1
|
Hakimi P, Zaboli KA, Golbabapour‐Samakoush M, Azizimohammadi S, Soleimani F, Salmani MH, Teimoori‐Toolabi L. HLA Polymorphisms and COVID-19 Susceptibility and Severity: Insights From an Iranian Patients Cohort. J Cell Mol Med 2025; 29:e70570. [PMID: 40366340 PMCID: PMC12077277 DOI: 10.1111/jcmm.70570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The HLA system is a crucial immune response component against infectious agents, including SARS-CoV-2. Certain polymorphisms may impart varying levels of protection or vulnerability to COVID-19. This research aims to understand the possible relationship between HLA polymorphisms and the susceptibility to COVID-19 and its severity. We recruited 290 hospitalised Iranian COVID-19 patients (130 severe and 160 moderate). Using PCR-SSP methods, we conducted a detailed analysis of polymorphisms in HLA class I (HLA-A, HLA-B, and HLA-C) and II (HLA-DRB1 and HLA-DQB1) molecules at low resolution. The study found that certain HLA alleles, including HLA-B*49, HLA-B*52, HLA-C*12, HLA-DRB1*04, and HLA-DQB1*05, were associated with disease susceptibility. Additionally, HLA-A*23, DRB1*10, and DRB1*13 were indicators of disease severity. The study also noted that individuals carrying the HLA-A*23 allele showed a significant decrease in lymphocyte levels and an elevated likelihood of developing thrombosis. We hypothesise that a maladaptive immune response may occur based on these findings. This might be due to the strong affinity of the HLA-A*23 allele group for presenting a wide range of SARS-CoV-2 peptides. Such a presentation possibly leads to a cytokine storm, followed by lymphocyte apoptosis and an increase in platelet count.
Collapse
Affiliation(s)
- Pooria Hakimi
- Molecular Medicine Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Kasra Arbabi Zaboli
- Molecular Medicine Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | | | | | - Fatemeh Soleimani
- Molecular Medicine Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | | | - Ladan Teimoori‐Toolabi
- Molecular Medicine Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| |
Collapse
|
2
|
Mazzotti L, Borges de Souza P, Azzali I, Angeli D, Nanni O, Sambri V, Semprini S, Bravaccini S, Cerchione C, Gaimari A, Nicolini F, Ancarani V, Martinelli G, Pasetto A, Calderon H, Juan M, Mazza M. Exploring the Relationship Between Humoral and Cellular T Cell Responses Against SARS-CoV-2 in Exposed Individuals From Emilia Romagna Region and COVID-19 Severity. HLA 2025; 105:e70011. [PMID: 39807702 PMCID: PMC11731316 DOI: 10.1111/tan.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
COVID-19 remains a significant global health problem with uncertain long-term consequences for convalescents. We investigated the relationships between anti-N protein antibody levels, severe acute respiratory syndrome (SARS)-CoV-2-associated TCR repertoire parameters, HLA type and epidemiological information from three cohorts of 524 SARS-CoV-2-infected subjects subgrouped in acute phase, seronegative and seropositive convalescents from the Emilia Romagna region. Epidemiological information and anti-N antibody index were associated with TCR repertoire data. HLA type was inferred from TCR repertoire using the HLA3 tool and its association with clonal breadth (CB) and clonal depth (CD) was assessed. Age above 58 years, male and COVID-19 hospitalisation were significantly and independently associated with seropositivity (p = 0.004; p = 0.004; p = 0.04), suggesting an association between high antibody titres and symptoms' severity. As for the TCR repertoire analysis, we found no difference in CB among the cohorts, while CD was higher in seronegative than acute (p = 0.04). However, clustering analysis supported that seronegative patients are endowed with broader CB and deeper CD indicating a compensatory mechanism without effective seroconversion. The CD calculated on the TCRs associated with the single SARS-CoV-2 ORFs in convalescents is higher when compared to the acute. Lastly, we identified and reported on novel HLAs significantly associated with increased risk of hospitalisation such as HLA-C*07:02 carriers (OR = 3.9, CI = 1.1-13.4, p = 0.03) and on HLAs that associate significantly with lower or higher TCR repertoire parameters in a population exposed for the first time to SARS-CoV-2.
Collapse
Affiliation(s)
- Lucia Mazzotti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | | | - Irene Azzali
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Davide Angeli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Oriana Nanni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Vittorio Sambri
- Microbiology UnitThe Great Romagna Area Hub LaboratoryPievesestinaItaly
- DIMECBologna UniversityBolognaItaly
| | - Simona Semprini
- Microbiology UnitThe Great Romagna Area Hub LaboratoryPievesestinaItaly
| | - Sara Bravaccini
- Department of Medicine and SurgeryUniversity of Enna “Kore”EnnaItaly
| | - Claudio Cerchione
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Anna Gaimari
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Fabio Nicolini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Valentina Ancarani
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Giovanni Martinelli
- Department of Hematology and Sciences OncologyInstitute of Haematology “L. and A. Seràgnoli” S. Orsola, University Hospital in BolognaBolognaItaly
| | - Anna Pasetto
- Section for Cell TherapyRadiumhospitalet, Oslo University HospitalOsloNorway
- Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Hugo Calderon
- Department of ImmunologyCentre de Diagnòstic Biomèdic, Hospital Clínic of BarcelonaBarcelonaSpain
| | - Manel Juan
- Department of ImmunologyCentre de Diagnòstic Biomèdic, Hospital Clínic of BarcelonaBarcelonaSpain
| | - Massimiliano Mazza
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| |
Collapse
|
3
|
Tymoniuk B, Borowiec M, Makowska J, Holwek E, Sarnik J, Styrzyński F, Dróżdż I, Lewiński A, Stasiak M. Associations Between Clinical Manifestations of SARS-CoV-2 Infection and HLA Alleles in a Caucasian Population: A Molecular HLA Typing Study. J Clin Med 2024; 13:7695. [PMID: 39768617 PMCID: PMC11676434 DOI: 10.3390/jcm13247695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Background and Objectives: Severe COVID-19 still constitutes an important health problem. Taking into account the crucial role of HLA in immune reactions, evaluation of the impact of HLA on COVID-19 risk and clinical course seemed necessary, as the already available data are inconsistent. The aim of the present study was to compare the HLA profiles of patients with symptomatic SARS-CoV-2 infection and a healthy control group, as well as to compare HLA allele frequencies in patients with severe and non-severe courses of COVID-19. Materials and Methods: HLA classes were genotyped using a next-generation sequencing method in 2322 persons, including 2217 healthy hematopoietic stem cell potential donors and 105 patients with symptomatic COVID-19. Results: Symptomatic course of SARS-CoV-2 infection appeared to be associated with the presence of HLA-A*30:01, B*44:02, B*52:01, C*05:01, C*17:01, and DRB1*11:02, while HLA-C*07:04 and DQB1*03:03 seem to play a protective role. Moreover, we demonstrated that the severe symptomatic course of COVID-19 can be associated with the presence of HLA-B*08:01, C*04:01, DRB1*03:01, and DQB1*03:01, while HLA-DRB1*08:01 appeared to be protective against severe COVID-19 disease. Conclusions: Identification of alleles that are potentially associated with symptomatic SARS-CoV-2 infection as well as the severe course of COVID-19 broadens the knowledge on the genetic background of COVID-19 course and can constitute an important step in the development of personalized medicine.
Collapse
Affiliation(s)
- Bogusław Tymoniuk
- Department of Immunology and Allergy, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland; (M.B.); (I.D.)
| | - Joanna Makowska
- Department of Rheumatology, Medical University of Lodz, 113 Zeromskiego Str., 90-549 Lodz, Poland; (J.M.); (J.S.); (F.S.)
| | - Emilia Holwek
- Central Clinical Hospital, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Joanna Sarnik
- Department of Rheumatology, Medical University of Lodz, 113 Zeromskiego Str., 90-549 Lodz, Poland; (J.M.); (J.S.); (F.S.)
| | - Filip Styrzyński
- Department of Rheumatology, Medical University of Lodz, 113 Zeromskiego Str., 90-549 Lodz, Poland; (J.M.); (J.S.); (F.S.)
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland; (M.B.); (I.D.)
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 281/289 Rzgowska St., 93-338 Lodz, Poland;
| | - Magdalena Stasiak
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital-Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
| |
Collapse
|
4
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Olp MD, Laufer VA, Valesano AL, Zimmerman A, Woodside KJ, Lu Y, Lauring AS, Cusick MF. HLA-C Peptide Repertoires as Predictors of Clinical Response during Early SARS-CoV-2 Infection. Life (Basel) 2024; 14:1181. [PMID: 39337964 PMCID: PMC11433606 DOI: 10.3390/life14091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The human leukocyte antigen (HLA) system plays a pivotal role in the immune response to viral infections, mediating the presentation of viral peptides to T cells and influencing both the strength and specificity of the host immune response. Variations in HLA genotypes across individuals lead to differences in susceptibility to viral infection and severity of illness. This study uses observations from the early phase of the COVID-19 pandemic to explore how specific HLA class I molecules affect clinical responses to SARS-CoV-2 infection. By analyzing paired high-resolution HLA types and viral genomic sequences from 60 patients, we assess the relationship between predicted HLA class I peptide binding repertoires and infection severity as measured by the sequential organ failure assessment score. This approach leverages functional convergence across HLA-C alleles to identify relationships that may otherwise be inaccessible due to allelic diversity and limitations in sample size. Surprisingly, our findings show that severely symptomatic infection in this cohort is associated with disproportionately abundant binding of SARS-CoV-2 structural and non-structural protein epitopes by patient HLA-C molecules. In addition, the extent of overlap between a given patient's predicted HLA-C and HLA-A peptide binding repertoires correlates with worse prognoses in this cohort. The findings highlight immunologic mechanisms linking HLA-C molecules with the human response to viral pathogens that warrant further investigation.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Vincent A Laufer
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrew L Valesano
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrea Zimmerman
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Kenneth J Woodside
- Sharing Hope of South Carolina, Charleston, SC 29414, USA
- Gift of Life Michigan, Ann Arbor, MI 48108, USA
- Academia Invisus LLC, Ann Arbor, MI 48107, USA
| | - Yee Lu
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew F Cusick
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Altundaş N, Balkan E, Kızılkaya M, Aksungur N, Kara S, Korkut E, Sevinç C, Öztürk G. Impact of HLA Alleles on COVID-19 Severity in Kidney Transplant Recipients: A Single-Center Study. Cureus 2024; 16:e67881. [PMID: 39328629 PMCID: PMC11425025 DOI: 10.7759/cureus.67881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic has significantly impacted global health, particularly affecting vulnerable populations, such as organ transplant recipients. Human leukocyte antigens (HLAs) play a critical role in immune response regulation, and understanding their association with COVID-19 can provide insights into disease susceptibility and severity. This study aims to explore the association between HLA allele variability and COVID-19 susceptibility and severity among kidney transplant recipients. Methods In 2023, we conducted a study on 73 kidney transplant recipients who tested positive for COVID-19 via polymerase chain reaction. This study included assessments of clinical status, immunosuppressive drug levels, HLA allele frequencies, and donor-recipient tissue compatibility. Molecular analyses were performed using sequence-specific oligonucleotide typing, and statistical analysis was conducted using IBM SPSS Statistics, version 20.0 (IBM Corp., Armonk, NY). Results Among the participants, 31 were hospitalized and 42 were treated as outpatients. Significant differences were observed in HLA allele distributions, particularly the HLA-A*11 allele, which was more prevalent in outpatient-treated patients, suggesting a potential protective effect. No significant age differences were observed between hospitalized and outpatient groups. Serum tacrolimus levels were notably higher in outpatients. Statistical analyses revealed significant associations between certain HLA groups and the severity of COVID-19 infection. Conclusions This study highlights the importance of HLA allele compatibility in influencing the clinical outcomes of COVID-19 in kidney transplant recipients. The findings suggest that specific HLA alleles may reduce susceptibility or moderate the severity of COVID-19, indicating a need for broader genetic studies across diverse populations to validate these observations and improve management strategies for transplant recipients during pandemics.
