1
|
Patel P, Patel B, Vyas SD, Patel MS, Hirani T, Haque M, Kumar S. A Narrative Review of Periodontal Vaccines: Hope or Hype? Cureus 2025; 17:e80636. [PMID: 40091902 PMCID: PMC11910667 DOI: 10.7759/cureus.80636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 03/19/2025] Open
Abstract
Globally, periodontal diseases, mainly driven by polymicrobial biofilms, are a widespread concern of social medicine due to their considerable incidence and tie-up to systemic disorders like diabetes, cardiovascular diseases, and complications during pregnancy. Traditional treatments focus on mechanical debridement and antimicrobial therapies, but these approaches have limitations, including recurrence and antibiotic resistance. Periodontal vaccines offer a promising alternative by targeting the immunological mechanisms underlying periodontal disease. This review explores the current state of periodontal vaccine development, highlighting key antigens, vaccine delivery systems, and preclinical and clinical advancements. Special emphasis is placed on antigen selection, host variability, immune tolerance, and future directions to overcome these barriers. This article highlights the advancements and challenges in periodontal vaccine research, offering insights into the capability of immunoprophylaxis as a groundbreaking way to manage periodontal diseases.
Collapse
Affiliation(s)
- Pratiksha Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Bhavin Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Shruti D Vyas
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Maitri S Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Tanvi Hirani
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
- Department of Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
2
|
Bai Y, Ding J, He L, Zhu Z, Pan J, Qi C. β-Glucan induced plasma B cells differentiation to enhance antitumor immune responses by Dectin-1. BMC Immunol 2025; 26:2. [PMID: 39794756 PMCID: PMC11724571 DOI: 10.1186/s12865-025-00681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND B lymphocytes, essential in cellular immunity as antigen-presenting cells and in humoral immunity as major effector cells, play a crucial role in the antitumor response. Our previous work has shown β-glucan enhanced immunoglobulins (Ig) secretion. But the specific mechanisms of B-cell activation with β-glucan are poorly understood. Here, we took advantage of β-glucan to improve the antitumor immune response of B cells. RESULTS In vitro experiments demonstrate that β-glucan enhance the differentiation of B220lo CD138+ B cells, up-regulate co-stimulatory molecules, and increase the production of cytokines and Ig in response to various antigens. Using the Dectin-1 knockout mice, we revealed that β-glucan modulate B cell immune responses dependent on Dectin-1 receptor. In mouse models of Lewis lung cancer (LLC) tumors, combining β-glucan with programmed death-1(PD-1) blocking antibodies led to increase recruitment of CD19+ B cells in the tumor microenvironment (TME), higher numbers of germinal centers B cells (GC B) in the spleen and draining lymph node (DLN), elevate Ig production, and delay tumor progression. CONCLUSIONS These findings reveal that β-glucan can serve as a potent adjuvant to modulate B cell immune responses in a Dectin-1 dependent manner and improve immune checkpoint blockade (ICB) therapy in antitumor. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yu Bai
- Laboratory of Oncology, Medical Research Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Jun Ding
- Laboratory of Oncology, Medical Research Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Liuyang He
- Laboratory of Oncology, Medical Research Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Zhichao Zhu
- Laboratory of Oncology, Medical Research Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Jie Pan
- Laboratory of Oncology, Medical Research Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Chunjian Qi
- Laboratory of Oncology, Medical Research Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
3
|
Ogawa-Momohara M, Vazquez T, Chin F, Sharma M, Dan J, Sprow G, Werth VP. Multiplexed Mass Cytometry of Cutaneous Lupus Erythematosus and Dermatomyositis Skin: An In-depth, B-Cell-Directed Immunoprofile. J Invest Dermatol 2025; 145:190-193.e2. [PMID: 39098475 DOI: 10.1016/j.jid.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Affiliation(s)
- Mariko Ogawa-Momohara
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Thomas Vazquez
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Felix Chin
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meena Sharma
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua Dan
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Grant Sprow
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Taghipour-Mirakmahaleh R, Morin F, Zhang Y, Bourhoven L, Béland LC, Zhou Q, Jaworski J, Park A, Dominguez JM, Corbeil J, Flanagan EP, Marignier R, Larochelle C, Kerfoot S, Vallières L. Turncoat antibodies unmasked in a model of autoimmune demyelination: from biology to therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.623846. [PMID: 39677612 PMCID: PMC11642901 DOI: 10.1101/2024.12.03.623846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Autoantibodies contribute to many autoimmune diseases, yet there is no approved therapy to neutralize them selectively. A popular mouse model, experimental autoimmune encephalomyelitis (EAE), could serve to develop such a therapy, provided we can better understand the nature and importance of the autoantibodies involved. Here we report the discovery of autoantibody-secreting extrafollicular plasmablasts in EAE induced with specific myelin oligodendrocyte glycoprotein (MOG) antigens. Single-cell RNA sequencing reveals that these cells produce non-affinity-matured IgG antibodies. These include pathogenic antibodies competing for shared binding space on MOG's extracellular domain. Interestingly, the synthetic anti-MOG antibody 8-18C5 can prevent the binding of pathogenic antibodies from either EAE mice or people with MOG antibody disease (MOGAD). Moreover, an 8-18C5 variant carrying the NNAS mutation, which inactivates its effector functions, can reduce EAE severity and promote functional recovery. In brief, this study provides not only a comprehensive characterization of the humoral response in EAE models, but also a proof of concept for a novel therapy to antagonize pathogenic anti-MOG antibodies.
Collapse
Affiliation(s)
| | - Françoise Morin
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Yu Zhang
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Louis Bourhoven
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Louis-Charles Béland
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Qun Zhou
- Large Molecule Research, Sanofi, Cambridge, MA, USA
| | | | - Anna Park
- Large Molecule Research, Sanofi, Cambridge, MA, USA
| | - Juan Manuel Dominguez
- Infection and Immunity Unit, Big Data Research Center, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Jacques Corbeil
- Infection and Immunity Unit, Big Data Research Center, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Eoin P. Flanagan
- Departments of Neurology and Laboratory Medicine and Pathology, and Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Romain Marignier
- Service de Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, University of Montreal Hospital Research Center, Montreal, Quebec, Canada
| | - Steven Kerfoot
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Luc Vallières
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
5
|
English EP, Swingler RN, Patwa S, Tosun M, Howard JF, Miljković MD, Jewell CM. Engineering CAR-T therapies for autoimmune disease and beyond. Sci Transl Med 2024; 16:eado2084. [PMID: 39475572 DOI: 10.1126/scitranslmed.ado2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 12/13/2024]
Abstract
Chimeric antigen receptor-T cell (CAR-T) therapy has transformed the management of refractory hematological malignancies. Now that targeting pathogenic cells of interest with antigen-directed cytotoxic T lymphocytes is possible, the field is expanding the reach of CAR-T therapy beyond oncology. Recently, breakthrough progress has been made in the application of CAR-T technology to autoimmune diseases, exploiting the same validated targets that were used by pioneering CAR-T therapies in hematology. Here, we discuss recent advances and outcomes that are paving the way for extension to new therapeutic areas, including autoimmunity.
