1
|
Shen Z, Meng X, Rautela J, Chopin M, Huntington ND. Adjusting the scope of natural killer cells in cancer therapy. Cell Mol Immunol 2025:10.1038/s41423-025-01297-4. [PMID: 40410571 DOI: 10.1038/s41423-025-01297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/06/2025] [Indexed: 05/25/2025] Open
Abstract
Natural killer (NK) cells have evolved to detect abnormalities in tissues arising from infection with pathogens, genomic damage, or transformation and respond rapidly to the production of potent proinflammatory and cytolytic mediators. While this acute proinflammatory response is highly efficient at orchestrating sterilizing immunity to pathogens in a matter of days, cellular transformation often avoids the innate detection mechanisms of NK cells. When cellular transformation results in malignancy, tumor cells and/or the tumor microenvironment can evolve additional mechanisms to circumvent NK cell responses, and cancer is now a dominant disease burden worldwide. Here, we review recent advances in our understanding of the combined relationship between malignancies and natural killer (NK) cells, learn from recent clinical efforts in therapeutically targeting natural killer (NK) cells in cancer and outline some emerging therapeutic concepts that aim to improve the innate immune response against cancer.
Collapse
Affiliation(s)
- Zihen Shen
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Xiangpeng Meng
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jai Rautela
- oNKo-Innate Pty Ltd., Moonee Ponds, VIC, Australia
| | - Michael Chopin
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Nicholas D Huntington
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
- oNKo-Innate Pty Ltd., Moonee Ponds, VIC, Australia.
| |
Collapse
|
2
|
Guo P, Zhu B, Bai T, Guo X, Shi D, Jiang C, Kong J, Huang Q, Shi J, Shao D. Nanomaterial-Interleukin Combination for Boosting NK Cell-Based Tumor Immunotherapy. ACS Biomater Sci Eng 2025. [PMID: 40340300 DOI: 10.1021/acsbiomaterials.4c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The use of natural killer (NK) cell-based immunotherapy has been extensively explored in clinical trials for multiple types of tumors and has surfaced as a promising approach in tumor immunotherapy. Interleukins (ILs), a vital class of cytokines, play a crucial role in regulating several functions of NK cells, thereby becoming a focal point in the advancement of NK cell-based therapies. Nonetheless, the use of ILs as single agents is significantly constrained by their short half-life, limited efficacy, and adverse reactions. Currently, nanomaterials are being progressively employed in the delivery of ILs to enhance NK cell-based immunotherapy. However, there is currently a lack of comprehensive reviews summarizing the design of NK-cell-targeted nanomaterials and related systems for delivery of ILs. Furthermore, certain nanomaterials, either alone or in conjunction with other therapeutics, can also promote the secretion of ILs, representing a promising avenue for further exploration. Accordingly, this review begins by outlining various types of ILs and subsequently discusses the advancements in applying nanomaterials for IL delivery. It also examines the potential of nanomaterials to enhance IL secretion from other immune cells, thereby influencing the NK cell functionality. Lastly, this review addresses the challenges associated with using nanomaterials in these contexts and offers perspectives for future research. This study aims to provide valuable insights into the development of NK cell immunotherapy and innovative nanomaterial-based drug delivery systems.
Collapse
Affiliation(s)
- Ping Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Bobo Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ting Bai
- School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Xiaojia Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dingyu Shi
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45th, Gaoxin South Ninth Road, Nanshan District, Shenzhen City, 518063, P. R. China
| |
Collapse
|
3
|
McNitt SA, Dick JK, Hernandez-Castaneda MA, Sangala J, Pierson M, Macchietto M, Burrack KS, Crompton PD, Seydel K, Hamilton SE, Hart GT. Phenotype and function of IL-10-producing NK cells in individuals with malaria experience. JCI Insight 2025; 10:e183076. [PMID: 40337867 DOI: 10.1172/jci.insight.183076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
P.falciparum infection can trigger high levels of inflammation that lead to fever and sometimes severe disease. People living in malaria-endemic areas gradually develop resistance to symptomatic malaria and control both parasite numbers and the inflammatory response. We previously found that adaptive NK cells correlated with reduced parasite load and protection from symptoms. We also found that murine NK cell production of IL-10 protected mice from experimental cerebral malaria. Human NK cells can also secrete IL-10, but it is unknown what NK cell subsets produce IL-10 or if this is affected by malaria experience. We hypothesized that NK cell immunoregulation may lower inflammation and reduce fever induction. Here, we showed that NK cells from participants with malaria experience make significantly more IL-10 than participants with no malaria experience. We then determined the proportions of NK cells that are cytotoxic and produce IFN-γ and/or IL-10 and identified a signature of adaptive and checkpoint molecules on IL-10-producing NK cells. Lastly, we found that coculture with primary monocytes, Plasmodium-infected RBCs, and antibody induced IL-10 production by NK cells. These data suggest that NK cells may contribute to protection from malaria symptoms via IL-10 production.
Collapse
Affiliation(s)
- Sarah A McNitt
- Department of Osteopathic Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jenna K Dick
- Division of Infectious Disease and Internal Medicine, Department of Medicine
- Center for Immunology
| | | | - Jules Sangala
- Division of Infectious Disease and Internal Medicine, Department of Medicine
- Center for Immunology
| | - Mark Pierson
- Center for Immunology
- Department of Laboratory Medicine and Pathology, and
| | - Marissa Macchietto
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kristina S Burrack
- Center for Immunology
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Division of Intramural Research, National Institute of Allergy and Infectious Disease (NIAID), NIH, Rockville, Maryland, USA
| | - Karl Seydel
- Department of Osteopathic Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sara E Hamilton
- Center for Immunology
- Department of Laboratory Medicine and Pathology, and
| | - Geoffrey T Hart
- Division of Infectious Disease and Internal Medicine, Department of Medicine
- Center for Immunology
| |
Collapse
|
4
|
Gheorghiu M, Trandafir MF, Savu O, Pasarica D, Bleotu C. Unexpectedly High and Difficult-to-Explain Regenerative Capacity in an 82-Year-Old Patient with Insulin-Requiring Type 2 Diabetes and End-Stage Renal Disease. J Clin Med 2025; 14:2556. [PMID: 40283387 PMCID: PMC12027714 DOI: 10.3390/jcm14082556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The case we present is part of a large study that we conducted on hemodialysis patients with type 2 diabetes mellitus (T2DM) and which set the following objectives: studying changes in the intestinal microbiota, innate and acquired immune response capacity, and tissue regeneration. Methods: (1) For the genetic study of the gut microbiota, special techniques that are not based on cultivation were used since most of the species in the intestinal flora are not cultivable. (2) The immunological study had two targets: innate immunity (inflammation) and adaptive immunity (we chose to address the cellular immune response because, unlike the humoral one, it is insufficiently studied in this category of associated pathologies). As markers for innate immunity (inflammation), the following were determined: IL-6, sIL-6R, IL-1β, TNFα, IL-10, and NGAL. TNFβ/LTα was determined as a marker for adaptive immunity (the cellular immune response). (3) The study of tissue regeneration capacity was performed using NT-3 (this is the first study to do so) and VEGFβ (another marker that is scarce in this category of patients) as markers. All the aforementioned compounds were determined from serum samples, utilizing Merck Millipore ELISA kits for IL-6, IL-1β, IL-10, NT-3, and VEGF β, and Elabscience ELISA kits for IL-6R, TNFα, TNFβ, and NGAL. Results: We were very surprised to find unexpected immunological changes and tissue regenerative capacity in one of the patients studied, an 82-year-old female patient diagnosed with insulin-dependent T2DM with multiple complications, including end-stage renal disease (ESRD). The patient showed a huge capacity for tissue regeneration, combined with amplification of immunological capacity, in comparison to patients in the same group (T2DM and ESRD) and to those in the control group (ESRD). Thus, extremely elevated serum concentrations of IL-1β, IL-6, IL-10, and TNF-β, as well as the tissue regeneration indicators NT-3 and VEGFβ, were obtained in comparison to all other members of the patient group. At the same time, serum levels of the soluble IL-6 receptor (sIL6-R) and TNFα were greatly reduced compared to the test group's mean. Conclusions: All the data obtained during our research were corroborated with those from the specialized literature and entitle us to support the hypothesis that the cause of these unexpected behaviors is the genetically conditioned overproduction (possibly acquired post-infection) of IL-6, along with its predominant anti-inflammatory and pro-regenerative signaling through the membrane-bound receptor IL-6R.
Collapse
Affiliation(s)
- Mihaela Gheorghiu
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Maria-Florina Trandafir
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Octavian Savu
- “N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
- Doctoral School of “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Pasarica
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Coralia Bleotu
- “Stefan S. Nicolau” Institute of Virology, 030304 Bucharest, Romania;
| |
Collapse
|
5
|
Gergues M, Bari R, Koppisetti S, Gosiewska A, Kang L, Hariri RJ. Senescence, NK cells, and cancer: navigating the crossroads of aging and disease. Front Immunol 2025; 16:1565278. [PMID: 40255394 PMCID: PMC12006071 DOI: 10.3389/fimmu.2025.1565278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Cellular senescence, a state of stable cell cycle arrest, acts as a double-edged sword in cancer biology. In young organisms, it acts as a barrier against tumorigenesis, but in the aging population, it may facilitate tumor growth and metastasis through the senescence-associated secretory phenotype (SASP). Natural killer (NK) cells play a critical role in the immune system, particularly in the surveillance, targeting, and elimination of malignant and senescent cells. However, age-related immunosenescence is characterized by declining NK cell function resulting in diminished ability to fight infection, eliminate senescent cells and suppress tumor development. This implies that preserving or augmenting NK cell function may be central to defense against age-related degenerative and malignant diseases. This review explores the underlying mechanisms behind these interactions, focusing on how aging influences the battle between the immune system and cancer, the implications of senescent NK cells in disease progression, and the potential of adoptive NK cell therapy as a countermeasure to these age-related immunological challenges.