Collapse
Affiliation(s)
- Necip Altundaş
- Department of General Surgery, Atatürk University, Erzurum, TUR
| | - Eda Balkan
- Department of Medical Biology, Atatürk University, Erzurum, TUR
| | - Murat Kızılkaya
- Department of Medical Biology, Atatürk University, Erzurum, TUR
| | - Nurhak Aksungur
- Department of General Surgery, Atatürk University, Erzurum, TUR
| | - Salih Kara
- Department of General Surgery, Atatürk University, Erzurum, TUR
| | - Ercan Korkut
- Department of General Surgery, Atatürk University, Erzurum, TUR
| | - Can Sevinç
- Department of Internal Medicine, Atatürk University, Erzurum, TUR
| | - Gürkan Öztürk
- Department of General Surgery, Atatürk University, Erzurum, TUR
| |
Collapse
|
7
|
Tanaka K, Meguro A, Hara Y, Endo L, Izawa A, Muraoka S, Kaneko A, Somekawa K, Hirata M, Otsu Y, Matsumoto H, Nagasawa R, Kubo S, Murohashi K, Aoki A, Fujii H, Watanabe K, Horita N, Kato H, Kobayashi N, Takeuchi I, Nakajima A, Inoko H, Mizuki N, Kaneko T. HLA-DQA1*01:03 and DQB1*06:01 are risk factors for severe COVID-19 pneumonia. HLA 2024; 104:e15609. [PMID: 39041300 DOI: 10.1111/tan.15609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The clinical spectrum of COVID-19 includes a wide range of manifestations, from mild symptoms to severe pneumonia. HLA system plays a pivotal role in immune responses to infectious diseases. The purpose of our study was to investigate the association between HLA and COVID-19 severity in a Japanese population. The study included 209 Japanese COVID-19 patients aged ≥20 years. Saliva samples were collected and used to determine the HLA genotype by HLA imputation through genome-wide association analyses. The association between HLA genotype and COVID-19 severity was then evaluated. The allele frequency was compared between patients with respiratory failure (severe group: 91 cases) and those without respiratory failure (non-severe group: 118 cases), categorising the data into three time periods: pre-Omicron epidemic period, Omicron epidemic period, and total period of this study (from January 2021 to May 2023). In comparing the severe and non-severe groups, the frequencies of the HLA-DQA1*01:03 (35.1% vs. 10.5%, odds ratio [OR] = 4.57, corrected p [pc] = 0.041) and -DQB1*06:01 (32.4% vs. 7.9%, OR = 5.54, pc = 0.030) alleles were significantly higher in the severe group during the pre-Omicron epidemic period. During the Omicron epidemic period, HLA-DQB1*06 (32.4% vs. 7.9%, OR = 5.54, pc = 0.030) was significantly higher in the severe group. During total period of this study, HLA-DQA1*01:03 (30.2% vs. 14.4%, OR = 2.57, corrected pc = 0.0013) and -DQB1*06:01 (44.5% vs. 26.7%, OR = 2.20, pc = 0.013) alleles were significantly higher in the severe group. HLA-DQB1*06:01 and -DQA1*01:03 were in strong linkage disequilibrium with each other (r2 = 0.91) during total period of this study, indicating that these two alleles form a haplotype. The frequency of the HLA-DQA1*01:03-DQB1*06:01 in the severe group was significantly higher than in the non-severe group during pre-Omicron epidemic period (32.4% vs. 7.9%, OR = 5.59, pc = 0.00072), and total period of this study (28.6% vs. 13.1%, OR = 2.63, pc = 0.0013). During Omicron epidemic period, the haplotype did not demonstrate statistical significance, although the odds ratio indicated a value greater 1. Frequencies of the HLA-DQA1*01:03 and -DQB1*06:01 alleles were significantly higher in severe COVID-19 patients, suggesting that these alleles are risk factors for severe COVID-19 pneumonia in the Japanese population.
Collapse
Affiliation(s)
- Katsushi Tanaka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Lisa Endo
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ami Izawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Suguru Muraoka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayami Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Somekawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Momo Hirata
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukiko Otsu
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Matsumoto
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryo Nagasawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sosuke Kubo
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kota Murohashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayako Aoki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroaki Fujii
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Watanabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideaki Kato
- Infection Prevention and Control Department, Yokohama City University Hospital, Yokohama, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ichiro Takeuchi
- Department of Emergency Medicine, School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
8
|
Kim GJ, Elnaggar JH, Varnado M, Feehan AK, Tauzier D, Rose R, Lamers SL, Sevalia M, Nicholas N, Gravois E, Fort D, Crabtree JS, Miele L. A bioinformatic analysis of T-cell epitope diversity in SARS-CoV-2 variants: association with COVID-19 clinical severity in the United States population. Front Immunol 2024; 15:1357731. [PMID: 38784379 PMCID: PMC11112498 DOI: 10.3389/fimmu.2024.1357731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
Long-term immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the identification of T-cell epitopes affecting host immunogenicity. In this computational study, we explored the CD8+ epitope diversity estimated in 27 of the most common HLA-A and HLA-B alleles, representing most of the United States population. Analysis of 16 SARS-CoV-2 variants [B.1, Alpha (B.1.1.7), five Delta (AY.100, AY.25, AY.3, AY.3.1, AY.44), and nine Omicron (BA.1, BA.1.1, BA.2, BA.4, BA.5, BQ.1, BQ.1.1, XBB.1, XBB.1.5)] in analyzed MHC class I alleles revealed that SARS-CoV-2 CD8+ epitope conservation was estimated at 87.6%-96.5% in spike (S), 92.5%-99.6% in membrane (M), and 94.6%-99% in nucleocapsid (N). As the virus mutated, an increasing proportion of S epitopes experienced reduced predicted binding affinity: 70% of Omicron BQ.1-XBB.1.5 S epitopes experienced decreased predicted binding, as compared with ~3% and ~15% in the earlier strains Delta AY.100-AY.44 and Omicron BA.1-BA.5, respectively. Additionally, we identified several novel candidate HLA alleles that may be more susceptible to severe disease, notably HLA-A*32:01, HLA-A*26:01, and HLA-B*53:01, and relatively protected from disease, such as HLA-A*31:01, HLA-B*40:01, HLA-B*44:03, and HLA-B*57:01. Our findings support the hypothesis that viral genetic variation affecting CD8 T-cell epitope immunogenicity contributes to determining the clinical severity of acute COVID-19. Achieving long-term COVID-19 immunity will require an understanding of the relationship between T cells, SARS-CoV-2 variants, and host MHC class I genetics. This project is one of the first to explore the SARS-CoV-2 CD8+ epitope diversity that putatively impacts much of the United States population.
Collapse
Affiliation(s)
- Grace J. Kim
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob H. Elnaggar
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Microbiology, Immunology, and Parasitology, Lousiana State University Health Sciences Center (LSUHSC), New Orleans, LA, United States
| | - Mallory Varnado
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Amy K. Feehan
- Research and Development, Oschner Medical Center, New Orleans, LA, United States
| | - Darlene Tauzier
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rebecca Rose
- Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
| | - Susanna L. Lamers
- Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
| | - Maya Sevalia
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Najah Nicholas
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Elizabeth Gravois
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Daniel Fort
- Research and Development, Oschner Medical Center, New Orleans, LA, United States
| | - Judy S. Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
9
|
Naidoo L, Arumugam T, Ramsuran V. Narrative Review Explaining the Role of HLA-A, -B, and -C Molecules in COVID-19 Disease in and around Africa. Infect Dis Rep 2024; 16:380-406. [PMID: 38667755 PMCID: PMC11049896 DOI: 10.3390/idr16020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) has left a devasting effect on various regions globally. Africa has exceptionally high rates of other infectious diseases, such as tuberculosis (TB), human immunodeficiency virus (HIV), and malaria, and was not impacted by COVID-19 to the extent of other continents Globally, COVID-19 has caused approximately 7 million deaths and 700 million infections thus far. COVID-19 disease severity and susceptibility vary among individuals and populations, which could be attributed to various factors, including the viral strain, host genetics, environment, lifespan, and co-existing conditions. Host genetics play a substantial part in COVID-19 disease severity among individuals. Human leukocyte antigen (HLA) was previously been shown to be very important across host immune responses against viruses. HLA has been a widely studied gene region for various disease associations that have been identified. HLA proteins present peptides to the cytotoxic lymphocytes, which causes an immune response to kill infected cells. The HLA molecule serves as the central region for infectious disease association; therefore, we expect HLA disease association with COVID-19. Therefore, in this narrative review, we look at the HLA gene region, particularly, HLA class I, to understand its role in COVID-19 disease.
Collapse
Affiliation(s)
- Lisa Naidoo
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
10
|
Abolnezhadian F, Iranparast S, Shohan M, Shokati Eshkiki Z, Hamed M, Seyedtabib M, Nashibi R, Assarehzadegan MA, Mard SA, Shayesteh AA, Neisi N, Makvandi M, Alavi SM, Shariati G. Evaluation the frequencies of HLA alleles in moderate and severe COVID-19 patients in Iran: A molecular HLA typing study. Heliyon 2024; 10:e28528. [PMID: 38590857 PMCID: PMC10999921 DOI: 10.1016/j.heliyon.2024.e28528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/16/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 was first reported in December 2019 and it has spread globally ever since. The HLA system is crucial in directing anti-viral immunity and recent studies are investigating the possible involvement of the HLA genes on the severity of immune inflammation in different phases of COVID-19. Methods In this cross-sectional study, peripheral blood-extracted genomic DNAs of 109 COVID-19 patients and 70 healthy controls were genotyped for different alleles of HLA-A, HLA-B, and HLA-DRB1 loci using sequence-specific primer PCR method. Results The results indicated that frequencies of HLA-DRB1*11:01 and HLA-DRB1*04:03 were significantly higher in severe patients rather than moderates (p: <0.001 and 0.004, respectively). Also, it was observed that HLA-DRB1*04:01 was more frequent in moderate patients and healthy controls (p:0.002). In addition, HLA-B*07:35, and HLA-DRB1*07:01 showed higher frequencies in patients compared with controls (p: 0.031 and 0.003 respectively). Inversely, due to the higher frequencies of HLA-B*51:01 (p:0.027), HLA-DRB1*11:05 (p:0.003), HLA-DRB1*13:05 (p:0.022), and HLA-DRB1*14:01 (p:0.006) in healthy individuals rather than patients, they may be associated with COVID-19 resistance. Conclusion The results show that, based on the population differences, the type of alleles related to the severity of COVID-19 is different, which should be clarified by designing large-scale studies in order to develop HLA-based treatments and vaccines.
Collapse
Affiliation(s)
- Farhad Abolnezhadian
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Iranparast
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Shohan
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahtab Hamed
- Immunobiology Center of Pasteur Medical Laboratory, Ahvaz, Iran
| | - Maryam Seyedtabib
- Department of Biostatistics & Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roohangiz Nashibi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mard
- Physiology Research Center, Research Institute for Infectious Diseases of Digestive System and Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Shayesteh
- Alimentary Tract Research Center, Imam Khomeini Hospital Clinical Research Development Unit, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Neisi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mohammad Alavi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Shariati
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Vică ML, Dobreanu M, Curocichin G, Matei HV, Bâlici Ș, Vușcan ME, Chiorean AD, Nicula GZ, Pavel Mironescu DC, Leucuța DC, Teodoru CA, Siserman CV. The Influence of HLA Polymorphisms on the Severity of COVID-19 in the Romanian Population. Int J Mol Sci 2024; 25:1326. [PMID: 38279325 PMCID: PMC10816224 DOI: 10.3390/ijms25021326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
In this study, we aimed to investigate whether specific HLA alleles found in patients from Romania and the Republic of Moldova were associated with the severity of COVID-19 infection and its associated mortality. We analyzed the HLA alleles at the -A, -B, -C, -DRB1, and -DQB1 loci in a cohort of 130 individuals with severe and extremely severe forms of COVID-19, including 44 individuals who died. We compared these findings to a control group consisting of individuals who had either not been diagnosed with COVID-19 or had experienced mild forms of the disease. Using multivariate logistic regression models, we discovered that the B*27 and B*50 alleles were associated with an increased susceptibility to developing a severe form of COVID-19. The A*33 and C*15 alleles showed potential for offering protection against the disease. Furthermore, we identified two protective alleles (A*03 and DQB1*02) against the development of extremely severe forms of COVID-19. By utilizing score statistics, we established a statistically significant association between haplotypes and disease severity (p = 0.021). In summary, this study provides evidence that HLA genotype plays a role in influencing the clinical outcome of COVID-19 infection.
