1
|
Richter HI, Gover O, Hamburg A, Bendalak K, Ziv T, Schwartz B. Impact of Black Soldier Fly Larvae Oil on Immunometabolic Processes. Int J Mol Sci 2025; 26:4855. [PMID: 40429995 PMCID: PMC12112032 DOI: 10.3390/ijms26104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/08/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
The oil extract derived from black soldier fly (Hermetia illucens) larvae (BSFL) is characterized by a distinctive fatty acid composition and bioactive compounds with demonstrated anti-inflammatory properties, as shown in our previous work. The present study aims to mechanistically explore the immunomodulatory effects of a saponified form of BSFL oil (MBSFL) and its potential interaction with metabolic signaling pathways. Using Pam3CSK4-polarized M1 primary human peripheral blood mononuclear cells (PBMCs), we demonstrate that MBSFL phenotypically suppressed the secretion of pro-inflammatory cytokines TNFα, IL-6, IL-17, and GM-CSF (p < 0.01) without altering anti-inflammatory cytokine levels (TGFβ1, IL-13, and IL-4). A phosphoproteomic analysis of Pam3CSK4-stimulated THP-1 macrophages revealed MBSFL-mediated downregulation of CK2 and ERK kinases (p < 0.05), key regulators of NF-κB signaling activation. We confirmed that MBSFL directly inhibits NF-κB p65 nuclear translocation (p < 0.05), using both immunofluorescence staining and a western blot analysis of nuclear and cytoplasmic fractions. In the context of metabolism, using a luciferase reporter assay, we demonstrate that MBSFL functions as a weak agonist of PPARγ and PPARδ (p < 0.05), which are nuclear receptors involved in lipid metabolism and immune regulation. However, subsequent immunoblotting revealed a macrophage polarization-dependent regulation: MBSFL upregulated PPARγ in M0 macrophages but did not prevent its suppression upon Pam3CSK4 stimulation, whereas it specifically enhanced PPARδ expression during M1 polarization (p < 0.05). This study provides novel experimental evidence supporting our hypothesis of MBSFL's role in immunometabolism. We demonstrate for the first time that MBSFL acts as a dual regulator by suppressing NF-κB-mediated inflammation while promoting PPARδ activity-an inverse relationship with potential relevance to immunometabolic disorders.
Collapse
Affiliation(s)
- Hadas Inbart Richter
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ofer Gover
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Amit Hamburg
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Keren Bendalak
- Smoler Proteomics Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Tan Q, Wang J, Hao Y, Yang S, Cao B, Pan W, Cao M. Elf1 Deficiency Impairs Macrophage Development in Zebrafish Model Organism. Int J Mol Sci 2025; 26:2537. [PMID: 40141178 PMCID: PMC11942252 DOI: 10.3390/ijms26062537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The Ets (E-twenty-six) family of transcription factors plays a critical role in hematopoiesis and myeloid differentiation. However, the specific functions of many family members in these processes remain largely underexplored and poorly understood. Here, we identify Elf1 (E74-like factor 1), an Ets family member, as a critical regulator of macrophage development in the zebrafish model organism, with minimal impact on neutrophil differentiation. Through morpholino knockdown screening and CRISPR/Cas9-mediated gene editing, we demonstrate that Elf1 is critical for macrophage development and tissue injury responses. Specific overexpression of dominant-negative Elf1 (DN-Elf1) in macrophages demonstrated a cell-autonomous effect on macrophage infiltration. Furthermore, the overexpression of cxcr4b, a gene downstream of Elf1 regulation and essential for cell migration and injury response, significantly rescued this defect, indicating Elf1 as a key regulator of macrophage function. Our findings shed light on the roles of Elf1 in macrophage development and injury response and also highlight zebrafish as a powerful model for immunity research.
Collapse
Affiliation(s)
- Qianli Tan
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Q.T.); (W.P.)
| | - Jing Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Yimei Hao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Shizeng Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Biao Cao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Weijun Pan
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Q.T.); (W.P.)
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Mengye Cao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| |
Collapse
|
3
|
Saito S, Cao DY, Bernstein EA, Shibata T, Jones AE, Rios A, Hoshi AO, Stotland AB, Nishi EE, Van Eyk JE, Divakaruni A, Khan Z, Bernstein KE. Peroxisome proliferator-activated receptor alpha is an essential factor in enhanced macrophage immune function induced by angiotensin-converting enzyme. Cell Mol Immunol 2025; 22:243-259. [PMID: 39910334 PMCID: PMC11868401 DOI: 10.1038/s41423-025-01257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 01/12/2025] [Indexed: 02/07/2025] Open
Abstract
Increased expression of angiotensin-converting enzyme (ACE) by myeloid lineage cells strongly increases the immune activity of these cells, as observed in ACE10/10 mice, which exhibit a marked increase in antitumor and antibactericidal immunity. We report that peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor that regulates genes critical for lipid metabolism, is a key molecule in the enhanced macrophage function induced by ACE. Here, we used a Cre-LoxP approach with LysM-Cre to create a modified ACE10/10 mouse line in which macrophages continue to generate abundant ACE but in which monocyte and macrophage PPARα expression is selectively suppressed. These mice, termed A10-PPARα-Cre, have significantly increased growth of B16-F10 tumors compared with ACE10/10 mice with Cre expression. PPARα depletion impaired cytokine production and antigen-presenting activity in ACE-expressing macrophages, resulting in reduced tumor antigen-specific CD8+ T-cell generation. Additionally, the elevated bactericidal resistance typical of ACE10/10 mice was significantly reduced in A10-PPARα-Cre mice, such that these mice resembled WT mice in their resistance to methicillin-resistant Staphylococcus aureus (MRSA) infection. THP-1 cells expressing increased ACE (termed THP-1-ACE) constitute a human macrophage model with increased PPARα that shows enhanced cytotoxicity against tumor cells and better phagocytosis and killing of MRSA. RNA silencing of PPARα in THP-1-ACE cells reduced both tumor cell death and bacterial phagocytosis and clearance. In contrast, the in vivo administration of pemafibrate, a specific agonist of PPARα, to WT and A10-PPARα-Cre mice reduced B16-F10 tumor growth by 24.5% and 25.8%, respectively, but pemafibrate reduced tumors by 57.8% in ACE10/10 mice. With pemafibrate, the number of antitumor CD8+ T cells was significantly lower in A10-PPARα-Cre mice than in ACE10/10 mice. We conclude that PPARα is important in the immune system of myeloid cells, including wild-type cells, and that its increased expression by ACE-expressing macrophages in ACE10/10 mice is indispensable for ACE-dependent functional upregulation of macrophages in both mice and human cells.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tomohiro Shibata
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy Rios
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aoi O Hoshi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aleksandr B Stotland
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erika E Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Physiology, São Paulo School of Medicine, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Jennifer E Van Eyk
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ajit Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Sun M, Garnier L, Chevalier R, Roumain M, Wang C, Angelillo J, Montorfani J, Pick R, Brighouse D, Fournier N, Tarussio D, Tissot S, Lobaccaro JM, Petrova TV, Jandus C, Speiser DE, Kopf M, Pot C, Scheiermann C, Homicsko K, Muccioli GG, Garg AD, Hugues S. Lymphatic-derived oxysterols promote anti-tumor immunity and response to immunotherapy in melanoma. Nat Commun 2025; 16:1217. [PMID: 39890772 PMCID: PMC11893137 DOI: 10.1038/s41467-025-55969-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/07/2025] [Indexed: 02/03/2025] Open
Abstract
In melanoma, lymphangiogenesis correlates with metastasis and poor prognosis and promotes immunosuppression. However, it also potentiates immunotherapy by supporting immune cell trafficking. We show in a lymphangiogenic murine melanoma that lymphatic endothelial cells (LECs) upregulate the enzyme Ch25h, which catalyzes the formation of 25-hydroxycholesterol (25-HC) from cholesterol and plays important roles in lipid metabolism, gene regulation, and immune activation. We identify a role for LECs as a source of extracellular 25-HC in tumors inhibiting PPAR-γ in intra-tumoral macrophages and monocytes, preventing their immunosuppressive function and instead promoting their conversion into proinflammatory myeloid cells that support effector T cell functions. In human melanoma, LECs also upregulate Ch25h, and its expression correlates with the lymphatic vessel signature, infiltration of pro-inflammatory macrophages, better patient survival, and better response to immunotherapy. We identify here in mechanistic detail an important LEC function that supports anti-tumor immunity, which can be therapeutically exploited in combination with immunotherapy.
Collapse
Affiliation(s)
- Mengzhu Sun
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Laure Garnier
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Romane Chevalier
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Martin Roumain
- Metabolism and Nutrition Research Group, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Chen Wang
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Julien Angelillo
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Julien Montorfani
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Robert Pick
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Dale Brighouse
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Nadine Fournier
- Translational Data Science (TDS), Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - David Tarussio
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Oncology, Center for Experimental Therapeutics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Stéphanie Tissot
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Oncology, Center for Experimental Therapeutics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Jean-Marc Lobaccaro
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Tatiana V Petrova
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
- Translational Research Centre in Oncohaematology, Geneva, Switzerland
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
- Translational Research Centre in Oncohaematology, Geneva, Switzerland
- Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany
| | | | - Giulio G Muccioli
- Metabolism and Nutrition Research Group, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Abhishek D Garg
- Laboratory for Cell Stress & Immunity (CSI), Department of Cellular & Molecular Medicine (CMM), KU Leuven, Belgium
| | - Stéphanie Hugues
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland.
- Geneva Centre for Inflammation Research, Geneva, Switzerland.
