recovery of pathogen genomes from clinical and environmental samples. However, pathogen nucleic acids are often overwhelmed by those of the host, requiring deep metagenomic sequencing to recover sufficient sequences for downstream analyses (e.g., identification and genome characterisation). To circumvent this, hybrid-capture target enrichment (HC) is able to enrich pathogen nucleic acids across multiple scales of divergences and taxa, depending on the panel used. In this review, we outline the applications of HC in human pathogens-bacteria, fungi, parasites and viruses-including identification, genomic epidemiology, antimicrobial resistance genotyping, and evolution. Importantly, we explored the applicability of HC to clinical metagenomics, which ultimately requires more work before it is a reliable and accurate tool for clinical diagnosis. Relatedly, the utility of HC was exemplified by COVID-19, which was used as a case study to illustrate the maturity of HC for recovering pathogen sequences. As we unravel the origins of COVID-19, zoonoses remain more relevant than ever. Therefore, the role of HC in biosurveillance studies is also highlighted in this review, which is critical in preparing us for the next pandemic. We also found that while HC is a popular tool to study viruses, it remains underutilised in parasites and fungi and, to a lesser extent, bacteria. Finally, weevaluated the future of HC with respect to bait design in the eukaryotic groups and the prospect of combining HC with long-read HTS.
Collapse
Affiliation(s)
- Z. B. Randolph Quek
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore 117510, Singapore
| | | |
Collapse
|
17
|
Raatz M, de Azevedo-Lopes A, Drabik K, Traulsen A, Waclaw B. Pathogen non-planktonic phases within the urinary tract impact early infection and resistance evolution. THE ISME JOURNAL 2024; 18:wrae191. [PMID: 39325970 PMCID: PMC11499890 DOI: 10.1093/ismejo/wrae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/12/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
Treatment of urinary tract infections and the prevention of their recurrence is a pressing global health problem. In a urinary infection, pathogenic bacteria not only reside in the bladder lumen but also attach to and invade the bladder tissue. Planktonic, attached, and intracellular bacteria face different selection pressures from physiological processes such as micturition, immune response, and antibiotic treatment. Here, we use a mathematical model of the initial phase of infection to unravel the effects of these different selective pressures on the ecological and evolutionary dynamics of urinary infections. We explicitly model planktonic bacteria in the bladder lumen, bacteria attached to the bladder wall, and bacteria that have invaded the epithelial cells of the bladder. We find that the presence of non-planktonic bacteria substantially increases the risk of infection establishment and affects evolutionary trajectories leading to resistance during antibiotic treatment. We also show that competitive inoculation with a fast-growing non-pathogenic strain can reduce the pathogen load and increase the efficacy of an antibiotic, but only if the antibiotic is used in moderation. Our study shows that including different compartments is essential to create more realistic models of urinary infections, which may help guide new treatment strategies.
Collapse
Affiliation(s)
- Michael Raatz
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Amanda de Azevedo-Lopes
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Karolina Drabik
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry (IChF), Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Arne Traulsen
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Bartlomiej Waclaw
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry (IChF), Polish Academy of Sciences, 01-224 Warsaw, Poland
- School of Physics and Astronomy, University of Edinburgh, EH9 3FD Edinburgh, United Kingdom
| |
Collapse
|
18
|
Unni R, Andreani NA, Vallier M, Heinzmann SS, Taubenheim J, Guggeis MA, Tran F, Vogler O, Künzel S, Hövener JB, Rosenstiel P, Kaleta C, Dempfle A, Unterweger D, Baines JF. Evolution of E. coli in a mouse model of inflammatory bowel disease leads to a disease-specific bacterial genotype and trade-offs with clinical relevance. Gut Microbes 2023; 15:2286675. [PMID: 38059748 PMCID: PMC10730162 DOI: 10.1080/19490976.2023.2286675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a persistent inflammatory condition that affects the gastrointestinal tract and presents significant challenges in its management and treatment. Despite the knowledge that within-host bacterial evolution occurs in the intestine, the disease has rarely been studied from an evolutionary perspective. In this study, we aimed to investigate the evolution of resident bacteria during intestinal inflammation and whether- and how disease-related bacterial genetic changes may present trade-offs with potential therapeutic importance. Here, we perform an in vivo evolution experiment of E. coli in a gnotobiotic mouse model of IBD, followed by multiomic analyses to identify disease-specific genetic and phenotypic changes in bacteria that evolved in an inflamed versus a non-inflamed control environment. Our results demonstrate distinct evolutionary changes in E. coli specific to inflammation, including a single nucleotide variant that independently reached high frequency in all inflamed mice. Using ex vivo fitness assays, we find that these changes are associated with a higher fitness in an inflamed environment compared to isolates derived from non-inflamed mice. Further, using large-scale phenotypic assays, we show that bacterial adaptation to inflammation results in clinically relevant phenotypes, which intriguingly include collateral sensitivity to antibiotics. Bacterial evolution in an inflamed gut yields specific genetic and phenotypic signatures. These results may serve as a basis for developing novel evolution-informed treatment approaches for patients with intestinal inflammation.
Collapse
Affiliation(s)
- Rahul Unni
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Nadia Andrea Andreani
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Marie Vallier
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Silke S. Heinzmann
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg, Germany
| | - Jan Taubenheim
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Martina A. Guggeis
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Olga Vogler
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sven Künzel
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Daniel Unterweger
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - John F. Baines
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| |
Collapse
|
19
|
Tao JJ, Li SH, Wu JH, Peng XX, Li H. pts promoter influences antibiotic resistance via proton motive force and ROS in Escherichia coli. Front Microbiol 2023; 14:1276954. [PMID: 38029124 PMCID: PMC10661408 DOI: 10.3389/fmicb.2023.1276954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Glucose level is related to antibiotic resistance. However, underlying mechanisms are largely unknown. Methods Since glucose transport is performed by phosphotransferase system (PTS) in bacteria, pts promoter-deleted K12 (Δpts-P) was used as a model to investigate effect of glucose metabolism on antibiotic resistance. Gas chromatography-mass spectrometry based metabolomics was employed to identify a differential metabolome in Δpts-P compared with K12, and with glucose as controls. Results Δpts-P exhibits the resistance to β-lactams and aminoglycosides but not to quinolones, tetracyclines, and macrolide antibiotics. Inactivated pyruvate cycle was determined as the most characteristic feature in Δpts-P, which may influence proton motive force (PMF), reactive oxygen species (ROS), and nitric oxide (NO) that are related to antibiotic resistance. Thus, they were regarded as three ways for the following study. Glucose promoted PMF and β-lactams-, aminoglycosides-, quinolones-mediated killing in K12, which was inhibited by carbonyl cyanide 3-chlorophenylhydrazone. Exogenous glucose did not elevated ROS in K12 and Δpts-P, but the loss of pts promoter reduced ROS by approximately 1/5, which was related to antibiotic resistance. However, NO was neither changed nor related to antibiotic resistance. Discussion These results reveal that pts promoter regulation confers antibiotic resistance via PMF and ROS in Escherichia coli.