Collapse
Affiliation(s)
- Mihaela Laura Vică
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Minodora Dobreanu
- Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
- Department of Laboratory Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Târgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Târgu Mureș, Romania
| | - Ghenadie Curocichin
- Department of Family Medicine, “Nicolae Testemițanu” State University of Medicine and Pharmacy, MD-2004 Chișinău, Moldova;
| | - Horea Vladi Matei
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Ștefana Bâlici
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
| | - Mihaela Elvira Vușcan
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Alin Dan Chiorean
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Emergency Clinical Hospital for Children, 400370 Cluj-Napoca, Romania
| | - Gheorghe Zsolt Nicula
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
| | - Daniela Cristina Pavel Mironescu
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Daniel Corneliu Leucuța
- Department of Medical Informatics and Biostatistics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Cosmin Adrian Teodoru
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Costel Vasile Siserman
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
- Department of Legal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Torki E, Hoseininasab F, Moradi M, Sami R, Sullman MJM, Fouladseresht H. The demographic, laboratory and genetic factors associated with long Covid-19 syndrome: a case-control study. Clin Exp Med 2024; 24:1. [PMID: 38231284 PMCID: PMC10794331 DOI: 10.1007/s10238-023-01256-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024]
Abstract
Long Covid-19 syndrome (LCS) manifests with a wide range of clinical symptoms, yet the factors associated with LCS remain poorly understood. The current study aimed to investigate the relationships that demographic characteristics, clinical history, laboratory indicators, and the frequency of HLA-I alleles have with the likelihood of developing LCS. We extracted the demographic characteristics and clinical histories from the medical records of 88 LCS cases (LCS+ group) and 96 individuals without LCS (LCS- group). Furthermore, we evaluated the clinical symptoms, serum levels of interleukin (IL)-6 and tumor necrosis factor-α, laboratory parameters, and the frequencies of HLA-I alleles. Following this we used multiple logistic regression to investigate the association these variables had with LCS. Subjects in the LCS+ group were more likely to have experienced severe Covid-19 symptoms and had higher body mass index (BMI), white blood cell, lymphocyte counts, C-reactive protein (CRP), and IL-6 levels than those in the LCS- group (for all: P < 0.05). Moreover, the frequencies of the HLA-A*11, -B*14, -B*38, -B*50, and -C*07 alleles were higher in the LCS+ group (for all: P < 0.05). After adjusting for the most important variables, the likelihood of suffering from LCS was significantly associated with BMI, CRP, IL-6, the HLA-A*11, and -C*07 alleles, as well as a positive history of severe Covid-19 (for all: P < 0.05). Our study showed that a history of severe Covid-19 during the acute phase of the disease, the HLA-A*11, and -C*07 alleles, higher BMI, as well as elevated serum CRP and IL-6 levels, were all associated with an increased likelihood of LCS.
Collapse
Affiliation(s)
- Ensiye Torki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Hoseininasab
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marjan Moradi
- Department of Genetics, School of Science, Shahrekord University, Shahrekord, Iran
| | - Ramin Sami
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Hoseinnezhad T, Soltani N, Ziarati S, Behboudi E, Mousavi MJ. The role of HLA genetic variants in COVID-19 susceptibility, severity, and mortality: A global review. J Clin Lab Anal 2024; 38:e25005. [PMID: 38251811 PMCID: PMC10829690 DOI: 10.1002/jcla.25005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has had a profound global impact, with variations in susceptibility, severity, and mortality rates across different regions. While many factors can contribute to the spread and impact of the disease, specifically human leukocyte antigen (HLA) genetic variants have emerged as potential contributors to COVID-19 outcomes. METHODS In this comprehensive narrative review, we conducted a thorough literature search to identify relevant studies investigating the association between HLA genetic variants and COVID-19 outcomes. Additionally, we analyzed allelic frequency data from diverse populations to assess differences in COVID-19 incidence and severity. RESULTS Our review provides insights into the immunological mechanisms involving HLA-mediated responses to COVID-19 and highlights potential research directions and therapeutic interventions. We found evidence suggesting that certain HLA alleles, such as HLA-A02, may confer a lower risk of COVID-19, while others, like HLA-C04, may increase the risk of severe symptoms and mortality. Furthermore, our analysis of allele frequency distributions revealed significant variations among different populations. CONCLUSION Considering host genetic variations, particularly HLA genetic variants, is crucial for understanding COVID-19 susceptibility and severity. These findings have implications for personalized treatment and interventions based on an individual's genetic profile. However, further research is needed to unravel the precise mechanisms underlying the observed associations and explore the potential for targeted therapies or preventive measures based on HLA genetic variants.
Collapse
Affiliation(s)
- Taraneh Hoseinnezhad
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Nasrin Soltani
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sarina Ziarati
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
14
|
Castro-Santos P, Rojas-Martinez A, Riancho JA, Lapunzina P, Flores C, Carracedo Á, Díaz-Peña R. HLA-A*11:01 and HLA-C*04:01 are associated with severe COVID-19. HLA 2023; 102:731-739. [PMID: 37528566 DOI: 10.1111/tan.15160] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023]
Abstract
We analyzed the association between HLA polymorphisms and susceptibility to SARS-CoV-2 infection and disease severity. Genotyping data from a total of 9373 COVID-19-positive cases from the Spanish Coalition to Unlock Research on Host Genetics on COVID-19 (SCOURGE) consortium and 5943 population controls were included in the study. We found an association of the alleles HLA-B*14:02 and HLA-C*08:02 with a lower risk to COVID-19 infection (p = 0.006, OR = 0.84, 95% CI = [0.75-0.95], p = 0.024, OR = 0.86, 95% CI = [0.78-0.95], respectively). We also found the alleles HLA-A*11:01 and HLA-C*04:01 associated with disease severity (p = 0.033, OR = 1.16, 95% CI = [1.04-1.31], p = 0.045, OR = 1.14, 95% CI = [1.05-1.25], respectively). These results suggest that an effective presentation of viral peptides by HLA class I alleles involve a faster infection clearance, decreasing the susceptibility and severity of COVID-19.
Collapse
Affiliation(s)
- Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| | | | - José A Riancho
- IDIVAL, Cantabria, Spain
- Universidad de Cantabria, Cantabria, Spain
- Hospital U M Valdecilla, Cantabria, Spain
| | - Pablo Lapunzina
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IDIPAZ, Madrid, Spain
- ERN-ITHACA-European Reference Network, Paris, France
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Grupo de Medicina Xenómica-CIMUS-Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
15
|
Velastegui E, Vera E, Vanden Berghe W, Muñoz MS, Orellana-Manzano A. "HLA-C: evolution, epigenetics, and pathological implications in the major histocompatibility complex". Front Genet 2023; 14:1206034. [PMID: 37465164 PMCID: PMC10350511 DOI: 10.3389/fgene.2023.1206034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
HLA-C, a gene located within the major histocompatibility complex, has emerged as a prominent target in biomedical research due to its involvement in various diseases, including cancer and autoimmune disorders; even though its recent addition to the MHC, the interaction between HLA-C and KIR is crucial for immune responses, particularly in viral infections. This review provides an overview of the structure, origin, function, and pathological implications of HLA-C in the major histocompatibility complex. In the last decade, we systematically reviewed original publications from Pubmed, ScienceDirect, Scopus, and Google Scholar. Our findings reveal that genetic variations in HLA-C can determine susceptibility or resistance to certain diseases. However, the first four exons of HLA-C are particularly susceptible to epigenetic modifications, which can lead to gene silencing and alterations in immune function. These alterations can manifest in diseases such as alopecia areata and psoriasis and can also impact susceptibility to cancer and the effectiveness of cancer treatments. By comprehending the intricate interplay between genetic and epigenetic factors that regulate HLA-C expression, researchers may develop novel strategies for preventing and treating diseases associated with HLA-C dysregulation.
Collapse
Affiliation(s)
- Erick Velastegui
- Escuela Politécnica Nacional, Departamento de Ciencias de los Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Quito, Ecuador
| | - Edwin Vera
- Escuela Politécnica Nacional, Departamento de Ciencias de los Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Quito, Ecuador
| | - Wim Vanden Berghe
- Epigenetic Signaling Lab, Faculty Biomedical Sciences, PPES, University of Antwerp, Antwerp, Belgium
| | - Mindy S. Muñoz
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Andrea Orellana-Manzano
- Escuela Superior Politécnica del Litoral, Laboratorio para investigaciones biomédicas, Facultad de Ciencias de la Vida (FCV), Guayaquil, Ecuador
| |
Collapse
|
16
|
Brand M, Keşmir C. Evolution of SARS-CoV-2-specific CD4 + T cell epitopes. Immunogenetics 2023; 75:283-293. [PMID: 36719467 PMCID: PMC9887569 DOI: 10.1007/s00251-023-01295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/01/2023]
Abstract
Vaccination clearly decreases coronavirus disease 2019 (COVID-19) mortality; however, they also impose selection pressure on the virus, which promotes the evolution of immune escape variants. For example, despite the high vaccination level in especially Western countries, the Omicron variant caused millions of breakthrough infections, suggesting that the highly mutated spike protein in the Omicron variant can escape antibody immunity much more efficiently than the other variants of concern (VOCs). In this study, we investigated the resistance/susceptibility of T helper cell responses that are necessary for generating efficient long-lasting antibody immunity, in several VOCs. By predicting T helper cell epitopes on the spike protein for most common HLA-DRB1 alleles worldwide, we found that although most of high frequency HLA-DRB1 alleles have several potential T helper cell epitopes, few alleles like HLA-DRB1 13:01 and 11:01 are not predicted to have any significant T helper cell responses after vaccination. Using these predictions, a population based on realistic human leukocyte antigen-II (HLA-II) frequencies were simulated to visualize the T helper cell immunity on the population level. While a small fraction of this population had alarmingly little predicted CD4 T cell epitopes, the majority had several epitopes that should be enough to generate efficient B cell responses. Moreover, we show that VOC spike mutations hardly affect T helper epitopes and mainly occur in other residues of the spike protein. These results suggest that lack of long-lasting antibody responses is not likely due to loss of T helper cell epitopes in new VOCs.
