1
|
Fraiha ALS, da Silva Santos BSÁ, Aguilar NR, Gallinari GC, de Mendonça Angelo ALP, Costa JMC, Correia PA, Faustino LP, de Souza Silva TB, Guedes RMC, Guedes MIMC, de Magalhães Vieira Machado A, Costa EA, Lobato ZIP. Immunization and challenge trials in a murine model using different inactivated recombinant vaccines against H1N1 swine influenza virus circulating in Brazil. Vaccine 2025; 45:126638. [PMID: 39709805 DOI: 10.1016/j.vaccine.2024.126638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/07/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
In Brazil, at least four lineages of influenza A virus circulate pig population: 2009 H1N1 flu pandemic (pH1N1), human-seasonal origin H3N2, H1N1 and H1N2 (huH1 lineages) viruses. Studies related to the occurrence of swine influenza A virus (SIAV) in Brazilian herds have been detecting an increase of occurrence of huH1 lineages. This study aimed to construct recombinant vaccines against the huH1N1 virus and test the immunogens in a murine model. The virus was constructed by reverse genetics using plasmids encoding the HA and NA sequences from a wild huH1N1 virus isolated from an infected pig. Amplified virus was inactivated, and oil-in-water (OW) and gel polymer (GP) adjuvants were used to formulate the vaccines. C57Bl6 mice received two doses with 3 weeks interval by the intramuscular route. Animals were randomly divided into 8 groups (G1-G8): G1 received OW vaccine and G2 PBS plus OW adjuvant; G3 received GP vaccine and G4 PBS plus GP adjuvant; G5 received the live virus by the intranasal route while G6 only PBS; G7 and G8 did not receive any treatment. Serum samples were collected before vaccination and after the first and second dose. Except for G8, three weeks post boost animals were challenged with a wild huH1N1 virus and observed for weight changes. After infection, bronchoalveolar lavage fluid (BALF) and lungs were collected from animals of each group for viral titers and immunohistochemistry (IHC) analysis, respectively. After booster, vaccinated groups seroconverted and the vaccines induced protection upon challenge. Reverse Genetics technique can be used to produce new and quickly updated swine influenza vaccines which is promising to control the virus in Brazilian herds. Future studies may focus on using the technology to produce multivalent recombinant vaccines against distinct strains of SIAVs circulating in Brazilian pig herds.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Brazil
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/veterinary
- Orthomyxoviridae Infections/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Mice
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
- Swine
- Antibodies, Viral/blood
- Female
- Mice, Inbred C57BL
- Disease Models, Animal
- Adjuvants, Immunologic/administration & dosage
- Injections, Intramuscular
- Lung/virology
- Swine Diseases/prevention & control
- Adjuvants, Vaccine/administration & dosage
Collapse
Affiliation(s)
- Ana Luiza Soares Fraiha
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Nágila Rocha Aguilar
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Grazielle Cossenzo Gallinari
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Julia Machado Caetano Costa
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paula Angélica Correia
- Department of Veterinary Clinic and Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lídia Paula Faustino
- Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | | | | | | | | | - Erica Azevedo Costa
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Zélia Inês Portela Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Esen M, Fischer-Herr J, Gabor JJ, Gaile JM, Fleischmann WA, Smeenk GW, de Moraes RA, Bélard S, Calle CL, Woldearegai TG, Egger-Adam D, Haug V, Metz C, Reguzova A, Löffler MW, Balode B, Matthies LC, Ramharter M, Amann R, Kremsner PG. First-in-Human Phase I Trial to Assess the Safety and Immunogenicity of an Orf Virus-Based COVID-19 Vaccine Booster. Vaccines (Basel) 2024; 12:1288. [PMID: 39591190 PMCID: PMC11599021 DOI: 10.3390/vaccines12111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The emergence of SARS-CoV-2 has necessitated the development of versatile vaccines capable of addressing evolving variants. Prime-2-CoV_Beta, a novel Orf virus-based COVID-19 vaccine, was developed to express the SARS-CoV-2 spike and nucleocapsid antigens. This first-in-human, phase I, dose-finding clinical trial was conducted to assess the safety, reactogenicity, and immunogenicity of Prime-2-CoV_Beta as a booster in healthy adults. From June 2022 to June 2023, 60 participants in Germany received varying doses of Prime-2-CoV_Beta. The study demonstrated a favorable safety profile, with no serious adverse events (AEs) reported. All AEs were mild (107) or moderate (10), with the most common symptoms being pain at the injection site, fatigue, and headache. Immunogenicity assessments revealed robust vaccine-induced antigen-specific immune responses. High doses notably elicited significant increases in antibodies against the spike and nucleocapsid proteins as well as neutralizing antibodies against SARS-CoV-2 and its variants. Additionally, the vaccine did not induce ORFV-neutralizing antibodies, indicating the potential for repeated administration. In conclusion, Prime-2-CoV_Beta was safe, well tolerated, and immunogenic, demonstrating potential as a broadly protective vaccine against SARS-CoV-2 and its variants. These promising results support further evaluation of higher doses and additional studies to confirm efficacy and long-term protection. This trial was registered at ClinicalTrials, NCT05389319.