- Translational Research Centre in Oncohaematology, Geneva, Switzerland.
| |
Collapse
|
5
|
Ivanova D, Semkova S, Grigorov B, Tzanova M, Georgieva A, Danchev D, Nikolova B, Yaneva Z. The General Principle of the Warburg Effect as a Possible Approach for Cancer Immunotherapy: The Regulatory Effect of Plant Extracts Could Change the Game. Molecules 2025; 30:393. [PMID: 39860262 PMCID: PMC11767411 DOI: 10.3390/molecules30020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells. The second part addresses the possibility of impacts on the Warburg effect through targeting peroxisome proliferator-activated receptors (PPARs). This could be an activator of native immune responses. Because of the reported serious adverse effects of using synthetic ligands for PPARs in combination with chemotherapeutics, searches for less toxic and more active PPAR inhibitors, as well as blocking undesirable cellular PPAR-dependent processes, are in progress. On the other hand, recent research in modern immunotherapy has focused on the search for gentle immune-modulating natural compounds with harmless synergistic chemotherapeutic efficacy that can be used as an adjuvant. It is a well-known fact that the plant kingdom is a source of important therapeutic agents with multifaceted effectiveness. One of these is the known association with PPAR activities. In this regard, the secondary metabolites extracted from plants could change the game.
Collapse
Affiliation(s)
- Donika Ivanova
- Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
- Department of Chemistry and Biochemistry, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Severina Semkova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Boncho Grigorov
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Milena Tzanova
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | | | | | - Biliana Nikolova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Zvezdelina Yaneva
- Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
6
|
Chen X, Schubert SL, Müller A, Pishnamaz M, Hildebrand F, Nourbakhsh M. Metabolic Activity in Human Intermuscular Adipose Tissue Directs the Response of Resident PPARγ + Macrophages to Fatty Acids. Biomedicines 2024; 13:10. [PMID: 39857594 PMCID: PMC11759838 DOI: 10.3390/biomedicines13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Peroxisome proliferator-activated receptor gamma (PPARγ) is a fatty acid-binding transcription activator of the adipokine chemerin. The key role of PPARγ in adipogenesis was established by reports on adipose tissue-resident macrophages that express PPARγ. The present study examined PPARγ+ macrophages in human skeletal muscle tissues, their response to fatty acid (FA) species, and their correlations with age, obesity, adipokine expression, and an abundance of other macrophage phenotypes. Methods: An ex vivo human skeletal muscle model with surgical specimens that were maintained without or with FAs for up to 11 days was utilized. Immunofluorescence analysis was used to detect macrophage phenotypes and mitochondrial activity. Preconfigured arrays were used to detect the expression of 34 different adipokines and chemokines. Results: Data from 14 adults revealed that PPARγ+ macrophages exclusively reside in intermuscular adipose tissue (IMAT), and their abundance correlates with the metabolic status of surrounding adipocytes during tissue maintenance in vitro for 9-11 days. Elevated fatty acid levels lead to significant increases in PPARγ+ populations, which are correlated with the donor's body mass index (BMI). Conclusions: PPARγ+ macrophages represent a distinctly specialized population of regulatory cells that reside within human IMATs in accordance with their metabolic status. Thus, future in-depth studies on IMAT-resident PPARγ+ macrophage action mechanisms will elucidate the role of skeletal muscle in the pathogenesis of human metabolic dysfunction.
Collapse
Affiliation(s)
- Xiaoying Chen
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (A.M.)
| | - Sebastian Ludger Schubert
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (S.L.S.); (M.P.); (F.H.)
| | - Aline Müller
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (A.M.)
| | - Miguel Pishnamaz
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (S.L.S.); (M.P.); (F.H.)
| | - Frank Hildebrand
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (S.L.S.); (M.P.); (F.H.)
| | - Mahtab Nourbakhsh
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (A.M.)
| |
Collapse
|
7
|
Hong Y, Wang D, Lin Y, Yang Q, Wang Y, Xie Y, Shu W, Gao S, Hua C. Environmental triggers and future risk of developing autoimmune diseases: Molecular mechanism and network toxicology analysis of bisphenol A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117352. [PMID: 39550874 DOI: 10.1016/j.ecoenv.2024.117352] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Bisphenol A (BPA), a chemical compound in plastics and resins, widely exist in people's production and life which have great potential to damage human and animal health. It has been proved that BPA could affect human immune function and promote the occurrence and development of autoimmune diseases (ADs). However, the mechanism and pathophysiology remain unknown. Therefore, this study aims to advance network toxicology strategies to efficiently investigate the putative toxicity and underlying molecular mechanisms of environmental pollutants, focusing on ADs induced by BPA exposure. Leveraging databases including ChEMBL, STITCH, SwissTargetPrediction, GeneCards, and OMIM, we identified potential targets associated with BPA exposure and ADs, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), Hashimoto's thyroiditis (HT), inflammatory bowel disease (IBD), and type 1 diabetes (T1D). Subsequent refinement using STRING and Cytoscape software highlighted core targets respectively, and Metascape was utilized for enrichment analysis. Gene expression data from the GEO database revealed the upregulation or downregulation of these targets across these ADs. Molecular docking performed with Autodock confirmed robust binding between BPA and core targets, notably PPARG, CTNNB1, ESR1, EGFR, SRC, and CCND1. These findings suggest that BPA exposure may serve as an environmental trigger in the development of autoimmunity, underscoring potential environmental risk factors for the onset of autoimmune conditions.
Collapse
Affiliation(s)
- Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Deqi Wang
- The First School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Yinfang Lin
- The First School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Qianru Yang
- The First School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Yi Wang
- The First School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Yuanyuan Xie
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Wanyi Shu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| |
Collapse
|
8
|
Phelps DW, Connors AM, Ferrero G, DeWitt JC, Yoder JA. Per- and polyfluoroalkyl substances alter innate immune function: evidence and data gaps. J Immunotoxicol 2024; 21:2343362. [PMID: 38712868 PMCID: PMC11249028 DOI: 10.1080/1547691x.2024.2343362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large class of compounds used in a variety of processes and consumer products. Their unique chemical properties make them ubiquitous and persistent environmental contaminants while also making them economically viable and socially convenient. To date, several reviews have been published to synthesize information regarding the immunotoxic effects of PFASs on the adaptive immune system. However, these reviews often do not include data on the impact of these compounds on innate immunity. Here, current literature is reviewed to identify and incorporate data regarding the effects of PFASs on innate immunity in humans, experimental models, and wildlife. Known mechanisms by which PFASs modulate innate immune function are also reviewed, including disruption of cell signaling, metabolism, and tissue-level effects. For PFASs where innate immune data are available, results are equivocal, raising additional questions about common mechanisms or pathways of toxicity, but highlighting that the innate immune system within several species can be perturbed by exposure to PFASs. Recommendations are provided for future research to inform hazard identification, risk assessment, and risk management practices for PFASs to protect the immune systems of exposed organisms as well as environmental health.
Collapse
Affiliation(s)
- Drake W. Phelps
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Ashley M. Connors
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
| | - Giuliano Ferrero
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
| | - Jamie C. DeWitt
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| |
Collapse
|
9
|
Atcha H, Kulkarni D, Meli VS, Veerasubramanian PK, Wang Y, Cahalan MD, Pathak MM, Liu WF. Piezo1-mediated mechanotransduction enhances macrophage oxidized low-density lipoprotein uptake and atherogenesis. PNAS NEXUS 2024; 3:pgae436. [PMID: 39544498 PMCID: PMC11563038 DOI: 10.1093/pnasnexus/pgae436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/21/2024] [Indexed: 11/17/2024]
Abstract
Macrophages in the vascular wall ingest and clear lipids, but abundant lipid accumulation leads to foam cell formation and atherosclerosis, a pathological condition often characterized by tissue stiffening. While the role of biochemical stimuli in the modulation of macrophage function is well studied, the role of biophysical cues and the molecules involved in mechanosensation are less well understood. Here, we use genetic and pharmacological tools to show extracellular oxidized low-density lipoproteins (oxLDLs) stimulate Ca2+ signaling through activation of the mechanically gated ion channel Piezo1. Moreover, macrophage Piezo1 expression is critical in the transduction of environmental stiffness and channel deletion suppresses, whereas a gain-of-function mutation exacerbates oxLDL uptake. Additionally, we find that depletion of myeloid Piezo1 protects from atherosclerotic plaque formation in vivo. Together, our study highlights an important role for Piezo1 and its respective mutations in macrophage mechanosensing, lipid uptake, and cardiovascular disease.