Collapse
Affiliation(s)
| | | | - Simran Patwa
- Cartesian Therapeutics, Gaithersburg, MD 20878, USA
| | - Mehmet Tosun
- Cartesian Therapeutics, Gaithersburg, MD 20878, USA
| | - James F Howard
- University of North Carolina, Chapel Hill, NC 27514, USA
| | | | | |
Collapse
|
6
|
Konitsioti AM, Prüss H, Laurent S, Fink GR, Heesen C, Warnke C. Chimeric antigen receptor T-cell therapy for autoimmune diseases of the central nervous system: a systematic literature review. J Neurol 2024; 271:6526-6542. [PMID: 39276207 PMCID: PMC11446985 DOI: 10.1007/s00415-024-12642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024]
Abstract
IMPORTANCE B-cell-targeting monoclonal antibodies have demonstrated safety and efficacy in multiple sclerosis or anti-aquaporin-4 IgG positive neuromyelitis optica spectrum disorder. However, these therapies do not facilitate drug-free remission, which may become possible with cell-based therapies, including chimeric antigen receptor (CAR) T cells. CAR T-cell therapy holds promise for addressing other antibody-mediated CNS disorders, e.g., MOG-associated disease or autoimmune encephalitis. OBJECTIVE To provide an overview of the current clinical knowledge on CAR T-cell therapy in central nervous system autoimmunity. EVIDENCE REVIEW We searched PubMed, Embase, Google Scholar, PsycINFO, and clinicaltrials.gov using the terms 'CAR T cell' and 'multiple sclerosis/MS' or 'neuromyelitis optica/spectrum diseases/NMOSD' or 'MOG-associated disease/MOGAD 'or' autoimmune encephalitis' or 'neuroimmunology'. FINDINGS An ongoing phase I clinical trial has indicated the safety and benefits of anti-BCMA CAR T cells in 12 patients with AQP4-IgG seropositive neuromyelitis optica spectrum disorder. Case reports involving two individuals with progressive multiple sclerosis and one patient with stiff-person syndrome demonstrated a manageable safety profile following treatment with anti-CD19 CAR T cells. Recruitment has commenced for two larger studies in MS, and a phase I open-label basket study is underway to evaluate BCMA-directed CAR T cells in various antibody-associated inflammatory diseases, including MOG-associated disease. Preclinical research on NMDA receptor antibody autoimmune encephalitis treated with chimeric autoantibody receptor T cells generated promising data. CONCLUSIONS AND RELEVANCE There is minimal evidence of the benefits of CAR T-cell therapy in individuals with central nervous system-directed autoimmunity. Nevertheless, multicenter controlled clinical trials with a manageable safety profile appear feasible and are warranted due to very promising case experiences.
Collapse
Affiliation(s)
- Agni M Konitsioti
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Laurent
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM3), Research Center Jülich, Jülich, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Christoph Heesen
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Clemens Warnke
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Chen J, Qin M, Xiang X, Guo X, Nie L, Mao L. Lymphocytes in autoimmune encephalitis: Pathogenesis and therapeutic target. Neurobiol Dis 2024; 200:106632. [PMID: 39117118 DOI: 10.1016/j.nbd.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
Autoimmune encephalitis (AE) is an inflammatory disease of the central nervous system characterized by the production of various autoimmune antibodies targeting neuronal proteins. The pathogenesis of AE remains elusive. Accumulating evidence suggests that lymphocytes, particularly B and T lymphocytes, play an integral role in the development of AE. In the last two decades, autoimmune neural antibodies have taken center stage in diagnosing AE. Recently, increasing evidence has highlighted the importance of T lymphocytes in the onset of AE. CD4+ T cells are thought to influence disease progression by secreting associated cytokines, whereas CD8+ T cells exert a cytotoxic role, causing irreversible damage to neurons mainly in patients with paraneoplastic AE. Conventionally, the first-line treatments for AE include intravenous steroids, intravenous immunoglobulin, and plasma exchange to remove pathogenic autoantibodies. However, a minority of patients are insensitive to conventional first-line treatment protocols and suffer from disease relapse, a condition referred to as refractory AE. In recent years, new treatments, such as rituximab or CAAR-T, which target pathogenic lymphocytes in patients with AE, have offered new therapeutic options for refractory AE. This review aims to describe the current knowledge about the function of B and T lymphocytes in the pathophysiology of AE and to summarize and update the immunotherapy options for treating this disease.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengting Qin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuying Xiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
8
|
Rohrbacher S, Seefried S, Hartmannsberger B, Annabelle R, Appeltshauser L, Arlt FA, Brämer D, Dresel C, Dorst J, Elmas Z, Franke C, Geis C, Högen T, Krause S, Marziniak M, Mäurer M, Prüss H, Schoeberl F, Schrank B, Steen C, Teichtinger H, Thieme A, Wessely L, Zernecke A, Sommer C, Doppler K. Different Patterns of Autoantibody Secretion by Peripheral Blood Mononuclear Cells in Autoimmune Nodopathies. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200295. [PMID: 39173087 PMCID: PMC11379437 DOI: 10.1212/nxi.0000000000200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND OBJECTIVES Autoimmune nodopathies with antibodies against the paranodal proteins show a distinct phenotype of a severe sensorimotor neuropathy. In some patients, complete remission can be achieved after treatment with rituximab whereas others show a chronic course. For optimal planning of treatment, predicting the course of disease and therapeutic response is crucial. METHODS We stimulated peripheral blood mononuclear cells in vitro to find out whether secretion of specific autoantibodies may be a predictor of the course of disease and response to rituximab. RESULTS Three patterns could be identified: In most patients with anti-Neurofascin-155-, anti-Contactin-1-, and anti-Caspr1-IgG4 autoantibodies, in vitro production of autoantibodies was detected, indicating autoantigen-specific memory B cells and short-lived plasma cells/plasmablasts as the major source of autoantibodies. These patients generally showed a good response to rituximab. In a subgroup of patients with anti-Neurofascin-155-IgG4 autoantibodies and insufficient response to rituximab, no in vitro autoantibody production was found despite high serum titers, indicating autoantibody secretion by long-lived plasma cells outside the peripheral blood. In the patients with anti-pan-Neurofascin autoantibodies-all with a monophasic course of disease-no in vitro autoantibody production could be measured, suggesting a lack of autoantigen-specific memory B cells. In some of them, autoantibody production by unstimulated cells was detectable, presumably corresponding to high amounts of autoantigen-specific plasmablasts-well in line with a severe but monophasic course of disease. DISCUSSION Our data suggest that different B-cell responses may occur in autoimmune nodopathies and may serve as markers of courses of disease and response to rituximab.