Collapse
Affiliation(s)
- Meral Esen
- Institute of Tropical Medicine, University Hospital Tübingen, 72074 Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné BP 242, Gabon
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Johanna Fischer-Herr
- Center for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Dep of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Bernhard Nocht Center for Clinical Trials (BNCCT), 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Sites Hamburg-Lübeck-Borstel-Riems, Germany
| | - Julian Justin Gabor
- Institute of Tropical Medicine, University Hospital Tübingen, 72074 Tübingen, Germany
- Klinikverbund-Suedwest, Germany
| | - Johanna Marika Gaile
- Institute of Tropical Medicine, University Hospital Tübingen, 72074 Tübingen, Germany
- Klinikverbund-Suedwest, Germany
| | - Wim Alexander Fleischmann
- Institute of Tropical Medicine, University Hospital Tübingen, 72074 Tübingen, Germany
- Center for Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Geerten Willem Smeenk
- Institute of Tropical Medicine, University Hospital Tübingen, 72074 Tübingen, Germany
- MediTÜV GmbH & Co. KG, Hannover, Standort Hagen, 44263 Dortmund, Germany
| | | | - Sabine Bélard
- Institute of Tropical Medicine, University Hospital Tübingen, 72074 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Carlos Lamsfus Calle
- Institute of Tropical Medicine, University Hospital Tübingen, 72074 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Tamirat Gebru Woldearegai
- Institute of Tropical Medicine, University Hospital Tübingen, 72074 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Diane Egger-Adam
- Institute of Tropical Medicine, University Hospital Tübingen, 72074 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Verena Haug
- Institute of Tropical Medicine, University Hospital Tübingen, 72074 Tübingen, Germany
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Carina Metz
- Institute of Tropical Medicine, University Hospital Tübingen, 72074 Tübingen, Germany
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Alena Reguzova
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Markus W. Löffler
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Baiba Balode
- Center for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Dep of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Bernhard Nocht Center for Clinical Trials (BNCCT), 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Sites Hamburg-Lübeck-Borstel-Riems, Germany
| | - Lars C. Matthies
- Center for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Dep of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Bernhard Nocht Center for Clinical Trials (BNCCT), 20359 Hamburg, Germany
| | - Michael Ramharter
- Center for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Dep of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Bernhard Nocht Center for Clinical Trials (BNCCT), 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Sites Hamburg-Lübeck-Borstel-Riems, Germany
| | - Ralf Amann
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Peter G. Kremsner
- Institute of Tropical Medicine, University Hospital Tübingen, 72074 Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné BP 242, Gabon
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Noll JCG, Rani R, Butt SL, Fernandes MHV, do Nascimento GM, Martins M, Caserta LC, Covaleda L, Diel DG. Identification of an Immunodominant B-Cell Epitope in African Swine Fever Virus p30 Protein and Evidence of p30 Antibody-Mediated Antibody Dependent Cellular Cytotoxicity. Viruses 2024; 16:758. [PMID: 38793639 PMCID: PMC11125664 DOI: 10.3390/v16050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
African Swine Fever Virus (ASFV) is a large dsDNA virus that encodes at least 150 proteins. The complexity of ASFV and lack of knowledge of effector immune functions and protective antigens have hindered the development of safe and effective ASF vaccines. In this study, we constructed four Orf virus recombinant vectors expressing individual ASFV genes B602L, -CP204L, E184L, and -I73R (ORFVΔ121-ASFV-B602L, -CP204L, -E184L, and -I73R). All recombinant viruses expressed the heterologous ASFV proteins in vitro. We then evaluated the immunogenicity of the recombinants by immunizing four-week-old piglets. In two independent animal studies, we observed high antibody titers against ASFV p30, encoded by CP204L gene. Using Pepscan ELISA, we identified a linear B-cell epitope of 12 amino acids in length (Peptide 15) located in an exposed loop region of p30 as an immunodominant ASFV epitope. Additionally, antibodies elicited against ASFV p30 presented antibody-dependent cellular cytotoxicity (ADCC) activity. These results underscore the role of p30 on antibody responses elicited against ASFV and highlight an important functional epitope that contributes to p30-specific antibody responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA (S.L.B.); (M.H.V.F.); (M.M.); (L.C.C.); (L.C.)