Collapse
Affiliation(s)
- Hamza Atcha
- Department of Bioengineering, University of California, San Diego, La Jolla 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla 92037, USA
| | - Daanish Kulkarni
- Department of Biomedical Engineering, University of California, Irvine, Irvine 92697, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine 92697, USA
| | - Vijaykumar S Meli
- Department of Biomedical Engineering, University of California, Irvine, Irvine 92697, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine 92697, USA
| | - Praveen Krishna Veerasubramanian
- Department of Biomedical Engineering, University of California, Irvine, Irvine 92697, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine 92697, USA
| | - Yuchun Wang
- Department of Biomedical Engineering, University of California, Irvine, Irvine 92697, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine 92697, USA
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California Irvine, Irvine 92697, USA
| | - Medha M Pathak
- Department of Biomedical Engineering, University of California, Irvine, Irvine 92697, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine 92697, USA
| | - Wendy F Liu
- Department of Biomedical Engineering, University of California, Irvine, Irvine 92697, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697, USA
| |
Collapse
|
10
|
Gu M, Liu Y, Zheng W, Jing Z, Li X, Guo W, Zhao Z, Yang X, Liu Z, Zhu X, Gao W. Combined targeting of senescent cells and senescent macrophages: A new idea for integrated treatment of lung cancer. Semin Cancer Biol 2024; 106-107:43-57. [PMID: 39214157 DOI: 10.1016/j.semcancer.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer is one of the most common cancers worldwide and a leading cause of cancer-related deaths. Macrophages play a key role in the immune response and the tumour microenvironment. As an important member of the immune system, macrophages have multiple functions, including phagocytosis and clearance of pathogens, modulation of inflammatory responses, and participation in tissue repair and regeneration. In lung cancer, macrophages are considered to be the major cellular component of the tumor-associated inflammatory response and are closely associated with tumorigenesis, progression and metastasis. However, macrophages gradually undergo a senescence process with age and changes in pathological states. Macrophage senescence is an important change in the functional and metabolic state of macrophages and may have a significant impact on lung cancer development. In lung cancer, senescent macrophages interact with other cells in the tumor microenvironment (TME) by secreting senescence-associated secretory phenotype (SASP) factors, which can either promote the proliferation, invasion and metastasis of tumor cells or exert anti-tumor effects through reprogramming or clearance under specific conditions. Therefore, senescent macrophages are considered important potential targets for lung cancer therapy. In this paper, a systematic review of macrophages and their senescence process, and their role in tumors is presented. A variety of inhibitory strategies against senescent macrophages, including enhancing autophagy, inhibiting SASP, reducing DNA damage, and modulating metabolic pathways, were also explored. These strategies are expected to improve lung cancer treatment outcomes by restoring the anti-tumor function of macrophages.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zuoqian Jing
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Xinwang Zhu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Wei Gao
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
11
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
12
|
Parab S, Sarlo V, Capellero S, Palmiotto L, Bartolini A, Cantarella D, Turi M, Gullà A, Grassi E, Lazzari C, Rubatto M, Gregorc V, Carnevale-Schianca F, Olivero M, Bussolino F, Comunanza V. Single-Nuclei Transcriptome Profiling Reveals Intra-Tumoral Heterogeneity and Characterizes Tumor Microenvironment Architecture in a Murine Melanoma Model. Int J Mol Sci 2024; 25:11228. [PMID: 39457009 PMCID: PMC11508838 DOI: 10.3390/ijms252011228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Malignant melanoma is an aggressive cancer, with a high risk of metastasis and mortality rates, characterized by cancer cell heterogeneity and complex tumor microenvironment (TME). Single cell biology is an ideal and powerful tool to address these features at a molecular level. However, this approach requires enzymatic cell dissociation that can influence cellular coverage. By contrast, single nucleus RNA sequencing (snRNA-seq) has substantial advantages including compatibility with frozen samples and the elimination of a dissociation-induced, transcriptional stress response. To better profile and understand the functional diversity of different cellular components in melanoma progression, we performed snRNA-seq of 16,839 nuclei obtained from tumor samples along the growth of murine syngeneic melanoma model carrying a BRAFV600E mutation and collected 9 days or 23 days after subcutaneous cell injection. We defined 11 different subtypes of functional cell clusters among malignant cells and 5 different subsets of myeloid cells that display distinct global transcriptional program and different enrichment in early or advanced stage of tumor growth, confirming that this approach was useful to accurately identify intratumor heterogeneity and dynamics during tumor evolution. The current study offers a deep insight into the biology of melanoma highlighting TME reprogramming through tumor initiation and progression, underlying further discovery of new TME biomarkers which may be potentially druggable.
Collapse
Affiliation(s)
- Sushant Parab
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | - Valery Sarlo
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | - Sonia Capellero
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
- Department of Veterinary Science, University of Torino, 10095 Grugliasco, Italy
| | - Luca Palmiotto
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | | | | | - Marcello Turi
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | | | - Elena Grassi
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | - Chiara Lazzari
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | - Marco Rubatto
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | - Vanesa Gregorc
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | | | - Martina Olivero
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (S.P.); (F.B.)
| | - Federico Bussolino
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| |
Collapse
|
13
|
Posta E, Fekete I, Varkonyi I, Zold E, Barta Z. The Versatile Role of Peroxisome Proliferator-Activated Receptors in Immune-Mediated Intestinal Diseases. Cells 2024; 13:1688. [PMID: 39451206 PMCID: PMC11505700 DOI: 10.3390/cells13201688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that sense lipophilic molecules and act as transcription factors to regulate target genes. PPARs have been implicated in the regulation of innate immunity, glucose and lipid metabolism, cell proliferation, wound healing, and fibrotic processes. Some synthetic PPAR ligands are promising molecules for the treatment of inflammatory and fibrotic processes in immune-mediated intestinal diseases. Some of these are currently undergoing or have previously undergone clinical trials. Dietary PPAR ligands and changes in microbiota composition could modulate PPARs' activation to reduce inflammatory responses in these immune-mediated diseases, based on animal models and clinical trials. This narrative review aims to summarize the role of PPARs in immune-mediated bowel diseases and their potential therapeutic use.
Collapse
Affiliation(s)
- Edit Posta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| | - Istvan Fekete
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary;
| | - Istvan Varkonyi
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| | - Eva Zold
- Department of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Móricz Zsigmond str. 22, 4032 Debrecen, Hungary;
| | - Zsolt Barta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| |
Collapse
|
14
|
Ahamed F, Eppler N, Jones E, Zhang Y. Understanding Macrophage Complexity in Metabolic Dysfunction-Associated Steatotic Liver Disease: Transitioning from the M1/M2 Paradigm to Spatial Dynamics. LIVERS 2024; 4:455-478. [PMID: 39328386 PMCID: PMC11426415 DOI: 10.3390/livers4030033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses metabolic dysfunction-associated fatty liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), with MASH posing a risk of progression to cirrhosis and hepatocellular carcinoma (HCC). The global prevalence of MASLD is estimated at approximately a quarter of the population, with significant healthcare costs and implications for liver transplantation. The pathogenesis of MASLD involves intrahepatic liver cells, extrahepatic components, and immunological aspects, particularly the involvement of macrophages. Hepatic macrophages are a crucial cellular component of the liver and play important roles in liver function, contributing significantly to tissue homeostasis and swift responses during pathophysiological conditions. Recent advancements in technology have revealed the remarkable heterogeneity and plasticity of hepatic macrophage populations and their activation states in MASLD, challenging traditional classification methods like the M1/M2 paradigm and highlighting the coexistence of harmful and beneficial macrophage phenotypes that are dynamically regulated during MASLD progression. This complexity underscores the importance of considering macrophage heterogeneity in therapeutic targeting strategies, including their distinct ontogeny and functional phenotypes. This review provides an overview of macrophage involvement in MASLD progression, combining traditional paradigms with recent insights from single-cell analysis and spatial dynamics. It also addresses unresolved questions and challenges in this area.
Collapse
Affiliation(s)
- Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
15
|
Bonilla ME, Radyk MD, Perricone MD, Elhossiny AM, Harold AC, Medina-Cabrera PI, Kadiyala P, Shi J, Frankel TL, Carpenter ES, Green MD, Mitrea C, Lyssiotis CA, Pasca di Magliano M. Metabolic landscape of the healthy pancreas and pancreatic tumor microenvironment. JCI Insight 2024; 9:e180114. [PMID: 39315547 PMCID: PMC11457849 DOI: 10.1172/jci.insight.180114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Pancreatic cancer, one of the deadliest human malignancies, is characterized by a fibro-inflammatory tumor microenvironment and wide array of metabolic alterations. To comprehensively map metabolism in a cell type-specific manner, we harnessed a unique single-cell RNA-sequencing dataset of normal human pancreata. This was compared with human pancreatic cancer samples using a computational pipeline optimized for this study. In the cancer cells we observed enhanced biosynthetic programs. We identified downregulation of mitochondrial programs in several immune populations, relative to their normal counterparts in healthy pancreas. Although granulocytes, B cells, and CD8+ T cells all downregulated oxidative phosphorylation, the mechanisms by which this occurred were cell type specific. In fact, the expression pattern of the electron transport chain complexes was sufficient to identify immune cell types without the use of lineage markers. We also observed changes in tumor-associated macrophage (TAM) lipid metabolism, with increased expression of enzymes mediating unsaturated fatty acid synthesis and upregulation in cholesterol export. Concurrently, cancer cells exhibited upregulation of lipid/cholesterol receptor import. We thus identified a potential crosstalk whereby TAMs provide cholesterol to cancer cells. We suggest that this may be a new mechanism boosting cancer cell growth and a therapeutic target in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiaqi Shi
- Rogel Cancer Center
- Department of Pathology
| | | | - Eileen S. Carpenter
- Rogel Cancer Center
- Department of Internal Medicine, Division of Gastroenterology and Hepatology
| | - Michael D. Green
- Program in Cancer Biology
- Rogel Cancer Center
- Department of Radiation Oncology; and
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | | | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology
- Rogel Cancer Center
- Department of Internal Medicine, Division of Gastroenterology and Hepatology
| | - Marina Pasca di Magliano
- Rogel Cancer Center
- Department of Surgery
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Fayed B, Shakartalla SB, Sabbah H, Dalle H, Tannira M, Senok A, Soliman SSM. Transcriptome Analysis of Human Dermal Cells Infected with Candida auris Identified Unique Pathogenesis/Defensive Mechanisms Particularly Ferroptosis. Mycopathologia 2024; 189:65. [PMID: 38990436 DOI: 10.1007/s11046-024-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Candida auris is an emerging multi-drug resistant yeast that can cause life-threatening infections. A recent report clarified the ability of C. auris to form a biofilm with enhanced drug resistance properties in the host skin's deep layers. The formed biofilm may initiate further bloodstream spread and immune escape. Therefore, we propose that secreted chemicals from the biofilm may facilitate fungal pathogenesis. In response to this interaction, the host skin may develop potential defensive mechanisms. Comparative transcriptomics was performed on the host dermal cells in response to indirect interaction with C. auris biofilm through Transwell inserts compared to planktonic cells. Furthermore, the effect of antifungals including caspofungin and fluconazole was studied. The obtained data showed that the dermal cells exhibited different transcriptional responses. Kyoto Encyclopedia of Genes and Genomes and Reactome analyses identified potential defensive responses employed by the dermal cells and potential toxicity induced by C. auris. Additionally, our data indicated that the dominating toxic effect was mediated by ferroptosis; which was validated by qRT-PCR, cytotoxicity assay, and flow cytometry. On the other hand, the viability of C. auris biofilm was enhanced and accompanied by upregulation of MDR1, and KRE6 upon interaction with dermal cells; both genes play significant roles in drug resistance and biofilm maturation, respectively. This study for the first-time shed light on the dominating defensive responses of human dermal cells, microbe colonization site, to C. auris biofilm and its toxic effects. Further, it demonstrates how C. auris biofilm responds to the defensive mechanisms developed by the human dermal cells.