Collapse
Affiliation(s)
- Sophia Rohrbacher
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Sabine Seefried
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Beate Hartmannsberger
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Rosa Annabelle
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Luise Appeltshauser
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Friederike A Arlt
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Dirk Brämer
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Christian Dresel
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Johannes Dorst
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Zeynep Elmas
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Christiana Franke
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Christian Geis
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Tobias Högen
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Sabine Krause
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Martin Marziniak
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Mathias Mäurer
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Harald Prüss
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Florian Schoeberl
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Bertold Schrank
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Claudia Steen
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Helena Teichtinger
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Andrea Thieme
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Lena Wessely
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Alma Zernecke
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Claudia Sommer
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Kathrin Doppler
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| |
Collapse
|
9
|
Jacob S. Treating myasthenia gravis beyond the eye clinic. Eye (Lond) 2024; 38:2422-2436. [PMID: 38789789 PMCID: PMC11306738 DOI: 10.1038/s41433-024-03133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/17/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Myasthenia gravis (MG) is one of the most well characterised autoimmune disorders affecting the neuromuscular junction with autoantibodies targeting the acetylcholine receptor (AChR) complex. The vast majority of patients present with ocular symptoms including double vision and ptosis, but may progress on to develop generalised fatiguable muscle weakness. Severe involvement of the bulbar muscles can lead to dysphagia, dysarthria and breathing difficulties which can progress to myasthenic crisis needing ventilatory support. Given the predominant ocular onset of the disease, it is important that ophthalmologists are aware of the differential diagnosis, investigations and management including evolving therapies. When the disease remains localised to the extraocular muscles (ocular MG) IgG1 and IgG3 antibodies against the AChR (including clustered AChR) are present in nearly 50% of patients. In generalised MG this is seen in nearly 90% patients. Other antibodies include those against muscle specific tyrosine kinase (MuSK) and lipoprotein receptor related protein 4 (LRP4). Even though decremental response on repetitive nerve stimulation is the most well recognised neurophysiological abnormality, single fibre electromyogram (SFEMG) in experienced hands is the most sensitive test which helps in the diagnosis. Initial treatment should be using cholinesterase inhibitors and then proceeding to immunosuppression using corticosteroids and steroid sparing drugs. Patients requiring bulbar muscle support may need rescue therapies including plasma exchange and intravenous immunoglobulin (IVIg). Newer therapeutic targets include those against the B lymphocytes, complement system, neonatal Fc receptors (FcRn) and various other elements of the immune system.
Collapse
Affiliation(s)
- Saiju Jacob
- University Hospitals Birmingham, Birmingham, UK.
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
Zhang Y, Liu D, Zhang Z, Huang X, Cao J, Wang G, Du X, Wang Z, Yang M, Luo T, Liu S, Zhang W, Sheng Y, Li H, Zhang W, Chen H, Zhang S, Wang X, Meng W, Zong S, Shi M, Zheng J, Cui G. Bispecific BCMA/CD19 targeted CAR-T cell therapy forces sustained disappearance of symptoms and anti-acetylcholine receptor antibodies in refractory myasthenia gravis: a case report. J Neurol 2024; 271:4655-4659. [PMID: 38602546 DOI: 10.1007/s00415-024-12367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Affiliation(s)
- Yong Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Zhouao Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Xiaoyu Huang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Xue Du
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Zhouyi Wang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Mingjin Yang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Tiancheng Luo
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Sha Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Wan Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Ying Sheng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Shenyang Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Xiaopeng Wang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Wenqing Meng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Shenghua Zong
- Neuroimmunology Group, KingMed Diagnostic Laboratory, Guangzhou, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|
11
|
Ma C, Liu D, Wang B, Yang Y, Zhu R. Advancements and prospects of novel biologicals for myasthenia gravis: toward personalized treatment based on autoantibody specificities. Front Pharmacol 2024; 15:1370411. [PMID: 38881870 PMCID: PMC11177092 DOI: 10.3389/fphar.2024.1370411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Myasthenia gravis (MG) is an antibody-mediated autoimmune disease with a prevalence of 150-250 cases per million individuals. Autoantibodies include long-lived antibodies against the acetylcholine receptor (AChR), mainly of the IgG1 subclass, and IgG4, produced almost exclusively by short-lived plasmablasts, which are prevalent in muscle-specific tyrosine kinase (MuSK) myasthenia gravis. Numerous investigations have demonstrated that MG patients receiving conventional medication today still do not possess satisfactory symptom control, indicating a substantial disease burden. Subsequently, based on the type of the autoantibody and the pathogenesis, we synthesized the published material to date and reached a conclusion regarding the literature related to personalized targeted therapy for MG. Novel agents for AChR MG have shown their efficacy in clinical research, such as complement inhibitors, FcRn receptor antagonists, and B-cell activating factor (BAFF) inhibitors. Rituximab, a representative drug of anti-CD20 therapy, has demonstrated benefits in treatment of MuSK MG patients. Due to the existence of low-affinity antibodies or unidentified antibodies that are inaccessible by existing methods, the treatment for seronegative MG remains complicated; thus, special testing and therapy considerations are necessary. It may be advantageous to initiate the application of novel biologicals at an early stage of the disease. Currently, therapies can also be combined and individualized according to different types of antibodies. With such a wide range of drugs, how to tailor treatment strategies to patients with various conditions and find the most suitable solution for each MG profile are our necessary and urgent aims.
Collapse
Affiliation(s)
- Chi Ma
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dan Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Benqiao Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingying Yang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Budair F, Kambe N, Kogame T, Hirata M, Takimoto-Ito R, Mostafa A, Nomura T, Kabashima K. Presence of immunoglobulin E-expressing antibody-secreting cells in the dermis close to bullous pemphigoid lesions. Exp Dermatol 2024; 33:e15058. [PMID: 38590080 DOI: 10.1111/exd.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Antibody-secreting cells (ASCs) produce immunoglobulin (Ig) G and IgE autoantibodies in secondary lymphoid organs. Evidence also suggests their existence in the skin in various chronic inflammatory conditions, and in association with CXCL12 and CXCL13, they regulate the recruitment/survival of ASCs and germinal center formation to generate ASCs, respectively. However, the presence of IgG and IgE in bullous pemphigoid (BP) lesions needs to be addressed. Here, we aimed to analyse BP skin for the presence of IgG and IgE and the factors contributing to their generation, recruitment, and persistence. Skin samples from 30 patients with BP were stained to identify ASCs and the immunoglobulin type they expressed. The presence of tertiary lymphoid organ (TLO) elements, which generate ASCs in non-lymphoid tissues, and the chemokines CXCL12 and CXCL13, which regulate the migration/persistence of ASCs in lymphoid tissues and formation of TLOs, respectively, were evaluated in BP skin. BP skin harboured ASCs expressing the two types of antibodies IgG and IgE. ASCs were found in high-grade cellular aggregates containing TLO elements: T cells, B cells, CXCL12+ cells, CXCL13+ cells and high endothelial venules. IgG+ ASCs were detected among these aggregates, whereas IgE+ ASCs were dispersed throughout the dermis. CXCL12+ fibroblast-like cells were located close to ASCs. The inflammatory microenvironment of BP lesions may contribute to the antibody load characteristic of the skin of patients with BP by providing a site for the presence of ASCs. CXCL13 and CXCL12 expression may contribute to the generation and recruitment/survival of ASCs, respectively.