| |
Collapse
|
4
|
Metz C, Haug V, Müller M, Amann R. Pharmacokinetic and Environmental Risk Assessment of Prime-2-CoV, a Non-Replicating Orf Virus-Based Vaccine against SARS-CoV-2. Vaccines (Basel) 2024; 12:492. [PMID: 38793743 PMCID: PMC11126055 DOI: 10.3390/vaccines12050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Viral vector vaccines represent a substantial advancement in immunization technology, offering numerous benefits over traditional vaccine modalities. The Orf virus (ORFV) strain D1701-VrV is a particularly promising candidate for vaccine development due to its distinctive attributes, such as a good safety profile, the ability to elicit both humoral and cellular immunity, and its favorable genetic and thermal stability. Despite ORFV's theoretical safety advantages, such as its narrow host range and limited systemic spread post-inoculation, a critical gap persists between these theoretical benefits and the empirical evidence regarding its in vivo safety profile. This discrepancy underscores the need for comprehensive preclinical validations to bridge this knowledge gap, especially considering ORFV's use in humans. Our research introduces Prime-2-CoV, an innovative ORFV-based vaccine candidate against COVID-19, designed to elicit a robust immune response by expressing SARS-CoV-2 Nucleocapsid and Spike proteins. Currently under clinical trials, Prime-2-CoV marks the inaugural application of ORFV in human subjects. Addressing the aforementioned safety concerns, our extensive preclinical evaluation, including an environmental risk assessment (ERA) and detailed pharmacokinetic studies in rats and immunocompromised NOG mice, demonstrates Prime-2-CoV's favorable pharmacokinetic profile, negligible environmental impact, and minimal ERA risks. These findings not only affirm the vaccine's safety and efficacy but also pioneer the use of ORFV-based therapeutics, highlighting its potential for wider therapeutic applications.
Collapse
Affiliation(s)
- Carina Metz
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.M.); (V.H.); (M.M.)
- Institute for Tropical Medicine, Travel Medicine, and Human Parasitology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Verena Haug
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.M.); (V.H.); (M.M.)
- Institute for Tropical Medicine, Travel Medicine, and Human Parasitology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Melanie Müller
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.M.); (V.H.); (M.M.)
| | - Ralf Amann
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.M.); (V.H.); (M.M.)
| |
Collapse
|
5
|
Petro-Turnquist E, Pekarek MJ, Weaver EA. Swine influenza A virus: challenges and novel vaccine strategies. Front Cell Infect Microbiol 2024; 14:1336013. [PMID: 38633745 PMCID: PMC11021629 DOI: 10.3389/fcimb.2024.1336013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Swine Influenza A Virus (IAV-S) imposes a significant impact on the pork industry and has been deemed a significant threat to global public health due to its zoonotic potential. The most effective method of preventing IAV-S is vaccination. While there are tremendous efforts to control and prevent IAV-S in vulnerable swine populations, there are considerable challenges in developing a broadly protective vaccine against IAV-S. These challenges include the consistent diversification of IAV-S, increasing the strength and breadth of adaptive immune responses elicited by vaccination, interfering maternal antibody responses, and the induction of vaccine-associated enhanced respiratory disease after vaccination. Current vaccination strategies are often not updated frequently enough to address the continuously evolving nature of IAV-S, fail to induce broadly cross-reactive responses, are susceptible to interference, may enhance respiratory disease, and can be expensive to produce. Here, we review the challenges and current status of universal IAV-S vaccine research. We also detail the current standard of licensed vaccines and their limitations in the field. Finally, we review recently described novel vaccines and vaccine platforms that may improve upon current methods of IAV-S control.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matthew J. Pekarek
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric A. Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
6
|