Collapse
Affiliation(s)
| | | | | | | | - Lin Kang
- Research and Development, Celularity Inc., Florham Park, NJ, United States
| | | |
Collapse
|
6
|
Kaiser E, Weber R, Hirschstein M, Mazid H, Kapps EMS, Hans MC, Bous M, Goedicke-Fritz S, Wagenpfeil G, Zemlin M, Solomayer EF, Müller C, Zemlin C. Dynamics of T cell subpopulations and plasma cytokines during the first year of antineoplastic therapy in patients with breast cancer: the BEGYN-1 study. Breast Cancer Res 2025; 27:50. [PMID: 40170120 PMCID: PMC11963634 DOI: 10.1186/s13058-025-01997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/09/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND The role of T cell immunity during antineoplastic therapy is poorly understood. In the BEGYN-1 study, patients with breast cancer underwent quarterly assessments prior to and during antineoplastic therapy over a period of 12 months. METHODS We used flow cytometry and multiplex immunoassays to quantify 25 T cell subpopulations and seven T cell associated plasma cytokines in peripheral blood from 92 non-metastatic breast cancer patients, respectively. In addition, the association between T cell dynamics and the outcome of patients undergoing neoadjuvant chemotherapy was investigated. RESULTS In patients undergoing chemotherapy, a significant reduction in T helper (Th) cells, particularly naïve central and effector cells and thymus positive Th cells, was observed over time. Interestingly, Th1 immune response-associated cytokines (IL-12, TNF, IFN-γ) declined while Th2 cells and cytotoxic T cells increased over time. CONCLUSIONS We conclude that in breast cancer patients, chemotherapy is associated with a transition from a Th1 immune response towards Th2 and an increase in cytotoxic T cells, whereas in patients without chemotherapy, these alterations were less pronounced. Future studies should clarify whether patterns of T cell subsets or plasma cytokines can be used as biomarkers to monitor or even improve therapeutic interventions.
Collapse
Affiliation(s)
- Elisabeth Kaiser
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Regine Weber
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany.
| | - Melanie Hirschstein
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Hala Mazid
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Emilie Marie Suzanne Kapps
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Muriel Charlotte Hans
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Michelle Bous
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Gudrun Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics (IMBEI), Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Erich-Franz Solomayer
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Carolin Müller
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
- Outcomes Research Consortium, Department of Anesthesiology, Cleveland Clinic, Cleveland, OH, USA
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 21-23, 91054, Erlangen, Germany
| | - Cosima Zemlin
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| |
Collapse
|
7
|
Zhao Y, Zhu W, Dong S, Zhang H, Zhou W. Glucose Metabolism Reprogramming of Immune Cells in the Microenvironment of Pancreatic and Hepatobiliary Cancers. J Gastroenterol Hepatol 2025; 40:355-366. [PMID: 39780341 DOI: 10.1111/jgh.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND AND AIM Pancreatic and hepatobiliary cancers are increasing in prevalence and contribute significantly to cancer-related mortality worldwide. Emerging therapeutic approaches, particularly immunotherapy, are gaining attention for their potential to harness the patient's immune system to combat these tumors. Understanding the role of immune cells in the tumor microenvironment (TME) and their metabolic reprogramming is key to developing more effective treatment strategies. This review aims to explore the relationship between immune cell function and glucose metabolism in the TME of pancreatic and hepatobiliary cancers. METHODS This review synthesizes current research on the metabolic adaptations of immune cells, specifically focusing on glucose metabolism within the TME of pancreatic and hepatobiliary cancers. We examine the mechanisms by which immune cells influence tumor progression through metabolic reprogramming and how these interactions can be targeted for therapeutic purposes. RESULTS Immune cells in the TME undergo significant metabolic changes, with glucose metabolism playing a central role in modulating immune responses. These metabolic shifts not only affect immune cell function but also influence tumor behavior and progression. The unique metabolic features of immune cells in pancreatic and hepatobiliary cancers provide new opportunities for targeting immune responses to combat these malignancies more effectively. CONCLUSION Understanding the complex relationship between immune cell glucose metabolism and tumor progression in the TME of pancreatic and hepatobiliary cancers offers promising therapeutic strategies. By modulating immune responses through targeted metabolic interventions, it may be possible to improve the efficacy of immunotherapies and better combat these aggressive cancers.
Collapse
Affiliation(s)
- Yongqing Zhao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Weixiong Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Shi Dong
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hui Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, China
| |
Collapse
|
8
|
Lu J, Zhen S, Li X. Characteristics of Oxidative Phosphorylation-Related Subtypes and Construction of a Prognostic Signature in Ovarian Cancer. Curr Gene Ther 2025; 25:327-344. [PMID: 39289931 DOI: 10.2174/0115665232323373240905104033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Ovarian cancer is associated with a high mortality rate. Oxidative Phosphorylation (OXPHOS) is an active metabolic pathway in cancer; nevertheless, its role in ovarian cancer continues to be ambiguous. Therefore, the objective of this study was to identify the prognostic value of OXPHOS-related genes and the immune landscape in ovarian cancer. METHODS We obtained public ovarian cancer-related datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and recognized OXPHOS-related genes from the GeneCards database and literature. Cox regression analyses were conducted to identify prognostic OXPHOS-related genes and develop a prognostic nomogram based on the OXPHOS score and clinicopathological features of patients. Functional enrichment analyses were employed to identify related processes. RESULTS A 12-gene signature was identified to classify the ovarian cancer patients into high- and low-risk groups. The Immunophenoscore (IPS) was higher in the OXPHOS score-high group than in the OXPHOS score-low group, suggesting a better response to immune checkpoint inhibitors. Functional enrichment analyses unveiled that OXPHOS-related genes were considerably abundant in a series of immune processes. The calibration curves of the constructed prognostic nomograms at 1, 2, and 3 years exhibited strong concordance between the anticipated and observed survival probabilities of ovarian cancer patients. CONCLUSION We have constructed a prognostic model containing 12 OXPHOS-related genes and demonstrated its strong predictive value in ovarian cancer patients. OXPHOS has been found to be closely linked to immune infiltration and the reaction to immunotherapy, which may contribute to improving individualized treatment and prognostic evaluation in ovarian cancer.
Collapse
Affiliation(s)
- Jiaojiao Lu
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuai Zhen
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xu Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
9
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Jiang P, Jing S, Sheng G, Jia F. The basic biology of NK cells and its application in tumor immunotherapy. Front Immunol 2024; 15:1420205. [PMID: 39221244 PMCID: PMC11361984 DOI: 10.3389/fimmu.2024.1420205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Natural Killer (NK) cells play a crucial role as effector cells within the tumor immune microenvironment, capable of identifying and eliminating tumor cells through the expression of diverse activating and inhibitory receptors that recognize tumor-related ligands. Therefore, harnessing NK cells for therapeutic purposes represents a significant adjunct to T cell-based tumor immunotherapy strategies. Presently, NK cell-based tumor immunotherapy strategies encompass various approaches, including adoptive NK cell therapy, cytokine therapy, antibody-based NK cell therapy (enhancing ADCC mediated by NK cells, NK cell engagers, immune checkpoint blockade therapy) and the utilization of nanoparticles and small molecules to modulate NK cell anti-tumor functionality. This article presents a comprehensive overview of the latest advances in NK cell-based anti-tumor immunotherapy, with the aim of offering insights and methodologies for the clinical treatment of cancer patients.
Collapse
Affiliation(s)
- Pan Jiang
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Infectious Diseases, Jingzhou First People’s Hospital, Jingzhou, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fajing Jia
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
11
|
El-Sayed A, Faraj SH, Marghani BH, Safhi FA, Abdo M, Fericean L, Banatean-Dunea I, Alexandru CC, Alhimaidi AR, Ammari AA, Eissa A, Ateya A. The Transcript Levels and the Serum Profile of Biomarkers Associated with Clinical Endometritis Susceptibility in Buffalo Cows. Vet Sci 2024; 11:340. [PMID: 39195794 PMCID: PMC11360151 DOI: 10.3390/vetsci11080340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Determining the gene expression and serum profile of the indicators linked to clinical endometritis susceptibility in Egyptian buffalo cows was the aim of this investigation. The buffalo cows that were enrolled were divided into two groups: forty infected buffalo cows with clinical endometritis and forty seemingly healthy buffalo cows that served as the control group. For the purposes of gene expression and biochemical analysis, ten milliliters of blood was obtained via jugular venipuncture from each buffalo cow. TLR4, IL-8, IL-17, NFKB, SLCA11A1, NCF4, Keap1, HMOX1, OXSR1, ST1P1, and SERP1 were manifestly expressed at much higher levels in the buffaloes with endometritis. On the other hand, the genes that encode SOD, CAT, NDUFS6, Nrf2, and PRDX2 were down-regulated. There was a significant (p < 0.05) elevation of the serum levels of non-esterified fatty acids (NEFAs), beta hydroxy butyric acid (BHBA), triglycerides (TGs), globulin, creatinine, and cortisol, along with a reduction in the serum levels of glucose, cholesterol, total protein albumin, urea, estrogen (E2), progesterone (P4), follicle-stimulating hormone (FSH), luteinizing hormone (LH), thyroxine (T4), prostaglandin F2 α (PGF2α), calcium, iron, and selenium, in the endometritis group in comparison with the control. However, no significant change was observed in the values of phosphorus, magnesium, copper, or zinc in either group. Within the selective breeding of naturally resistant animals, the variation in the genes under study and the changes in the serum profiles of the indicators under investigation may serve as a reference guide for reducing endometritis in Egyptian buffalo cows.