Collapse
Affiliation(s)
- Fatimah Budair
- Department of Dermatology, King Fahd University Hospital, Alkhobar, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Naotomo Kambe
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiaki Kogame
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Riko Takimoto-Ito
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Alshimaa Mostafa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Drug Development for Intractable Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Iorio R. Myasthenia gravis: the changing treatment landscape in the era of molecular therapies. Nat Rev Neurol 2024; 20:84-98. [PMID: 38191918 DOI: 10.1038/s41582-023-00916-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder that affects the neuromuscular junction, leading to muscle weakness and fatigue. MG is caused by antibodies against the acetylcholine receptor (AChR), the muscle-specific kinase (MuSK) or other AChR-related proteins that are expressed in the postsynaptic muscle membrane. The standard therapeutic approach for MG has relied on acetylcholinesterase inhibitors, corticosteroids and immunosuppressants, which have shown good efficacy in improving MG-related symptoms in most people with the disease; however, these therapies can carry a considerable burden of long-term adverse effects. Moreover, up to 15% of individuals with MG exhibit limited or no response to these standard therapies. The emergence of molecular therapies, including monoclonal antibodies, B cell-depleting agents and chimeric antigen receptor T cell-based therapies, has the potential to revolutionize the MG treatment landscape. This Review provides a comprehensive overview of the progress achieved in molecular therapies for MG associated with AChR antibodies and MuSK antibodies, elucidating both the challenges and the opportunities these therapies present to the field. The latest developments in MG treatment are described, exploring the potential for personalized medicine approaches.
Collapse
Affiliation(s)
- Raffaele Iorio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
14
|
Monson N, Smith C, Greenberg H, Plumb P, Guzman A, Tse K, Chen D, Zhang W, Morgan M, Speed H, Powell C, Batra S, Cowell L, Christley S, Vernino S, Blackburn K, Greenberg B. VH2+ Antigen-Experienced B Cells in the Cerebrospinal Fluid Are Expanded and Enriched in Pediatric Anti-NMDA Receptor Encephalitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1332-1339. [PMID: 37712756 PMCID: PMC10593502 DOI: 10.4049/jimmunol.2300156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Pediatric and adult autoimmune encephalitis (AE) are often associated with Abs to the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor (NMDAR). Very little is known regarding the cerebrospinal fluid humoral immune profile and Ab genetics associated with pediatric anti-NMDAR-AE. Using a combination of cellular, molecular, and immunogenetics tools, we collected cerebrospinal fluid from pediatric subjects and generated 1) flow cytometry data to calculate the frequency of B cell subtypes in the cerebrospinal fluid of pediatric subjects with anti-NMDAR-AE and controls, 2) a panel of recombinant human Abs from a pediatric case of anti-NMDAR-AE that was refractory to treatment, and 3) a detailed analysis of the Ab genes that bound the NR1 subunit of the NMDAR. Ag-experienced B cells including memory cells, plasmablasts, and Ab-secreting cells were expanded in the pediatric anti-NMDAR-AE cohort, but not in the controls. These Ag-experienced B cells in the cerebrospinal fluid of a pediatric case of NMDAR-AE that was refractory to treatment had expanded use of variable H chain family 2 (VH2) genes with high somatic hypermutation that all bound to the NR1 subunit of the NMDAR. A CDR3 motif was identified in this refractory case that likely drove early stage activation and expansion of naive B cells to Ab-secreting cells, facilitating autoimmunity associated with pediatric anti-NMDAR-AE through the production of Abs that bind NR1. These features of humoral immune responses in the cerebrospinal fluid of pediatric anti-NMDAR-AE patients may be relevant for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Nancy Monson
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| | - Chad Smith
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Hannah Greenberg
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Patricia Plumb
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Alyssa Guzman
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Key Tse
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Ding Chen
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Wei Zhang
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Miles Morgan
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Haley Speed
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Craig Powell
- Department of Neurobiology, Civitan International Research Center, University of Alabama Marnix E. Heersink School of Medicine, Birmingham, AL
| | - Sushobhna Batra
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Lindsay Cowell
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Scott Christley
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Steve Vernino
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Kyle Blackburn
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
15
|
Kazakou P, Tzanetakos D, Vakrakou AG, Tzartos JS, Evangelopoulos ΜE, Anagnostouli M, Stathopoulos P, Kassi GN, Stefanis L, Kilidireas C, Zapanti E. Thyroid autoimmunity following alemtuzumab treatment in multiple sclerosis patients: a prospective study. Clin Exp Med 2023; 23:2885-2894. [PMID: 36641771 PMCID: PMC10543528 DOI: 10.1007/s10238-022-00981-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 01/16/2023]
Abstract
Autoimmune thyroid disease (AITD) is the most common adverse effect in alemtuzumab (ALZ) treated relapsing-remitting (RR) multiple sclerosis (MS) patients. The objective of this prospective study was to analyze the occurrence, timing of onset, clinical course, and laboratory characteristics of AITD post-ALZ. We evaluated 35 RRMS patients treated with ALZ at a single academic MS center; clinical and laboratory data were collected before ALZ initiation and thereafter quarterly on follow-up with a median of 43.5 months. Seventeen out of 31 patients (54.8%) with no prior history of thyroid dysfunction developed AITD with a mean onset of 19.4 months ± 10.2 (SD) after the first ALZ cycle; Graves' disease (GD) (n = 9); hypothyroidism with positive stimulating thyrotropin receptor antibodies (TRAb) (n = 1); Hashimoto thyroiditis (HT) (n = 6); HT with hypothyroidism (n = 1). Interestingly, seven of nine (77.7%) GD patients showed a fluctuating course. Three out of four patients with preexisting thyroid disease remained stable, whereas one with prior HT and hypothyroidism developed fluctuating GD. All patients with GD commenced antithyroid drugs (ATDs); five continued on "block and replace" treatment; one required radioactive iodine, and one total thyroidectomy. Our analysis showed earlier onset of ALZ-induced AITD in comparison to most other ALZ cohorts; overall, these patients required complex therapeutic approaches of the AITD. We observed a higher rate of fluctuating GD, with earlier onset and lower remission rate than previously reported, which in the majority of patients required prolonged "block and replace" therapy in the minimum dose of each therapeutic agent or more definitive interventions.