do Nascimento GM, de Oliveira PSB, Butt SL, Diel DG. Immunogenicity of chimeric hemagglutinins delivered by an orf virus vector platform against swine influenza virus. Front Immunol 2024; 15:1322879. [PMID: 38482020 PMCID: PMC10933025 DOI: 10.3389/fimmu.2024.1322879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/22/2024] [Indexed: 04/05/2024] Open
Abstract
Orf virus (ORFV) is a large DNA virus that can harbor and efficiently deliver viral antigens in swine. Here we used ORFV as a vector platform to deliver chimeric hemagglutinins (HA) of Influenza A virus of swine (IAV-S). Vaccine development against IAV-S faces limitations posed by strain-specific immunity and the antigenic diversity of the IAV-S strains circulating in the field. A promising alternative aiming at re-directing immune responses on conserved epitopes of the stalk segment of the hemagglutinin (HA2) has recently emerged. Sequential immunization with chimeric HAs comprising the same stalk but distinct exotic head domains can potentially induce cross-reactive immune responses against conserved epitopes of the HA2 while breaking the immunodominance of the head domain (HA1). Here, we generated two recombinant ORFVs expressing chimeric HAs encoding the stalk region of a contemporary H1N1 IAV-S strain and exotic heads derived from either H6 or H8 subtypes, ORFVΔ121cH6/1 and ORFVΔ121cH8/1, respectively. The resulting recombinant viruses were able to express the heterologous protein in vitro. Further, the immunogenicity and cross-protection of these vaccine candidates were assessed in swine after sequential intramuscular immunization with OV-cH6/1 and OV-cH8/1, and subsequent challenge with divergent IAV-S strains. Humoral responses showed that vaccinated piglets presented increasing IgG responses in sera. Additionally, cross-reactive IgG and IgA antibody responses elicited by immunization were detected in sera and bronchoalveolar lavage (BAL), respectively, by ELISA against different viral clades and a diverse range of contemporary H1N1 IAV-S strains, indicating induction of humoral and mucosal immunity in vaccinated animals. Importantly, viral shedding was reduced in nasal swabs from vaccinated piglets after intranasal challenge with either Oh07 (gamma clade) or Ca09 (npdm clade) IAV-S strains. These results demonstrated the efficiency of ORFV-based vectors in delivering chimeric IAV-S HA-based vaccine candidates and underline the potential use of chimeric-HAs for prevention and control of influenza in swine.
Collapse
Affiliation(s)
- Gabriela Mansano do Nascimento
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Pablo Sebastian Britto de Oliveira
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Salman Latif Butt
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
7
|
Kumari S, Chaudhari J, Huang Q, Gauger P, De Almeida MN, Ly H, Liang Y, Vu HLX. Assessment of Immune Responses to a Trivalent Pichinde Virus-Vectored Vaccine Expressing Hemagglutinin Genes from Three Co-Circulating Influenza A Virus Subtypes in Pigs. Vaccines (Basel) 2023; 11:1806. [PMID: 38140210 PMCID: PMC10748346 DOI: 10.3390/vaccines11121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pichinde virus (PICV) can infect several animal species and has been developed as a safe and effective vaccine vector. Our previous study showed that pigs vaccinated with a recombinant PICV-vectored vaccine expressing the hemagglutinin (HA) gene of an H3N2 influenza A virus of swine (IAV-S) developed virus-neutralizing antibodies and were protected against infection by the homologous H3N2 strain. The objective of the current study was to evaluate the immunogenicity and protective efficacy of a trivalent PICV-vectored vaccine expressing HA antigens from the three co-circulating IAV-S subtypes: H1N1, H1N2, and H3N2. Pigs immunized with the trivalent PICV vaccine developed virus-neutralizing (VN) and hemagglutination inhibition (HI) antibodies against all three matching IAV-S. Following challenge infection with the H1N1 strain, five of the six pigs vaccinated with the trivalent vaccine had no evidence of IAV-S RNA genomes in nasal swabs and bronchoalveolar lavage fluid, while all non-vaccinated control pigs showed high number of copies of IAV-S genomic RNA in these two types of samples. Overall, our results demonstrate that the trivalent PICV-vectored vaccine elicits antibody responses against the three targeted IAV-S strains and provides protection against homologous virus challenges in pigs. Therefore, PICV exhibits the potential to be explored as a viral vector for delivering multiple vaccine antigens in swine.