Collapse
Affiliation(s)
- Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Chemistry of Natural and Microbial Products, National Research Centre, Cairo, Egypt
| | - Sarra B Shakartalla
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Faculty of Pharmacy, University of Gezira, P.O.Box. 21111, Wad Medani, Sudan
| | - Hassan Sabbah
- AbbVie BioPharmaceuticals, P.O. Box 118052, Dubai, UAE
| | - Hala Dalle
- AbbVie BioPharmaceuticals, Kuwait City, Kuwait
| | | | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14 Dubai Healthcare City, P.O.Box 505055, Dubai, UAE
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
| |
Collapse
|
17
|
Villarroel-Vicente C, García A, Zibar K, Schiel MA, Ferri J, Hennuyer N, Enriz RD, Staels B, Cortes D, Cabedo N. Synthesis of a new 2-prenylated quinoline as potential drug for metabolic syndrome with pan-PPAR activity and anti-inflammatory effects. Bioorg Med Chem Lett 2024; 106:129770. [PMID: 38677560 DOI: 10.1016/j.bmcl.2024.129770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
We have previously reported the total synthesis and structure-activity relationships (SAR) of 2-prenylated benzopyrans with PPAR agonist activity. Herein, we have described the synthesis and PPAR activity of 2-prenylated benzopyrans and 2-prenylated quinolines. The benzopyran nucleus was generated via enamine-catalyzed Kabbe condensation, and the quinoline nucleus via Friedländer condensation. Results demonstrated that both benzopyran (5a) and quinoline (4b) derivatives bearing a γ,δ-unsaturated ester displayed a pan-PPAR agonism. They were full PPARα agonists, but showed different preferences for PPARγ and PPARβ/δ activation. It was noteworthy that quinoline 4b displayed full hPPARα activation (2-fold than WY-14,643), weak PPARβ/δ and partial PPARγ activation. In addition, quinoline 4b showed anti-inflammatory effects on macrophages by reducing LPS-induced expression of both MCP-1 and IL-6. Therefore, 4b emerges as a first-in-class promising hit compound for the development of potential therapeutics aimed at treating metabolic syndrome, metabolic dysfunction-associated fatty liver disease (MAFLD), and its associated cardiovascular comorbidities.
Collapse
Affiliation(s)
- Carlos Villarroel-Vicente
- Department of Pharmacology, University of Valencia, 46100 Burjassot, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010 Valencia, Spain
| | - Ainhoa García
- Department of Pharmacology, University of Valencia, 46100 Burjassot, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010 Valencia, Spain
| | - Khamis Zibar
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - María Ayelén Schiel
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL-CONICET, Chacabuco 915, San Luis, Argentina
| | - Jordi Ferri
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, 46010 Valencia, Spain
| | - Nathalie Hennuyer
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL-CONICET, Chacabuco 915, San Luis, Argentina
| | - Bart Staels
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - Diego Cortes
- Department of Pharmacology, University of Valencia, 46100 Burjassot, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010 Valencia, Spain.
| | - Nuria Cabedo
- Department of Pharmacology, University of Valencia, 46100 Burjassot, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
18
|
Kumar A, Laborit Labrada B, Lavallée-Bourget MH, Forest MP, Schwab M, Bellmann K, Houde V, Beauchemin N, Laplante M, Marette A. Regulation of PPARγ2 Stability and Activity by SHP-1. Mol Cell Biol 2024; 44:261-272. [PMID: 38828991 PMCID: PMC11253886 DOI: 10.1080/10985549.2024.2354959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
The protein tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1 (SHP-1) plays an important role in modulating glucose and lipid homeostasis. We previously suggested a potential role of SHP-1 in the regulation of peroxisome proliferator-activated receptor γ2 (PPARγ2) expression and activity but the mechanisms were unexplored. PPARγ2 is the master regulator of adipogenesis, but how its activity is regulated by tyrosine phosphorylation is largely unknown. Here, we found that SHP-1 binds to PPARγ2 primarily via its N-terminal SH2-domain. We confirmed the phosphorylation of PPARγ2 on tyrosine-residue 78 (Y78), which was reduced by SHP-1 in vitro resulting in decreased PPARγ2 stability. Loss of SHP-1 led to elevated, agonist-induced expression of the classical PPARγ2 targets FABP4 and CD36, concomitant with increased lipid content in cells expressing PPARγ2, an effect blunted by abrogation of PPARγ2 phosphorylation. Collectively, we discovered that SHP-1 affects the stability of PPARγ2 through dephosphorylation thereby influencing adipogenesis.
Collapse
Affiliation(s)
- Amit Kumar
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Beisy Laborit Labrada
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Marie-Hélène Lavallée-Bourget
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Marie-Pier Forest
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Michael Schwab
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Kerstin Bellmann
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Vanessa Houde
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Nicole Beauchemin
- Rosalind and Morris Goodman Cancer Research Centre, Departments of Oncology, Medicine and Biochemistry, McGill University, Montreal, QC, Canada
| | - Mathieu Laplante
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer, l’Université Laval, Québec, QC, Canada
| | - André Marette
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec, QC, Canada
| |
Collapse
|
19
|
Cheng N, Cheng X, Tan F, Liang Y, Xu L, Wang J, Tan J. Electroacupuncture attenuates cerebral ischemia/reperfusion injury by regulating oxidative stress, neuronal death and neuroinflammation via stimulation of PPAR-γ. Acupunct Med 2024; 42:133-145. [PMID: 38351622 DOI: 10.1177/09645284231211600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
BACKGROUND Oxidative stress and inflammatory responses play essential roles in cerebral ischemia/reperfusion (I/R) injury. Electroacupuncture (EA) is widely used as a rehabilitation method for stroke in China; however, the underlying mechanism of action remains unclear. Peroxisome proliferator-activated receptor gamma (PPAR-γ) has been reported to impact anti-inflammatory and anti-oxidative effects. OBJECTIVE This study investigated the role of PPAR-γ in EA-mediated effects and aimed to illuminate its possible mechanisms in cerebral I/R. METHODS In this study, male Sprague-Dawley (SD) rats with middle cerebral artery occlusion/reperfusion (MCAO/R) injury were treated with EA at LI11 and ST36 for 30 min daily after MCAO/R for seven consecutive days. The neuroprotective effects of EA were measured by neurobehavioral evaluation, triphenyltetrazolium chloride staining, hematoxylin-eosin staining and transmission electron microscopy. Oxidative stress, inflammatory factors, neural apoptosis and microglial activation were examined by enzyme-linked immunosorbent assay, immunofluorescence and reverse transcriptase polymerase chain reaction. Western blotting was used to assess PPAR-γ-mediated signaling. RESULTS We found that EA significantly alleviated cerebral I/R-induced infarct volume, decreased neurological scores and inhibited I/R-induced oxidative stress, inflammatory responses and microglial activation. EA also increased PPAR-γ protein expression. Furthermore, the protective effects of EA were reversed by injection of the PPAR-γ antagonist T0070907. CONCLUSION EA attenuates cerebral I/R injury by regulating oxidative stress, neuronal death and neuroinflammation via stimulation of PPAR-γ.