Collapse
Affiliation(s)
- Paraskevi Kazakou
- Endocrine Unit and Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Dimitrios Tzanetakos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
- Second Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece.
| | - Aigli G Vakrakou
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - John S Tzartos
- Second Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Μaria-Eleptheria Evangelopoulos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Anagnostouli
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panos Stathopoulos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia N Kassi
- Department of Endocrinology, Alexandra Hospital, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
16
|
Oh S, Mao X, Manfredo-Vieira S, Lee J, Patel D, Choi EJ, Alvarado A, Cottman-Thomas E, Maseda D, Tsao PY, Ellebrecht CT, Khella SL, Richman DP, O'Connor KC, Herzberg U, Binder GK, Milone MC, Basu S, Payne AS. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat Biotechnol 2023; 41:1229-1238. [PMID: 36658341 PMCID: PMC10354218 DOI: 10.1038/s41587-022-01637-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023]
Abstract
Muscle-specific tyrosine kinase myasthenia gravis (MuSK MG) is an autoimmune disease that causes life-threatening muscle weakness due to anti-MuSK autoantibodies that disrupt neuromuscular junction signaling. To avoid chronic immunosuppression from current therapies, we engineered T cells to express a MuSK chimeric autoantibody receptor with CD137-CD3ζ signaling domains (MuSK-CAART) for precision targeting of B cells expressing anti-MuSK autoantibodies. MuSK-CAART demonstrated similar efficacy as anti-CD19 chimeric antigen receptor T cells for depletion of anti-MuSK B cells and retained cytolytic activity in the presence of soluble anti-MuSK antibodies. In an experimental autoimmune MG mouse model, MuSK-CAART reduced anti-MuSK IgG without decreasing B cells or total IgG levels, reflecting MuSK-specific B cell depletion. Specific off-target interactions of MuSK-CAART were not identified in vivo, in primary human cell screens or by high-throughput human membrane proteome array. These data contributed to an investigational new drug application and phase 1 clinical study design for MuSK-CAART for the treatment of MuSK autoantibody-positive MG.
Collapse
Affiliation(s)
- Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuming Mao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Silvio Manfredo-Vieira
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Eun Jung Choi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Damian Maseda
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia Y Tsao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sami L Khella
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David P Richman
- Department of Neurology, University of California - Davis, Davis, CA, USA
| | - Kevin C O'Connor
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Varley JA, Strippel C, Handel A, Irani SR. Autoimmune encephalitis: recent clinical and biological advances. J Neurol 2023; 270:4118-4131. [PMID: 37115360 PMCID: PMC10345035 DOI: 10.1007/s00415-023-11685-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023]
Abstract
In 2015, we wrote a review in The Journal of Neurology summarizing the field of autoantibody-associated neurological diseases. Now, in 2023, we present an update of the subject which reflects the rapid expansion and refinement of associated clinical phenotypes, further autoantibody discoveries, and a more detailed understanding of immunological and neurobiological pathophysiological pathways which mediate these diseases. Increasing awareness around distinctive aspects of their clinical phenotypes has been a key driver in providing clinicians with a better understanding as to how these diseases are best recognized. In clinical practice, this recognition supports the administration of often effective immunotherapies, making these diseases 'not to miss' conditions. In parallel, there is a need to accurately assess patient responses to these drugs, another area of growing interest. Feeding into clinical care are the basic biological underpinnings of the diseases, which offer clear pathways to improved therapies toward enhanced patient outcomes. In this update, we aim to integrate the clinical diagnostic pathway with advances in patient management and biology to provide a cohesive view on how to care for these patients in 2023, and the future.
Collapse
Affiliation(s)
- James A Varley
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, Fulham Palace Road, London, W6 8RF, UK
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 3, West Wing, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Christine Strippel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 3, West Wing, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK
| | - Adam Handel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 3, West Wing, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 3, West Wing, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK.
| |
Collapse
|
18
|
Granit V, Benatar M, Kurtoglu M, Miljković MD, Chahin N, Sahagian G, Feinberg MH, Slansky A, Vu T, Jewell CM, Singer MS, Kalayoglu MV, Howard JF, Mozaffar T. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol 2023; 22:578-590. [PMID: 37353278 PMCID: PMC10416207 DOI: 10.1016/s1474-4422(23)00194-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells are highly effective in treating haematological malignancies, but associated toxicities and the need for lymphodepletion limit their use in people with autoimmune disease. To explore the use of CAR T cells for the treatment of people with autoimmune disease, and to improve their safety, we engineered them with RNA (rCAR-T)-rather than the conventional DNA approach-to target B-cell maturation antigen (BCMA) expressed on plasma cells. To test the suitability of our approach, we used rCAR-T to treat individuals with myasthenia gravis, a prototypical autoantibody disease mediated partly by pathogenic plasma cells. METHODS MG-001 was a prospective, multicentre, open-label, phase 1b/2a study of Descartes-08, an autologous anti-BCMA rCAR-T therapy, in adults (ie, aged ≥18 years) with generalised myasthenia gravis and a Myasthenia Gravis Activities of Daily Living (MG-ADL) score of 6 or higher. The study was done at eight sites (ie, academic medical centres or community neurology clinics) in the USA. Lymphodepletion chemotherapy was not used. In part 1 (phase 1b), participants with Myasthenia Gravis Foundation of America (MGFA) disease class III-IV generalised myasthenia gravis received three ascending doses of Descartes-08 to determine a maximum tolerated dose. In part 2 (phase 2a), participants with generalised myasthenia gravis with MGFA disease class II-IV received six doses at the maximum tolerated dose in an outpatient setting. The primary objective was to establish safety and tolerability of Descartes-08; secondary objectives were to assess myasthenia gravis disease severity and biomarkers in participants who received Descartes-08. This trial is registered with clinicaltrials.gov, NCT04146051. FINDINGS We recruited 16 individuals for screening between Jan 7, 2020 and Aug 3, 2022. 14 participants were enrolled (n=3 in part 1, n=11 in part 2). Ten participants were women and four were men. Two individuals did not qualify due to low baseline MG-ADL score (n=1) or lack of generalised disease (n=1). Median follow-up in part 2 was 5 months (range 3-9 months). There was no dose-limiting toxicity, cytokine release syndrome, or neurotoxicity. Common adverse events were headache (six of 14 participants), nausea (five of 14), vomiting (three of 14), and fever (four of 14), which resolved within 24 h of infusion. Fevers were not associated with increased markers of cytokine release syndrome (IL-6, IL-2, and TNF). Mean improvements from baseline to week 12 were -6 (95% CI -9 to -3) for MG-ADL score, -7 (-11 to -3) for Quantitative Myasthenia Gravis score, -14 (-19 to -9) for Myasthenia Gravis Composite score, and -9 (-15 to -3) for Myasthenia Gravis Quality of Life 15-revised score. INTERPRETATION In this first study of an rCAR-T therapy in individuals with an autoimmune disease, Descartes-08 appeared to be safe and was well tolerated. Descartes-08 infusions were followed by clinically meaningful decreases on myasthenia gravis severity scales at up to 9 months of follow-up. rCAR-T therapy warrants further investigation as a potential new treatment approach for individuals with myasthenia gravis and other autoimmune diseases. FUNDING Cartesian Therapeutics and National Institute of Neurological Disorders and Stroke of the National Institutes of Health.