Collapse
Affiliation(s)
- Ahmed El-Sayed
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo 11753, Egypt;
| | - Salah H. Faraj
- Department of Biology, College of Science, University of Misan, Maysan 62001, Iraq;
| | - Basma H. Marghani
- Department of Biochemistry, Physiology, and Pharmacology, Faculty of Veterinary Medicine, King Salman International University, South of Sinai 46612, Egypt;
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt;
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania;
| | - Ioan Banatean-Dunea
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania;
| | - Cucui-Cozma Alexandru
- Tenth Department of Surgery, Victor Babeș University of Medicine and Pharmacy, 300645 Timisoara, Romania;
| | - Ahmad R. Alhimaidi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.R.A.); (A.A.A.)
| | - Aiman A. Ammari
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.R.A.); (A.A.A.)
| | - Attia Eissa
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Arish University, Arish 45511, Egypt;
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
12
|
van der Meijs NL, Travecedo MA, Marcelo F, van Vliet SJ. The pleiotropic CLEC10A: implications for harnessing this receptor in the tumor microenvironment. Expert Opin Ther Targets 2024; 28:601-612. [PMID: 38946482 DOI: 10.1080/14728222.2024.2374743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION CLEC10A is a C-type lectin receptor that specifically marks the conventional dendritic cell subsets two and three (cDC2 and DC3). It has a unique recognition profile of glycan antigens, with terminal N-Acetylgalactosamine residues that are frequently present in the tumor microenvironment. Even though CLEC10A expression allows for precise targeting of cDC2 and DC3 for the treatment of cancer, CLEC10A signaling has also been associated with anti-inflammatory responses that would promote tumor growth. AREAS COVERED Here, we review the potential benefits and drawbacks of CLEC10A engagement in the tumor microenvironment. We discuss the CLEC10A-mediated effects in different cell types and incorporate the pleiotropic effects of IL-10, the main anti-inflammatory response upon CLEC10A binding. EXPERT OPINION To translate this to a successful CLEC10A-mediated immunotherapy with limited tumor-promoting capacities, finding the right ligand presentation and adjuvant combination will be key.
Collapse
Affiliation(s)
- Nadia L van der Meijs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunology, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Maria Alejandra Travecedo
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Filipa Marcelo
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunology, Inflammatory Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Apisutimaitri K, Saeyup P, Suppipat K, Sirichindakul P, Wanasrisant N, Nonsri C, Lertprapai P. Effects of propofol-based total intravenous anesthesia versus desflurane anesthesia on natural killer cell cytotoxicity after hepatocellular carcinoma resection. J Anaesthesiol Clin Pharmacol 2024; 40:395-402. [PMID: 39391643 PMCID: PMC11463923 DOI: 10.4103/joacp.joacp_174_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 10/12/2024] Open
Abstract
Background and Aims Inhalation anesthesia suppresses the immune system and stimulates the growth of tumor cells, contrary to intravenous anesthesia. However, no consensus exists on which anesthetic technique is better for preventing cancer recurrence. Therefore, this study compared the effects of two different anesthetic techniques on natural killer cell cytotoxicity (NKCC) in hepatocellular carcinoma (HCC) patients undergoing open hepatic resection. Material and Methods Patients diagnosed with nonmetastatic HCC were scheduled for hepatic resection and randomly assigned to receive either propofol- or desflurane-based anesthesia. The primary outcome was pre- and postoperative NKCC assay. Cytokine levels were assessed by measuring interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ) levels, and the secondary outcome was postoperative cancer recurrence evaluated using diagnostic imaging scans for 2 years. Results Twenty-eight patients were analyzed, including 15 and 13 in the total intravenous anesthesia (TIVA) and inhalation (INH) groups, respectively. Two patients in the INH group were excluded due to non-HCC postoperative pathologic results. At 24 h, the postoperative change in NKCC between both groups showed no significant differences at a ratio of effector cell: target cell = 1:1, 5:1, and 10:1 (P = 0.345, 0.345, and 0.565, respectively). Also, there were no significant differences in IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ levels (P = 0.588, 0.182, 0.730, 0.076, 0.518, 0.533, respectively). Postoperative tumor recurrence occurred in five and six patients in the TIVA and INH groups, respectively. Conclusion NKCC did not differ significantly among HCC patients undergoing open hepatic resection under either propofol or desflurane anesthesia 24 h postoperatively.
Collapse
Affiliation(s)
- Kirada Apisutimaitri
- Department of Anesthesiology, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pipat Saeyup
- Department of Anesthesiology, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Koramit Suppipat
- Department of Cellular Immunotherapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pongserath Sirichindakul
- Department of Surgery, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattanit Wanasrisant
- Department of Anesthesiology, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chawisachon Nonsri
- Department of Anesthesiology, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Panas Lertprapai
- Department of Anesthesiology, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
McNitt SA, Dick JK, Hernandez Castaneda M, Sangala JA, Pierson M, Macchietto M, Burrack KS, Crompton PD, Seydel KB, Hamilton SE, Hart GT. Phenotype and function of IL-10 producing NK cells in individuals with malaria experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593687. [PMID: 38798324 PMCID: PMC11118352 DOI: 10.1101/2024.05.11.593687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Plasmodium falciparum infection can trigger high levels of inflammation that lead to fever and sometimes severe disease. People living in malaria-endemic areas gradually develop resistance to symptomatic malaria and control both parasite numbers and the inflammatory response. We previously found that adaptive natural killer (NK) cells correlate with reduced parasite load and protection from symptoms. We also previously found that murine NK cell production of IL-10 can protect mice from experimental cerebral malaria. Human NK cells can also secrete IL-10, but it was unknown what NK cell subsets produce IL-10 and if this is affected by malaria experience. We hypothesize that NK cell immunoregulation may lower inflammation and reduce fever induction. Here, we show that NK cells from subjects with malaria experience make significantly more IL-10 than subjects with no malaria experience. We then determined the proportions of NK cells that are cytotoxic and produce interferon gamma and/or IL-10 and identified a signature of adaptive and checkpoint molecules on IL-10-producing NK cells. Lastly, we find that co-culture with primary monocytes, Plasmodium -infected RBCs, and antibody induces IL-10 production by NK cells. These data suggest that NK cells may contribute to protection from malaria symptoms via IL-10 production.
Collapse
|
15
|
Liu Y, Li M, Fang Z, Gao S, Cheng W, Duan Y, Wang X, Feng J, Yu T, Zhang J, Wang T, Hu A, Zhang H, Rong Z, Shakila SS, Shang Y, Kong F, Liu J, Li Y, Ma F. Overexpressing S100A9 ameliorates NK cell dysfunction in estrogen receptor-positive breast cancer. Cancer Immunol Immunother 2024; 73:117. [PMID: 38713229 PMCID: PMC11076447 DOI: 10.1007/s00262-024-03699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Estrogen receptor (ER) positive human epidermal growth factor receptor 2 (HER2) negative breast cancer (ER+/HER2-BC) and triple-negative breast cancer (TNBC) are two distinct breast cancer molecular subtypes, especially in tumor immune microenvironment (TIME). The TIME of TNBC is considered to be more inflammatory than that of ER+/HER2-BC. Natural killer (NK) cells are innate lymphocytes that play an important role of tumor eradication in TME. However, studies focusing on the different cell states of NK cells in breast cancer subtypes are still inadequate. METHODS In this study, single-cell mRNA sequencing (scRNA-seq) and bulk mRNA sequencing data from ER+/HER2-BC and TNBC were analyzed. Key regulator of NK cell suppression in ER+/HER2-BC, S100A9, was quantified by qPCR and ELISA in MCF-7, T47D, MDA-MB-468 and MDA-MB-231 cell lines. The prognosis predictability of S100A9 and NK activation markers was evaluated by Kaplan-Meier analyses using TCGA-BRAC data. The phenotype changes of NK cells in ER+/HER2-BC after overexpressing S100A9 in cancer cells were evaluated by the production levels of IFN-gamma, perforin and granzyme B and cytotoxicity assay. RESULTS By analyzing scRNA-seq data, we found that multiple genes involved in cellular stress response were upregulated in ER+/HER2-BC compared with TNBC. Moreover, TLR regulation pathway was significantly enriched using differentially expressed genes (DEGs) from comparing the transcriptome data of ER+/HER2-BC and TNBC cancer cells, and NK cell infiltration high/low groups. Among the DEGs, S100A9 was identified as a key regulator. Patients with higher expression levels of S100A9 and NK cell activation markers had better overall survival. Furthermore, we proved that overexpression of S100A9 in ER+/HER2-cells could improve cocultured NK cell function. CONCLUSION In conclusion, the study we presented demonstrated that NK cells in ER+/HER2-BC were hypofunctional, and S100A9 was an important regulator of NK cell function in ER+BC. Our work contributes to elucidate the regulatory networks between cancer cells and NK cells and may provide theoretical basis for novel drug development.