Collapse
Affiliation(s)
- Jian-jun Tao
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shao-hua Li
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-han Wu
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan-xian Peng
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Guangdong Litai Pharmaceutical Co. LTD, Jieyang, China
| | - Hui Li
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
20
|
Wang Q, Li S, Chen J, Yang L, Qiu Y, Du Q, Wang C, Teng M, Wang T, Dong Y. A novel strategy for therapeutic drug monitoring: application of biosensors to quantify antimicrobials in biological matrices. J Antimicrob Chemother 2023; 78:2612-2629. [PMID: 37791382 DOI: 10.1093/jac/dkad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Over the past few years, therapeutic drug monitoring (TDM) has gained practical significance in antimicrobial precision therapy. Yet two categories of mainstream TDM techniques (chromatographic analysis and immunoassays) that are widely adopted nowadays retain certain inherent limitations. The use of biosensors, an innovative strategy for rapid evaluation of antimicrobial concentrations in biological samples, enables the implementation of point-of-care testing (POCT) and continuous monitoring, which may circumvent the constraints of conventional TDM and provide strong technological support for individualized antimicrobial treatment. This comprehensive review summarizes the investigations that have harnessed biosensors to detect antimicrobial drugs in biological matrices, provides insights into the performance and characteristics of each sensing form, and explores the feasibility of translating them into clinical practice. Furthermore, the future trends and obstacles to achieving POCT and continuous monitoring are discussed. More efforts are necessary to address the four key 'appropriateness' challenges to deploy biosensors in clinical practice, paving the way for personalized antimicrobial stewardship.
Collapse
Affiliation(s)
- Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Luting Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yulan Qiu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengmeng Teng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
21
|
Chowdhury F, Findlay BL. Fitness Costs of Antibiotic Resistance Impede the Evolution of Resistance to Other Antibiotics. ACS Infect Dis 2023; 9:1834-1845. [PMID: 37726252 PMCID: PMC10581211 DOI: 10.1021/acsinfecdis.3c00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Indexed: 09/21/2023]
Abstract
Antibiotic resistance is a major threat to global health, claiming the lives of millions every year. With a nearly dry antibiotic development pipeline, novel strategies are urgently needed to combat resistant pathogens. One emerging strategy is the use of sequential antibiotic therapy, postulated to reduce the rate at which antibiotic resistance evolves. Here, we use the soft agar gradient evolution (SAGE) system to carry out high-throughput in vitro bacterial evolution against antibiotic pressure. We find that evolution of resistance to the antibiotic chloramphenicol (CHL) severely affects bacterial fitness, slowing the rate at which resistance to the antibiotics nitrofurantoin and streptomycin emerges. In vitro acquisition of compensatory mutations in the CHL-resistant cells markedly improves fitness and nitrofurantoin adaptation rates but fails to restore rates to wild-type levels against streptomycin. Genome sequencing reveals distinct evolutionary paths to resistance in fitness-impaired populations, suggesting resistance trade-offs in favor of mitigation of fitness costs. We show that the speed of bacterial fronts in SAGE plates is a reliable indicator of adaptation rates and evolutionary trajectories to resistance. Identification of antibiotics whose mutational resistance mechanisms confer stable impairments may help clinicians prescribe sequential antibiotic therapies that are less prone to resistance evolution.
Collapse
Affiliation(s)
- Farhan
R. Chowdhury
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Brandon L. Findlay
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
22
|
Sanz-García F, Gil-Gil T, Laborda P, Blanco P, Ochoa-Sánchez LE, Baquero F, Martínez JL, Hernando-Amado S. Translating eco-evolutionary biology into therapy to tackle antibiotic resistance. Nat Rev Microbiol 2023; 21:671-685. [PMID: 37208461 DOI: 10.1038/s41579-023-00902-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/21/2023]
Abstract
Antibiotic resistance is currently one of the most important public health problems. The golden age of antibiotic discovery ended decades ago, and new approaches are urgently needed. Therefore, preserving the efficacy of the antibiotics currently in use and developing compounds and strategies that specifically target antibiotic-resistant pathogens is critical. The identification of robust trends of antibiotic resistance evolution and of its associated trade-offs, such as collateral sensitivity or fitness costs, is invaluable for the design of rational evolution-based, ecology-based treatment approaches. In this Review, we discuss these evolutionary trade-offs and how such knowledge can aid in informing combination or alternating antibiotic therapies against bacterial infections. In addition, we discuss how targeting bacterial metabolism can enhance drug activity and impair antibiotic resistance evolution. Finally, we explore how an improved understanding of the original physiological function of antibiotic resistance determinants, which have evolved to reach clinical resistance after a process of historical contingency, may help to tackle antibiotic resistance.
Collapse
Affiliation(s)
- Fernando Sanz-García
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain
| | - Teresa Gil-Gil
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, Spain
- Programa de Doctorado en Biociencias Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, Spain
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Clinical Microbiology, 9301, Rigshospitalet, Copenhagen, Denmark
| | - Paula Blanco
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | | | - Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal (IRYCIS), CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | | |
Collapse
|
23
|
Mudenda S, Bumbangi FN, Yamba K, Munyeme M, Malama S, Mukosha M, Hadunka MA, Daka V, Matafwali SK, Siluchali G, Mainda G, Mukuma M, Hang’ombe BM, Muma JB. Drivers of antimicrobial resistance in layer poultry farming: Evidence from high prevalence of multidrug-resistant Escherichia coli and enterococci in Zambia. Vet World 2023; 16:1803-1814. [PMID: 37859964 PMCID: PMC10583887 DOI: 10.14202/vetworld.2023.1803-1814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Inappropriate use of antimicrobials exacerbates antimicrobial resistance (AMR) in the poultry sector. Information on factors driving AMR in the layer poultry sector is scarce in Zambia. This study examined the drivers of AMR in the layer poultry sector in the Lusaka and Copperbelt Provinces of Zambia. Materials and Methods This cross-sectional study employed a structured questionnaire in 77 layer poultry farms in the provinces of Lusaka and Copperbelt, Zambia, from September 2020 to April 2021. Data analysis was conducted using Stata version 16.1. Antimicrobial resistance was defined as the presence of multidrug resistance (MDR) isolates. Multivariable regression analysis was used to identify drivers of AMR. Results In total, 365 samples were collected, from which 339 (92.9%) Escherichia coli and 308 (84.4%) Enterococcus spp. were isolated. Multidrug resistance was identified in 39% of the E. coli and 86% of the Enterococcus spp. The overall prevalence of AMR in layer poultry farms was 51.7% (95% confidence interval [CI]: 40.3%-63.5%). Large-scale farmers (Adjusted odds ratio [AOR] = 0.20, 95% CI: 0.04%-0.99%) than small-scale and farmers who were aware of AMR than those who were unaware (AOR = 0.26, 95% CI: 0.08%-0.86%) were less likely to experience AMR problems. Conclusion This study found a high prevalence of AMR in layer poultry farming linked to the type of farm management practices and lack of AMR awareness. Evidence of high MDR in our study is of public health concern and requires urgent attention. Educational interventions must increase AMR awareness, especially among small- and medium-scale poultry farmers.