Collapse
Affiliation(s)
- Nanfang Cheng
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Xinyuan Cheng
- The Fourth Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Yangui Liang
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Lihong Xu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Jian Wang
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Jiuqing Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| |
Collapse
|
20
|
Saito S, Cao D, Bernstein EA, Jones AE, Rios A, Hoshi AO, Stotland AB, Nishi EE, Shibata T, Ahmed F, Van Eyk JE, Divakaruni A, Khan Z, Bernstein KE. Peroxisome proliferator-activated receptor alpha is essential factor in enhanced macrophage immune function induced by angiotensin converting enzyme. RESEARCH SQUARE 2024:rs.3.rs-4255086. [PMID: 38746124 PMCID: PMC11092867 DOI: 10.21203/rs.3.rs-4255086/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An upregulation of angiotensin-converting enzyme (ACE) expression strengthens the immune activity of myeloid lineage cells as a natural functional regulation mechanism in our immunity. ACE10/10 mice, possessing increased ACE expression in macrophages, exhibit enhanced anti-tumor immunity and anti-bactericidal effects compared to those of wild type (WT) mice, while the detailed molecular mechanism has not been elucidated yet. In this report, we demonstrate that peroxisome proliferator-activated receptor alpha (PPARα) is a key molecule in the functional upregulation of macrophages induced by ACE. The expression of PPARα, a transcription factor regulating fatty acid metabolism-associated gene expressions, was upregulated in ACE-overexpressing macrophages. To pinpoint the role of PPARα in the enhanced immune function of ACE-overexpressing macrophages, we established a line with myeloid lineage-selective PPARα depletion employing the Lysozyme 2 (LysM)-Cre system based on ACE 10/10 mice (named A10-PPARα-Cre). Interestingly, A10-PPARα-Cre mice exhibited larger B16-F10-originated tumors than original ACE 10/10 mice. PPARα depletion impaired cytokine production and antigen-presenting activity in ACE-overexpressing macrophages, resulting in reduced tumor antigen-specific CD8+ T cell activity. Additionally, the anti-bactericidal effect was also impaired in A10-PPARα-Cre mice, resulting in similar bacterial colonization to WT mice in Methicillin-Resistant Staphylococcus aureus (MRSA) infection. PPARα depletion downregulated phagocytic activity and bacteria killing in ACE-overexpressing macrophages. Moreover, THP-1-ACE-derived macrophages, as a human model, expressing upregulated PPARα exhibited enhanced cytotoxicity against B16-F10 cells and MRSA killing. These activities were further enhanced by the PPARα agonist, WY 14643, while abolished by the antagonist, GW6471, in THP-1-ACE cells. Thus, PPARα is an indispensable molecule in ACE-dependent functional upregulation of macrophages in both mice and humans.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ellen A. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anthony E. Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy Rios
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aoi O. Hoshi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 3058577, Japan
| | - Aleksandr B. Stotland
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Erika E. Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Physiology, São Paulo School of Medicine, Universidade Federal de São Paulo, Rua Botucatu, 862 terreo, Sao Paulo, 04023-062, Brazil
| | - Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Faizan Ahmed
- Division of Gastroenterology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jennifer E. Van Eyk
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ajit Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
21
|
Wan R, Srikaram P, Xie S, Chen Q, Hu C, Wan M, Li Y, Gao P. PPARγ attenuates cellular senescence of alveolar macrophages in asthma-COPD overlap. Respir Res 2024; 25:174. [PMID: 38643159 PMCID: PMC11032609 DOI: 10.1186/s12931-024-02790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) represents a complex condition characterized by shared clinical and pathophysiological features of asthma and COPD in older individuals. However, the pathophysiology of ACO remains unexplored. We aimed to identify the major inflammatory cells in ACO, examine senescence within these cells, and elucidate the genes responsible for regulating senescence. METHODS Bioinformatic analyses were performed to investigate major cell types and cellular senescence signatures in a public single-cell RNA sequencing (scRNA-Seq) dataset derived from the lung tissues of patients with ACO. Similar analyses were carried out in an independent cohort study Immune Mechanisms Severe Asthma (IMSA), which included bulk RNA-Seq and CyTOF data from bronchoalveolar lavage fluid (BALF) samples. RESULTS The analysis of the scRNA-Seq data revealed that monocytes/ macrophages were the predominant cell type in the lung tissues of ACO patients, constituting more than 50% of the cells analyzed. Lung monocytes/macrophages from patients with ACO exhibited a lower prevalence of senescence as defined by lower enrichment scores of SenMayo and expression levels of cellular senescence markers. Intriguingly, analysis of the IMSA dataset showed similar results in patients with severe asthma. They also exhibited a lower prevalence of senescence, particularly in airway CD206 + macrophages, along with increased cytokine expression (e.g., IL-4, IL-13, and IL-22). Further exploration identified alveolar macrophages as a major subtype of monocytes/macrophages driving cellular senescence in ACO. Differentially expressed genes related to oxidation-reduction, cytokines, and growth factors were implicated in regulating senescence in alveolar macrophages. PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) emerged as one of the predominant regulators modulating the senescent signature of alveolar macrophages in ACO. CONCLUSION The findings suggest that senescence in macrophages, particularly alveolar macrophages, plays a crucial role in the pathophysiology of ACO. Furthermore, PPARγ may represent a potential therapeutic target for interventions aimed at modulating senescence-associated processes in ACO.Key words ACO, Asthma, COPD, Macrophages, Senescence, PPARγ.
Collapse
Affiliation(s)
- Rongjun Wan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Prakhyath Srikaram
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Shaobing Xie
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chengping Hu
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuanyuan Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
- The Johns Hopkins Asthma & Allergy Center, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA.
| |
Collapse
|
22
|
Zhang Z, Chen Y, Fu X, Chen L, Wang J, Zheng Q, Zhang S, Zhu X. Identification of PPARG as key gene to link coronary atherosclerosis disease and rheumatoid arthritis via microarray data analysis. PLoS One 2024; 19:e0300022. [PMID: 38573982 PMCID: PMC10994321 DOI: 10.1371/journal.pone.0300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Inflammation is the common pathogenesis of coronary atherosclerosis disease (CAD) and rheumatoid arthritis (RA). Although it is established that RA increases the risk of CAD, the underlining mechanism remained indefinite. This study seeks to explore the molecular mechanisms of RA linked CAD and identify potential target gene for early prediction of CAD in RA patients. MATERIALS AND METHODS The study utilized five raw datasets: GSE55235, GSE55457, GSE12021 for RA patients, and GSE42148 and GSE20680 for CAD patients. Gene Set Enrichment Analysis (GSEA) was used to investigate common signaling pathways associated with RA and CAD. Then, weighted gene co-expression network analysis (WGCNA) was performed on RA and CAD training datasets to identify gene modules related to single-sample GSEA (ssGSEA) scores. Overlapping module genes and differentially expressed genes (DEGs) were considered as co-susceptible genes for both diseases. Three hub genes were screened using a protein-protein interaction (PPI) network analysis via Cytoscape plug-ins. The signaling pathways, immune infiltration, and transcription factors associated with these hub genes were analyzed to explore the underlying mechanism connecting both diseases. Immunohistochemistry and qRT-PCR were conducted to validate the expression of the key candidate gene, PPARG, in macrophages of synovial tissue and arterial walls from RA and CAD patients. RESULTS The study found that Fc-gamma receptor-mediated endocytosis is a common signaling pathway for both RA and CAD. A total of 25 genes were screened by WGCNA and DEGs, which are involved in inflammation-related ligand-receptor interactions, cytoskeleton, and endocytosis signaling pathways. The principal component analysis(PCA) and support vector machine (SVM) and receiver-operator characteristic (ROC) analysis demonstrate that 25 DEGs can effectively distinguish RA and CAD groups from normal groups. Three hub genes TUBB2A, FKBP5, and PPARG were further identified by the Cytoscape software. Both FKBP5 and PPARG were downregulated in synovial tissue of RA and upregulated in the peripheral blood of CAD patients and differential mRNAexpreesion between normal and disease groups in both diseases were validated by qRT-PCR.Association of PPARG with monocyte was demonstrated across both training and validation datasets in CAD. PPARG expression is observed in control synovial epithelial cells and foamy macrophages of arterial walls, but was decreased in synovial epithelium of RA patients. Its expression in foamy macrophages of atherosclerotic vascular walls exhibits a positive correlation (r = 0.6276, p = 0.0002) with CD68. CONCLUSION Our findings suggest that PPARG may serve as a potentially predictive marker for CAD in RA patients, which provides new insights into the molecular mechanism underling RA linked CAD.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yupeng Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaodan Fu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Linying Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Junlan Wang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qingqiang Zheng
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xia Zhu
- Department of Bone Tumor, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
23
|
Wan R, Srikaram P, Xie S, Chen Q, Hu C, Wan M, Li Y, Gao P. PPARγ Attenuates Cellular Senescence of Alveolar Macrophages in Asthma- COPD Overlap. RESEARCH SQUARE 2024:rs.3.rs-4009724. [PMID: 38496493 PMCID: PMC10942556 DOI: 10.21203/rs.3.rs-4009724/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) represents a complex condition characterized by shared clinical and pathophysiological features of asthma and COPD in older individuals. However, the pathophysiology of ACO remains unexplored. We aimed to identify the major inflammatory cells in ACO, examine senescence within these cells, and elucidate the genes responsible for regulating senescence. Bioinformatic analyses were performed to investigate major cell types and cellular senescence signatures in a public single-cell RNA sequencing (scRNA-Seq) dataset derived from the lung tissues of patients with ACO. Similar analyses were carried out in an independent cohort study Immune Mechanisms Severe Asthma (IMSA), which included bulk RNA-Seq and CyTOF data from bronchoalveolar lavage fluid (BALF) samples. The analysis of the scRNA-Seq data revealed that monocytes/ macrophages were the predominant cell type in the lung tissues of ACO patients, constituting more than 50% of the cells analyzed. Lung monocytes/macrophages from patients with ACO exhibited a lower prevalence of senescence as defined by lower enrichment scores of SenMayo and expression levels of cellular senescence markers. Intriguingly, analysis of the IMSA dataset showed similar results in patients with severe asthma. They also exhibited a lower prevalence of senescence, particularly in airway CD206 + macrophages, along with increased cytokine expression (e.g., IL-4, IL-13, and IL-22). Further exploration identified alveolar macrophages as a major subtype of monocytes/macrophages driving cellular senescence in ACO. Differentially expressed genes related to oxidation-reduction, cytokines, and growth factors were implicated in regulating senescence in alveolar macrophages. PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) emerged as one of the predominant regulators modulating the senescent signature of alveolar macrophages in ACO. Collectively, the findings suggest that senescence in macrophages, particularly alveolar macrophages, plays a crucial role in the pathophysiology of ACO. Furthermore, PPARγ may represent a potential therapeutic target for interventions aimed at modulating senescence-associated processes in ACO.