Collapse
Affiliation(s)
- Yansong Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Mingcui Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Zhengbo Fang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Shan Gao
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Weilun Cheng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Yunqiang Duan
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Xuelian Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Jianyuan Feng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Tianshui Yu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Jiarui Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Ting Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Anbang Hu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Hanyu Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Zhiyuan Rong
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Suborna S Shakila
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Yuhang Shang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Fanjing Kong
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Jiangwei Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Yanling Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China.
| | - Fei Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China.
| |
Collapse
|
16
|
Hrvat A, Benders S, Kimmig R, Brandau S, Mallmann-Gottschalk N. Immunoglobulins and serum proteins impair anti-tumor NK cell effector functions in malignant ascites. Front Immunol 2024; 15:1360615. [PMID: 38646521 PMCID: PMC11026578 DOI: 10.3389/fimmu.2024.1360615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Malignant ascites indicates ovarian cancer progression and predicts poor clinical outcome. Various ascites components induce an immunosuppressive crosstalk between tumor and immune cells, which is poorly understood. In our previous study, imbalanced electrolytes, particularly high sodium content in malignant ascites, have been identified as a main immunosuppressive mechanism that impaired NK and T-cell activity. Methods In the present study, we explored the role of high concentrations of ascites proteins and immunoglobulins on antitumoral NK effector functions. To this end, a coculture system consisting of healthy donor NK cells and ovarian cancer cells was used. The anti-EGFR antibody Cetuximab was added to induce antibody-dependent cellular cytotoxicity (ADCC). NK activity was assessed in the presence of different patient ascites samples and immunoglobulins that were isolated from ascites. Results Overall high protein concentration in ascites impaired NK cell degranulation, conjugation to tumor cells, and intracellular calcium signaling. Immunoglobulins isolated from ascites samples competitively interfered with NK ADCC and inhibited the conjugation to target cells. Furthermore, downregulation of regulatory surface markers CD16 and DNAM-1 on NK cells was prevented by ascites-derived immunoglobulins during NK cell activation. Conclusion Our data show that high protein concentrations in biological fluids are able to suppress antitumoral activity of NK cells independent from the mechanism mediated by imbalanced electrolytes. The competitive interference between immunoglobulins of ascites and specific therapeutic antibodies could diminish the efficacy of antibody-based therapies and should be considered in antibody-based immunotherapies.
Collapse
Affiliation(s)
- Antonio Hrvat
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Sonja Benders
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
- Department for Trauma Surgery and Orthopedics, St. Joseph Hospital Kupferdreh, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Sven Brandau
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen-Düsseldorf, Essen, Germany
| | - Nina Mallmann-Gottschalk
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
- Department of Gynecology and Obstetrics, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
17
|
Chung KP, Su JY, Wang YF, Budiarto BR, Yeh YC, Cheng JC, Keng LT, Chen YJ, Lu YT, Juan YH, Nakahira K, Ruan SY, Chien JY, Chang HT, Jerng JS, Huang YT, Chen SY, Yu CJ. Immunometabolic features of natural killer cells are associated with infection outcomes in critical illness. Front Immunol 2024; 15:1334882. [PMID: 38426112 PMCID: PMC10902670 DOI: 10.3389/fimmu.2024.1334882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 03/02/2024] Open
Abstract
Immunosuppression increases the risk of nosocomial infection in patients with chronic critical illness. This exploratory study aimed to determine the immunometabolic signature associated with nosocomial infection during chronic critical illness. We prospectively recruited patients who were admitted to the respiratory care center and who had received mechanical ventilator support for more than 10 days in the intensive care unit. The study subjects were followed for the occurrence of nosocomial infection until 6 weeks after admission, hospital discharge, or death. The cytokine levels in the plasma samples were measured. Single-cell immunometabolic regulome profiling by mass cytometry, which analyzed 16 metabolic regulators in 21 immune subsets, was performed to identify immunometabolic features associated with the risk of nosocomial infection. During the study period, 37 patients were enrolled, and 16 patients (43.2%) developed nosocomial infection. Unsupervised immunologic clustering using multidimensional scaling and logistic regression analyses revealed that expression of nuclear respiratory factor 1 (NRF1) and carnitine palmitoyltransferase 1a (CPT1a), key regulators of mitochondrial biogenesis and fatty acid transport, respectively, in natural killer (NK) cells was significantly associated with nosocomial infection. Downregulated NRF1 and upregulated CPT1a were found in all subsets of NK cells from patients who developed a nosocomial infection. The risk of nosocomial infection is significantly correlated with the predictive score developed by selecting NK cell-specific features using an elastic net algorithm. Findings were further examined in an independent cohort of COVID-19-infected patients, and the results confirm that COVID-19-related mortality is significantly associated with mitochondria biogenesis and fatty acid oxidation pathways in NK cells. In conclusion, this study uncovers that NK cell-specific immunometabolic features are significantly associated with the occurrence and fatal outcomes of infection in critically ill population, and provides mechanistic insights into NK cell-specific immunity against microbial invasion in critical illness.
Collapse
Affiliation(s)
- Kuei-Pin Chung
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jia-Ying Su
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Yi-Fu Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bugi Ratno Budiarto
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Chang Yeh
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jui-Chen Cheng
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Ta Keng
- Department of Internal Medicine, National Taiwan University Hospital, Hsinchu, Taiwan
| | - Yi-Jung Chen
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Ting Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsiu Juan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kiichi Nakahira
- Department of Pharmacology, Nara Medical University, Kashihara, Nara, Japan
| | - Sheng-Yuan Ruan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jung-Yien Chien
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hou-Tai Chang
- Department of Critical Care Medicine, Far Eastern Memorial Hospital, New Taipei, Taiwan
- Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan, Taiwan
| | - Jih-Shuin Jerng
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Hsinchu, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Jia H, Yang H, Xiong H, Luo KQ. NK cell exhaustion in the tumor microenvironment. Front Immunol 2023; 14:1303605. [PMID: 38022646 PMCID: PMC10653587 DOI: 10.3389/fimmu.2023.1303605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Natural killer (NK) cells kill mutant cells through death receptors and cytotoxic granules, playing an essential role in controlling cancer progression. However, in the tumor microenvironment (TME), NK cells frequently exhibit an exhausted status, which impairs their immunosurveillance function and contributes to tumor immune evasion. Emerging studies are ongoing to reveal the properties and mechanisms of NK cell exhaustion in the TME. In this review, we will briefly introduce the maturation, localization, homeostasis, and cytotoxicity of NK cells. We will then summarize the current understanding of the main mechanisms underlying NK cell exhaustion in the TME in four aspects: dysregulation of inhibitory and activating signaling, tumor cell-derived factors, immunosuppressive cells, and metabolism and exhaustion. We will also discuss the therapeutic approaches currently being developed to reverse NK cell exhaustion and enhance NK cell cytotoxicity in the TME.
Collapse
Affiliation(s)
- Hao Jia
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Hongmei Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Huaxing Xiong
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, China
| |
Collapse
|
19
|
Jiang H, Jiang J. Balancing act: the complex role of NK cells in immune regulation. Front Immunol 2023; 14:1275028. [PMID: 38022497 PMCID: PMC10652757 DOI: 10.3389/fimmu.2023.1275028] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Natural killer (NK) cells, as fundamental components of innate immunity, can quickly react to abnormalities within the body. In-depth research has revealed that NK cells possess regulatory functions not only in innate immunity but also in adaptive immunity under various conditions. Multiple aspects of the adaptive immune process are regulated through NK cells. In our review, we have integrated multiple studies to illuminate the regulatory function of NK cells in regulating B cell and T cell responses during adaptive immune processes, focusing on aspects including viral infections and the tumor microenvironment (TME). These insights provide us with many new understandings on how NK cells regulate different phases of the adaptive immune response.
Collapse
Affiliation(s)
- Hongwei Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
20
|
Shigemura T, Perrot N, Huang Z, Bhatt RS, Sheshdeh AB, Ahmar NE, Ghandour F, Signoretti S, McDermott DF, Freeman GJ, Mahoney KM. Regulation of HHLA2 expression in kidney cancer and myeloid cells. BMC Cancer 2023; 23:1039. [PMID: 37891555 PMCID: PMC10605970 DOI: 10.1186/s12885-023-11496-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The immune checkpoint HERV-H LTR-associating 2 (HHLA2) is expressed in kidney cancer and various other tumor types. Therapeutics targeting HHLA2 or its inhibitory receptor KIR3DL3 are being developed for solid tumors, including renal cell carcinoma (RCC). However, the regulation of HHLA2 expression remains poorly understood. A better understanding of HHLA2 regulation in tumor cells and the tumor microenvironment is crucial for the successful translation of these therapeutic agents into clinical applications. METHODS Flow cytometry and quantitative real-time PCR were used to analyze HHLA2 expression in primary kidney tumors ex vivo and during in vitro culture. HHLA2 expression in A498 and 786-O ccRCC cell lines was examined in vitro and in subcutaneous tumor xenografts in NSG mice. Monocytes and dendritic cells were analyzed for HHLA2 expression. We tested a range of cytokines and culture conditions, including hypoxia, to induce HHLA2 expression. RESULTS Analysis of HHLA2 expression revealed that HHLA2 is expressed on tumor cells in primary kidney tumors ex vivo; however, its expression gradually diminishes during a 4-week in vitro culture period. A498 and 786-O ccRCC tumor cell lines do not express HHLA2 in vitro, but HHLA2 expression was observed when grown as subcutaneous xenografts in NSG immunodeficient mice. Induction experiments using various cytokines and culture conditions failed to induce HHLA2 expression in A498 and 786-O tumor cell lines in vitro. Analysis of HHLA2 expression in monocytes and dendritic cells demonstrated that only IL-10 and BMP4, along with IL-1β and IL-6 to a lesser extent, modestly enhanced HHLA2 protein and mRNA expression. CONCLUSIONS HHLA2 expression is induced on kidney cancer cells in vivo by a tumor microenvironmental signal that is not present in vitro. HHLA2 expression is differentially regulated in kidney cancer epithelial cells and monocytes. Cytokines, particularly IL10, that induce HHLA2 expression in monocytes fail to upregulate HHLA2 expression in tumor cell lines in vitro. These findings underscore the importance of the interplay between tumor cell and tumor microenvironmental signals in the regulation of HHLA2. Further investigation is warranted to elucidate the mechanisms involved in HHLA2 regulation and its implications for therapeutic development.