Collapse
Affiliation(s)
- Volkan Granit
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | | | | | - Nizar Chahin
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, USA
| | | | | | | | - Tuan Vu
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | | | | | | | - James F Howard
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Tahseen Mozaffar
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
19
|
Hiew FL. ACHR-Positive Generalized Myasthenia Gravis: The Old is Gold and the New Is for us to Explore. Ann Indian Acad Neurol 2023; 26:366-367. [PMID: 37970281 PMCID: PMC10645266 DOI: 10.4103/aian.aian_430_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Fu Liong Hiew
- Neurology Division, Department of Medical, Sunway Medical Centre, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
20
|
Nair SS, Jacob S. Novel Immunotherapies for Myasthenia Gravis. Immunotargets Ther 2023; 12:25-45. [PMID: 37038596 PMCID: PMC10082579 DOI: 10.2147/itt.s377056] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Myasthenia gravis (MG), a prototype autoimmune neurological disease, had its therapy centred on corticosteroids, non-steroidal broad-spectrum immunotherapy and cholinesterase inhibitors for several decades. Treatment-refractory MG and long-term toxicities of the medications have been major concerns with the conventional therapies. Advances in the immunology and pathogenesis of MG have ushered in an era of newer therapies which are more specific and efficacious. Complement inhibitors and neonatal Fc receptor blockers target disease-specific pathogenic mechanisms linked to myasthenia and have proven their efficacy in pivotal clinical studies. B cell-depleting agents, specifically rituximab, have also emerged as useful for the treatment of severe MG. Many more biologicals are in the pipeline and in diverse stages of development. This review discusses the evidence for the novel therapies and the specific issues related to their clinical use.
Collapse
Affiliation(s)
- Sruthi S Nair
- Department of Neurology, University Hospitals Birmingham, Birmingham, B15 2TH, UK
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Saiju Jacob
- Department of Neurology, University Hospitals Birmingham, Birmingham, B15 2TH, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
21
|
Pioli KT, Lau KH, Pioli PD. Thymus antibody-secreting cells possess an interferon gene signature and are preferentially expanded in young female mice. iScience 2023; 26:106223. [PMID: 36890795 PMCID: PMC9986522 DOI: 10.1016/j.isci.2023.106223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/05/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Antibody-secreting cells (ASCs) are key contributors to humoral immunity through immunoglobulin production and the potential to be long-lived. ASC persistence has been recognized in the autoimmune thymus (THY); however, only recently has this population been appreciated in healthy THY tissue. We showed that the young female THY was skewed toward higher production of ASCs relative to males. However, these differences disappeared with age. In both sexes, THY ASCs included Ki-67+ plasmablasts which required CD154(CD40L) signals for their propagation. Single cell RNA-sequencing revealed that THY ASCs were enriched for an interferon responsive transcriptional signature relative to those from bone marrow and spleen. Flow cytometry confirmed that THY ASCs had increased levels of Toll-like receptor 7 as well as CD69 and major histocompatibility complex class II. Overall, we identified fundamental aspects of THY ASC biology which may be leveraged for future in depth studies of this population in both health and disease.
Collapse
Affiliation(s)
- KimAnh T. Pioli
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Kin H. Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Peter D. Pioli
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| |
Collapse
|
22
|
Huang Y, Ma K, Qin R, Fang Y, Zhou J, Dai X. Pristane attenuates atherosclerosis in Apoe mice via IL-4-secreting regulatory plasma cell-mediated M2 macrophage polarization. Biomed Pharmacother 2022; 155:113750. [DOI: 10.1016/j.biopha.2022.113750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022] Open
|
23
|
Oh S, Payne AS. Engineering Cell Therapies for Autoimmune Diseases: From Preclinical to Clinical Proof of Concept. Immune Netw 2022; 22:e37. [PMID: 36381961 PMCID: PMC9634148 DOI: 10.4110/in.2022.22.e37] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022] Open
Abstract
Autoimmune diseases are caused by a dysfunction of the acquired immune system. In a subset of autoimmune diseases, B cells escaping immune tolerance present autoantigen and produce cytokines and/or autoantibodies, resulting in systemic or organ-specific autoimmunity. Therefore, B cell depletion with monoclonal Abs targeting B cell lineage markers is standard care therapy for several B cell-mediated autoimmune disorders. In the last 5 years, genetically-engineered cellular immunotherapies targeting B cells have shown superior efficacy and long-term remission of B cell malignancies compared to historical clinical outcomes using B cell depletion with monoclonal Ab therapies. This has raised interest in understanding whether similar durable remission could be achieved with use of genetically-engineered cell therapies for autoimmunity. This review will focus on current human clinical trials using engineered cell therapies for B cell-associated autoimmune diseases.
Collapse
Affiliation(s)
- Sangwook Oh
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimee S. Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Stathopoulos P, Dalakas MC. The role of complement and complement therapeutics in neuromyelitis optica spectrum disorders. Expert Rev Clin Immunol 2022; 18:933-945. [PMID: 35899480 DOI: 10.1080/1744666x.2022.2105205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Neuromyelitis optica spectrum disorders (NMOSD) are characterized in the majority of cases by the presence of IgG1 autoantibodies against aquaporin 4 (AQP4) and myelin-oligodendrocyte glycoprotein (MOG), both capable of activating complement. AREAS COVERED We review evidence of complement involvement in NMOSD pathophysiology from pathological, in vitro, in vivo, human studies, and clinical trials. EXPERT OPINION In AQP4 NMOSD, complement deposition is a prominent pathological feature, while in vitro and in vivo studies have demonstrated complement-dependent pathogenicity of AQP4 antibodies. Consistent with these studies, the anti-C5 monoclonal antibody eculizumab was remarkably effective and safe in a phase 2/3 trial of AQP4-NMOSD patents leading to FDA-approved indication. Several other anti-complement agents, either approved or in trials for other neuro-autoimmunities, like myasthenia, CIDP, and GBS, are also relevant to NMOSD generating an exciting group of evolving immunotherapies. Limited but compelling in vivo and in vitro data suggest that anti-complement therapeutics may be also applicable to a subset of MOG NMOSD patients with severe disease. Overall, anticomplement agents, along with the already approved anti-IL6 and anti-CD19 monoclonal antibodies sartralizumab and inebilizumab, are rapidly changing the therapeutic algorithm in NMOSD, a previously difficult-to-treat autoimmune neurological disorder.