Collapse
Affiliation(s)
- Marina Brand
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Can Keşmir
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
17
|
Mashayekhi P, Omrani MD, Yassin Z, Dehghanifard A, Ashouri L, Aghabozorg Afjeh SS, Shabanzadeh Z. Influence of HLA-A, -B, -DR Polymorphisms on the Severity of COVID-19: A Case-Control Study in the Iranian Population. ARCHIVES OF IRANIAN MEDICINE 2023; 26:261-266. [PMID: 38301089 PMCID: PMC10685865 DOI: 10.34172/aim.2023.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/12/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND As an emerging pandemic disease, COVID-19 encompasses a spectrum of clinical diagnoses, from the common cold to severe respiratory syndrome. Considering the shreds of evidence demonstrating the relationship between human leukocyte antigen (HLA) allele diversity and infectious disease susceptibility, this study was conducted to determine the association of HLA alleles with COVID-19 severity in Iranian subjects. METHODS In this case-control study, a total of 200 unrelated individuals (consisting of 100 people with severe COVID-19 and an average age of 55.54 as the case group, and 100 patients with mild COVID-19 with an average age of 48.97 as the control group) were recruited, and HLA typing (Locus A, B, and DR) was performed using the Olerup sequence-specific oligonucleotide (SSO) HLA-typing kit. RESULTS Our results showed that HLA-A*11 and HLA-DRB1*14 alleles were more frequently observed in severe COVID-19 cases, while HLA-B*52 was more common in mild cases, which was in agreement with some previous studies. CONCLUSION Our results confirmed the evidence for the association of HLA alleles with COVID-19 outcomes. We found that HLA-A*11 and HLA-DRB1*14 alleles may be susceptibility factors for severe COVID-19, while HLA-B*52 may be a protective factor. These findings provide new insight into the pathogenesis of COVID-19 and help patient management.
Collapse
Affiliation(s)
- Parisa Mashayekhi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Yassin
- Antimicrobial resistance Research Center, Institute Of Immunology And Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Dehghanifard
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Ashouri
- Antimicrobial resistance Research Center, Institute Of Immunology And Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Shabanzadeh
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
Liu C, Zhang L, Chen J, Gao Y. Targeted capture enrichment and sequencing identifies HLA variants associated with the severity of COVID-19. Genes Genomics 2023; 45:451-456. [PMID: 36574143 PMCID: PMC9793816 DOI: 10.1007/s13258-022-01358-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is currently a global pandemic. The pathogenesis of severe COVID-19 has been widely investigated, but it is still unclear. Human leukocyte antigen (HLA) plays a central role in immune response, and its variants might be related to COVID-19 progression and severity. OBJECTIVE To investigate the hypothesis that individual HLA variations could alter the course of COVID-19 and might be associated with the severity of COVID-19. METHODS In this study, we conducted an HLA targeted capture enrichment and sequencing of severe COVID-19 patients matched to mild cases. A total of 16 COVID-19 patients, confirmed by SARS-CoV-2 viral RNA polymerase-chain-reaction (PCR) test and chest computed tomography (CT) scan, were enrolled in this study. The HLA targeted capture enrichment and sequencing were conducted. HLA typing was performed by comparing contigs with IPD-IMGT/HLA Database. RESULTS In this study, 139 four-digit resolution HLA alleles were acquired. The results showed that HLA-DRB3*01:01 allele was significantly associated with the severity of COVID-19 (odds ratio [OR] = 27.64, 95% confidence interval [CI] = 1.35-560.50, P = 0.0064). And HLA-K*01:01 might be a potential risk factor for COVID-19 severity (OR = 0.11, 95% CI = 0.017-0.66, P = 0.019), but HLA-K*01:02 might be a protective factor (OR = 7.50, 95% CI = 1.48-37.92, P = 0.019). CONCLUSION Three non-classical HLA alleles, including HLA-DRB3*01:01, HLA-K*01:01, HLA-K*01:02 were identified to be associated with the severity of COVID-19 by comparing mild and severe patients. The current findings would be helpful for exploring the influence of HLA gene polymorphisms on the development and severity of COVID-19.
Collapse
Affiliation(s)
- Chuanmiao Liu
- Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
| | - Li Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
| | - Jiasheng Chen
- Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
| | - Yu Gao
- School of Life Science, Bengbu Medical College, Bengbu, China.
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China.
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, No. 2600 Donghai Road, Bengbu, 233030, China.
| |
Collapse
|
19
|
Haq IU, Krukiewicz K, Tayyab H, Khan I, Khan M, Yahya G, Cavalu S. Molecular Understanding of ACE-2 and HLA-Conferred Differential Susceptibility to COVID-19: Host-Directed Insights Opening New Windows in COVID-19 Therapeutics. J Clin Med 2023; 12:jcm12072645. [PMID: 37048725 PMCID: PMC10095019 DOI: 10.3390/jcm12072645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The genetic variants of HLAs (human leukocyte antigens) play a crucial role in the virus–host interaction and pathology of COVID-19. The genetic variants of HLAs not only influence T cell immune responses but also B cell immune responses by presenting a variety of peptide fragments of invading pathogens. Peptide cocktail vaccines produced by using various conserved HLA-A2 epitopes provoke substantial specific CD8+ T cell responses in experimental animals. The HLA profiles vary among individuals and trigger different T cell-mediated immune responses in COVID-19 infections. Those with HLA-C*01 and HLA-B*44 are highly susceptible to the disease. However, HLA-A*02:01, HLA-DR*03:01, and HLA-Cw*15:02 alleles show resistance to SARS infection. Understanding the genetic association of HLA with COVID-19 susceptibility and severity is important because it can help in studying the transmission of COVID-19 and its physiopathogenesis. The HLA-C*01 and B*44 allele pathways can be studied to gain insight into disease transmission and physiopathogenesis. Therefore, integrating HLA testing is suggested in the ongoing pandemic, which will help in the rapid identification of highly susceptible populations worldwide and possibly acclimate vaccine development. Therefore, understanding the correlation between HLA and SARS-CoV-2 is critical in opening new insights into COVID-19 therapeutics, based on previous studies conducted.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Hamnah Tayyab
- Department of Internal Medicine, King Edward Medical College, Lahore 54000, Pakistan
| | - Imran Khan
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
20
|
Wolday D, Fung CYJ, Morgan G, Casalino S, Frangione E, Taher J, Lerner-Ellis JP. HLA Variation and SARS-CoV-2 Specific Antibody Response. Viruses 2023; 15:906. [PMID: 37112884 PMCID: PMC10143129 DOI: 10.3390/v15040906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Differences in SARS-CoV-2-specific immune responses have been observed between individuals following natural infection or vaccination. In addition to already known factors, such as age, sex, COVID-19 severity, comorbidity, vaccination status, hybrid immunity, and duration of infection, inter-individual variations in SARS-CoV-2 immune responses may, in part, be explained by structural differences brought about by genetic variation in the human leukocyte antigen (HLA) molecules responsible for the presentation of SARS-CoV-2 antigens to T effector cells. While dendritic cells present peptides with HLA class I molecules to CD8+ T cells to induce cytotoxic T lymphocyte responses (CTLs), they present peptides with HLA class II molecules to T follicular helper cells to induce B cell differentiation followed by memory B cell and plasma cell maturation. Plasma cells then produce SARS-CoV-2-specific antibodies. Here, we review published data linking HLA genetic variation or polymorphisms with differences in SARS-CoV-2-specific antibody responses. While there is evidence that heterogeneity in antibody response might be related to HLA variation, there are conflicting findings due in part to differences in study designs. We provide insight into why more research is needed in this area. Elucidating the genetic basis of variability in the SARS-CoV-2 immune response will help to optimize diagnostic tools and lead to the development of new vaccines and therapeutics against SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Dawit Wolday
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Chun Yiu Jordan Fung
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Gregory Morgan
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Selina Casalino
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Erika Frangione
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Jennifer Taher
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Jordan P. Lerner-Ellis
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| |
Collapse
|
21
|
Kakodkar P, Dokouhaki P, Wu F, Shavadia J, Nair R, Webster D, Sawyer T, Huan T, Mostafa A. The role of the HLA allelic repertoire on the clinical severity of COVID-19 in Canadians, living in the Saskatchewan province. Hum Immunol 2023; 84:163-171. [PMID: 36707385 PMCID: PMC9852320 DOI: 10.1016/j.humimm.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
AIMS The HLA system has been implicated as an underlying determinant for modulating the immune response to SARS-CoV-2. In this study, we aimed to determine the association of patients' HLA genetic profiles with the disease severity of COVID-19 infection. METHODS Prospective study was conducted on COVID-19 patients (n = 40) admitted to hospitals in Saskatoon, Canada, between March and December 2020. Next-generation sequencing was performed on the patient samples to obtain high-resolution HLA typing profiles. The statistical association between HLA allelic frequency and disease severity was examined. The disease severity was categorized based on the length of hospital stay and intensive care needs or demise during the hospital stay. RESULTS HLA allelic frequencies of the high and low-severity cohorts were normalized against corresponding background allelic frequencies. In the high-severity cohort, A*02:06 (11.8-fold), B*51:01 (2.4-fold), B*15:01(3.1-fold), C*01:02 (3.3-fold), DRB1*08:02 (31.2-fold), DQ*06:09 (11-fold), and DPB1*04:02(4-fold) were significantly overrepresented (p < 0.05) making these deleterious alleles. In the low-severity cohort, A*24:02 (2.8-fold), B*35:01 (2.8-fold), DRB1*04:07 (5.3-fold), and DRB1*08:11 (22-fold) were found to be significantly overrepresented (p < 0.05) making these protective alleles. These above alleles interact with NK cell antiviral activity via the killer immunoglobulin-like receptors (KIR). The high-severity cohort had a higher predilection for HLA alleles associated with KIR subgroups; Bw4-80I (1.1-fold), and C1 (1.6-fold) which promotes NK cell inhibition, while the low-severity cohort had a higher predilection for Bw4-80T (1.6-fold), and C2 (1.6-fold) which promote NK cell activation. CONCLUSION In this study, the HLA allelic repository with the distribution of deleterious and protective alleles was found to correlate with the severity of the clinical course in COVID-19. Moreover, the interaction of specific HLA alleles with the KIR-associated subfamily modulates the NK cell-mediated surveillance of SARS-CoV-2. Both deleterious HLA alleles and inhibitory KIR appear prominently in the severe COVID-19 group focusing on the importance of NK cells in the convalescence of COVID-19.
Collapse
Affiliation(s)
- Pramath Kakodkar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan College of Medicine, Canada.
| | - Pouneh Dokouhaki
- Department of Pathology and Laboratory Medicine, University of Saskatchewan College of Medicine, Canada.
| | - Fang Wu
- Department of Pathology and Laboratory Medicine, University of Saskatchewan College of Medicine, Canada.
| | - Jay Shavadia
- Division of Cardiology, Department of Medicine, University of Saskatchewan, Canada.
| | - Revathi Nair
- College of Medicine, University of Saskatchewan, Canada.
| | - Destinie Webster
- Department of Pathology and Laboratory Medicine, University of Saskatchewan College of Medicine, Canada.
| | - Terry Sawyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan College of Medicine, Canada.
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Canada.
| | - Ahmed Mostafa
- Department of Pathology and Laboratory Medicine, University of Saskatchewan College of Medicine, Canada.
| |
Collapse
|
22
|
Tadokoro T, Ohta-Ogo K, Ikeda Y, Sugiyama M, Katano H, Hatakeyama K, Matsumoto M, Tashiro H. COVID-19-associated myocardial injury: A case report. ESC Heart Fail 2023; 10:1461-1466. [PMID: 36691883 PMCID: PMC10053255 DOI: 10.1002/ehf2.14295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 01/25/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is often accompanied by pneumonia and can be fatal. We report a case of COVID-19-associated myocardial injury mimicking fulminant myocarditis. Endomyocardial biopsy revealed numerous von Willebrand factor-rich microthrombi with small myocardial necrotic areas, complement deposits in small vessels/microthrombi, and macrophage-predominant interstitial infiltration. These findings, distinct from those of typical lymphocytic myocarditis, show diffuse endothelial injury, complement activation, and activated macrophages as characteristic features of COVID-19-associated pathogenesis. Dysregulated serum cytokine profiles predicting severe/critical COVID-19-associated myocardial injury were also determined. This case emphasizes the occurrence of fatal cardiac manifestation with microthrombotic injury in the early stage of COVID-19.