Collapse
Affiliation(s)
- Tomonari Shigemura
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA, 02215, USA
| | - Nahuel Perrot
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Zimo Huang
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Rupal S Bhatt
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Aseman Bagheri Sheshdeh
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA
| | - Nourhan El Ahmar
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA
| | - Fatme Ghandour
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA
| | - David F McDermott
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA, 02215, USA.
| | - Kathleen M Mahoney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA, 02215, USA.
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
21
|
Ji ZZ, Chan MKK, Chan ASW, Leung KT, Jiang X, To KF, Wu Y, Tang PMK. Tumour-associated macrophages: versatile players in the tumour microenvironment. Front Cell Dev Biol 2023; 11:1261749. [PMID: 37965573 PMCID: PMC10641386 DOI: 10.3389/fcell.2023.1261749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Tumour-Associated Macrophages (TAMs) are one of the pivotal components of the tumour microenvironment. Their roles in the cancer immunity are complicated, both pro-tumour and anti-cancer activities are reported, including not only angiogenesis, extracellular matrix remodeling, immunosuppression, drug resistance but also phagocytosis and tumour regression. Interestingly, TAMs are highly dynamic and versatile in solid tumours. They show anti-cancer or pro-tumour activities, and interplay between the tumour microenvironment and cancer stem cells and under specific conditions. In addition to the classic M1/M2 phenotypes, a number of novel dedifferentiation phenomena of TAMs are discovered due to the advanced single-cell technology, e.g., macrophage-myofibroblast transition (MMT) and macrophage-neuron transition (MNT). More importantly, emerging information demonstrated the potential of TAMs on cancer immunotherapy, suggesting by the therapeutic efficiency of the checkpoint inhibitors and chimeric antigen receptor engineered cells based on macrophages. Here, we summarized the latest discoveries of TAMs from basic and translational research and discussed their clinical relevance and therapeutic potential for solid cancers.
Collapse
Affiliation(s)
- Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
22
|
Ateya A, Safhi FA, El-Emam H, Al-Ghadi MQ, Abdo M, Fericean L, Olga R, Mihaela O, Hizam MM, Mamdouh M, Abu El-Naga EM, Raslan WS. DNA Polymorphisms and mRNA Levels of Immune Biomarkers as Candidates for Inflammatory Postpartum Disorders Susceptibility in Italian Buffaloes. Vet Sci 2023; 10:573. [PMID: 37756095 PMCID: PMC10534879 DOI: 10.3390/vetsci10090573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
The immunological genes that may interact with inflammatory postpartum diseases in Italian buffaloes were examined in this study. A total number of 120 female Italian buffaloes (60 normal and 60 with inflammatory reproductive diseases) were employed. Each buffalo's jugular vein was pierced to get five milliliters of blood. To obtain whole blood and extract DNA and RNA, the blood was placed within tubes containing sodium fluoride or EDTA anticoagulants. The immunological (IKBKG, LGALS, IL1B, CCL2, RANTES, MASP2, HMGB1, and S-LZ) genes' nucleotide sequence differences between healthy buffaloes and buffaloes affected by inflammatory reproductive diseases were found by employing PCR-DNA sequencing. According to Fisher's exact test (p ˂ 0.01), there were noticeably different probabilities of all major nucleotide changes spreading among buffalo groups with and without reproductive problems. Buffaloes were significantly more likely to express the examined genes when they had inflammatory reproductive diseases. The outcomes might support the significance of these markers' nucleotide variations and gene expression patterns as indicators of the prevalence of inflammatory reproductive disorders and provide a workable buffalo management policy.
Collapse
Affiliation(s)
- Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Huda El-Emam
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt;
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania; (L.F.); (O.M.)
| | - Rada Olga
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania; (L.F.); (O.M.)
| | - Ostan Mihaela
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania; (L.F.); (O.M.)
| | - Manar M. Hizam
- College of Pharmacy, National University of Science and Technology, Nasiriyah 64001, Iraq;
| | - Maha Mamdouh
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; (M.M.); (W.S.R.)
| | - Eman M. Abu El-Naga
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt;
| | - Walaa S. Raslan
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; (M.M.); (W.S.R.)
| |
Collapse
|
23
|
Cai S, Dai S, Lin R, Huang C, Zeng Y, Diao L, Lian R, Tu W. The effectiveness and safety of intrauterine infusion of autologous regulatory T cells (Tregs) in patients with recurrent pregnancy loss and low levels of endometrial FoxP3 + cells: A retrospective cohort study. Am J Reprod Immunol 2023; 90:e13735. [PMID: 37491931 DOI: 10.1111/aji.13735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 07/27/2023] Open
Abstract
PROBLEM Regulatory T cells (Tregs) are a specialized type of T cells that help maintain immune tolerance and homeostasis. The potential of Tregs cell-based therapies in treating diseases has been demonstrated in several clinical trials, which have shown promising outcomes and high safety in autoimmune diseases, transplant rejection, and graft-versus-host disease. However, their effectiveness and safety in improving endometrial receptivity and reducing pregnancy loss in human reproduction are unknown. METHOD OF STUDY The study used a retrospective design and included patients with recurrent pregnancy loss (RPL) and lower levels of endometrial FoxP3+ Tregs. Patients in the Tregs group (n = 33) received intrauterine Tregs infusion three times during the follicular phase, while the control group (n = 28) did not receive any intrauterine infusion. RESULTS The intrauterine infusion of autologous Tregs increased the levels of FoxP3+ Tregs and CD56+ NK cells. Patients in the Treg group had higher live birth rates and lower miscarriage rates, especially early miscarriage rates. However, the two groups had no differences in the implantation rate, clinical pregnancy rate, and percentage of preterm delivery. CONCLUSIONS The findings suggest that intrauterine Tregs infusion may be a potential therapeutic approach for RPL. Further research in larger clinical trials is needed to confirm these findings.
Collapse
Affiliation(s)
- Songchen Cai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Su Dai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Rong Lin
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Ruochun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Li J, Wang P, Zhou T, Jiang W, Wu H, Zhang S, Deng L, Wang H. Neuroprotective effects of interleukin 10 in spinal cord injury. Front Mol Neurosci 2023; 16:1214294. [PMID: 37492521 PMCID: PMC10363608 DOI: 10.3389/fnmol.2023.1214294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Spinal cord injury (SCI) starts with a mechanical and/or bio-chemical insult, followed by a secondary phase, leading progressively to severe collapse of the nerve tissue. Compared to the peripheral nervous system, injured spinal cord is characterized by weak axonal regeneration, which leaves most patients impaired or paralyzed throughout lifetime. Therefore, confining, alleviating, or reducing the expansion of secondary injuries and promoting functional connections between rostral and caudal regions of lesion are the main goals of SCI therapy. Interleukin 10 (IL-10), as a pivotal anti-inflammatory and immunomodulatory cytokine, exerts a wide spectrum of positive effects in the treatment of SCI. The mechanisms underlying therapeutic effects mainly include anti-oxidative stress, limiting excessive inflammation, anti-apoptosis, antinociceptive effects, etc. Furthermore, IL-10 displays synergistic effects when combined with cell transplantation or neurotrophic factor, enhancing treatment outcomes. This review lists pleiotropic mechanisms underlying IL-10-mediated neuroprotection after SCI, which may offer fresh perspectives for clinical translation.
Collapse
Affiliation(s)
- Juan Li
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Pei Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Wenwen Jiang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Hang Wu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Shengqi Zhang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Lingxiao Deng
- Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| |
Collapse
|
25
|
Carlini V, Noonan DM, Abdalalem E, Goletti D, Sansone C, Calabrone L, Albini A. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol 2023; 14:1161067. [PMID: 37359549 PMCID: PMC10287165 DOI: 10.3389/fimmu.2023.1161067] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine that has a fundamental role in modulating inflammation and in maintaining cell homeostasis. It primarily acts as an anti-inflammatory cytokine, protecting the body from an uncontrolled immune response, mostly through the Jak1/Tyk2 and STAT3 signaling pathway. On the other hand, IL-10 can also have immunostimulating functions under certain conditions. Given the pivotal role of IL-10 in immune modulation, this cytokine could have relevant implications in pathologies characterized by hyperinflammatory state, such as cancer, or infectious diseases as in the case of COVID-19 and Post-COVID-19 syndrome. Recent evidence proposed IL-10 as a predictor of severity and mortality for patients with acute or post-acute SARS-CoV-2 infection. In this context, IL-10 can act as an endogenous danger signal, released by tissues undergoing damage in an attempt to protect the organism from harmful hyperinflammation. Pharmacological strategies aimed to potentiate or restore IL-10 immunomodulatory action may represent novel promising avenues to counteract cytokine storm arising from hyperinflammation and effectively mitigate severe complications. Natural bioactive compounds, derived from terrestrial or marine photosynthetic organisms and able to increase IL-10 expression, could represent a useful prevention strategy to curb inflammation through IL-10 elevation and will be discussed here. However, the multifaceted nature of IL-10 has to be taken into account in the attempts to modulate its levels.
Collapse
Affiliation(s)
- Valentina Carlini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Douglas M. Noonan
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eslam Abdalalem
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Napoli, Italy
| | - Luana Calabrone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) European Institute of Oncology IEO-, Milan, Italy
| |
Collapse
|
26
|
Portale F, Di Mitri D. NK Cells in Cancer: Mechanisms of Dysfunction and Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24119521. [PMID: 37298470 DOI: 10.3390/ijms24119521] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Natural killer cells (NK) are innate lymphocytes endowed with the ability to recognize and kill cancer cells. Consequently, adoptive transfer of autologous or allogeneic NK cells represents a novel opportunity in cancer treatment that is currently under clinical investigation. However, cancer renders NK cells dysfunctional, thus restraining the efficacy of cell therapies. Importantly, extensive effort has been employed to investigate the mechanisms that restrain NK cell anti-tumor function, and the results have offered forthcoming solutions to improve the efficiency of NK cell-based therapies. The present review will introduce the origin and features of NK cells, summarize the mechanisms of action and causes of dysfunction of NK cells in cancer, and frame NK cells in the tumoral microenvironment and in the context of immunotherapies. Finally, we will discuss therapeutic potential and current limitations of NK cell adoptive transfer in tumors.