Collapse
Affiliation(s)
- Panos Stathopoulos
- Department of Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,Neuroimmunology Unit, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Hou Y, Zhang C, Yu X, Wang W, Zhang D, Bai Y, Yan C, Ma L, Li A, Ji J, Cao L, Wang Q. Effect of low-dose rituximab treatment on autoimmune nodopathy with anti-contactin 1 antibody. Front Immunol 2022; 13:939062. [PMID: 35958552 PMCID: PMC9362773 DOI: 10.3389/fimmu.2022.939062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background Autoimmune nodopathy with anti-contactin-1 (CNTN1) responds well to rituximab instead of traditional therapies. Although a low-dose rituximab regimen was administered to patients with other autoimmune diseases, such as myasthenia gravis and neuromyelitis optica spectrum disorders, and satisfactory outcomes were obtained, this low-dose rituximab regimen has not been trialed in anti-CNTN1-positive patients. Methods Anti–CNTN1 nodopathy patients were enrolled in this prospective, open-label, self-controlled pilot study. A cell-based assay was used to detect anti-CNTN1 antibodies and their subclasses in both serum and cerebrospinal fluid. Clinical features were evaluated at baseline, 2 days, 14 days, and 6 months after single low-dose rituximab treatment (600 mg). The titers of the subclasses of anti-CNTN1 antibody and peripheral B cells were also evaluated at baseline, 2 days, and 6 months after the rituximab regimen. Results Two patients with anti–CNTN1 antibodies were enrolled. Both patients had neurological symptoms including muscle weakness, tremor, sensory ataxia, numbness and mild nephrotic symptoms. In the field of neurological symptoms, sensory ataxia markedly improved, and the titer of anti-CNTN1 antibody as well as CD19+ B cells decreased only two days following low-dose rituximab treatment. Other neurological symptoms improved within two weeks of rituximab treatment. At the 6-month follow-up, all neurological symptoms steadily improved with steroid reduction, and both the anti-CNTN1 antibody titer and CD19+ B cells steadily decreased. No adverse events were observed after this single low-dose rituximab treatment. Conclusions We confirmed the clinical efficacy of low-dose rituximab by B cell depletion in autoimmune nodopathy with anti-CNTN1 antibody. This rapid and long-lasting response suggests that low-dose rituximab is a promising option for anti-CNTN1 nodopathy.
Collapse
Affiliation(s)
- Ying Hou
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolin Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqing Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Zhang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunfei Bai
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory and Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Brain Science Research Institute, Shandong University, Jinan, China
| | - Lin Ma
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anning Li
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jian Ji
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lili Cao
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qinzhou Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Qinzhou Wang,
| |
Collapse
|
26
|
Lin L, Wu Y, Hang H, Lu J, Ding Y. Plasma Complement 3 and Complement 4 Are Promising Biomarkers for Distinguishing NMOSD From MOGAD and Are Associated With the Blood-Brain-Barrier Disruption in NMOSD. Front Immunol 2022; 13:853891. [PMID: 35898513 PMCID: PMC9309329 DOI: 10.3389/fimmu.2022.853891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background and ObjectiveNeuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody (MOG-IgG) associated disease (MOGAD) are autoimmune inflammatory demyelinating diseases of the central nervous system (CNS). As the clinical features of NMOSD are similar to MOGAD, diagnostic confusion exists between the two diseases. To better discriminate NMOSD from MOGAD, we investigated whether the plasma levels of complement 3 (C3) and complement 4 (C4) are different in NMOSD and MOGAD during the acute attacks of the diseases. We sought to determine whether C3 or C4 has an influence on the features of NMOSD.MethodsIn this observational study, data from 73 aquaporin-4 antibodies (AQP4-IgG) positive NMOSD patients and 22 MOG-IgG positive MOGAD patients were collected retrospectively. Demographics, clinical characteristics, plasma parameters, and cerebrospinal fluid (CSF) findings will be analyzed for comparability between the two groups. Immunoglobulin-G (IgG) and albumin were measured in both plasma and CSF. Plasma levels of C3 and C4 were measured and compared between the NMOSD, MOGAD, and 42 healthy controls (HC). The correlations between plasma C3, C4, and NMOSD clinical parameters were analyzed.ResultsThe ages of onset were later in the AQP4-IgG positive NMOSD group and females predominated, which differed from the MOGAD group, whose ages were younger and with a slight male preponderance. The AQP4-IgG positive NMOSD patients presented with the clinical symptoms of optic neuritis (ON) and transverse myelitis (TM), whereas encephalitis symptoms were more prevalent in MOGAD patients. CSF analysis shows that slight but not significantly higher white cell count (WCC) and protein were observed in the MOGAD group than in the AQP4-IgG positive NMOSD group. The plasma levels of IgG in MOGAD patients are significantly lower (p = 0.027) than in NMOSD patients. On the contrary, the plasma levels of albumin in MOGAD were higher than in NMOSD, which reached statistical significance (p = 0.039). Both the plasma C3 and C4 levels in the NMOSD group were significantly lower than in MOGAD and HC. The receiver operating characteristic (ROC) curve of the prediction model comprises C3 and C4 to distinguish NMOSD from MOGAD [area under the curve (AUC): 0.731, 0.645], which are considered to have discriminatory values. The results of Spearman’s analysis revealed that there was a significant positive correlation between the plasma C3 and the CSF WCC (r = 0.383, p = 0.040). There was an inverse correlation between plasma C4 and plasma IgG (r = -0.244, p = 0.038). Plasma C3 or C4 was significantly positively correlated with CSF albumin and Q-Alb, which is considered a measure of blood-brain barrier (BBB) disruption.ConclusionDuring the acute phase of NMOSD and MOGAD, plasma C3 and C4 may become potential biomarkers for distinguishing the two diseases and reflecting the NMOSD BBB damage.