Collapse
Affiliation(s)
- Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Flavien Nsoni Bumbangi
- Department of Medicine and Clinical Sciences, School of Medicine, Eden University, Lusaka, Zambia
| | - Kaunda Yamba
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- Department of Biological Sciences, School of Natural Sciences, University of Zambia, Lusaka, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Sydney Malama
- Department of Pathology and Microbiology Laboratory, University Teaching Hospitals, Lusaka, Zambia
| | - Moses Mukosha
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | | | - Victor Daka
- Department of Public Health, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola, Zambia
| | - Scott Kaba Matafwali
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Godfrey Siluchali
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- Department of Anatomy and Physiological Sciences, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Geoffrey Mainda
- Food and Agriculture Organization (FAO) of the United Nations, House No. 5 Chaholi, off Addis Ababa drive, Lusaka, Zambia
| | - Mercy Mukuma
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Bernard Mudenda Hang’ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
24
|
O’Shaughnessy M, Sheils O, Baird AM. The Lung Microbiome in COPD and Lung Cancer: Exploring the Potential of Metal-Based Drugs. Int J Mol Sci 2023; 24:12296. [PMID: 37569672 PMCID: PMC10419288 DOI: 10.3390/ijms241512296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer 17 are two of the most prevalent and debilitating respiratory diseases worldwide, both associated with high morbidity and mortality rates. As major global health concerns, they impose a substantial burden on patients, healthcare systems, and society at large. Despite their distinct aetiologies, lung cancer and COPD share common risk factors, clinical features, and pathological pathways, which have spurred increasing research interest in their co-occurrence. One area of particular interest is the role of the lung microbiome in the development and progression of these diseases, including the transition from COPD to lung cancer. Exploring novel therapeutic strategies, such as metal-based drugs, offers a potential avenue for targeting the microbiome in these diseases to improve patient outcomes. This review aims to provide an overview of the current understanding of the lung microbiome, with a particular emphasis on COPD and lung cancer, and to discuss the potential of metal-based drugs as a therapeutic strategy for these conditions, specifically concerning targeting the microbiome.
Collapse
Affiliation(s)
- Megan O’Shaughnessy
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, St. James’s Hospital, D08 RX0X Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| |
Collapse
|
25
|
Max BL, Angolile CM, Raymond VG, Mashauri HL. The dawn of repurposing vitamins as potential novel antimicrobial agents: A call for global emergency response amidst AMR crisis. Health Sci Rep 2023; 6:e1276. [PMID: 37216052 PMCID: PMC10199457 DOI: 10.1002/hsr2.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Amidst, the global pandemic of antimicrobial resistance (AMR), the rate at which AMR increases overwhelms the increased efforts to discover new effective antimicrobials. There is a persistent need for alternative treatment modalities so as to keep up with the pace. AMR is the leading cause of death in the world and its health and economic consequences suggest the urgent need for sustainable interventions. Vitamins have consistently proven to have antimicrobial activity as well as slowing down the AMR rate by influencing the AMR genes even towards extensive multidrug resistant strains. Evidences suggest that the use of some vitamins on their own or in combination with existing antimicrobial agents could be a breakthrough towards combating AMR. This will widen the antimicrobial agents' options in the treatment arena, preserve the antimicrobial agents susceptible to develop resistant so that they can be used in severe infections only, reduce the tension and burden of the AMR crisis significantly and give enough room for development of new antimicrobial agents. Moreover, almost all viral, fungal, parasitic and bacterial resistant strains of concern as listed by World Health Organization have been found to be sensitive to several vitamins either synergistically with other antimicrobials or independently. Considering their widened spectrum of immunomodulatory and antimicrobial effect, some vitamins can further be repositioned as prophylactic antimicrobial agents in clinical situations like in presurgeries prophylaxis so as to avoid unnecessary use of antimicrobials especially antibiotics. Various relevant AMR stakeholders should invest in clinical trials and systematic reviews with available data to enable quick repositioning of some potential vitamins as antimicrobial agents as an emergency rapid response towards AMR Crisis. This includes the preparation of guidelines containing specificity of which vitamin to be used for treatment of which type of infection.