Collapse
Affiliation(s)
- Sushmita Kumari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (S.K.); (J.C.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (S.K.); (J.C.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Qinfeng Huang
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (Q.H.); (H.L.)
| | - Phillip Gauger
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.G.); (M.N.D.A.)
| | - Marcelo Nunes De Almeida
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.G.); (M.N.D.A.)
| | - Hinh Ly
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (Q.H.); (H.L.)
| | - Yuying Liang
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (Q.H.); (H.L.)
| | - Hiep L. X. Vu
- Department of Animals Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
8
|
Rak A, Isakova-Sivak I, Rudenko L. Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines. Vaccines (Basel) 2023; 11:1747. [PMID: 38140152 PMCID: PMC10747533 DOI: 10.3390/vaccines11121747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Annual vaccination is considered as the main preventive strategy against seasonal influenza. Due to the highly variable nature of major viral antigens, such as hemagglutinin (HA) and neuraminidase (NA), influenza vaccine strains should be regularly updated to antigenically match the circulating viruses. The influenza virus nucleoprotein (NP) is much more conserved than HA and NA, and thus seems to be a promising target for the design of improved influenza vaccines with broad cross-reactivity against antigenically diverse influenza viruses. Traditional subunit or recombinant protein influenza vaccines do not contain the NP antigen, whereas live-attenuated influenza vaccines (LAIVs) express the viral NP within infected cells, thus inducing strong NP-specific antibodies and T-cell responses. Many strategies have been explored to design broadly protective NP-based vaccines, mostly targeted at the T-cell mode of immunity. Although the NP is highly conserved, it still undergoes slow evolutionary changes due to selective immune pressure, meaning that the particular NP antigen selected for vaccine design may have a significant impact on the overall immunogenicity and efficacy of the vaccine candidate. In this review, we summarize existing data on the conservation of the influenza A viral nucleoprotein and review the results of preclinical and clinical trials of NP-targeting influenza vaccine prototypes, focusing on the ability of NP-specific immune responses to protect against diverse influenza viruses.
Collapse
Affiliation(s)
| | | | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (A.R.); (I.I.-S.)
| |
Collapse
|
9
|
Joshi LR, do Nascimento GM, Diel DG. The transcriptome of the parapoxvirus Orf virus reveals novel promoters for heterologous gene expression by poxvirus vectors. Virology 2023; 587:109864. [PMID: 37595395 DOI: 10.1016/j.virol.2023.109864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
Orf virus (ORFV) has been used as a vaccine delivery vector for multiple animal species. Several strategies are being used to improve the immunogenicity and efficacy of ORFV vectors, including the use of poxviral promoter(s) with strong early and late activity capable of driving the expression of the heterologous genes for a prolonged time and eliciting a potent immune response. Here, we used RNA-sequencing (RNA-Seq) approach to analyze the transcriptome of ORFV during infection in primary ovine cells. Based on the transcriptional profile of individual ORFV genes, we identified ORFV promoters with strong early and late activity and have shown that they can be used to express heterologous genes in ORFV vectors. Our results show that the intergenic regulatory sequence containing core promoter sequences present upstream of ORF112 (p112) and ORF116 (p116) lead to markedly higher transgene expression than conventional poxviral promoters. Thus, these promoters are valuable alternatives to express transgenes in poxviral vectors.
Collapse
Affiliation(s)
- Lok R Joshi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Gabriela Mansano do Nascimento
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA.