Collapse
Affiliation(s)
| | | | | | | | | | - Mei Wan
- Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
24
|
Wang Y, Lei F, Lin Y, Han Y, Yang L, Tan H. Peroxisome proliferator-activated receptors as therapeutic target for cancer. J Cell Mol Med 2024; 28:e17931. [PMID: 37700501 PMCID: PMC10902584 DOI: 10.1111/jcmm.17931] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor family. There are three subtypes of PPARs, including PPAR-α, PPAR-β/δ and PPAR-γ. They are expressed in different tissues and act by regulating the expression of target genes in the form of binding to ligands. Various subtypes of PPAR have been shown to have significant roles in a wide range of biological processes including lipid metabolism, body energy homeostasis, cell proliferation and differentiation, bone formation, tissue repair and remodelling. Recent studies have found that PPARs are closely related to tumours. They are involved in cancer cell growth, angiogenesis and tumour immune response, and are essential components in tumour progression and metastasis. As such, they have become a target for cancer therapy research. In this review, we discussed the current state of knowledge on the involvement of PPARs in cancer, including their role in tumourigenesis, the impact of PPARs in tumour microenvironment and the potential of using PPARs combinational therapy to treat cancer by targeting essential signal pathways, or as adjuvants to boost the effects of current chemo and immunotherapies. Our review highlights the complexity of PPARs in cancer and the need for a better understanding of the mechanism in order to design effective cancer therapies.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Internal MedicineMontefiore Medical Center, Wakefield CampusBronxNew YorkUSA
| | - Feifei Lei
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| | - Yiyun Lin
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuru Han
- Qinghai Provincial People's HospitalXiningChina
| | - Lei Yang
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Huabing Tan
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
25
|
García A, Vila L, Duplan I, Schiel MA, Enriz RD, Hennuyer N, Staels B, Cabedo N, Cortes D. Benzopyran hydrazones with dual PPARα/γ or PPARα/δ agonism and an anti-inflammatory effect on human THP-1 macrophages. Eur J Med Chem 2024; 265:116125. [PMID: 38185055 DOI: 10.1016/j.ejmech.2024.116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Peroxisome proliferator-activated receptors (PPARs) play a major role in regulating inflammatory processes, and dual or pan-PPAR agonists with PPARγ partial activation have been recognised to be useful to manage both metabolic syndrome and metabolic dysfunction-associated fatty liver disease (MAFLD). Previous works have demonstrated the capacity of 2-prenylated benzopyrans as PPAR ligands. Herein, we have replaced the isoprenoid bond by hydrazone, a highly attractive functional group in medicinal chemistry. In an attempt to discover novel and safety PPAR activators, we efficiently prepared benzopyran hydrazone/hydrazine derivatives containing benzothiazole (series 1) or 5-chloro-3-(trifluoromethyl)-2-pyridine moiety (series 2) with a 3- or 7-carbon side chain at the 2-position of the benzopyran nucleus. Benzopyran hydrazones 4 and 5 showed dual hPPARα/γ agonism, while hydrazone 14 exerted dual hPPARα/δ agonism. These three hydrazones greatly attenuated inflammatory markers such as IL-6 and MCP-1 on the THP-1 macrophages via NF-κB activation. Therefore, we have discovered novel hits (4, 5 and 14), containing a hydrazone framework with dual PPARα/γ or PPARα/δ partial agonism, depending on the length of the side chain. Benzopyran hydrazones emerge as potential lead compounds which could be useful for treating metabolic diseases.
Collapse
Affiliation(s)
- Ainhoa García
- Department of Pharmacology, University of Valencia, 46100, Burjassot, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain
| | - Laura Vila
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain
| | - Isabelle Duplan
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000, Lille, France
| | - María Ayelén Schiel
- Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis-IMIBIO-SL-CONICET, Chacabuco, 917-5700, San Luis, Argentina
| | - Ricardo D Enriz
- Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis-IMIBIO-SL-CONICET, Chacabuco, 917-5700, San Luis, Argentina
| | - Nathalie Hennuyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000, Lille, France.
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000, Lille, France
| | - Nuria Cabedo
- Department of Pharmacology, University of Valencia, 46100, Burjassot, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain.
| | - Diego Cortes
- Department of Pharmacology, University of Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
26
|
Zhang Y, Xiao B, Liu Y, Wu S, Xiang Q, Xiao Y, Zhao J, Yuan R, Xie K, Li L. Roles of PPAR activation in cancer therapeutic resistance: Implications for combination therapy and drug development. Eur J Pharmacol 2024; 964:176304. [PMID: 38142851 DOI: 10.1016/j.ejphar.2023.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yunduo Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yuhan Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Keping Xie
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
27
|
Jin H, Kang Y, Gao H, Lin Z, Huang D, Zheng Z, Zhao J, Wang L, Jiang J. Decellularization-Based Modification Strategy for Bioactive Xenografts Promoting Tendon Repair. Adv Healthc Mater 2024; 13:e2302660. [PMID: 37864473 DOI: 10.1002/adhm.202302660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Xenografts have emerged as a promising option for severe tendon defects treatment. However, despite undergoing decellularization, concerns still remain regarding the immunogenicity of xenografts. Because certain components within the extracellular matrix also possess immunogenicity. In this study, a novel strategy of post-decellularization modification aimed at preserving the endogenous capacity of cells on collagen synthesis to mask antigenic epitopes in extracellular matrix is proposed. To implement this strategy, a human-derived rosiglitazone-loaded decellularized extracellular matrix (R-dECM) is developed. R-dECM can release rosiglitazone for over 7 days in vitro. By suppressing M1 macrophage polarization, R-dECM protects the migration and collagen synthesis abilities of tendon-derived stem cells (TDSCs), while also stabilizing the phenotype of M2 macrophages in vitro. RNA sequencing reveals R-dECM can mitigate the detrimental crosstalk between TDSCs and inflammatory cells. When applied to a rat patellar tendon defect model, R-dECM effectively inhibits early inflammation, preventing chronic inflammation. Its duration of function far exceeds the release time of rosiglitazone, implying the establishment of immune evasion, confirming the effectiveness of the proposed strategy. And R-dECM demonstrates superior tendon repair outcomes compared to dECM. Thus, this study provides a novel bioactive scaffold with the potential to enhance the long-term clinical outcomes of xenogeneic tendon grafts.
Collapse
Affiliation(s)
- Haocheng Jin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Yuhao Kang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Haihan Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Zhiqi Lin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Dongcheng Huang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Zhi Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Jinzhong Zhao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Liren Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Jia Jiang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, P. R. China
| |
Collapse
|
28
|
Maxwell M, Söderlund R, Härtle S, Wattrang E. Single-cell RNA-seq mapping of chicken peripheral blood leukocytes. BMC Genomics 2024; 25:124. [PMID: 38287279 PMCID: PMC10826067 DOI: 10.1186/s12864-024-10044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Single-cell transcriptomics provides means to study cell populations at the level of individual cells. In leukocyte biology this approach could potentially aid the identification of subpopulations and functions without the need to develop species-specific reagents. The present study aimed to evaluate single-cell RNA-seq as a tool for identification of chicken peripheral blood leukocytes. For this purpose, purified and thrombocyte depleted leukocytes from 4 clinically healthy hens were subjected to single-cell 3' RNA-seq. Bioinformatic analysis of data comprised unsupervised clustering of the cells, and annotation of clusters based on expression profiles. Immunofluorescence phenotyping of the cell preparations used was also performed. RESULTS Computational analysis identified 31 initial cell clusters and based on expression of defined marker genes 28 cluster were identified as comprising mainly B-cells, T-cells, monocytes, thrombocytes and red blood cells. Of the remaining clusters, two were putatively identified as basophils and eosinophils, and one as proliferating cells of mixed origin. In depth analysis on gene expression profiles within and between the initial cell clusters allowed further identification of cell identity and possible functions for some of them. For example, analysis of the group of monocyte clusters revealed subclusters comprising heterophils, as well as putative monocyte subtypes. Also, novel aspects of TCRγ/δ + T-cell subpopulations could be inferred such as evidence of at least two subtypes based on e.g., different expression of transcription factors MAF, SOX13 and GATA3. Moreover, a novel subpopulation of chicken peripheral B-cells with high SOX5 expression was identified. An overall good correlation between mRNA and cell surface phenotypic cell identification was shown. CONCLUSIONS Taken together, we were able to identify and infer functional aspects of both previously well known as well as novel chicken leukocyte populations although some cell types. e.g., T-cell subtypes, proved more challenging to decipher. Although this methodology to some extent is limited by incomplete annotation of the chicken genome, it definitively has benefits in chicken immunology by expanding the options to distinguish identity and functions of immune cells also without access to species specific reagents.
Collapse
Affiliation(s)
- Matilda Maxwell
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Robert Söderlund
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden
| | - Sonja Härtle
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Eva Wattrang
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden.
| |
Collapse
|
29
|
Chatterjee O, Sur D. Pioglitazone attenuate level of myeloperoxidases and nitic oxide in psoriatic lesion: a proof-of-concept study in a imiquimod induced psoriasis model in rat. J Basic Clin Physiol Pharmacol 2024; 35:45-52. [PMID: 38341859 DOI: 10.1515/jbcpp-2023-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/26/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVES Psoriasis is a persistent autoimmune inflammatory condition that is primarily affecting the skin. Pioglitazone (PGZ), a peroxisome proliferator activated receptor gamma (PPARγ) agonist, has been reported to have anti-inflammatory effects. However, the role of PGZ in psoriatic disease remains unclear. In this study, we aimed to repurpose the use of the PGZ for the treatment of psoriasis. METHODS To investigate its efficacy, we employed an imiquimod (IMQ)-induced rat model. Wistar rats are randomly allocated to four different groups. Group, I served as a negative control, Group II IMQ control, Group III was treated with pioglitazone hydrogel and Group IV received standard drug betamethasone cream. PASI score was monitored on every alternative day and on day 7 animals were sacrificed and histopathology of skin was performed. Level of nitric oxide (NO) and myeloperoxidase (MPO) was also performed using established methods. RESULTS The results of the experiment revealed that treatment with PGZ significantly (p<0.05) reduced redness, scaling, and skin thickening, surpassing the effectiveness of standard drugs. Our result also indicates that PGZ significantly (p<0.05) inhibits the release of both MPO and NO from the psoriatic lesions. CONCLUSIONS PGZ effectively reduces the severity of psoriasis possibly by inhibiting the accumulation of neutrophil at the psoriatic area which indirectly regulates the release of NO in the affected area. Our study showed we can repurpose the PGZ for the management of psoriasis.