Collapse
Affiliation(s)
- Baraka L. Max
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Community Medicine, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
| | - Cornel M. Angolile
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Community Medicine, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of PhysiologyKilimanjaro Christian Medical University CollegeMoshiTanzania
| | - Vicky G. Raymond
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Internal MedicineKilimanjaro Christian Medical University CollegeMoshiTanzania
| | - Harold L. Mashauri
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of PhysiologyKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Internal MedicineKilimanjaro Christian Medical University CollegeMoshiTanzania
| |
Collapse
|
26
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Zhang H, Ma W, Liu H, Tang W, Shu J, Zhou J, Zheng H, Xiao H, Yang X, Liu D, Liang H, Yang X. Systematic analysis of lysine crotonylation in human macrophages responding to MRSA infection. Front Cell Infect Microbiol 2023; 13:1126350. [PMID: 36844408 PMCID: PMC9945341 DOI: 10.3389/fcimb.2023.1126350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most commonly encountered bacteria found in healthcare clinics and has been ranked a priority 2 pathogen. Research is urgently needed to develop new therapeutic approaches to combat the pathogen. Variations in the pattern of protein posttranslational modifications (PTMs) of host cells affect physiological and pathological events, as well as therapeutic effectiveness. However, the role of crotonylation in MRSA-infected THP1 cells remains unknown. In this study, we found that crotonylation profiles of THP1 cells were altered after MRSA infection. It was then confirmed that lysine crotonylation profiles of THP1 cells and bacteria were different; MRSA infection inhibited global lysine crotonylation (Kcro) modification but partially elevated Kcro of host proteins. We obtained a proteome-wide crotonylation profile of THP1 cells infected by MRSA further treated by vancomycin, leading to the identification of 899 proteins, 1384 sites of which were down-regulated, and 160 proteins with 193 sites up-regulated. The crotonylated down-regulated proteins were mainly located in cytoplasm and were enriched in spliceosome, RNA degradation, protein posttranslational modification, and metabolism. However, the crotonylated up-regulated proteins were mainly located in nucleus and significantly involved in nuclear body, chromosome, ribonucleoprotein complex, and RNA processing. The domains of these proteins were significantly enriched on RNA recognition motif, and linker histone H1 and H5 families. Some proteins related to protecting against bacterial infection were also found to be targets of crotonylation. The present findings point to a comprehensive understanding of the biological functions of lysine crotonylation in human macrophages, thereby providing a certain research basis for the mechanism and targeted therapy on the immune response of host cells against MRSA infection.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Deparment of Critical Care Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Ma
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haoru Liu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wanqi Tang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junjie Shu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jianping Zhou
- College of Basic Medical Sciences, Panzihua University, Panzihua, China
| | - Hongsheng Zheng
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongyan Xiao
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xue Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Daoyan Liu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaping Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Huaping Liang, ; Xia Yang,
| | - Xia Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Huaping Liang, ; Xia Yang,
| |
Collapse
|
28
|
Nyhoegen C, Uecker H. Sequential antibiotic therapy in the laboratory and in the patient. J R Soc Interface 2023; 20:20220793. [PMID: 36596451 PMCID: PMC9810433 DOI: 10.1098/rsif.2022.0793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Laboratory experiments suggest that rapid cycling of antibiotics during the course of treatment could successfully counter resistance evolution. Drugs involving collateral sensitivity could be particularly suitable for such therapies. However, the environmental conditions in vivo differ from those in vitro. One key difference is that drugs can be switched abruptly in the laboratory, while in the patient, pharmacokinetic processes lead to changing antibiotic concentrations including periods of dose overlaps from consecutive administrations. During such overlap phases, drug-drug interactions may affect the evolutionary dynamics. To address the gap between the laboratory and potential clinical applications, we set up two models for comparison-a 'laboratory model' and a pharmacokinetic-pharmacodynamic 'patient model'. The analysis shows that in the laboratory, the most rapid cycling suppresses the bacterial population always at least as well as other regimens. For patient treatment, however, a little slower cycling can sometimes be preferable if the pharmacodynamic curve is steep or if drugs interact antagonistically. When resistance is absent prior to treatment, collateral sensitivity brings no substantial benefit unless the cell division rate is low and drug cycling slow. By contrast, drug-drug interactions strongly influence the treatment efficiency of rapid regimens, demonstrating their importance for the optimal choice of drug pairs.
Collapse
Affiliation(s)
- Christin Nyhoegen
- Department of Evolutionary Theory, Research Group Stochastic Evolutionary Dynamics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hildegard Uecker
- Department of Evolutionary Theory, Research Group Stochastic Evolutionary Dynamics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
29
|
Whole Genome Sequencing (WGS) Analysis of Virulence and AMR Genes in Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli from Animal and Environmental Samples in Four Italian Swine Farms. Antibiotics (Basel) 2022; 11:antibiotics11121774. [PMID: 36551431 PMCID: PMC9774568 DOI: 10.3390/antibiotics11121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Whole genome sequencing (WGS) is a powerful tool to analyze bacterial genomes rapidly, and can be useful to study and detect AMR genes. We carried out WGS on a group of Escherichia coli (n = 30), sampled from healthy animals and farm environment in four pigsties in northern Italy. Two × 250bp paired end sequencing strategy on Illumina MiSeq™ was used. We performed in silico characterization of E. coli isolates through the web tools provided by the Center for Genomic Epidemiology (cge.cbs.dtu.dk/services/) to study AMR and virulence genes. Bacterial strains were further analyzed to detect phenotypic antimicrobial susceptibility against several antimicrobials. Data obtained from WGS were compared to phenotypic results. All 30 strains were MDR, and they were positive for the genes blaCTX-M and blaTEM as verified by PCR. We observed a good concordance between phenotypic and genomic results. Different AMR determinants were identified (e.g., qnrS, sul, tet). Potential pathogenicity of these strains was also assessed, and virulence genes were detected (e.g., etsC, gad, hlyF, iroN, iss), mostly related to extraintestinal E. coli pathotypes (UPEC/APEC). However, enterotoxin genes, such as astA, ltcA and stb were also identified, indicating a possible hybrid pathogenic nature. Various replicons associated to plasmids, previously recovered in pathogenic bacteria, were identified (e.g., IncN and IncR plasmid), supporting the hypothesis that our strains were pathogenic. Eventually, through WGS it was possible to confirm the phenotypic antibiotic resistance results and to appreciate the virulence side of our ESBL-producing E. coli. These findings highlight the need to monitor commensal E. coli sampled from healthy pigs considering a One Health perspective.
Collapse
|
30
|
Di Franco S, Alfieri A, Fiore M, Fittipaldi C, Pota V, Coppolino F, Sansone P, Pace MC, Passavanti MB. A Literature Overview of Secondary Peritonitis Due to Carbapenem-Resistant Enterobacterales (CRE) in Intensive Care Unit (ICU) Patients. Antibiotics (Basel) 2022; 11:1347. [PMID: 36290005 PMCID: PMC9598607 DOI: 10.3390/antibiotics11101347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
This comprehensive review of the recently published literature offers an overview of a very topical and complex healthcare problem: secondary peritonitis from multidrug-resistant pathogens, especially carbapenem-resistant Enterobacterales (CRE). Spontaneous secondary peritonitis and postsurgical secondary peritonitis are among the major causes of community- and healthcare- acquired sepsis, respectively. A large number of patients enter ICUs with a diagnosis of secondary peritonitis, and a high number of them reveal infection by CRE, P. aeruginosa or A. baumannii. For this reason, we conceived the idea to create a synthetic report on this topic including updated epidemiology data, a description of CRE resistance patterns, current strategies of antimicrobial treatment, and future perspectives. From this update it is clear that antimicrobial stewardship and precision medicine are becoming essential to fight the emergence of antimicrobial resistance and that even if there are new drugs effective against CRE causing secondary peritonitis, these drugs have to be used carefully especially in empirical therapy.