Collapse
Affiliation(s)
- Federica Portale
- Tumor Microenviroment Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Diletta Di Mitri
- Tumor Microenviroment Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| |
Collapse
|
27
|
Al-Sharif M, Abdo M, Shabrawy OE, El-Naga EMA, Fericean L, Banatean-Dunea I, Ateya A. Investigating Polymorphisms and Expression Profile of Immune, Antioxidant, and Erythritol-Related Genes for Limiting Postparturient Endometritis in Holstein Cattle. Vet Sci 2023; 10:370. [PMID: 37368756 DOI: 10.3390/vetsci10060370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
This study looked at genetic polymorphisms and transcript levels of immune, antioxidant, and erythritol-related markers for postparturient endometritis prediction and tracking in Holstein dairy cows. One hundred and thirty female dairy cows (65 endometritis affected and 65 apparently healthy) were used. Nucleotide sequence variations between healthy and endometritis-affected cows were revealed using PCR-DNA sequencing for immune (TLR4, TLR7, TNF-α, IL10, NCF4, and LITAF), antioxidant (ATOX1, GST, and OXSR1), and erythritol-related (TKT, RPIA, and AMPD1) genes. Chi-square investigation exposed a noteworthy variance amongst cow groups with and without endometritis in likelihood of dispersal of all distinguished nucleotide variants (p < 0.05). The IL10, ATOX1, and GST genes were expressed at substantially lower levels in endometritis-affected cows. Gene expression levels were considerably higher in endometritis-affected cows than in resistant ones for the genes TLR4, TLR7, TNF-α, NCF4, LITAF, OXSR1, TKT, RPIA, and AMPD1. The sort of marker and vulnerability or resistance to endometritis had a significant impact on the transcript levels of the studied indicators. The outcomes might confirm the importance of nucleotide variants along with gene expression patterns as markers of postparturient endometritis susceptibility/resistance and provide a workable control plan for Holstein dairy cows.
Collapse
Affiliation(s)
- Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Omnia El Shabrawy
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menofia University, Menofia 32951, Egypt
| | - Eman M Abu El-Naga
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| | - Ioan Banatean-Dunea
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
28
|
Huang P, Fan X, Yu H, Zhang K, Li H, Wang Y, Xue F. Glucose metabolic reprogramming and its therapeutic potential in obesity-associated endometrial cancer. J Transl Med 2023; 21:94. [PMID: 36750868 PMCID: PMC9906873 DOI: 10.1186/s12967-022-03851-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/24/2022] [Indexed: 02/09/2023] Open
Abstract
Endometrial cancer (EC) is a common gynecological cancer that endangers women health. Although substantial progresses of EC management have been achieved in recent years, the incidence of EC still remains high. Obesity has been a common phenomenon worldwide that increases the risk of EC. However, the mechanism associating obesity and EC has not been fully understood. Metabolic reprogramming as a remarkable characteristic of EC is currently emerging. As the primary factor of metabolic syndrome, obesity promotes insulin resistance, hyperinsulinemia and hyperglycaemia. This metabolic disorder remodels systemic status, which increases EC risk and is related with poor prognosis. Glucose metabolism in EC cells is complex and mediated by glycolysis and mitochondria to ensure energy requirement. Factors that affect glucose metabolism may have an impact on EC initiation and progression. In this study, we review the glucose metabolic reprogramming of EC not only systemic metabolism but also inherent tumor cell metabolism. In particular, the role of glucose metabolic regulation in malignant properties of EC will be focused. Understanding of metabolic profile and glucose metabolism-associated regulation mechanism in EC may provide novel perspective for treatment.
Collapse
Affiliation(s)
- Pengzhu Huang
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangqin Fan
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongfei Yu
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaiwen Zhang
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Fengxia Xue
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
29
|
So L, Obata-Ninomiya K, Hu A, Muir VS, Takamori A, Song J, Buckner JH, Savan R, Ziegler SF. Regulatory T cells suppress CD4+ effector T cell activation by controlling protein synthesis. J Exp Med 2023; 220:213791. [PMID: 36598533 PMCID: PMC9827529 DOI: 10.1084/jem.20221676] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Regulatory T cells (Tregs) suppress the activation and subsequent effector functions of CD4 effector T cells (Teffs). However, molecular mechanisms that enforce Treg-mediated suppression in CD4 Teff are unclear. We found that Tregs suppressed activation-induced global protein synthesis in CD4 Teffs prior to cell division. We analyzed genome-wide changes in the transcriptome and translatome of activated CD4 Teffs. We show that mRNAs encoding for the protein synthesis machinery are regulated at the level of translation in activated CD4 Teffs by Tregs. Tregs suppressed global protein synthesis of CD4 Teffs by specifically inhibiting mRNAs of the translation machinery at the level of mTORC1-mediated translation control through concerted action of immunosuppressive cytokines IL-10 and TGFβ. Lastly, we found that the therapeutic targeting of protein synthesis with the RNA helicase eIF4A inhibitor rocaglamide A can alleviate inflammatory CD4 Teff activation caused by acute Treg depletion in vivo. These data show that peripheral tolerance is enforced by Tregs through mRNA translational control in CD4 Teffs.
Collapse
Affiliation(s)
- Lomon So
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA,Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | | | - Alex Hu
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Virginia S. Muir
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Ayako Takamori
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Jing Song
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Jane H. Buckner
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA,Correspondence to Ram Savan:
| | - Steven F. Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA,Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA,Steven F. Ziegler:
| |
Collapse
|
30
|
Mendoza-Valderrey A, Alvarez M, De Maria A, Margolin K, Melero I, Ascierto ML. Next Generation Immuno-Oncology Strategies: Unleashing NK Cells Activity. Cells 2022; 11:3147. [PMID: 36231109 PMCID: PMC9562848 DOI: 10.3390/cells11193147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, immunotherapy has become a powerful therapeutic option against multiple malignancies. The unique capacity of natural killer (NK) cells to attack cancer cells without antigen specificity makes them an optimal immunotherapeutic tool for targeting tumors. Several approaches are currently being pursued to maximize the anti-tumor properties of NK cells in the clinic, including the development of NK cell expansion protocols for adoptive transfer, the establishment of a favorable microenvironment for NK cell activity, the redirection of NK cell activity against tumor cells, and the blockage of inhibitory mechanisms that constrain NK cell function. We here summarize the recent strategies in NK cell-based immunotherapies and discuss the requirement to further optimize these approaches for enhancement of the clinical outcome of NK cell-based immunotherapy targeting tumors.
Collapse
Affiliation(s)
- Alberto Mendoza-Valderrey
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Andrea De Maria
- Department of Health Sciences, University of Genoa, 16126 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Kim Margolin
- Borstein Family Melanoma Program, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Maria Libera Ascierto
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
31
|
Nath P, Majumder D, Debnath R, Debnath M, Singh Sekhawat S, Maiti D. Immunotherapeutic potential of ethanolic olive leaves extract (EOLE) and IL-28B combination therapy in ENU induced animal model of leukemia. Cytokine 2022; 156:155913. [DOI: 10.1016/j.cyto.2022.155913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/24/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
|
32
|
Rebhun RB, York D, Cruz SM, Judge SJ, Razmara AM, Farley LE, Brady RV, Johnson EG, Burton JH, Willcox J, Wittenburg LA, Woolard K, Dunai C, Stewart SL, Sparger EE, Withers SS, Gingrich AA, Skorupski KA, Al-Nadaf S, LeJeune AT, Culp WT, Murphy WJ, Kent MS, Canter RJ. Inhaled recombinant human IL-15 in dogs with naturally occurring pulmonary metastases from osteosarcoma or melanoma: a phase 1 study of clinical activity and correlates of response. J Immunother Cancer 2022; 10:e004493. [PMID: 35680383 PMCID: PMC9174838 DOI: 10.1136/jitc-2022-004493] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Although recombinant human interleukin-15 (rhIL-15) has generated much excitement as an immunotherapeutic agent for cancer, activity in human clinical trials has been modest to date, in part due to the risks of toxicity with significant dose escalation. Since pulmonary metastases are a major site of distant failure in human and dog cancers, we sought to investigate inhaled rhIL-15 in dogs with naturally occurring lung metastases from osteosarcoma (OSA) or melanoma. We hypothesized a favorable benefit/risk profile given the concentrated delivery to the lungs with decreased systemic exposure. EXPERIMENTAL DESIGN We performed a phase I trial of inhaled rhIL-15 in dogs with gross pulmonary metastases using a traditional 3+3 cohort design. A starting dose of 10 µg twice daily × 14 days was used based on human, non-human primate, and murine studies. Safety, dose-limiting toxicities (DLT), and maximum tolerated dose (MTD) were the primary objectives, while response rates, progression-free and overall survival (OS), and pharmacokinetic and immune correlative analyses were secondary. RESULTS From October 2018 to December 2020, we enrolled 21 dogs with 18 dogs reaching the 28-day response assessment to be evaluable. At dose level 5 (70 μg), we observed two DLTs, thereby establishing 50 µg twice daily × 14 days as the MTD and recommended phase 2 dose. Among 18 evaluable dogs, we observed one complete response >1 year, one partial response with resolution of multiple target lesions, and five stable disease for an overall clinical benefit rate of 39%. Plasma rhIL-15 quantitation revealed detectable and sustained rhIL-15 concentrations between 1-hour and 6 hour postnebulization. Decreased pretreatment lymphocyte counts were significantly associated with clinical benefit. Cytotoxicity assays of banked peripheral blood mononuclear cells revealed significant increases in peak cytotoxicity against canine melanoma and OSA targets that correlated with OS. CONCLUSIONS In this first-in-dog clinical trial of inhaled rhIL-15 in dogs with advanced metastatic disease, we observed promising clinical activity when administered as a monotherapy for only 14 days. These data have significant clinical and biological implications for both dogs and humans with refractory lung metastases and support exploration of combinatorial therapies using inhaled rhIL-15.