Collapse
Affiliation(s)
- Tomonori Tadokoro
- Department of Cardiovascular Medicine, St. Mary's Hospital, Kurume, Japan
| | - Keiko Ohta-Ogo
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshihiko Ikeda
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masaya Sugiyama
- Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Disease, Tokyo, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Nara, Japan
| | - Hideki Tashiro
- Department of Cardiovascular Medicine, St. Mary's Hospital, Kurume, Japan
| |
Collapse
|
23
|
Fakhkhari M, Caidi H, Sadki K. HLA alleles associated with COVID-19 susceptibility and severity in different populations: a systematic review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023; 24:10. [PMID: 36710951 PMCID: PMC9867832 DOI: 10.1186/s43042-023-00390-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/15/2023] [Indexed: 01/23/2023] Open
Abstract
Background COVID-19 is a respiratory disease caused by a novel coronavirus called as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Detected for the first time in December 2019 in Wuhan and it has quickly spread all over the world in a couple of months and becoming a world pandemic. Symptoms of the disease and clinical outcomes are very different in infected people. These differences highlight the paramount need to study and understand the human genetic variation that occurring viral infections. Human leukocyte antigen (HLA) is an important component of the viral antigen presentation pathway, and it plays an essential role in conferring differential viral susceptibility and severity of diseases. HLA alleles have been involved in the immune response to viral diseases such as SARS-CoV-2. Main body of the abstract Herein, we sought to evaluate this hypothesis by summarizing the association between HLA class I and class II alleles with COVID-19 susceptibility and/or severity reported in previous studies among different populations (Chinese, Italian, Iranian, Japanese, Spanish, etc.). The findings of all selected articles showed that several alleles have been found associated with COVID-19 susceptibility and severity. Even results across articles have been inconsistent and, in some cases, conflicting, highlighting that the association between the HLA system and the COVID-19 outcome might be ethnic-dependent, there were some alleles in common between some populations such as HLA-DRB1*15 and HLA-A*30:02. Conclusion These contradictory findings warrant further large, and reproducible studies to decipher any possible genetic predisposition underlying susceptibility to SARS-COV-2 and disease progression and host immune response.
Collapse
Affiliation(s)
- Meryem Fakhkhari
- Research Laboratory in Oral Biology and Biotechnology, Faculty of Dental Medicine, Mohammed V University in Rabat, Rabat, Morocco
| | - Hayat Caidi
- NARST Surveillance Unit, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Khalid Sadki
- Research Laboratory in Oral Biology and Biotechnology, Faculty of Dental Medicine, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
24
|
Dobrijević Z, Gligorijević N, Šunderić M, Penezić A, Miljuš G, Tomić S, Nedić O. The association of human leucocyte antigen (HLA) alleles with COVID-19 severity: A systematic review and meta-analysis. Rev Med Virol 2023; 33:e2378. [PMID: 35818892 PMCID: PMC9349710 DOI: 10.1002/rmv.2378] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 01/28/2023]
Abstract
Due to their pivotal role in orchestrating the immune response, HLA loci were recognized as candidates for genetic association studies related to the severity of COVID-19. Since the findings on the effects of HLA alleles on the outcome of SARS-CoV-2 infection remain inconclusive, we aimed to elucidate the potential involvement of genetic variability within HLA loci in the molecular genetics of COVID-19 by classifying the articles according to different disease severity/outcomes and by conducting a systematic review with meta-analysis. Potentially eligible studies were identified by searching PubMed, Scopus and Web of Science literature databases. A total of 28 studies with 13,073 participants were included in qualitative synthesis, while the results of 19 studies with 10,551 SARS-CoV-2-positive participants were pooled in the meta-analysis. According to the results of quantitative data synthesis, association with COVID-19 severity or with the lethal outcome was determined for the following alleles and allele families: HLA-A*01, HLA-A*03, HLA-A*11, HLA-A*23, HLA-A*31, HLA-A*68, HLA-A*68:02, HLA-B*07:02, HLA-B*14, HLA-B*15, HLA-B*40:02, HLA-B*51:01, HLA-B*53, HLA-B*54, HLA-B*54:01, HLA-C*04, HLA-C*04:01, HLA-C*06, HLA-C*07:02, HLA-DRB1*11, HLA-DRB1*15, HLA-DQB1*03 and HLA-DQB1*06 (assuming either allelic or dominant genetic model). We conclude that alleles of HLA-A, -B, -C, -DRB1 and -DQB1 loci may represent potential biomarkers of COVID-19 severity and/or mortality, which needs to be confirmed in a larger set of studies.
Collapse
Affiliation(s)
- Zorana Dobrijević
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Nikola Gligorijević
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Miloš Šunderić
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Ana Penezić
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Goran Miljuš
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Sergej Tomić
- Department for Immunology and ImmunoparasitologyUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Olgica Nedić
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| |
Collapse
|
25
|
Abstract
The worldwide coronavirus disease 2019 pandemic was sparked by the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) that first surfaced in December 2019 (COVID-19). The effects of COVID-19 differ substantially not just between patients individually but also between populations with different ancestries. In humans, the human leukocyte antigen (HLA) system coordinates immune regulation. Since HLA molecules are a major component of antigen-presenting pathway, they play an important role in determining susceptibility to infectious disease. It is likely that differential susceptibility to SARS-CoV-2 infection and/or disease course in COVID-19 in different individuals could be influenced by the variations in the HLA genes which are associated with various immune responses to SARS-CoV-2. A growing number of studies have identified a connection between HLA variation and diverse COVID-19 outcomes. Here, we review research investigating the impact of HLA on individual responses to SARS-CoV-2 infection and/or progression, also discussing the significance of MHC-related immunological patterns and its use in vaccine design.
Collapse
Affiliation(s)
- Anshika Srivastava
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, CA USA
| | - Jill A. Hollenbach
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, CA USA
| |
Collapse
|
26
|
Chen LC, Nersisyan S, Wu CJ, Chang CM, Tonevitsky A, Guo CL, Chang WC. On the peptide binding affinity changes in population-specific HLA repertoires to the SARS-CoV-2 variants Delta and Omicron. J Autoimmun 2022; 133:102952. [PMID: 36427410 PMCID: PMC9650568 DOI: 10.1016/j.jaut.2022.102952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the changes of Spike protein-HLA binding affinity profiles between the Wuhan strain and two dominant variants, the Delta and the Omicron strains, among the Taiwanese, the British and the Russian populations. METHODS The HLA frequencies and the HLA-peptide binding affinity profiles in the T-CoV database were combined to conduct the study. We focused on the public alleles in the three populations (HLA-A, HLA-B, HLA-C, HLA-DRB1, and/or HLA-DPA1/DPB1 alleles) and the altered peptides of the spike protein (compared to the Wuhan strain) in the Delta G/478K·V1 (B.1.617.2 + AY.1 + AY.2) and the Omicron (BA.1) strains. RESULTS For the Delta strain, tight bindings of the altered peptides to the HLA alleles decrease in all three populations and almost vanish in the Taiwanese population. For the Omicron strain, tight bindings are mostly preserved for both HLA classes and in the Taiwanese and the British populations, with a slight reduction in HLA class II in the Taiwanese (1.4%), while the Russian population preserves a relatively high fraction of tight bindings for both HLA classes. CONCLUSION We comprehensively reported the changes in the HLA-associated SARS-CoV-2 Spike protein peptide binding profiles among the Taiwanese, the British, and the Russian populations. Further studies are needed to understand the immunological mechanisms and the clinical value of our findings.
Collapse
Affiliation(s)
- Lu-Chun Chen
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia,Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia,Armenian Bioinformatics Institute (ABI), Yerevan, Armenia
| | - Chang-Jiun Wu
- Department of Genomic Medicine, University of Texas, MD Anderson Cancer Center. Houston Texas, USA
| | - Che-Mai Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan,Corresponding author. Institute of Physics, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nangang Dist., Taipei City 115201, Taiwan. Tel.: (886) 988545414
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan,Department of Medical Education and Research, Integrative Research Center for Critical Care, Wan fang Hospital, Taipei Medical University, Taipei, Taiwan,Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan,Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan,Corresponding author. Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, No. 250 Wuxing St., Xinyi Dist., Taipei City 110, Taiwan. Tel.: (886) 928121979
| |
Collapse
|
27
|
Lu X, Yamasaki S. Current understanding of T cell immunity against SARS-CoV-2. Inflamm Regen 2022; 42:51. [PMID: 36447270 PMCID: PMC9706904 DOI: 10.1186/s41232-022-00242-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
As an important part of adaptive immunity, T cells are indispensable in the defense against pathogens including viruses. SARS-CoV-2 is a new human coronavirus that occurred at the end of 2019 and has caused the COVID-19 pandemic. Nevertheless, most of the infected patients recovered without any antiviral therapies, suggesting an effective immunity developed in the bodies. T cell immunity responds upon SARS-CoV-2 infection or vaccination and plays crucial roles in eliminating the viruses and generating T cell memory. Specifically, a subpopulation of CD4+ T cells could support the production of anti-SARS-CoV-2 antibodies, and cytotoxic CD8+ T cells are also protective against the infection. SARS-CoV-2-recognizing T cells could be detected in SARS-CoV-2-unexposed donors, but the role of these cross-reactive T cells is still in debate. T cell responses could be diverse across individuals, mainly due to the polymorphism of HLAs. Thus, compared to antibodies, T cell responses are generally less affected by the mutations of SARS-CoV-2 variants. Up to now, a huge number of studies on SARS-CoV-2-responsive T cells have been published. In this review, we introduced some major findings addressing the questions in the main aspects about T cell responses elicited by SARS-CoV-2, to summarize the current understanding of COVID-19.
Collapse
Affiliation(s)
- Xiuyuan Lu
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Epitope Analysis Team, Center for Advanced Modalities and DDS, Osaka University, Suita, 565-0871 Japan
| | - Sho Yamasaki
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Epitope Analysis Team, Center for Advanced Modalities and DDS, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, 565-0871 Japan ,grid.177174.30000 0001 2242 4849Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| |
Collapse
|
28
|
Bubnova L, Pavlova I, Terentieva M, Glazanova T, Belyaeva E, Sidorkevich S, Bashketova N, Chkhingeria I, Kozhemyakina M, Azarov D, Kuznetsova R, Ramsay ES, Gladkikh A, Sharova A, Dedkov V, Totolian A. HLA Genotypes in Patients with Infection Caused by Different Strains of SARS-CoV-2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14024. [PMID: 36360904 PMCID: PMC9657774 DOI: 10.3390/ijerph192114024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The aggressive infectious nature of SARS-CoV-2, its rapid spread, and the emergence of mutations necessitate investigation of factors contributing to differences in SARS-CoV-2 susceptibility and severity. The role of genetic variations in the human HLA continues to be studied in various populations in terms of both its effect on morbidity and clinical manifestation of illness. The study included 484 COVID-19 convalescents (northwest Russia residents of St. Petersburg). Cases in which the responsible strain was determined were divided in two subgroups: group 1 (n = 231) had illness caused by genovariants unrelated to variant of concern (VOC) strains; and group 2 (n = 80) had illness caused by the delta (B.1.617.2) VOC; and a control group (n = 1456). DNA typing (HLA-A, B, DRB1) was performed at the basic resolution level. HLA-A*02 was associated with protection against infection caused by non-VOC SARS-CoV-2 genetic variants only but not against infection caused by delta strains. HLA-A*03 was associated with protection against infection caused by delta strains; and allele groups associated with infection by delta strains were HLA-A*30, B*49, and B*57. Thus, in northwest Russia, HLA-A*02 was associated with protection against infection caused by non-VOC SARS-CoV-2 genetic variants but not against delta viral strains. HLA-A*03 was associated with a reduced risk of infection by delta SARS-CoV-2 strains. HLA-A*30, HLA-B*49, and HLA-B*57 allele groups were predisposing factors for infection by delta (B.1.617.2) strains.