| |
Collapse
|
10
|
Haach V, Bastos APA, Gava D, da Fonseca FN, Morés MAZ, Coldebella A, Franco AC, Schaefer R. A polyvalent virosomal influenza vaccine induces broad cellular and humoral immunity in pigs. Virol J 2023; 20:181. [PMID: 37587490 PMCID: PMC10428566 DOI: 10.1186/s12985-023-02153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Influenza A virus (IAV) is endemic in pigs globally and co-circulation of genetically and antigenically diverse virus lineages of subtypes H1N1, H1N2 and H3N2 is a challenge for the development of effective vaccines. Virosomes are virus-like particles that mimic virus infection and have proven to be a successful vaccine platform against several animal and human viruses. METHODS This study evaluated the immunogenicity of a virosome-based influenza vaccine containing the surface glycoproteins of H1N1 pandemic, H1N2 and H3N2 in pigs. RESULTS A robust humoral and cellular immune response was induced against the three IAV subtypes in pigs after two vaccine doses. The influenza virosome vaccine elicited hemagglutinin-specific antibodies and virus-neutralizing activity. Furthermore, it induced a significant maturation of macrophages, and proliferation of B lymphocytes, effector and central memory CD4+ and CD8+ T cells, and CD8+ T lymphocytes producing interferon-γ. Also, the vaccine demonstrated potential to confer long-lasting immunity until the market age of pigs and proved to be safe and non-cytotoxic to pigs. CONCLUSIONS This virosome platform allows flexibility to adjust the vaccine content to reflect the diversity of circulating IAVs in swine in Brazil. The vaccination of pigs may reduce the impact of the disease on swine production and the risk of swine-to-human transmission.
Collapse
Affiliation(s)
- Vanessa Haach
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, Rio Grande Do Sul, CEP 90035-003, Brazil
| | | | - Danielle Gava
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | - Francisco Noé da Fonseca
- Embrapa Sede, Parque Estação Biológica, Brasília, Distrito Federal, CEP 70770-901, Brazil
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | | | - Arlei Coldebella
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | - Ana Cláudia Franco
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, Rio Grande Do Sul, CEP 90035-003, Brazil
| | - Rejane Schaefer
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil.
| |
Collapse
|
11
|
do Nascimento GM, Bugybayeva D, Patil V, Schrock J, Yadagiri G, Renukaradhya GJ, Diel DG. An Orf-Virus (ORFV)-Based Vector Expressing a Consensus H1 Hemagglutinin Provides Protection against Diverse Swine Influenza Viruses. Viruses 2023; 15:994. [PMID: 37112974 PMCID: PMC10147081 DOI: 10.3390/v15040994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Influenza A viruses (IAV-S) belonging to the H1 subtype are endemic in swine worldwide. Antigenic drift and antigenic shift lead to a substantial antigenic diversity in circulating IAV-S strains. As a result, the most commonly used vaccines based on whole inactivated viruses (WIVs) provide low protection against divergent H1 strains due to the mismatch between the vaccine virus strain and the circulating one. Here, a consensus coding sequence of the full-length of HA from H1 subtype was generated in silico after alignment of the sequences from IAV-S isolates obtained from public databases and was delivered to pigs using the Orf virus (ORFV) vector platform. The immunogenicity and protective efficacy of the resulting ORFVΔ121conH1 recombinant virus were evaluated against divergent IAV-S strains in piglets. Virus shedding after intranasal/intratracheal challenge with two IAV-S strains was assessed by real-time RT-PCR and virus titration. Viral genome copies and infectious virus load were reduced in nasal secretions of immunized animals. Flow cytometry analysis showed that the frequency of T helper/memory cells, as well as cytotoxic T lymphocytes (CTLs), were significantly higher in the peripheral blood mononuclear cells (PBMCs) of the vaccinated groups compared to unvaccinated animals when they were challenged with a pandemic strain of IAV H1N1 (CA/09). Interestingly, the percentage of T cells was higher in the bronchoalveolar lavage of vaccinated animals in relation to unvaccinated animals in the groups challenged with a H1N1 from the gamma clade (OH/07). In summary, delivery of the consensus HA from the H1 IAV-S subtype by the parapoxvirus ORFV vector decreased shedding of infectious virus and viral load of IAV-S in nasal secretions and induced cellular protective immunity against divergent influenza viruses in swine.