Collapse
Affiliation(s)
- Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Daniel York
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Sylvia Margret Cruz
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Sean J Judge
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Aryana M Razmara
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Lauren E Farley
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Rachel V Brady
- College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Eric G Johnson
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Jenna H Burton
- Department of Clinical Sciences, Colorado State University College of Veterinary Medicine, Fort Collins, Colorado, USA
| | - Jennifer Willcox
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Luke A Wittenburg
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Kevin Woolard
- Department of Pathology, University of California, Davis, California, USA
| | - Cordelia Dunai
- Department of Dermatology, University of California, Davis, California, USA
| | - Susan L Stewart
- Department of Public Health Sciences, University of California, Davis, California, USA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, University of California, Davis, California, USA
| | - Sita S Withers
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Alicia A Gingrich
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Katherine A Skorupski
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Sami Al-Nadaf
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Amandine T LeJeune
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - William Tn Culp
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Robert J Canter
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, California, USA
| |
Collapse
|
33
|
Elemam NM, Hammoudeh S, Salameh L, Mahboub B, Alsafar H, Talaat IM, Habib P, Siddiqui M, Hassan KO, Al-Assaf OY, Taneera J, Sulaiman N, Hamoudi R, Maghazachi AA, Hamid Q, Saber-Ayad M. Identifying Immunological and Clinical Predictors of COVID-19 Severity and Sequelae by Mathematical Modeling. Front Immunol 2022; 13:865845. [PMID: 35529862 PMCID: PMC9067542 DOI: 10.3389/fimmu.2022.865845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
Since its emergence as a pandemic in March 2020, coronavirus disease (COVID-19) outcome has been explored via several predictive models, using specific clinical or biochemical parameters. In the current study, we developed an integrative non-linear predictive model of COVID-19 outcome, using clinical, biochemical, immunological, and radiological data of patients with different disease severities. Initially, the immunological signature of the disease was investigated through transcriptomics analysis of nasopharyngeal swab samples of patients with different COVID-19 severity versus control subjects (exploratory cohort, n=61), identifying significant differential expression of several cytokines. Accordingly, 24 cytokines were validated using a multiplex assay in the serum of COVID-19 patients and control subjects (validation cohort, n=77). Predictors of severity were Interleukin (IL)-10, Programmed Death-Ligand-1 (PDL-1), Tumor necrosis factors-α, absolute neutrophil count, C-reactive protein, lactate dehydrogenase, blood urea nitrogen, and ferritin; with high predictive efficacy (AUC=0.93 and 0.98 using ROC analysis of the predictive capacity of cytokines and biochemical markers, respectively). Increased IL-6 and granzyme B were found to predict liver injury in COVID-19 patients, whereas interferon-gamma (IFN-γ), IL-1 receptor-a (IL-1Ra) and PD-L1 were predictors of remarkable radiological findings. The model revealed consistent elevation of IL-15 and IL-10 in severe cases. Combining basic biochemical and radiological investigations with a limited number of curated cytokines will likely attain accurate predictive value in COVID-19. The model-derived cytokines highlight critical pathways in the pathophysiology of the COVID-19 with insight towards potential therapeutic targets. Our modeling methodology can be implemented using new datasets to identify key players and predict outcomes in new variants of COVID-19.
Collapse
Affiliation(s)
- Noha M. Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Sarah Hammoudeh
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Dubai Health Authority, Rashid Hospital, Dubai, United Arab Emirates
| | - Bassam Mahboub
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Dubai Health Authority, Rashid Hospital, Dubai, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Emirates Bio-Research Centre, Ministry of Interior, Abu Dhabi, United Arab Emirates
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Peter Habib
- School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Mehmood Siddiqui
- Dubai Health Authority, Rashid Hospital, Dubai, United Arab Emirates
| | | | | | - Jalal Taneera
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Nabil Sulaiman
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Azzam A. Maghazachi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
34
|
Yan S, Dong J, Qian C, Chen S, Xu Q, Lei H, Wang X. The mTORC1 Signaling Support Cellular Metabolism to Dictate Decidual NK Cells Function in Early Pregnancy. Front Immunol 2022; 13:771732. [PMID: 35359988 PMCID: PMC8960317 DOI: 10.3389/fimmu.2022.771732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
Cellular metabolism plays an important role in regulating both human and murine NK cell functions. However, it remains unclear whether cellular metabolic process impacts on the function of decidual NK cells (dNK), essential tissue-resident immune cells maintaining the homeostasis of maternal-fetal interface. Remarkably, we found that glycolysis blockage enhances dNK VEGF-A production but restrains its proliferation. Furthermore, levels of IFN-γ and TNF-α secreted by dNK get decreased when glycolysis or oxidative phosphorylation (OXPHOS) is inhibited. Additionally, glycolysis, OXPHOS, and fatty acid oxidation disruption has little effects on the secretion and the CD107a-dependent degranulation of dNK. Mechanistically, we discovered that the mammalian target of rapamycin complex 1 (mTORC1) signaling inhibition leads to decreased glycolysis and OXPHOS in dNK. These limited metabolic processes are associated with attenuated dNK functions, which include restricted production of cytokines including IFN-γ and TNF-α, diminished CD107a-dependent degranulation, and restrained dNK proliferation. Finally, we reported that the protein levels of several glycolysis-associated enzymes are altered and the mTORC1 activity is significantly lower in the decidua of women with recurrent pregnancy loss (RPL) compared with normal pregnancy, which might give new insights about the pathogenesis of RPL. Collectively, our data demonstrate that glucose metabolism and mTORC1 signaling support dNK functions in early pregnancy.
Collapse
Affiliation(s)
- Song Yan
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jie Dong
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Chenxi Qian
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shuqiang Chen
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Qian Xu
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hui Lei
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xiaohong Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
35
|
Pro- and Anti-Inflammatory Cytokines in the Context of NK Cell-Trophoblast Interactions. Int J Mol Sci 2022; 23:ijms23042387. [PMID: 35216502 PMCID: PMC8878424 DOI: 10.3390/ijms23042387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
During pregnancy, uterine NK cells interact with trophoblast cells. In addition to contact interactions, uterine NK cells are influenced by cytokines, which are secreted by the cells of the decidua microenvironment. Cytokines can affect the phenotypic characteristics of NK cells and change their functional activity. An imbalance of pro- and anti-inflammatory signals can lead to the development of reproductive pathology. The aim of this study was to assess the effects of cytokines on NK cells in the presence of trophoblast cells in an in vitro model. We used TNFα, IFNγ, TGFβ and IL-10; the NK-92 cell line; and peripheral blood NK cells (pNKs) from healthy, non-pregnant women. For trophoblast cells, the JEG-3 cell line was used. In the monoculture of NK-92 cells, TNFα caused a decrease in CD56 expression. In the coculture of NK cells with JEG-3 cells, TNFα increased the expression of NKG2C and NKG2A by NK-92 cells. Under the influence of TGFβ, the expression of CD56 increased and the expression of NKp30 decreased in the monoculture. After the preliminary cultivation of NK-92 cells in the presence of TGFβ, their cytotoxicity increased. In the case of adding TGFβ to the PBMC culture, as well as coculturing PBMCs and JEG-3 cells, the expression of CD56 and NKp44 by pNK cells was reduced. The differences in the effects of TGFβ in the model using NK-92 cells and pNK cells may be associated with the possible influence of monocytes or other lymphoid cells from the mononuclear fraction.
Collapse
|
36
|
Yuan J, Chen L, Wang J, Xia S, Huang J, Zhou L, Feng C, Hu X, Zhou Z, Ran H. Adenosine A2A Receptor Suppressed Astrocyte-Mediated Inflammation Through the Inhibition of STAT3/YKL-40 Axis in Mice With Chronic Cerebral Hypoperfusion-induced White Matter Lesions. Front Immunol 2022; 13:841290. [PMID: 35237278 PMCID: PMC8882648 DOI: 10.3389/fimmu.2022.841290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
White matter lesions are an important pathological manifestation of cerebral small vessel disease, with inflammation playing a pivotal role in their development. The adenosine A2a receptor (ADORA2A) is known to inhibit the inflammation mediated by microglia, but its effect on astrocytes is unknown. Additionally, although the level of YKL-40 (expressed mainly in astrocytes) has been shown to be elevated in the model of white matter lesions induced by chronic cerebral hypoperfusion, the specific regulatory mechanism involved is not clear. In this study, we established in vivo and in vitro chronic cerebral hypoperfusion models to explore whether the ADORA2A regulated astrocyte-mediated inflammation through STAT3/YKL-40 axis and using immunohistochemical, western blotting, ELISA, PCR, and other techniques to verify the effect of astrocytes ADORA2A on the white matter injury. The in vivo experiments showed that activation of the ADORA2A decreased the expression of both STAT3 and YKL-40 in the astrocytes and alleviated the white matter injury, whereas its inhibition had the opposite effects. Similarly, ADORA2A inhibition significantly increased the expression of STAT3 and YKL-40 in astrocytes in vitro, with more proinflammatory cytokines being released by astrocytes. STAT3 inhibition enhanced the inhibitory effect of ADORA2A on YKL-40 synthesis, whereas its activation reversed the phenomenon. These results suggest that the activation of ADORA2A in astrocytes can inhibit the inflammation mediated by the STAT3/YKL-40 axis and thereby reduce white matter injury in cerebral small vessel disease.