Collapse
Affiliation(s)
- Oishani Chatterjee
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, India
| |
Collapse
|
30
|
Rodríguez-Morales P, Franklin RA. Macrophage phenotypes and functions: resolving inflammation and restoring homeostasis. Trends Immunol 2023; 44:986-998. [PMID: 37940394 PMCID: PMC10841626 DOI: 10.1016/j.it.2023.10.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Inflammation must be tightly regulated to both defend against pathogens and restore tissue homeostasis. The resolution of inflammatory responses is a dynamic process orchestrated by cells of the immune system. Macrophages, tissue-resident innate immune cells, are key players in modulating inflammation. Here, we review recent work highlighting the importance of macrophages in tissue resolution and the return to homeostasis. We propose that enhancing macrophage pro-resolution functions represents a novel and widely applicable therapeutic strategy to dampen inflammation, promote repair, and restore tissue integrity and function.
Collapse
Affiliation(s)
| | - Ruth A Franklin
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
31
|
Larsen MC, Rondelli CM, Almeldin A, Song YS, N’Jai A, Alexander DL, Forsberg EC, Sheibani N, Jefcoate CR. AhR and CYP1B1 Control Oxygen Effects on Bone Marrow Progenitor Cells: The Enrichment of Multiple Olfactory Receptors as Potential Microbiome Sensors. Int J Mol Sci 2023; 24:16884. [PMID: 38069208 PMCID: PMC10706615 DOI: 10.3390/ijms242316884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollutants and microbiome products converge on the aryl hydrocarbon receptor (AhR) to redirect selective rapid adherence of isolated bone marrow (BM) cells. In young adult mice, Cyp1b1-deficiency and AhR activation by PAH, particularly when prolonged by Cyp1a1 deletion, produce matching gene stimulations in these BM cells. Vascular expression of Cyp1b1 lowers reactive oxygen species (ROS), suppressing NF-κB/RelA signaling. PAH and allelic selectivity support a non-canonical AhR participation, possibly through RelA. Genes stimulated by Cyp1b1 deficiency were further resolved according to the effects of Cyp1b1 and Cyp1a1 dual deletions (DKO). The adherent BM cells show a cluster of novel stimulations, including select developmental markers; multiple re-purposed olfactory receptors (OLFR); and α-Defensin, a microbial disruptor. Each one connects to an enhanced specific expression of the catalytic RNA Pol2 A subunit, among 12 different subunits. Mesenchymal progenitor BMS2 cells retain these features. Cyp1b1-deficiency removes lymphocytes from adherent assemblies as BM-derived mesenchymal stromal cells (BM-MSC) expand. Cyp1b1 effects were cell-type specific. In vivo, BM-MSC Cyp1b1 expression mediated PAH suppression of lymphocyte progenitors. In vitro, OP9-MSC sustained these progenitors, while Csf1 induced monocyte progenitor expansion to macrophages. Targeted Cyp1b1 deletion (Cdh5-Cre; Cyp1b1fl/fl) established endothelium control of ROS that directs AhR-mediated suppression of B cell progenitors. Monocyte Cyp1b1 deletion (Lyz2-Cre; Cyp1b1fl/fl) selectively attenuated M1 polarization of expanded macrophages, but did not enhance effects on basal M2 polarization. Thus, specific sources of Cyp1b1 link to AhR and to an OLFR network to provide BM inflammatory modulation via diverse microbiome products.
Collapse
Affiliation(s)
- Michele C. Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | | | - Ahmed Almeldin
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Alhaji N’Jai
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - David L. Alexander
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - Nader Sheibani
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| |
Collapse
|
32
|
Yan S, Ding J, Wang Z, Zhang F, Li J, Zhang Y, Wu S, Yang L, Pang X, Zhang Y, Yang J. CTRP6 regulates M1 macrophage polarization via the PPAR-γ/NF-κB pathway and reprogramming glycolysis in recurrent spontaneous abortion. Int Immunopharmacol 2023; 124:110840. [PMID: 37696144 DOI: 10.1016/j.intimp.2023.110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023]
Abstract
Aberrant polarization and functions of decidual macrophages are closely related to recurrent spontaneous abortion (RSA). C1q/tumor necrosis factor-related protein 6 (CTRP6) is a member of the adiponectin paralog family, and plays indispensable roles in inflammation, glucose uptake and tumor metastasis. However, the regulatory effect of CTRP6 on macrophage polarization and glycolysis in RSA and the underlying mechanisms have not been fully elucidated. In the present study, we first found that CTRP6 expression was positively correlated with the M1 macrophage marker (CD86) in decidual tissues by dual immunofluorescence analysis. In vitro experiments indicated that CTRP6 could facilitate M1 macrophage activation through the PPAR-γ/NF-κB pathway and manipulate the glycolysis of macrophages. Notably, in addition to silencing CTRP6, treatment with a PPAR-γ agonist (GW1929) inhibited M1 macrophage polarization and rescued embryo absorption in vivo. Taken together, these results identify previously unrevealed functions of CTRP6 in macrophage transformation during RSA.
Collapse
Affiliation(s)
- Sisi Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Zehao Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Feng Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Jianan Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Yi Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Shujuan Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Lian Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Xiangli Pang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, WuHan, HuBei, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China.
| |
Collapse
|
33
|
Blot G, Karadayi R, Przegralek L, Sartoris TM, Charles-Messance H, Augustin S, Negrier P, Blond F, Muñiz-Ruvalcaba FP, Rivera-de la Parra D, Vignaud L, Couturier A, Sahel JA, Acar N, Jimenez-Corona A, Delarasse C, Garfias Y, Sennlaub F, Guillonneau X. Perilipin 2-positive mononuclear phagocytes accumulate in the diabetic retina and promote PPARγ-dependent vasodegeneration. J Clin Invest 2023; 133:e161348. [PMID: 37781924 PMCID: PMC10702478 DOI: 10.1172/jci161348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/01/2023] [Indexed: 10/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), characterized by hyperglycemia and dyslipidemia, leads to nonproliferative diabetic retinopathy (NPDR). NPDR is associated with blood-retina barrier disruption, plasma exudates, microvascular degeneration, elevated inflammatory cytokine levels, and monocyte (Mo) infiltration. Whether and how the diabetes-associated changes in plasma lipid and carbohydrate levels modify Mo differentiation remains unknown. Here, we show that mononuclear phagocytes (MPs) in areas of vascular leakage in DR donor retinas expressed perilipin 2 (PLIN2), a marker of intracellular lipid load. Strong upregulation of PLIN2 was also observed when healthy donor Mos were treated with plasma from patients with T2DM or with palmitate concentrations typical of those found in T2DM plasma, but not under high-glucose conditions. PLIN2 expression correlated with the expression of other key genes involved in lipid metabolism (ACADVL, PDK4) and the DR biomarkers ANGPTL4 and CXCL8. Mechanistically, we show that lipid-exposed MPs induced capillary degeneration in ex vivo explants that was inhibited by pharmaceutical inhibition of PPARγ signaling. Our study reveals a mechanism linking dyslipidemia-induced MP polarization to the increased inflammatory cytokine levels and microvascular degeneration that characterize NPDR. This study provides comprehensive insights into the glycemia-independent activation of Mos in T2DM and identifies MP PPARγ as a target for inhibition of lipid-activated MPs in DR.
Collapse
Affiliation(s)
- Guillaume Blot
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- ED394 Physiology and Physiopathology Doctoral School, Sorbonne University, Paris, France
| | - Rémi Karadayi
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | | | | | - Hugo Charles-Messance
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- ED394 Physiology and Physiopathology Doctoral School, Sorbonne University, Paris, France
| | | | - Pierre Negrier
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- A. de Rothschild Foundation Hospital, Paris, France
| | - Frédéric Blond
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | | | - David Rivera-de la Parra
- Comprehensive Care Center for Diabetes Patients, Salvador Zubrian National Institute of Health Sciences and Nutrition, Mexico City, Mexico
- Institute of Ophthalmology “Fundación Conde de Valenciana” I.A.P., Mexico City, Mexico
| | - Lucile Vignaud
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | - Aude Couturier
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- ED394 Physiology and Physiopathology Doctoral School, Sorbonne University, Paris, France
- Department of Ophthalmology, Hôpital Lariboisière, AP-HP, University of Paris, Paris, France
| | - José-Alain Sahel
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- A. de Rothschild Foundation Hospital, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- CHNO des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Center for Taste and Food Sciences, CNRS, INRAE, Institut Agro, Bourgogne Franche-Comté University, Dijon, France
| | - Aida Jimenez-Corona
- Department of Epidemiology and Visual Health, Instituto de Oftalmología Fundación Conde de Valenciana, Mexico City, Mexico
- General Directorate of Epidemiology, Secretariat of Health, Mexico City, Mexico
| | - Cécile Delarasse
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | - Yonathan Garfias
- Department of Biochemistry, School of Medicine, National Autonomous University, Mexico City, Mexico
- Cell and Tissue Biology, Research Unit, Instituto de Oftalmología Fundación Conde de Valenciana”, Mexico City, Mexico
| | - Florian Sennlaub
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | | |
Collapse
|
34
|
Yu L, Gao Y, Aaron N, Qiang L. A glimpse of the connection between PPARγ and macrophage. Front Pharmacol 2023; 14:1254317. [PMID: 37701041 PMCID: PMC10493289 DOI: 10.3389/fphar.2023.1254317] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Nuclear receptors are ligand-regulated transcription factors that regulate vast cellular activities and serve as an important class of drug targets. Among them, peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family and have been extensively studied for their roles in metabolism, differentiation, development, and cancer, among others. Recently, there has been considerable interest in understanding and defining the function of PPARs and their agonists in regulating innate and adaptive immune responses and their pharmacological potential in combating chronic inflammatory diseases. In this review, we focus on emerging evidence for the potential role of PPARγ in macrophage biology, which is the prior innate immune executive in metabolic and tissue homeostasis. We also discuss the role of PPARγ as a regulator of macrophage function in inflammatory diseases. Lastly, we discuss the possible application of PPARγ antagonists in metabolic pathologies.