Collapse
Affiliation(s)
- Sveva Di Franco
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Aniello Alfieri
- Department of Postoperative Intensive Care Unit and Hyperbaric Oxygen Therapy, A.O.R.N. Antonio Cardarelli, Viale Antonio Cardarelli 9, 80131 Naples, Italy
| | - Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Ciro Fittipaldi
- Unit of Critical Care Hospital “Ospedale Pellegrini”, Via Portamedina alla Pignasecca 41, 80134 Naples, Italy
| | - Vincenzo Pota
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Francesco Coppolino
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Pasquale Sansone
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Maria Caterina Pace
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Maria Beatrice Passavanti
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
31
|
In Vitro Activity of Robenidine Analogues NCL259 and NCL265 against Gram-Negative Pathogens. Antibiotics (Basel) 2022; 11:antibiotics11101301. [PMID: 36289959 PMCID: PMC9598656 DOI: 10.3390/antibiotics11101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Multidrug-resistant (MDR) Gram-negative pathogens, especially Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli and Enterobacter spp., are recognized by the World Health Organization as the most critical priority pathogens in urgent need of drug development. In this study, the in vitro antimicrobial activity of robenidine analogues NCL259 and NCL265 was tested against key human and animal Gram-negative clinical isolates and reference strains. NCL259 and NCL265 demonstrated moderate antimicrobial activity against these Gram-negative priority pathogens with NCL265 consistently more active, achieving lower minimum inhibitory concentrations (MICs) in the range of 2−16 µg/mL. When used in combination with sub-inhibitory concentrations of polymyxin B to permeabilize the outer membrane, NCL259 and NCL265 elicited a synergistic or additive activity against the reference strains tested, reducing the MIC of NCL259 by 8- to 256- fold and the MIC of NCL265 by 4- to 256- fold. A small minority of Klebsiella spp. isolates (three) were resistant to both NCL259 and NCL265 with MICs > 256 µg/mL. This resistance was completely reversed in the presence of the efflux pump inhibitor phenylalanine-arginine-beta-naphthylamide (PAβN) to yield MIC values of 8−16 µg/mL and 2−4 µg/mL for NCL259 and NCL256, respectively. When NCL259 and NCL265 were tested against wild-type E. coli isolate BW 25113 and its isogenic multidrug efflux pump subunit AcrB deletion mutant (∆AcrB), the MIC of both compounds against the mutant ∆AcrB isolate was reduced 16-fold compared to the wild-type parent, indicating a significant role for the AcrAB-TolC efflux pump from Enterobacterales in imparting resistance to these robenidine analogues. In vitro cytotoxicity testing revealed that NCL259 and NCL265 had much higher levels of toxicity to a range of human cell lines compared to the parent robenidine, thus precluding their further development as novel antibiotics against Gram-negative pathogens.
Collapse
|
32
|
Yadav G, Singh R. In silico analysis reveals the co-existence of CRISPR-Cas type I-F1 and type I-F2 systems and its association with restricted phage invasion in Acinetobacter baumannii. Front Microbiol 2022; 13:909886. [PMID: 36060733 PMCID: PMC9428484 DOI: 10.3389/fmicb.2022.909886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Acinetobacter baumannii, an opportunistic pathogen, rapidly acquires antibiotic resistance, thus compelling researchers to develop alternative treatments at utmost priority. Phage-based therapies are of appreciable benefit; however, CRISPR-Cas systems are a major constraint in this approach. Hence for effective implementation and a promising future of phage-based therapies, a multifaceted understanding of the CRISPR-Cas systems is necessary. Methods This study investigated 4,977 RefSeq genomes of A. baumannii from the NCBI database to comprehend the distribution and association of CRISPR-Cas systems with genomic determinants. Results Approximately 13.84% (n = 689/4,977) isolates were found to carry the CRSIPR-Cas system, and a small fraction of isolates, 1.49% (n = 74/4,977), exhibited degenerated CRISPR-Cas systems. Of these CRISPR-Cas positive (+) isolates, 67.48% (465/689) isolates harbored type I-F1, 28.59% (197/689) had type I-F2, and 3.7% (26/689) had co-existence of both type I-F1 and type I-F2 systems. Co-existing type I-F1 and type I-F2 systems are located distantly (∼1.733 Mb). We found a strong association of CRISPR-Cas systems within STs for type I-F1 and type I-F2, whereas the type I-F1 + F2 was not confined to any particular ST. Isolates with type I-F1 + F2 exhibited a significantly high number of mean spacers (n = 164.58 ± 46.41) per isolate as compared to isolates with type I-F2 (n = 82.87 ± 36.14) and type I-F1 (n = 54.51 ± 26.27) with majority targeting the phages. Isolates with type I-F1 (p < 0.0001) and type I-F2 (p < 0.0115) displayed significantly larger genome sizes than type I-F1 + F2. A significantly reduced number of integrated phages in isolates with co-existence of type I-F1 + F2 compared with other counterparts was observed (p = 0.0041). In addition, the isolates carrying type I-F1 + F2 did not exhibit reduced resistance and virulence genes compared to CRISPR-Cas(-) and CRISPR-Cas (+) type I-F1 and type I-F2, except for bap, abaI, and abaR. Conclusion Our observation suggests that the co-existence of type I-F1 and F2 is more effective in constraining the horizontal gene transfer and phage invasion in A. baumannii than the isolates exhibiting only type I-F1 and only type I-F2 systems.
Collapse
Affiliation(s)
- Gulshan Yadav
- Indian Council of Medical Research (ICMR)—National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Ruchi Singh
- Indian Council of Medical Research (ICMR)—National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
33
|
Bassitta R, Nottensteiner A, Bauer J, Straubinger RK, Hölzel CS. Spread of antimicrobial resistance genes via pig manure from organic and conventional farms in the presence or absence of antibiotic use. J Appl Microbiol 2022; 133:2457-2465. [PMID: 35835564 DOI: 10.1111/jam.15717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/23/2022] [Accepted: 07/01/2022] [Indexed: 12/01/2022]
Abstract
AIMS Antibiotic resistant bacteria affect human and animal health. Hence, their environmental spread represents a potential hazard for mankind. Livestock farming is suspected to be a key factor for spreading antibiotic resistance; consumers expect organic farming to imply less environmental health risk. This study aimed to assess the role of manure from organic and conventional farms for spreading antimicrobial resistance (AMR) genes. METHODS AND RESULTS AMR-genes- namely tet(A), tet(B), tet(M), sul2, and qacE/qacEΔ1 (potentially associated with multiresistance) were quantified by qPCR. Antimicrobial use during the study period was qualitatively assessed from official records in a binary mode (yes/no). Median concentrations were between 6.44 log copy-equivalents/g for tet(A) and 7.85 for tet(M) in organic liquid manure, and between 7.48 for tet(A) and 8.3 for sul2 in organic farmyard manure. In conventional manure, median concentrations were 6.67 log copy-equivalents/g for sul2, 6.89 for tet(A), 6.77 for tet(B) and 8.36 for tet(M). Integron-associated qac-genes reached median concentrations of 7.06 log copy-equivalents/g in organic liquid manure, 7.13 in conventional manure and 8.18 in organic farmyard manure. Use of tetracyclines or sulfonamides increased concentrations of tet(A) and tet(M), or of sul2, respectively. Comparing farms that did not apply tetracyclines during the study, the relative abundance of tet(A) and tet(M) was still higher for conventional piggeries than for organic ones. CONCLUSIONS Relative abundances of antimicrobial resistance genes were higher in conventional farms, compared to organic ones. Antibiotic use was linked to the relative abundance of AMR-genes. However, due to the bacterial load, absolute concentrations of AMR-genes were comparable between fertilizers of organic and conventional farms. SIGNIFICANCE AND IMPACT OF STUDY To our knowledge, this is the first absolute quantification of AMR-genes in manure from organic farms. Our study underlines the importance of long-term-reduction in the use of antimicrobial agents in order to minimize antibiotic resistance.