Collapse
Affiliation(s)
- Ludmila Bubnova
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
- Department of immunology, Faculty of medicine, Pavlov First Saint Petersburg State Medical University, Russian Ministry of Health, 197022 St. Petersburg, Russia
| | - Irina Pavlova
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Maria Terentieva
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Tatiana Glazanova
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Elena Belyaeva
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Sergei Sidorkevich
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Nataliya Bashketova
- Saint Petersburg Office, Federal Service for Consumer Rights Protection and Human Welfare, 191025 St. Petersburg, Russia
| | - Irina Chkhingeria
- Saint Petersburg Office, Federal Service for Consumer Rights Protection and Human Welfare, 191025 St. Petersburg, Russia
| | | | - Daniil Azarov
- Saint Petersburg Center for Hygiene and Epidemiology, 191023 St. Petersburg, Russia
| | - Raisa Kuznetsova
- Department of immunology, Faculty of medicine, Pavlov First Saint Petersburg State Medical University, Russian Ministry of Health, 197022 St. Petersburg, Russia
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| | - Edward S. Ramsay
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| | - Anna Gladkikh
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| | - Alena Sharova
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| | - Vladimir Dedkov
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Areg Totolian
- Department of immunology, Faculty of medicine, Pavlov First Saint Petersburg State Medical University, Russian Ministry of Health, 197022 St. Petersburg, Russia
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| |
Collapse
|
29
|
Shirane M, Yawata N, Motooka D, Shibata K, Khor SS, Omae Y, Kaburaki T, Yanai R, Mashimo H, Yamana S, Ito T, Hayashida A, Mori Y, Numata A, Murakami Y, Fujiwara K, Ohguro N, Hosogai M, Akiyama M, Hasegawa E, Paley M, Takeda A, Maenaka K, Akashi K, Yokoyama WM, Tokunaga K, Yawata M, Sonoda KH. Intraocular human cytomegaloviruses of ocular diseases are distinct from those of viremia and are capable of escaping from innate and adaptive immunity by exploiting HLA-E-mediated peripheral and central tolerance. Front Immunol 2022; 13:1008220. [PMID: 36341392 PMCID: PMC9626817 DOI: 10.3389/fimmu.2022.1008220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Human cytomegalovirus (HCMV) infections develop into CMV diseases that result in various forms of manifestations in local organs. CMV-retinitis is a form of CMV disease that develops in immunocompromised hosts with CMV-viremia after viruses in the peripheral circulation have entered the eye. In the HCMV genome, extensive diversification of the UL40 gene has produced peptide sequences that modulate NK cell effector functions when loaded onto HLA-E and are subsequently recognized by the NKG2A and NKG2C receptors. Notably, some HCMV strains carry UL40 genes that encode peptide sequences identical to the signal peptide sequences of specific HLA-A and HLA-C allotypes, which enables these CMV strains to escape HLA-E-restricted CD8+T cell responses. Variations in UL40 sequences have been studied mainly in the peripheral blood of CMV-viremia cases. In this study, we sought to investigate how ocular CMV disease develops from CMV infections. CMV gene sequences were compared between the intraocular fluids and peripheral blood of 77 clinical cases. UL40 signal peptide sequences were more diverse, and multiple sequences were typically present in CMV-viremia blood compared to intraocular fluid. Significantly stronger NK cell suppression was induced by UL40-derived peptides from intraocular HCMV compared to those identified only in peripheral blood. HCMV present in intraocular fluids were limited to those carrying a UL40 peptide sequence corresponding to the leader peptide sequence of the host's HLA class I, while UL40-derived peptides from HCMV found only in the peripheral blood were disparate from any HLA class I allotype. Overall, our analyses of CMV-retinitis inferred that specific HCMV strains with UL40 signal sequences matching the host's HLA signal peptide sequences were those that crossed the blood-ocular barrier to enter the intraocular space. UL40 peptide repertoires were the same in the intraocular fluids of all ocular CMV diseases, regardless of host immune status, implying that virus type is likely to be a common determinant in ocular CMV disease development. We thus propose a mechanism for ocular CMV disease development, in which particular HCMV types in the blood exploit peripheral and central HLA-E-mediated tolerance mechanisms and, thus, escape the antivirus responses of both innate and adaptive immunity.
Collapse
Affiliation(s)
- Mariko Shirane
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, Japan
- Ocular inflammation and Immunology, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Kensuke Shibata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
- Department of Ophthalmology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Ryoji Yanai
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hisashi Mashimo
- Department of Ophthalmology, Japan Community Health Care Organization Hospital, Osaka, Japan
| | - Satoshi Yamana
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Takako Ito
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Akira Hayashida
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Yasuo Mori
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Akihiko Numata
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Nobuyuki Ohguro
- Department of Ophthalmology, Japan Community Health Care Organization Hospital, Osaka, Japan
| | - Mayumi Hosogai
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masato Akiyama
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, Japan
| | - Eiichi Hasegawa
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Michael Paley
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Atsunobu Takeda
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Wayne M. Yokoyama
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University, St. Louis, MO, United States
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Makoto Yawata
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research, ASTAR, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pediatrics, National University Health System, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- National University Singapore Medicine Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
30
|
Tziastoudi M, Cholevas C, Stefanidis I, Theoharides TC. Genetics of COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome: a systematic review. Ann Clin Transl Neurol 2022; 9:1838-1857. [PMID: 36204816 PMCID: PMC9639636 DOI: 10.1002/acn3.51631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/08/2023] Open
Abstract
COVID‐19 and ME/CFS present with some similar symptoms, especially physical and mental fatigue. In order to understand the basis of these similarities and the possibility of underlying common genetic components, we performed a systematic review of all published genetic association and cohort studies regarding COVID‐19 and ME/CFS and extracted the genes along with the genetic variants investigated. We then performed gene ontology and pathway analysis of those genes that gave significant results in the individual studies to yield functional annotations of the studied genes using protein analysis through evolutionary relationships (PANTHER) VERSION 17.0 software. Finally, we identified the common genetic components of these two conditions. Seventy‐one studies for COVID‐19 and 26 studies for ME/CFS were included in the systematic review in which the expression of 97 genes for COVID‐19 and 429 genes for ME/CFS were significantly affected. We found that ACE, HLA‐A, HLA‐C, HLA‐DQA1, HLA‐DRB1, and TYK2 are the common genes that gave significant results. The findings of the pathway analysis highlight the contribution of inflammation mediated by chemokine and cytokine signaling pathways, and the T cell activation and Toll receptor signaling pathways. Protein class analysis revealed the contribution of defense/immunity proteins, as well as protein‐modifying enzymes. Our results suggest that the pathogenesis of both syndromes could involve some immune dysfunction.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Cholevas
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University, AHEPA Hospital, Thessaloniki, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Theoharis C Theoharides
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, USA.,Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Khor S, Omae Y, Tokunaga K. Genomic sequencing of the novel
HLA‐C*07:02:01:107
allele by next‐generation sequencing in two Japanese individuals. HLA 2022; 100:383-384. [DOI: 10.1111/tan.14713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Seik‐Soon Khor
- Genome Medical Science Project National Center for Global Health and Medicine Tokyo Japan
| | - Yosuke Omae
- Genome Medical Science Project National Center for Global Health and Medicine Tokyo Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project National Center for Global Health and Medicine Tokyo Japan
| |
Collapse
|
32
|
Khare K, Pandey R. Cellular heterogeneity in disease severity and clinical outcome: Granular understanding of immune response is key. Front Immunol 2022; 13:973070. [PMID: 36072602 PMCID: PMC9441806 DOI: 10.3389/fimmu.2022.973070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022] Open
Abstract
During an infectious disease progression, it is crucial to understand the cellular heterogeneity underlying the differential immune response landscape that will augment the precise information of the disease severity modulators, leading to differential clinical outcome. Patients with COVID-19 display a complex yet regulated immune profile with a heterogeneous array of clinical manifestation that delineates disease severity sub-phenotypes and worst clinical outcomes. Therefore, it is necessary to elucidate/understand/enumerate the role of cellular heterogeneity during COVID-19 disease to understand the underlying immunological mechanisms regulating the disease severity. This article aims to comprehend the current findings regarding dysregulation and impairment of immune response in COVID-19 disease severity sub-phenotypes and relate them to a wide array of heterogeneous populations of immune cells. On the basis of the findings, it suggests a possible functional correlation between cellular heterogeneity and the COVID-19 disease severity. It highlights the plausible modulators of age, gender, comorbidities, and hosts' genetics that may be considered relevant in regulating the host response and subsequently the COVID-19 disease severity. Finally, it aims to highlight challenges in COVID-19 disease that can be achieved by the application of single-cell genomics, which may aid in delineating the heterogeneity with more granular understanding. This will augment our future pandemic preparedness with possibility to identify the subset of patients with increased diseased severity.
Collapse
Affiliation(s)
- Kriti Khare
- Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
33
|
Hu S, Shao Z, Ni W, Sun P, Qiao J, Wan H, Huang Y, Liu X, Zhai H, Xiao M, Sun B. The KIR2DL2/HLA-C1C1 Gene Pairing Is Associated With an Increased Risk of SARS-CoV-2 Infection. Front Immunol 2022; 13:919110. [PMID: 35874712 PMCID: PMC9301464 DOI: 10.3389/fimmu.2022.919110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
SARS-CoV-2 is the causative agent for the global COVID-19 pandemic; however, the interaction between virus and host is not well characterized. Natural killer cells play a key role in the early phase of the antiviral response, and their primary functions are dependent on signaling through the killer cell immunoglobulin-like receptor (KIR). This study measured the association between KIR/HLA class I ligand pairings and the occurrence and development of COVID-19. DNA of blood samples from 257 COVID-19 patients were extracted and used to detect KIR and HLA-C gene frequencies using single strain sequence-specific primer (SSP) PCR. The frequency of these genes was compared among 158 individuals with mild COVID-19, 99 with severe disease, and 98 healthy controls. The frequencies of KIR2DL2 (P=0.04, OR=1.707), KIR2DS3 (P=0.047, OR=1.679), HLA-C1C1 (P<0.001, OR=3.074) and the KIR2DL2/HLA-C1C1 pairing (P=0.038, OR=2.126) were significantly higher in the COVID-19 patients than the healthy controls. At the same time, the frequency of KIR2DL3+KIR2DL2-/HLA-C1+Others+ was lower in COVID-19 patients than in healthy individuals (P=0.004, OR=0.477). These results suggest that the protective effect of KIR2DL3 against SARS-CoV-2 infection is related to the absence of the KIR2DL2 gene. This study found no correlation between the frequencies of these genes and COVID-19 pathogenesis. Global statistical analysis revealed that the incidence of COVID-19 infection was higher in geographic regions with a high frequency of KIR2DL2. Together these results suggest that the KIR2DL2/HLA-C1C1 gene pairing may be a risk factor for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Song Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Zuoyu Shao
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hepatic Disease Institute, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Wei Ni
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hepatic Disease Institute, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Pan Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Hepatic Disease Institute, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Hexing Wan
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yi Huang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaolong Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Haoyang Zhai
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Mingzhong Xiao
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hepatic Disease Institute, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
- *Correspondence: Binlian Sun, ; Mingzhong Xiao,
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- *Correspondence: Binlian Sun, ; Mingzhong Xiao,
| |
Collapse
|
34
|
Khor S, Omae Y, Tokunaga K. The
HLA‐B*15:02:01:05
allele identified by two next‐generation sequencing methods in a Japanese individual. HLA 2022; 100:522-523. [DOI: 10.1111/tan.14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Seik‐Soon Khor
- Genome Medical Science Project National Center for Global Health and Medicine Tokyo Japan
| | - Yosuke Omae
- Genome Medical Science Project National Center for Global Health and Medicine Tokyo Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project National Center for Global Health and Medicine Tokyo Japan
| |
Collapse
|
35
|
Augusto DG, Hollenbach JA. HLA variation and antigen presentation in COVID-19 and SARS-CoV-2 infection. Curr Opin Immunol 2022; 76:102178. [PMID: 35462277 PMCID: PMC8947957 DOI: 10.1016/j.coi.2022.102178] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 01/09/2023]
Abstract
The extraordinary variation of the human leukocyte antigen (HLA) molecules is critical for diversifying antigen presentation to T cells. Coupled with the rise of novel strains and rapidly evolving immune evasion by SARS-CoV-2 proteins, HLA-mediated immunity in COVID-19 is critically important but far from being fully understood. A growing number of studies have found the association of HLA variants with different COVID-19 outcomes and that HLA genotypes associate with differential immune responses against SARS-CoV-2. Prediction studies have shown that mutations in multiple viral strains, most concentrated in the Spike protein, affect the affinity between these mutant peptides and HLA molecules. Understanding the impact of this variation on T-cell responses is critical for comprehending the immunogenic mechanisms in both natural immunity and vaccine development.