Collapse
Affiliation(s)
- Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin Chen
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Wang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Simin Xia
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jialu Huang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Linke Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chengjian Feng
- Department of Medical Engineering, 958th Hospital of the People’s Liberation Army, Chongqing, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Hong Ran, ; Zhenhua Zhou, ; Xiaofei Hu,
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Hong Ran, ; Zhenhua Zhou, ; Xiaofei Hu,
| | - Hong Ran
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Hong Ran, ; Zhenhua Zhou, ; Xiaofei Hu,
| |
Collapse
|
37
|
Harnessing Natural Killer Cells in Non-Small Cell Lung Cancer. Cells 2022; 11:cells11040605. [PMID: 35203256 PMCID: PMC8869885 DOI: 10.3390/cells11040605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. There are two main subtypes: small cell lung cancer (SCLC), and non-small cell lung cancer (NSCLC). NSCLC accounts for 85% of lung cancer diagnoses. Early lung cancer very often has no specific symptoms, and many patients present with late stage disease. Despite the various treatments currently available, many patients experience tumor relapse or develop therapeutic resistance, highlighting the need for more effective therapies. The development of immunotherapies has revolutionized the cancer treatment landscape by enhancing the body’s own immune system to fight cancer. Natural killer (NK) cells are crucial anti-tumor immune cells, and their exclusion from the tumor microenvironment is associated with poorer survival. It is well established that NK cell frequencies and functions are impaired in NSCLC; thus, placing NK cell-based immunotherapies as a desirable therapeutic concept for this malignancy. Immunotherapies such as checkpoint inhibitors are transforming outcomes for NSCLC. This review explores the current treatment landscape for NSCLC, the role of NK cells and their dysfunction in the cancer setting, the advancement of NK cell therapies, and their future utility in NSCLC.
Collapse
|
38
|
Ren Z, Yu Y, Chen C, Yang D, Ding T, Zhu L, Deng J, Xu Z. The Triangle Relationship Between Long Noncoding RNA, RIG-I-like Receptor Signaling Pathway, and Glycolysis. Front Microbiol 2021; 12:807737. [PMID: 34917069 PMCID: PMC8670088 DOI: 10.3389/fmicb.2021.807737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNA (LncRNA), a noncoding RNA over 200nt in length, can regulate glycolysis through metabolic pathways, glucose metabolizing enzymes, and epigenetic reprogramming. Upon viral infection, increased aerobic glycolysis providzes material and energy for viral replication. Mitochondrial antiviral signaling protein (MAVS) is the only protein-specified downstream of retinoic acid-inducible gene I (RIG-I) that bridges the gap between antiviral immunity and glycolysis. MAVS binding to RIG-I inhibits MAVS binding to Hexokinase (HK2), thereby impairing glycolysis, while excess lactate production inhibits MAVS and the downstream antiviral immune response, facilitating viral replication. LncRNAs can also regulate antiviral innate immunity by interacting with RIG-I and downstream signaling pathways and by regulating the expression of interferons and interferon-stimulated genes (ISGs). Altogether, we summarize the relationship between glycolysis, antiviral immunity, and lncRNAs and propose that lncRNAs interact with glycolysis and antiviral pathways, providing a new perspective for the future treatment against virus infection, including SARS-CoV-2.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yueru Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chaoxi Chen
- College of Life Since and Technology, Southwest Minzu University, Chengdu, China
| | - Dingyong Yang
- College of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
39
|
Zhou J, Zhang S, Guo C. Crosstalk between macrophages and natural killer cells in the tumor microenvironment. Int Immunopharmacol 2021; 101:108374. [PMID: 34824036 DOI: 10.1016/j.intimp.2021.108374] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) is jointly constructed by a variety of cell types, including tumor cells, immune cells, fibroblasts, and epithelial cells, among others. The cells within the TME interact with each other and with tumor cells to influence tumor development and progression. As the most abundant immune cells in the TME, macrophages regulate the immune network by not only secreting a large amount of versatile cytokines but also expressing a series of ligands or receptors on the surface to interact with other cells directly. Due to their strong plasticity, they exert both immunostimulatory and immunosuppressive effects in the complex TME. The major effector cells of the immune system that directly target cancer cells include but are not limited to natural killer cells (NKs), dendritic cells (DCs), macrophages, polymorphonuclear leukocytes, mast cells, and cytotoxic T lymphocytes (CTLs). Among them, NK cells are the predominant innate lymphocyte subsets that mediate antitumor and antiviral responses. The activation and inhibition of NK cells are regulated by cytokines and the balance between activating and inhibitory receptors. There is an inextricable regulatory relationship between macrophages and NK cells. Herein, we systematically elaborate on the regulatory network between macrophages and NK cells through soluble mediator crosstalk and cell-to-cell interactions. We believe that a better understanding of the crosstalk between macrophages and NKs in the TME will benefit the development of novel macrophage- or NK cell-focused therapeutic strategies with superior efficacies in cancer therapy.
Collapse
Affiliation(s)
- Jingping Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Shaolong Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
40
|
Jimbu L, Mesaros O, Neaga A, Nanut AM, Tomuleasa C, Dima D, Bocsan C, Zdrenghea M. The Potential Advantage of Targeting Both PD-L1/PD-L2/PD-1 and IL-10-IL-10R Pathways in Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2021; 14:1105. [PMID: 34832887 PMCID: PMC8620891 DOI: 10.3390/ph14111105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
Tumor cells promote the suppression of host anti-tumor type 1 T cell responses by various mechanisms, including the upregulation of surface inhibitory molecules such as programmed death ligand (PD-L)-1, and the production of immunosuppressive cytokines such as interleukin-10 (IL-10). There are over 2000 trials investigating PD-L1 and/or its receptor programmed-death 1 (PD-1) blockade in cancer, leading to the approval of PD-1 or PD-L1 inhibitors in several types of solid cancers and in hematological malignancies. The available data suggest that the molecule PD-L1 on antigen-presenting cells suppresses type 1 T cell immune responses such as cytotoxicity, and that the cytokine IL-10, in addition to downregulating immune responses, increases the expression of inhibitory molecule PD-L1. We hypothesize that the manipulation of both the co-inhibitory network (with anti-PD-L1 blocking antibodies) and suppressor network (with anti-IL-10 blocking antibodies) is an attractive immunotherapeutic intervention for acute myeloid leukemia (AML) patients ineligible for standard treatment with chemotherapy and hematopoietic stem cell transplantation, and with less severe adverse reactions. The proposed combination of these two immunotherapies represents a new approach that can be readily translated into the clinic to improve the therapeutic efficacy of AML disease treatment.
Collapse
Affiliation(s)
- Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania;
| | - Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
- “Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 19-21 Croitorilor Str., 400162 Cluj-Napoca, Romania
| | - Alexandra Neaga
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
| | - Ana Maria Nanut
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania;
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania;
| | - Corina Bocsan
- Department of Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania;
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania;
| |
Collapse
|
41
|
Meggyes M, Nagy DU, Balassa T, Godony K, Peterfalvi A, Szereday L, Polgar B. Influence of Galectin-9 Treatment on the Phenotype and Function of NK-92MI Cells in the Presence of Different Serum Supplements. Biomolecules 2021; 11:biom11081066. [PMID: 34439744 PMCID: PMC8391477 DOI: 10.3390/biom11081066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Galectins are one of the critical players in the tumor microenvironment-tumor crosstalk and the regulation of local immunity. Galectin-9 has been in the limelight in tumor immunology. Galectin-9 possesses its multiplex biological functions both extracellularly and intracellularly, plays a pivotal role in the modulation of adaptive and innate immunity, and induces immune tolerance. NK-92MI cell lines against different malignancies were extensively studied, and recently published trials used genetically chimeric antigen receptor-transfected NK-92MI cells in tumor immunotherapy. Besides the intensive research in tumor immunotherapy, limited information is available on their immune-checkpoint expression and the impact of checkpoint ligands on their effector functions. To uncover the therapeutic potential of modulating Galectin-9-related immunological pathways in NK-cell-based therapy, we investigated the dose-dependent effect of soluble Galectin-9 on the TIM-3 checkpoint receptor and NKG2D, CD69, FasL, and perforin expression of NK-92MI cells. We also examined how their cytotoxicity and cytokine production was altered after Gal-9 treatment and in the presence of different serum supplements using flow cytometric analysis. Our study provides evidence that the Galectin-9/TIM-3 pathway plays an important role in the regulation of NK cell function, and about the modulatory role of Galectin-9 on the cytotoxicity and cytokine production of NK-92MI cells in the presence of different serum supplements. We hope that our results will aid the development of novel NK-cell-based strategies that target Galectin-9/TIM-3 checkpoint in tumors resistant to T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
- Correspondence: ; Tel.: +3672-536001/1907
| | - David U Nagy
- Medical Centre, Cochrane Hungary, University of Pecs, 7623 Pecs, Hungary;
| | - Timea Balassa
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
| | - Krisztina Godony
- Department of Obstetrics and Gynaecology, Medical School, University of Pecs, 17 Edesanyak Street, 7624 Pecs, Hungary;
| | - Agnes Peterfalvi
- Department of Laboratory Medicine, Medical School, University of Pecs, 13 Ifjusag Street, 7624 Pecs, Hungary;
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
| |
Collapse
|