Collapse
Affiliation(s)
- Gabriela Mansano do Nascimento
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Dina Bugybayeva
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Veerupaxagouda Patil
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Jennifer Schrock
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Ganesh Yadagiri
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Gourapura J. Renukaradhya
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
12
|
Deletion of gene OV132 attenuates Orf virus more effectively than gene OV112. Appl Microbiol Biotechnol 2023; 107:835-851. [PMID: 36484827 PMCID: PMC9734686 DOI: 10.1007/s00253-022-12323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Orf virus (ORFV), a Parapoxvirus in Poxviridae, infects sheep and goats resulting in contagious pustular dermatitis. ORFV is regarded as a promising viral vector candidate for vaccine development and oncolytic virotherapy. Owing to their potential clinical application, safety concerns have become increasingly important. Deletion of either the OV132 (encoding vascular endothelial growth factor, VEGF) or OV112 (encoding the chemokine binding protein, CBP) genes reduced ORFV infectivity, which has been independently demonstrated in the NZ2 and NZ7 strains, respectively. This study revealed that the VEGF and CBP gene sequences of the local strain (TW/Hoping) shared a similarity of 47.01% with NZ2 and 90.56% with NZ7. Due to the high sequence divergence of these two immunoregulatory genes among orf viral strains, their contribution to the pathogenicity of Taiwanese ORFV isolates was comparatively characterized. Initially, two ORFV recombinants were generated, in which either the VEGF or CBP gene was deleted and replaced with the reporter gene EGFP. In vitro assays indicated that both the VEGF-deletion mutant ORFV-VEGFΔ-EGFP and the CBP deletion mutant ORFV-CBPΔ-EGFP were attenuated in cells. In particular, ORFV-VEGFΔ-EGFP significantly reduced plaque size and virus yield compared to ORFV-CBPΔ-EGFP and the wild-type control. Similarly, in vivo analysis revealed no virus yield in the goat skin biopsy infected by ORFV-VEGFΔ-EGFP, and significantly reduced the virus yield of ORFV-CBPΔ-EGFP relative to the wild-type control. These results confirmed the loss of virulence of both deletion mutants in the Hoping strain, whereas the VEGF-deletion mutant was more attenuated than the CBP deletion strain in both cell and goat models. KEY POINTS: • VEGF and CBP genes are crucial in ORFV pathogenesis in the TW/Hoping strain • The VEGF-deletion mutant virus was severely attenuated in both cell culture and animal models • Deletion mutant viruses are advantageous vectors for the development of vaccines and therapeutic regimens.
Collapse
|
13
|
Kumari S, Chaudhari J, Huang Q, Gauger P, De Almeida MN, Liang Y, Ly H, Vu HLX. Immunogenicity and Protective Efficacy of a Recombinant Pichinde Viral-Vectored Vaccine Expressing Influenza Virus Hemagglutinin Antigen in Pigs. Vaccines (Basel) 2022; 10:vaccines10091400. [PMID: 36146478 PMCID: PMC9505097 DOI: 10.3390/vaccines10091400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
Influenza A virus of swine (IAV-S) is an economically important swine pathogen. The IAV-S hemagglutinin (HA) surface protein is the main target for vaccine development. In this study, we evaluated the feasibility of using the recombinant tri-segmented Pichinde virus (rPICV) as a viral vector to deliver HA antigen to protect pigs against IAV-S challenge. Four groups of weaned pigs (T01–T04) were included in the study. T01 was injected with PBS to serve as a non-vaccinated control. T02 was inoculated with rPICV expressing green fluorescence protein (rPICV-GFP). T03 was vaccinated with rPICV expressing the HA antigen of the IAV-S H3N2 strain (rPICV-H3). T04 was vaccinated with the recombinant HA protein antigen of the same H3N2 strain. Pigs were vaccinated twice at day 0 and day 21 and challenged at day 43 by intra-tracheal inoculation with the homologous H3N2 IAV-S strain. After vaccination, all pigs in T03 and T04 groups were seroconverted and exhibited high titers of plasma neutralizing antibodies. After challenge, high levels of IAV-S RNA were detected in the nasal swabs and bronchioalveolar lavage fluid of pigs in T01 and T02 but not in the T03 and T04 groups. Similarly, lung lesions were observed in T01 and T02, but not in the T03 and T04 groups. No significant difference in terms of protection was observed between the T03 and T04 group. Collectively, our results demonstrate that the rPICV-H3 vectored vaccine elicited protective immunity against IAV-S challenge. This study shows that rPICV is a promising viral vector for the development of vaccines against IAV-S.
Collapse
Affiliation(s)
- Sushmita Kumari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Qinfeng Huang
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA
| | - Phillip Gauger
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Marcelo Nunes De Almeida
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Yuying Liang
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA
| | - Hinh Ly
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA
- Correspondence: (H.L.); (H.L.X.V.); Tel.: +1-612-625-3358 (H.L.); +1-402-472-4528 (H.L.X.V.)
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Animals Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: (H.L.); (H.L.X.V.); Tel.: +1-612-625-3358 (H.L.); +1-402-472-4528 (H.L.X.V.)
| |
Collapse
|