Collapse
Affiliation(s)
- Danillo G Augusto
- Department of Neurology, University of California, San Francisco,
CA, USA,Programa de Pós-Graduação em Genética, Universidade Federal do
Paraná, Curitiba, Brazil
| | - Jill A Hollenbach
- Department of Neurology, University of California, San Francisco,
CA, USA,Department of Epidemiology and Biostatistics, University of
California, San Francisco, CA, USA
| |
Collapse
|
36
|
Khor S, Omae Y, Tokunaga K. Detection of the HLA‐B*15:01:74 allele, an HLA‐B*15 variant discovered in a Japanese individual. HLA 2022; 100:365-366. [DOI: 10.1111/tan.14692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Seik‐Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine Tokyo Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine Tokyo Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine Tokyo Japan
| |
Collapse
|
37
|
Khor S, Omae Y, Tokunaga K. Detection of the novel
HLA‐C
*06:02:01:62
allele by next‐generation sequencing in a Japanese individual. HLA 2022; 100:379-380. [DOI: 10.1111/tan.14694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Seik‐Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine Tokyo Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine Tokyo Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine Tokyo Japan
| |
Collapse
|
38
|
Khor SS, Omae Y, Tokunaga K. Full-length sequence of a novel HLA-C*03:03:01 allele, HLA-C*03:03:01:54 identified in a Japanese individual. HLA 2022; 100:374-375. [PMID: 35622939 DOI: 10.1111/tan.14691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
HLA-C*03:03:01:54 differs from HLA-C*03:03:01:01 by one nucleotide in intron 2 at position 531. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Khor SS, Omae Y, Tokunaga K. Full genomic sequence of the novel HLA-C*14:132 allele identified using next-generation sequencing. HLA 2022; 100:281-282. [PMID: 35615764 DOI: 10.1111/tan.14684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
HLA-C*14:132 differs from HLA-C*14:02:01:01 by one nucleotide in exon 3 at positions 829. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Khor SS, Omae Y, Tokunaga K. Discovery of a novel HLA-B*40 allele, HLA-B*40:02:01:30 in a Japanese individual. HLA 2022; 100:368-369. [PMID: 35524970 DOI: 10.1111/tan.14654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022]
Abstract
HLA-B*40:02:01:30 differs from HLA-B*40:02:01:01 by one nucleotide in 3'UTR at position 2869. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Khor SS, Omae Y, Tokunaga K. HLA-B*13:01:01:09, a variant of HLA-B*13:01:01:01, detected in a Japanese individual. HLA 2022; 100:263-264. [PMID: 35484931 DOI: 10.1111/tan.14647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
HLA-B*13:01:01:09 differs from HLA-B*13:01:01:01 by one nucleotide in intron 4 at positions 1913. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Nishida N, Sugiyama M, Kawai Y, Naka I, Iwamoto N, Suzuki T, Suzuki M, Miyazato Y, Suzuki S, Izumi S, Hojo M, Tsuchiura T, Ishikawa M, Ohashi J, Ohmagari N, Tokunaga K, Mizokami M. Genetic association of IL17 and the importance of ABO blood group antigens in saliva to COVID-19. Sci Rep 2022; 12:3854. [PMID: 35264675 PMCID: PMC8907215 DOI: 10.1038/s41598-022-07856-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
The outbreak of COVID-19 caused by infection with SARS-CoV-2 virus has become a worldwide pandemic, and the number of patients presenting with respiratory failure is rapidly increasing in Japan. An international meta-analysis has been conducted to identify genetic factors associated with the onset and severity of COVID-19, but these factors have yet to be fully clarified. Here, we carried out genomic analysis based on a genome-wide association study (GWAS) in Japanese COVID-19 patients to determine whether genetic factors reported to be associated with the onset or severity of COVID-19 in the international meta-GWAS are replicated in the Japanese population, and whether new genetic factors exist. Although no significant genome-wide association was detected in the Japanese GWAS, an integrated analysis with the international meta-GWAS identified for the first time the involvement of the IL17A/IL17F gene in the severity of COVID-19. Among nine genes reported in the international meta-GWAS as genes involved in the onset of COVID-19, the association of FOXP4-AS1, ABO, and IFNAR2 genes was replicated in the Japanese population. Moreover, combined analysis of ABO and FUT2 genotypes revealed that the presence of oral AB antigens was significantly associated with the onset of COVID-19. FOXP4-AS1 and IFNAR2 were also significantly associated in the integrated analysis of the Japanese GWAS and international meta-GWAS when compared with severe COVID-19 cases and the general population. This made it clear that these two genes were also involved in not only the onset but also the severity of COVID-19. In particular, FOXP4-AS1 was not found to be associated with the severity of COVID-19 in the international meta-GWAS, but an integrated analysis with the Japanese GWAS revealed an association with severity. Individuals with the SNP risk allele found between IL17A and IL17F had significantly lower mRNA expression levels of IL17F, suggesting that activation of the innate immune response by IL17F may play an important role in the severity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nao Nishida
- Genome Medical Science Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Chiba, Ichikawa, 272-8516, Japan.
| | - Masaya Sugiyama
- Genome Medical Science Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Chiba, Ichikawa, 272-8516, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Izumi Naka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Noriko Iwamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Tetsuya Suzuki
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Michiyo Suzuki
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Yusuke Miyazato
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Satoshi Suzuki
- Biobank, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Shinyu Izumi
- Department of Respiratory Medicine, National Center for Global Health and Medicine Hospital, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Masayuki Hojo
- Department of Respiratory Medicine, National Center for Global Health and Medicine Hospital, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Takayo Tsuchiura
- Genome Medical Science Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Chiba, Ichikawa, 272-8516, Japan
| | - Miyuki Ishikawa
- Genome Medical Science Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Chiba, Ichikawa, 272-8516, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Masashi Mizokami
- Genome Medical Science Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Chiba, Ichikawa, 272-8516, Japan
| |
Collapse
|
43
|
da Silva Torres MK, Bichara CDA, de Almeida MDNDS, Vallinoto MC, Queiroz MAF, Vallinoto IMVC, dos Santos EJM, de Carvalho CAM, Vallinoto ACR. The Complexity of SARS-CoV-2 Infection and the COVID-19 Pandemic. Front Microbiol 2022; 13:789882. [PMID: 35222327 PMCID: PMC8870622 DOI: 10.3389/fmicb.2022.789882] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the death of millions of people worldwide and thousands more infected individuals developed sequelae due to the disease of the new coronavirus of 2019 (COVID-19). The development of several studies has contributed to the knowledge about the evolution of SARS-CoV2 infection and the disease to more severe forms. Despite this information being debated in the scientific literature, many mechanisms still need to be better understood in order to control the spread of the virus and treat clinical cases of COVID-19. In this article, we carried out an extensive literature review in order to bring together, in a single article, the biological, social, genetic, diagnostic, therapeutic, immunization, and even socioeconomic aspects that impact the SAR-CoV-2 pandemic. This information gathered in this article will enable a broad and consistent reading of the main aspects related to the current pandemic.
Collapse
Affiliation(s)
- Maria Karoliny da Silva Torres
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | - Carlos David Araújo Bichara
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | - Maria de Nazaré do Socorro de Almeida
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
- Laboratory of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Mariana Cayres Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- University Center of the State of Pará, Belém, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | | | - Eduardo José Melo dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
- Laboratory of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Antonio Carlos R. Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| |
Collapse
|
44
|
Hovhannisyan A, Madelian V, Avagyan S, Nazaretyan M, Hyussyan A, Sirunyan A, Arakelyan R, Manukyan Z, Yepiskoposyan L, Mayilyan KR, Jordan F. HLA-C*04:01 Affects HLA Class I Heterozygosity and Predicted Affinity to SARS-CoV-2 Peptides, and in Combination With Age and Sex of Armenian Patients Contributes to COVID-19 Severity. Front Immunol 2022; 13:769900. [PMID: 35185875 PMCID: PMC8850920 DOI: 10.3389/fimmu.2022.769900] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
The novel SARS-CoV-2 coronavirus infection has become a global health concern, causing the COVID-19 pandemic. The disease symptoms and outcomes depend on the host immunity, in which the human leukocyte antigen (HLA) molecules play a distinct role. The HLA alleles have an inter-population variability, and understanding their link to the COVID-19 in an ethnically distinct population may contribute to personalized medicine. The present study aimed at detecting associations between common HLA alleles and COVID-19 susceptibility and severity in Armenians. In 299 COVID-19 patients (75 asymptomatic, 102 mild/moderate, 122 severe), the association between disease severity and classic HLA-I and II loci was examined. We found that the advanced age, male sex of patients, and sex and age interaction significantly contributed to the severity of the disease. We observed that an age-dependent effect of HLA-B*51:01 carriage [odds ratio (OR)=0.48 (0.28-0.80), Pbonf <0.036] is protective against severe COVID-19. Contrary, the HLA-C*04:01 allele, in a dose-dependent manner, was associated with a significant increase in the disease severity [OR (95% CI) =1.73 (1.20-2.49), Pbonf <0.021] and an advancing age (P<0.013). The link between HLA-C*04:01 and age was secondary to a stronger association between HLA-C*04:01 and disease severity. However, HLA-C*04:01 exerted a sex-dependent differential distribution between clinical subgroups [females: P<0.0012; males: P=0.48]. The comparison of HLA-C*04:01 frequency between subgroups and 2,781 Armenian controls revealed a significant incidence of HLA-C*04:01 deficiency in asymptomatic COVID-19. HLA-C*04:01 homozygous genotype in patients blueprinted a decrease in heterozygosity of HLA-B and HLA class-I loci. In HLA-C*04:01 carriers, these changes translated to the SARS-CoV-2 peptide presentation predicted inefficacy by HLA-C and HLA class-I molecules, simultaneously enhancing the appropriate HLA-B potency. In patients with clinical manifestation, due to the high prevalence of HLA-C*04:01, these effects provided a decrease of the HLA class-I heterozygosity and an ability to recognize SARS-CoV-2 peptides. Based on our observations, we developed a prediction model involving demographic variables and HLA-C*04:01 allele for the identification of potential cases with the risk of hospitalization (the area under the curve (AUC) = 86.2%) or severe COVID-19 (AUC =71%).