Collapse
Affiliation(s)
- Rupert Bassitta
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Johann Bauer
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Reinhard K Straubinger
- Chair for Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, LMU Munich, Munich, Germany
| | - Christina S Hölzel
- Institute for Animal Breeding and Husbandry, Kiel University, Kiel, Germany
| |
Collapse
|
34
|
Muurinen J, Cairns J, Ekakoro JE, Wickware CL, Ruple A, Johnson TA. Biological units of antimicrobial resistance and strategies for their containment in animal production. FEMS Microbiol Ecol 2022; 98:6589402. [PMID: 35587376 DOI: 10.1093/femsec/fiac060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
The increasing prevalence of antimicrobial resistant bacterial infections has ushered in a major global public health crisis. Judicious or restricted antimicrobial use in animal agriculture, aiming to confine the use for the treatment of infections, is the most commonly proposed solution to reduce selection pressure for resistant bacterial strains and resistance genes. However, a multifaceted solution will likely be required to make acceptable progress in reducing antimicrobial resistance, due to other common environmental conditions maintaining antimicrobial resistance and limited executionary potential as human healthcare and agriculture will continue to rely heavily on antimicrobials in the foreseeable future. Drawing parallels from systematic approaches to the management of infectious disease agents and biodiversity loss, we provide examples that a more comprehensive approach is required, targeting antimicrobial resistance in agroecosystems on multiple fronts simultaneously. We present one such framework, based on nested biological units of antimicrobial resistance, and describe established or innovative strategies targeting units. Some of the proposed strategies are already in use or ready to be implemented, while some require further research and discussion among scientists and policymakers. We envision that antimicrobial resistance mitigation strategies for animal agriculture combining multiple tools would constitute powerful ecosystem-level interventions necessary to mitigate antimicrobial resistance.
Collapse
Affiliation(s)
- Johanna Muurinen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.,Department of Microbiology, Viikinkaari 9, 00014 University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science, 00014 University of Helsinki, Helsinki, Finland
| | - John Eddie Ekakoro
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Carmen L Wickware
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Audrey Ruple
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Timothy A Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
35
|
Leontiadis GI, Longstreth GF. Evolutionary Medicine Perspectives: Helicobacter pylori, Lactose Intolerance, and 3 Hypotheses for Functional and Inflammatory Gastrointestinal and Hepatobiliary Disorders. Am J Gastroenterol 2022; 117:721-728. [PMID: 35169106 DOI: 10.14309/ajg.0000000000001681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022]
Abstract
Many clinicians have suboptimal knowledge of evolutionary medicine. This discipline integrates social and basic sciences, epidemiology, and clinical medicine, providing explanations, especially ultimate causes, for many conditions. Principles include genetic variation from population bottleneck and founder effects, evolutionary trade-offs, and coevolution. For example, host-microbe coevolution contributes to the inflammatory and carcinogenic variability of Helicobacter pylori. Antibiotic-resistant strains are evolving, but future therapy could target promutagenic proteins. Ancient humans practicing dairying achieved survival and reproduction advantages of postweaning lactase persistence and passed this trait to modern descendants, delegitimizing lactose intolerance as "disease" in people with lactase nonpersistence. Three evolutionary hypotheses are each relevant to multiple diseases: (i) the polyvagal hypothesis posits that prehistoric adaptation of autonomic nervous system reactions to stress is beneficial acutely but, when continued chronically, predisposes individuals to painful functional gastrointestinal disorders, in whom it may be a biomarker; (ii) the thrifty gene hypothesis proposes genetic adaptation to feast-famine cycles among Pleistocene migrants to America, which is mismatched with Indigenous Americans' current diet and physical activity, predisposing them to obesity, nonalcoholic fatty liver disease, and gallstones and their complications; and (iii) the hygiene hypothesis proposes alteration of the gut microbiome, with which humans have coevolved, in allergic and autoimmune disease pathogenesis; for example, association of microbiome-altering proton pump inhibitor use with pediatric eosinophilic esophagitis, early-life gastrointestinal infection with celiac disease, and infant antibiotic use and an economically advanced environment with inflammatory bowel disease. Evolutionary perspectives broaden physicians' understanding of disease processes, improve care, and stimulate research.
Collapse
Affiliation(s)
- Grigorios I Leontiadis
- Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - George F Longstreth
- Section of Gastroenterology, Veterans Administration San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
36
|
Ma W, Ao S, Zhou J, Li J, Liang X, Yang X, Zhang H, Liu B, Tang W, Liu H, Xiao H, Liang H, Yang X. Methylsulfonylmethane protects against lethal dose MRSA-induced sepsis through promoting M2 macrophage polarization. Mol Immunol 2022; 146:69-77. [PMID: 35461144 DOI: 10.1016/j.molimm.2022.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Multi-drug-resistant bacterial infections, which have become a global threat, lack effective treatments. The discoveries of non-antibiotics with different modes of antibacterial action, such as methylsulfonylmethane (MSM), are a promising new treatment for multi-drug-resistant pathogens. METHODS We constructed a mouse peritonitis infection model to evaluate the effects of MSM against methicillin-resistant Staphylococcus aureus (MRSA) infection. The time-kill kinetics of MSM against MRSA and the effect of MSM on the integrity of bacterial cell membrane were measured. Viability effects of MSM on THP1 cells were performed by CCK-8 cytotoxicity assay. Systematic inflammatory factor levels of mice were detected using ELISA. The immune response of peritoneal macrophages during MRSA-infection was evaluated using RNA sequencing. Gene Ontology function, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, and correlation analyses were applied to analysis RNA sequencing data. RT-qPCR, western blotting and flow cytometry were performed to analysis the gene and protein expression levels of macrophages. RESULTS In in vitro experiments, MSM did not show significant killing effects on the growth of MRSA directly and did not destroy bacterial membrane integrity. MSM also displayed no significant effects on the proliferative capacity of THP1 cells. However, MSM treatment protected mice against a lethal dose MRSA-infection and decreased systemic inflammation. MSM upregulated metabolic pathway in peritoneal macrophages, especial glycolysis, during MRSA infection. MSM increased the expression of M2 markers (such as Arg1), promoted phosphorylation of STAT3 (which regulates M2 polarization), and decreased the expression of M1 markers in peritoneal macrophages. Additionally, MSM treatment increased the expression of H3K18 lactylation specific target genes, including Arg1. GNE-140, the LDHA-specific inhibitor of glycolysis, blocked the MSM-induced Arg1 expression in this disease model. CONCLUSIONS MSM protects against MRSA infection through immunomodulation. MSM promotes the expression of Arg1 by lactate-H3K18la pathway to control macrophage to M2 polarization; it firstly provides therapeutic potential for drug-resistant infections and sepsis.