Collapse
|
27
|
Stathopoulos P, Dalakas MC. Evolution of Anti-B Cell Therapeutics in Autoimmune Neurological Diseases. Neurotherapeutics 2022; 19:691-710. [PMID: 35182380 PMCID: PMC9294112 DOI: 10.1007/s13311-022-01196-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
B cells have an ever-increasing role in the etiopathology of a number of autoimmune neurological disorders, acting as antigen-presenting cells facilitating antibody production but also as sensors, coordinators, and regulators of the immune response. In particular, B cells can regulate the T cell activation process through their participation in antigen presentation, production of proinflammatory cytokines (bystander activation or suppression), and contribution to ectopic lymphoid aggregates. Such an important interplay between B and T cells makes therapeutic depletion of B cells an attractive treatment strategy. The last decade, anti-B cell therapies using monoclonal antibodies against B cell surface molecules have evolved into a rational approach for successfully treating autoimmune neurological disorders, even when T cells seem to be the main effector cells. The paper summarizes basic aspects of B cell biology, discusses the roles of B cells in neurological autoimmunities, and highlights how the currently available or under development anti-B cell therapeutics exert their action in the wide spectrum and immunologically diverse neurological disorders. The efficacy of the various anti-B cell therapies and practical issues on induction and maintenance therapy is specifically detailed for the treatment of patients with multiple sclerosis, neuromyelitis-spectrum disorders, autoimmune encephalitis and hyperexcitability CNS disorders, autoimmune neuropathies, myasthenia gravis, and inflammatory myopathies. The success of anti-B cell therapies in inducing long-term remission in IgG4 neuroautoimmunities is also highlighted pointing out potential biomarkers for follow-up infusions.
Collapse
Affiliation(s)
- Panos Stathopoulos
- 1st Department of Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Marinos C Dalakas
- Thomas Jefferson University, Philadelphia, PA, USA.
- Neuroimmunology Unit, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
28
|
Koneczny I, Tzartos J, Mané-Damas M, Yilmaz V, Huijbers MG, Lazaridis K, Höftberger R, Tüzün E, Martinez-Martinez P, Tzartos S, Leypoldt F. IgG4 Autoantibodies in Organ-Specific Autoimmunopathies: Reviewing Class Switching, Antibody-Producing Cells, and Specific Immunotherapies. Front Immunol 2022; 13:834342. [PMID: 35401530 PMCID: PMC8986991 DOI: 10.3389/fimmu.2022.834342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Organ-specific autoimmunity is often characterized by autoantibodies targeting proteins expressed in the affected tissue. A subgroup of autoimmunopathies has recently emerged that is characterized by predominant autoantibodies of the IgG4 subclass (IgG4-autoimmune diseases; IgG4-AID). This group includes pemphigus vulgaris, thrombotic thrombocytopenic purpura, subtypes of autoimmune encephalitis, inflammatory neuropathies, myasthenia gravis and membranous nephropathy. Although the associated autoantibodies target specific antigens in different organs and thus cause diverse syndromes and diseases, they share surprising similarities in genetic predisposition, disease mechanisms, clinical course and response to therapies. IgG4-AID appear to be distinct from another group of rare immune diseases associated with IgG4, which are the IgG4-related diseases (IgG4-RLD), such as IgG4-related which have distinct clinical and serological properties and are not characterized by antigen-specific IgG4. Importantly, IgG4-AID differ significantly from diseases associated with IgG1 autoantibodies targeting the same organ. This may be due to the unique functional characteristics of IgG4 autoantibodies (e.g. anti-inflammatory and functionally monovalent) that affect how the antibodies cause disease, and the differential response to immunotherapies of the IgG4 producing B cells/plasmablasts. These clinical and pathophysiological clues give important insight in the immunopathogenesis of IgG4-AID. Understanding IgG4 immunobiology is a key step towards the development of novel, IgG4 specific treatments. In this review we therefore summarize current knowledge on IgG4 regulation, the relevance of class switching in the context of health and disease, describe the cellular mechanisms involved in IgG4 production and provide an overview of treatment responses in IgG4-AID.
Collapse
Affiliation(s)
- Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - John Tzartos
- Neuroimmunology, Tzartos NeuroDiagnostics, Athens, Greece
- 2nd Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marina Mané-Damas
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Maartje G. Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Konstantinos Lazaridis
- Department of Immunology, Laboratory of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Pilar Martinez-Martinez
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Socrates Tzartos
- Neuroimmunology, Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, UKSH Kiel/Lübeck, Kiel University, Kiel, Germany
| |
Collapse
|
29
|
Vakrakou AG, Tzanetakos D, Evangelopoulos ME, Fragoulis GE, Kazakou P, Lekka E, Kafasi N, Tzartos JS, Andreadou E, Koutsis G, Gialafos E, Dimitrakopoulos A, Zampeli E, Rontogianni D, Theocharis S, Zapanti E, Stathopoulos PA, Anagnostouli M, Stefanis L, Kilidireas C. IgG4-related autoimmune manifestations in Alemtuzumab-treated multiple sclerosis patients. J Neuroimmunol 2021; 361:577759. [PMID: 34742035 DOI: 10.1016/j.jneuroim.2021.577759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
We aimed to determine whether Alemtuzumab-induced immune reconstitution affects immunoglobulin and complement levels in the serum of Relapsing-Remitting Multiple Sclerosis (RRMS) patients. IgG4-levels were increased 24-months after treatment initiation compared to baseline levels in twenty-nine patients. Alemtuzumab-treated patients with the highest IgG4-levels were more prone to thyroid-related autoimmune manifestations and specific autoimmune adverse events such as Crohn's disease, Graves' disease, and hemolytic anemia. Compared to baseline, total IgG-levels showed a trend towards reduced levels following two-courses of Alemtuzumab, but no significant change of C3 and/or C4-levels was observed. In conclusion, monitoring of IgG4-levels can serve as a marker for secondary autoimmunity risk in multiple sclerosis patients treated with Alemtuzumab.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece.
| | - Dimitrios Tzanetakos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Maria-Eleptheria Evangelopoulos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - George E Fragoulis
- Department of Propaedeutic Internal Medicine, Medical School, Rheumatology Unit, "Laiko" General Hospital, National and Kapodistrian University of Athens, Greece
| | - Paraskevi Kazakou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - Eleni Lekka
- Department of Immunology, Laiko General Hospital, 17 Agiou Thoma str, Athens 11527, Greece
| | - Nikolitsa Kafasi
- Department of Immunology, Laiko General Hospital, 17 Agiou Thoma str, Athens 11527, Greece
| | - John S Tzartos
- Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, "Attikon" University Hospital, Rimini 1, Chaidari, 12462, Athens, Greece; Tzartos NeuroDiagnostics, Neuroimmunology, Eslin street 3, 115 23 Athens, Greece
| | - Elissavet Andreadou
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Georgios Koutsis
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Elias Gialafos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Antonios Dimitrakopoulos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Evanthia Zampeli
- Gastroenterology Department, "Alexandra" Hospital, Athens, Greece
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Panos-Alexis Stathopoulos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Maria Anagnostouli
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Leonidas Stefanis
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Constantinos Kilidireas
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| |
Collapse
|