Collapse
Affiliation(s)
- Anahit Hovhannisyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
- Russian-Armenian University, Yerevan, Armenia
| | - Vergine Madelian
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Sevak Avagyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Mihran Nazaretyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Armine Hyussyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Alina Sirunyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | | | | | | | - Karine R. Mayilyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Frieda Jordan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| |
Collapse
|
45
|
Fong SW, Yeo NKW, Chan YH, Goh YS, Amrun SN, Ang N, Rajapakse MP, Lum J, Foo S, Lee CYP, Carissimo G, Chee RSL, Torres-Ruesta A, Tay MZ, Chang ZW, Poh CM, Young BE, Tambyah PA, Kalimuddin S, Leo YS, Lye DC, Lee B, Biswas S, Howland SW, Renia L, Ng LFP. Robust Virus-Specific Adaptive Immunity in COVID-19 Patients with SARS-CoV-2 Δ382 Variant Infection. J Clin Immunol 2022; 42:214-229. [PMID: 34716845 PMCID: PMC8556776 DOI: 10.1007/s10875-021-01142-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/17/2021] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that have become dominant as the pandemic progresses bear the ORF8 mutation together with multiple spike mutations. A 382-nucleotide deletion (Δ382) in the ORF7b and ORF8 regions has been associated with milder disease phenotype and less systemic inflammation in COVID-19 patients. However, its impact on host immunity against SARS-CoV-2 remains undefined. Here, RNA-sequencing was performed to elucidate whole blood transcriptomic profiles and identify contrasting immune signatures between patients infected with either wildtype or Δ382 SARS-CoV-2 variant. Interestingly, the immune landscape of Δ382 SARS-CoV-2 infected patients featured an increased adaptive immune response, evidenced by enrichment of genes related to T cell functionality, a more robust SARS-CoV-2-specific T cell immunity, as well as a more rapid antibody response. At the molecular level, eukaryotic initiation factor 2 signaling was found to be upregulated in patients bearing Δ382, and its associated genes were correlated with systemic levels of T cell-associated and pro-inflammatory cytokines. This study provides more in-depth insight into the host-pathogen interactions of ORF8 with great promise as a therapeutic target to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Nicholas Kim-Wah Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Yi-Hao Chan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Yun Shan Goh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Nicholas Ang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | | | - Josephine Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Shihui Foo
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Cheryl Yi-Pin Lee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Matthew Zirui Tay
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Zi Wei Chang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Chek Meng Poh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Barnaby Edward Young
- National Centre for Infectious Diseases, Singapore City, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore City, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
| | - Paul A Tambyah
- National Centre for Infectious Diseases, Singapore City, Singapore
- Department of Medicine, National University Hospital, Singapore City, Singapore
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore City, Singapore
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore City, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore City, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore City, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore City, Singapore
| | - David C Lye
- National Centre for Infectious Diseases, Singapore City, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore City, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore City, Singapore
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Subhra Biswas
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Shanshan Wu Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
46
|
Deb P, Zannat K, Talukder S, Bhuiyan AH, Jilani MSA, Saif‐Ur‐Rahman KM. Association of
HLA
gene polymorphism with susceptibility, severity, and mortality of
COVID
‐19: A systematic review. HLA 2022; 99:281-312. [PMID: 35067002 DOI: 10.1111/tan.14560] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Paroma Deb
- Department of Virology Dhaka Medical College Dhaka Bangladesh
| | | | - Shiny Talukder
- Rangamati General Hospital PCR Laboratory Rangamati Bangladesh
| | | | - Md. Shariful Alam Jilani
- Department of Microbiology Ibrahim Medical College Dhaka Bangladesh
- Department of Microbiology BIRDEM General Hospital Dhaka Bangladesh
| | - K. M. Saif‐Ur‐Rahman
- Health Systems and Population Studies Division, icddr,b Dhaka Bangladesh
- Department of Public Health and Health Systems Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
47
|
Lee H, Wang L, Ni FF, Yang XY, Feng SP, Gao XJ, Chi H, Luo YT, Chen XL, Yang BH, Wan JL, Jiao J, Wu DQ, Zhang GF, Wang M, Yang HP, Chan H, Li Q. Association between HLA alleles and sub-phenotype of childhood steroid-sensitive nephrotic syndrome. World J Pediatr 2022; 18:109-119. [PMID: 34973118 PMCID: PMC8843916 DOI: 10.1007/s12519-021-00489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 10/26/2022]
Abstract
BACKGROUND Few studies have addressed the effects of human leukocyte antigen (HLA) alleles on different clinical sub-phenotypes in childhood steroid-sensitive nephrotic syndrome (SSNS), including SSNS without recurrence (SSNSWR) and steroid-dependent nephrotic syndrome/frequently relapse nephrotic syndrome (SDNS/FRNS). In this study, we investigated the relationship between HLA system and children with SSNSWR and SDNS/FRNS and clarified the value of HLA allele detection for precise typing of childhood SSNS. METHODS A total of 241 Chinese Han individuals with SSNS were genotyped using GenCap-WES Capture Kit, and four-digit resolution HLA alleles were imputed from available Genome Wide Association data. The distribution and carrying frequency of HLA alleles in SSNSWR and SDNS/FRNS were investigated. Additionally, logistic regression and mediating effects were used to examine the relationship between risk factors for disease process and HLA system. RESULTS Compared with SSNSWR, significantly decreased serum levels of complement 3 (C3) and complement 4 (C4) at onset were detected in SDNS/FRNS (C3, P < 0.001; C4, P = 0.018). The average time to remission after sufficient initial steroid treatment in SDNS/FRNS was significantly longer than that in SSNSWR (P = 0.0001). Low level of C4 was further identified as an independent risk factor for SDNS/FRNS (P = 0.008, odds ratio = 0.174, 95% confidence interval 0.048-0.630). The HLA-A*11:01 allele was independently associated with SSNSWR and SDNS/FRNS (P = 0.0012 and P = 0.0006, respectively). No significant HLA alleles were detected between SSNSWR and SDNS/FRNS. In addition, a mediating effect among HLA-I alleles (HLA-B*15:11, HLA-B*44:03 and HLA-C*07:06), C4 level and SDNS/FRNS was identified. CONCLUSIONS HLA-I alleles provide novel genetic markers for SSNSWR and SDNS/FRNS. HLA-I antigens may be involved in steroid dependent or frequent relapse in children with SSNS as mediators of immunoregulation.
Collapse
Affiliation(s)
- Hao Lee
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wang
- Department of Nephrology, Chengdu Women and Children Central Hospital, Chengdu, 610041 China
| | - Fen-Fen Ni
- grid.452787.b0000 0004 1806 5224Department of Nephrology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xue-Ying Yang
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Shi-Pin Feng
- Department of Nephrology, Chengdu Women and Children Central Hospital, Chengdu, 610041 China
| | - Xiao-Jie Gao
- grid.452787.b0000 0004 1806 5224Department of Nephrology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Huan Chi
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ye-Tao Luo
- grid.488412.3Department of Statistics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xue-Lan Chen
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Bao-Hui Yang
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jun-Li Wan
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Jiao
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Dao-Qi Wu
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Gao-Fu Zhang
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Mo Wang
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Hai-Ping Yang
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Han Chan
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Qiu Li
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
48
|
Douillard V, Castelli EC, Mack SJ, Hollenbach JA, Gourraud PA, Vince N, Limou S, for the Covid-19|HLA & Immunogenetics Consortium and the SNP-HLA Reference Consortium. Current HLA Investigations on SARS-CoV-2 and Perspectives. Front Genet 2021; 12:774922. [PMID: 34912378 PMCID: PMC8667766 DOI: 10.3389/fgene.2021.774922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
The rapid, global spread of the SARS-CoV-2 virus during the current pandemic has triggered numerous efforts in clinical and research settings to better understand the host genetics' interactions and the severity of COVID-19. Due to the established major role played by MHC/HLA polymorphism in infectious disease course and susceptibility, immunologists and geneticists have teamed up to investigate its contribution to the SARS-CoV-2 infection and COVID-19 progression. A major goal of the Covid-19|HLA & Immunogenetics Consortium is to support and unify these efforts. Here, we present a review of HLA immunogenomics studies in the SARS-CoV-2 pandemic and reflect on the role of various HLA data, their limitation and future perspectives.
Collapse
Affiliation(s)
- Venceslas Douillard
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | | | - Steven J. Mack
- Division of Allergy, Immunology and Bone Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, CA, United States
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, United States
| | - Pierre-Antoine Gourraud
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Nicolas Vince
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Sophie Limou
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
- Ecole Centrale de Nantes, Department of Computer Sciences and Mathematics in Biology, Nantes, France
| | | |
Collapse
|
49
|
Warren RL, Birol I. HLA alleles measured from COVID-19 patient transcriptomes reveal associations with disease prognosis in a New York cohort. PeerJ 2021; 9:e12368. [PMID: 34722002 PMCID: PMC8522641 DOI: 10.7717/peerj.12368] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Human Leukocyte Antigen (HLA) gene locus plays a fundamental role in human immunity, and it is established that certain HLA alleles are disease determinants. Previously, we have identified prevalent HLA class I and class II alleles, including DPA1*02:02, in two small patient cohorts at the COVID-19 pandemic onset. METHODS We have since analyzed a larger public patient cohort data (n = 126 patients) with controls, associated demographic and clinical data. By combining the predictive power of multiple in silico HLA predictors, we report on HLA-I and HLA-II alleles, along with their associated risk significance. RESULTS We observe HLA-II DPA1*02:02 at a higher frequency in the COVID-19 positive cohort (29%) when compared to the COVID-negative control group (Fisher's exact test [FET] p = 0.0174). Having this allele, however, does not appear to put this cohort's patients at an increased risk of hospitalization. Inspection of COVID-19 disease severity outcomes, including admission to intensive care, reveal nominally significant risk associations with A*11:01 (FET p = 0.0078) and C*04:01 (FET p = 0.0087). The association with severe disease outcome is especially evident for patients with C*04:01, where disease prognosis measured by mechanical ventilation-free days was statistically significant after multiple hypothesis correction (Bonferroni p = 0.0323). While prevalence of some of these alleles falls below statistical significance after Bonferroni correction, COVID-19 patients with HLA-I C*04:01 tend to fare worse overall. This HLA allele may hold potential clinical value.
Collapse
Affiliation(s)
- René L. Warren
- Genome Sciences Centre, BC Cancer, Vancouver, CA-BC, Canada
| | - Inanc Birol
- Genome Sciences Centre, BC Cancer, Vancouver, CA-BC, Canada
| |
Collapse
|
50
|
Rathod A, Rathod R, Zhang H, Rahimabad PK, Karmaus W, Arshad H. Association of Asthma and Rhinitis with Epigenetics of Coronavirus Related Genes. Epigenet Insights 2021; 14:25168657211039224. [PMID: 34604700 PMCID: PMC8485269 DOI: 10.1177/25168657211039224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: Susceptibility factors for coronavirus disease 2019 (COVID-19) include sex and medical conditions such as asthma and rhinitis. DNA methylation (DNAm) is associated with asthma, rhinitis, and several viruses. We examined associations of asthma/rhinitis with DNAm at CpGs located on coronavirus related genes, and if these associations were sex-specific. Methods: In total, n = 242 subjects aged 26 years from the Isle of Wight Birth Cohort were included in the study. Linear regressions were used to examine sex specific and non-specific associations of DNAm at CpGs on coronavirus related genes with asthma/rhinitis status. Associations of DNAm with gene expression in blood were assessed for functional relevance of identified CpGs. Results: Statistically significant interaction effects of asthma or rhinitis with sex were identified at 40 CpGs for asthma and 27 CpGs for rhinitis. At 21 CpGs, DNAm was associated with asthma, and at 45 CpGs with rhinitis, regardless of sex. Assessment of functional relevance of the identified CpGs indicated a potential of epigenetic regulatory functionality on gene activity at 14 CpGs for asthma and 17 CpGs for rhinitis, and of those 6 CpGs for asthma and 7 CpGs for rhinitis were likely to be sex-specific. Conclusion: Subjects with asthma/rhinitis may have altered susceptibility to COVID-19 due to changes in their DNAm associated with these conditions. Sex specificity on association of asthma/rhinitis with DNAm at certain CpGs, and on the association of DNAm at asthma/rhinitis-linked CpGs with gene expression have the potential to explain the reported sex-specificity in COVID-19 morbidity and mortality.
Collapse
Affiliation(s)
- Aniruddha Rathod
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Rutu Rathod
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Parnian Kheirkhah Rahimabad
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,David Hide Asthma and Allergy Research Centre, Isle of Wight, UK.,NIHR Southampton Biomedical Research Center, University Hospital Southampton, Southampton, UK
| |
Collapse
|