Collapse
Affiliation(s)
- Wei Ma
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Shengxiang Ao
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Jianping Zhou
- College of Basic Medical Sciences, Panzihua University, Panzihua 617000, PR China
| | - Jiaxin Li
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Xin Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Xue Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Hao Zhang
- Deparment of Critical Care Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Boyang Liu
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Wanqi Tang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Haoru Liu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Hongyan Xiao
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Huaping Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China.
| | - Xia Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China.
| |
Collapse
|
37
|
Nguyen HT, Venter H, Woolford L, Young K, McCluskey A, Garg S, Page SW, Trott DJ, Ogunniyi AD. Impact of a Novel Anticoccidial Analogue on Systemic Staphylococcus aureus Infection in a Bioluminescent Mouse Model. Antibiotics (Basel) 2022; 11:antibiotics11010065. [PMID: 35052942 PMCID: PMC8773087 DOI: 10.3390/antibiotics11010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we investigated the potential of an analogue of robenidine (NCL179) to expand its chemical diversity for the treatment of multidrug-resistant (MDR) bacterial infections. We show that NCL179 exhibits potent bactericidal activity, returning minimum inhibitory concentration/minimum bactericidal concentrations (MICs/MBCs) of 1–2 µg/mL against methicillin-resistant Staphylococcus aureus, MICs/MBCs of 1–2 µg/mL against methicillin-resistant S. pseudintermedius and MICs/MBCs of 2–4 µg/mL against vancomycin-resistant enterococci. NCL179 showed synergistic activity against clinical isolates and reference strains of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa in the presence of sub-inhibitory concentrations of colistin, whereas NCL179 alone had no activity. Mice given oral NCL179 at 10 mg/kg and 50 mg/kg (4 × doses, 4 h apart) showed no adverse clinical effects and no observable histological effects in any of the organs examined. In a bioluminescent S. aureus sepsis challenge model, mice that received four oral doses of NCL179 at 50 mg/kg at 4 h intervals exhibited significantly reduced bacterial loads, longer survival times and higher overall survival rates than the vehicle-only treated mice. These results support NCL179 as a valid candidate for further development to treat MDR bacterial infections as a stand-alone antibiotic or in combination with existing antibiotic classes.
Collapse
Affiliation(s)
- Hang Thi Nguyen
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia;
- Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia;
| | - Kelly Young
- Chemistry, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (K.Y.); (A.M.)
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (K.Y.); (A.M.)
| | - Sanjay Garg
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | | | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia;
- Correspondence: (D.J.T.); (A.D.O.); Tel.: +61-8-8313-7989 (D.J.T.); +61-432331914 (A.D.O.); Fax: +61-8-8313-7956 (D.J.T.)
| | - Abiodun David Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia;
- Correspondence: (D.J.T.); (A.D.O.); Tel.: +61-8-8313-7989 (D.J.T.); +61-432331914 (A.D.O.); Fax: +61-8-8313-7956 (D.J.T.)
| |
Collapse
|
38
|
Shaik S, Suresh A, Ahmed N. Genome Dynamics and Evolution of Multiple-Drug-Resistant Bacteria: Implications for Global Infection Control Priorities. J Infect Dis 2021; 224:S876-S882. [PMID: 34550361 PMCID: PMC8687076 DOI: 10.1093/infdis/jiab456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Genomics-driven molecular epidemiology of pathogenic bacteria has largely been carried out through functionally neutral/inert sequences, mostly entailing polymorphic gene loci or repetitive tracts. However, it is very important to harness phenotypically relevant markers to assign a valid functional epidemiological context to tracking of pathogens. These should include microbial acumen to acquire multiple drug resistance (MDR), their physiological coordinates with reference to clinical or community-level dynamics of incidence/transmission, and their response or refractoriness to the activated immune system. We propose that multidimensional and multicentric approaches, based on diverse data integration coupled with comparative genomics and functional molecular infection epidemiology, would likely be successful in tracking the emergence and spread of MDR pathogens and thereby guiding the global infection control strategies in a highly informed manner.
Collapse
Affiliation(s)
- Sabiha Shaik
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Arya Suresh
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
- International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
39
|
Rodriguez-Morales AJ, Cardona-Ospina JA, Collins MH. Editorial: Emerging and Re-emerging Vector-borne and Zoonotic Diseases. Front Med (Lausanne) 2021; 8:714630. [PMID: 34422869 PMCID: PMC8374163 DOI: 10.3389/fmed.2021.714630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia.,Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Pereira, Colombia.,School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.,Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
| | - Jaime A Cardona-Ospina
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia.,Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Pereira, Colombia
| | - Matthew H Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
40
|
Batra A, Roemhild R, Rousseau E, Franzenburg S, Niemann S, Schulenburg H. High potency of sequential therapy with only β-lactam antibiotics. eLife 2021; 10:68876. [PMID: 34318749 PMCID: PMC8456660 DOI: 10.7554/elife.68876] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
Evolutionary adaptation is a major source of antibiotic resistance in bacterial pathogens. Evolution-informed therapy aims to constrain resistance by accounting for bacterial evolvability. Sequential treatments with antibiotics that target different bacterial processes were previously shown to limit adaptation through genetic resistance trade-offs and negative hysteresis. Treatment with homogeneous sets of antibiotics is generally viewed to be disadvantageous as it should rapidly lead to cross-resistance. We here challenged this assumption by determining the evolutionary response of Pseudomonas aeruginosa to experimental sequential treatments involving both heterogenous and homogeneous antibiotic sets. To our surprise, we found that fast switching between only β-lactam antibiotics resulted in increased extinction of bacterial populations. We demonstrate that extinction is favored by low rates of spontaneous resistance emergence and low levels of spontaneous cross-resistance among the antibiotics in sequence. The uncovered principles may help to guide the optimized use of available antibiotics in highly potent, evolution-informed treatment designs. Overuse of antibiotic drugs is leading to the appearance of antibiotic-resistant bacteria; this is, bacteria with mutations that allow them to survive treatment with specific antibiotics. This has made some bacterial infections difficult or impossible to treat. Learning more about how bacteria evolve resistance to antibiotics could help scientists find ways to prevent it and develop more effective treatments. Changing antibiotics frequently may be one way to prevent bacteria from evolving resistance. That way if a bacterium acquires mutations that allow it to escape one antibiotic, another antibiotic will kill it, stopping it from dividing and preventing the appearance of descendants with resistance to several antibiotics. In order to use this approach, testing is needed to find the best sequences of antibiotics to apply and the optimal timings of treatment. To find out more, Batra, Roemhild et al. grew bacteria in the laboratory and exposed them to different sequences of antibiotics, switching antibiotics at different time intervals. This showed that sequential treatments with different antibiotics can limit bacterial evolution, especially when antibiotics are switched quickly. Unexpectedly, one of the most effective sequences used very similar antibiotics. This was surprising because using similar antibiotics should lead to the evolution of cross-resistance, which is when a drug causes changes that make the bacterium less sensitive to other treatments. However, in the tested case, cross-resistance did not evolve when antibiotics were switched quickly, thereby ensuring efficiency of treatment. Batra et al. show that alternating sequences of antibiotics may be an effective strategy to prevent drug resistance. Because the experiments were done in a laboratory setting it will be important to verify the results in studies in animals and humans before the approach can be used in medical or veterinary settings. If the results are confirmed, it could reduce the need to develop new antibiotics, which is expensive and time consuming.
Collapse
Affiliation(s)
- Aditi Batra
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Roderich Roemhild
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, Ploen, Germany.,Institute of Science and Technology, Klosterneuburg, Austria
| | - Emilie Rousseau
- Borstel Research Centre, National Reference Center for Mycobacteria, Borstel, Germany
| | - Sören Franzenburg
- Competence Centre for Genomic Analysis Kiel, University of Kiel, Kiel, Germany
| | - Stefan Niemann
- Borstel Research Centre, National Reference Center for Mycobacteria, Borstel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, Ploen, Germany
| |
Collapse
|
41
|
Cameranesi MM, Kurth D, Repizo GD. Acinetobacter defence mechanisms against biological aggressors and their use as alternative therapeutic applications. Crit Rev Microbiol 2021; 48:21-41. [PMID: 34289313 DOI: 10.1080/1040841x.2021.1939266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Several Acinetobacter strains are important nosocomial pathogens, with Acinetobacter baumannii being the species of greatest worldwide concern due to its multi-drug resistance and the recent appearance of hyper-virulent strains in the clinical setting. Colonisation of this environment is associated with a multitude of bacterial factors, and the molecular features that promote environmental persistence in abiotic surfaces, including intrinsic desiccation resistance, biofilm formation and motility, have been previously addressed. On the contrary, mechanisms enabling Acinetobacter spp. survival when faced against other biological competitors are starting to be characterised. Among them, secretion systems (SS) of different types, such as the T5bSS (Contact-dependent inhibition systems) and the T6SS, confer adaptive advantages against bacterial aggressors. Regarding mechanisms of defence against bacteriophages, such as toxin-antitoxin, restriction-modification, Crispr-Cas and CBASS, among others, have been identified but remain poorly characterised. In view of this, we aimed to summarise the present knowledge on defence mechanisms that enable niche establishment in members of the Acinetobacter genus. Different proposals are also described for the use of some components of these systems as molecular tools to treat Acinetobacter infections.
Collapse
Affiliation(s)
- María Marcela Cameranesi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniel Kurth
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI, CONICET), San Miguel de Tucumán, Argentina
| | - Guillermo Daniel Repizo
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
42
|
Mahrt N, Tietze A, Künzel S, Franzenburg S, Barbosa C, Jansen G, Schulenburg H. Bottleneck size and selection level reproducibly impact evolution of antibiotic resistance. Nat Ecol Evol 2021; 5:1233-1242. [PMID: 34312522 PMCID: PMC8390372 DOI: 10.1038/s41559-021-01511-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
During antibiotic treatment, the evolution of bacterial pathogens is fundamentally affected by bottlenecks and varying selection levels imposed by the drugs. Bottlenecks-that is, reductions in bacterial population size-lead to an increased influence of random effects (genetic drift) during bacterial evolution, and varying antibiotic concentrations during treatment may favour distinct resistance variants. Both aspects influence the process of bacterial evolution during antibiotic therapy and thereby treatment outcome. Surprisingly, the joint influence of these interconnected factors on the evolution of antibiotic resistance remains largely unexplored. Here we combine evolution experiments with genomic and genetic analyses to demonstrate that bottleneck size and antibiotic-induced selection reproducibly impact the evolutionary path to resistance in pathogenic Pseudomonas aeruginosa, one of the most problematic opportunistic human pathogens. Resistance is favoured-expectedly-under high antibiotic selection and weak bottlenecks, but-unexpectedly-also under low antibiotic selection and severe bottlenecks. The latter is likely to result from a reduced probability of losing favourable variants through drift under weak selection. Moreover, the absence of high resistance under low selection and weak bottlenecks is caused by the spread of low-resistance variants with high competitive fitness under these conditions. We conclude that bottlenecks, in combination with drug-induced selection, are currently neglected key determinants of pathogen evolution and outcome of antibiotic treatment.
Collapse
Affiliation(s)
- Niels Mahrt
- grid.9764.c0000 0001 2153 9986Evolutionary Ecology and Genetics, Department of Zoology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexandra Tietze
- grid.9764.c0000 0001 2153 9986Evolutionary Ecology and Genetics, Department of Zoology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sven Künzel
- grid.419520.b0000 0001 2222 4708Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| | - Sören Franzenburg
- grid.9764.c0000 0001 2153 9986Genetics and Bioinformatics, Department of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Camilo Barbosa
- grid.9764.c0000 0001 2153 9986Evolutionary Ecology and Genetics, Department of Zoology, Christian-Albrechts-University of Kiel, Kiel, Germany ,grid.214458.e0000000086837370Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI USA
| | - Gunther Jansen
- grid.9764.c0000 0001 2153 9986Evolutionary Ecology and Genetics, Department of Zoology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- grid.9764.c0000 0001 2153 9986Evolutionary Ecology and Genetics, Department of Zoology, Christian-Albrechts-University of Kiel, Kiel, Germany ,grid.419520.b0000 0001 2222 4708Antibiotic Resistance Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|