Collapse
Affiliation(s)
- Lexiang Yu
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Yuen Gao
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Nicole Aaron
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, United States
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
35
|
Mulik S, Berber E, Sehrawat S, Rouse BT. Controlling viral inflammatory lesions by rebalancing immune response patterns. Front Immunol 2023; 14:1257192. [PMID: 37671156 PMCID: PMC10475736 DOI: 10.3389/fimmu.2023.1257192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.
Collapse
Affiliation(s)
- Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Department of Biological Sciences, Mohali, Punjab, India
| | - Barry Tyrrell Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
36
|
Zhu J, Fan J, Xia Y, Wang H, Li Y, Feng Z, Fu C. Potential therapeutic targets of macrophages in inhibiting immune damage and fibrotic processes in musculoskeletal diseases. Front Immunol 2023; 14:1219487. [PMID: 37545490 PMCID: PMC10400722 DOI: 10.3389/fimmu.2023.1219487] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Macrophages are a heterogeneous cell type with high plasticity, exhibiting unique activation characteristics that modulate the progression and resolution of diseases, serving as a key mediator in maintaining tissue homeostasis. Macrophages display a variety of activation states in response to stimuli in the local environment, with their subpopulations and biological functions being dependent on the local microenvironment. Resident tissue macrophages exhibit distinct transcriptional profiles and functions, all of which are essential for maintaining internal homeostasis. Dysfunctional macrophage subpopulations, or an imbalance in the M1/M2 subpopulation ratio, contribute to the pathogenesis of diseases. In skeletal muscle disorders, immune and inflammatory damage, as well as fibrosis induced by macrophages, are prominent pathological features. Therefore, targeting macrophages is of great significance for maintaining tissue homeostasis and treating skeletal muscle disorders. In this review, we discuss the receptor-ligand interactions regulating macrophages and identify potential targets for inhibiting collateral damage and fibrosis in skeletal muscle disorders. Furthermore, we explore strategies for modulating macrophages to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zijia Feng
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
37
|
Jiang S, Meng X, Gu H, Sun J, Chen S, Chen Z, Liu D, Liang X. STAU1 promotes adipogenesis by regulating the alternative splicing of Pparγ2 mRNA. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159293. [PMID: 36871938 DOI: 10.1016/j.bbalip.2023.159293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023]
Abstract
During adipocyte differentiation, specific genes such as peroxisome proliferator-activated receptor γ (PPARγ) are transcribed and post-transcriptional pre-mRNA is processed into mature mRNA. Since Pparγ2 pre-mRNAs contain putative binding sites for STAUFEN1 (STAU1), which can affect the alternative splicing of pre-mRNA, we hypothesized that STAU1 might regulate the alternative splicing of Pparγ2 pre-mRNA. In this study, we found that STAU1 affects the differentiation of 3 T3-L1 pre-adipocytes. Through RNA-seq analysis, we confirmed that STAU1 can regulate alternative splicing events during adipocyte differentiation, mainly through exon skipping, which suggests that STAU1 is mainly involved in exon splicing. In addition, gene annotation and cluster analysis revealed that the genes affected by alternative splicing were enriched in lipid metabolism pathways. We further demonstrated that STAU1 can regulate the alternative splicing of Pparγ2 pre-mRNA and affect the splicing of exon E1 through RNA immuno-precipitation, photoactivatable ribonucleotide enhanced crosslinking and immunoprecipitation, and sucrose density gradient centrifugation assays. Finally, we confirmed that STAU1 can regulate the alternative splicing of Pparγ2 pre-mRNA in stromal vascular fraction cells. In summary, this study improves our understanding of the function of STAU1 in adipocyte differentiation and the regulatory network of adipocyte differentiation-related gene expression.
Collapse
Affiliation(s)
- Shuo Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Xuanyu Meng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Hao Gu
- Department of Laparoscopic Surgery, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830002, China
| | - Jialei Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Siyuan Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Zhe Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Dihui Liu
- Pathology Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830002, China
| | - Xiaodi Liang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China.
| |
Collapse
|
38
|
Peroxisome Proliferator-Activated Receptor-Targeted Therapies: Challenges upon Infectious Diseases. Cells 2023; 12:cells12040650. [PMID: 36831317 PMCID: PMC9954612 DOI: 10.3390/cells12040650] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) α, β, and γ are nuclear receptors that orchestrate the transcriptional regulation of genes involved in a variety of biological responses, such as energy metabolism and homeostasis, regulation of inflammation, cellular development, and differentiation. The many roles played by the PPAR signaling pathways indicate that PPARs may be useful targets for various human diseases, including metabolic and inflammatory conditions and tumors. Accumulating evidence suggests that each PPAR plays prominent but different roles in viral, bacterial, and parasitic infectious disease development. In this review, we discuss recent PPAR research works that are focused on how PPARs control various infections and immune responses. In addition, we describe the current and potential therapeutic uses of PPAR agonists/antagonists in the context of infectious diseases. A more comprehensive understanding of the roles played by PPARs in terms of host-pathogen interactions will yield potential adjunctive personalized therapies employing PPAR-modulating agents.
Collapse
|
39
|
Gu Y, Hsu ACY, Zuo X, Guo X, Zhou Z, Jiang S, Ouyang Z, Wang F. Chronic exposure to low-level lipopolysaccharide dampens influenza-mediated inflammatory response via A20 and PPAR network. Front Immunol 2023; 14:1119473. [PMID: 36726689 PMCID: PMC9886269 DOI: 10.3389/fimmu.2023.1119473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Influenza A virus (IAV) infection leads to severe inflammation, and while epithelial-driven inflammatory responses occur via activation of NF-κB, the factors that modulate inflammation, particularly the negative regulators are less well-defined. In this study we show that A20 is a crucial molecular switch that dampens IAV-induced inflammatory responses. Chronic exposure to low-dose LPS environment can restrict this excessive inflammation. The mechanisms that this environment provides to suppress inflammation remain elusive. Here, our evidences show that chronic exposure to low-dose LPS suppressed IAV infection or LPS stimulation-induced inflammation in vitro and in vivo. Chronic low-dose LPS environment increases A20 expression, which in turn positively regulates PPAR-α and -γ, thus dampens the NF-κB signaling pathway and NLRP3 inflammasome activation. Knockout of A20 abolished the inhibitory effect on inflammation. Thus, A20 and its induced PPAR-α and -γ play a key role in suppressing excessive inflammatory responses in the chronic low-dose LPS environment.
Collapse
Affiliation(s)
- Yinuo Gu
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Alan Chen-Yu Hsu
- Signature Research Program in Emerging Infectious Diseases, Duke - National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore,School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia,Viruses, Infections/Immunity, Vaccines and Asthma, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoping Guo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhengjie Zhou
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shengyu Jiang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhuoer Ouyang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China,*Correspondence: Fang Wang,
| |
Collapse
|
40
|
Morris JL, Letson HL, Biros E, McEwen PC, Dobson GP. Female rats have a different healing phenotype than males after anterior cruciate ligament rupture with no intervention. Front Med (Lausanne) 2022; 9:976980. [PMID: 36452896 PMCID: PMC9701729 DOI: 10.3389/fmed.2022.976980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/24/2022] [Indexed: 01/03/2025] Open
Abstract
Little is known on the sex-specific healing responses after an anterior cruciate ligament (ACL) rupture. To address this, we compared male and female Sprague-Dawley rats following non-surgical ACL rupture. Hematology, inflammation, joint swelling, range of motion, and pain-sensitivity were analyzed at various times over 31-days. Healing was assessed by histopathology and gene expression changes in the ACL remnant and adjacent joint tissues. In the first few days, males and females showed similar functional responses after rupture, despite contrasting hematology and systemic inflammatory profiles. Sex-specific differences were found in inflammatory, immune and angiogenic potential in the synovial fluid. Histopathology and increased collagen and fibronectin gene expression revealed significant tissue remodeling in both sexes. In the ACL remnant, however, Acta2 gene expression (α-SMA production) was 4-fold higher in males, with no change in females, indicating increased fibroblast-to-myofibroblast transition with higher contractile elements (stiffness) in males. Females had 80% lower Pparg expression, which further suggests reduced cellular differentiation potential in females than males. Sex differences were also apparent in the infrapatellar fat pad and articular cartilage. We conclude females and males showed different patterns of healing post-ACL rupture over 31-days, which may impact timing of reconstruction surgery, and possibly clinical outcome.
Collapse
Affiliation(s)
- Jodie L. Morris
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Hayley L. Letson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Erik Biros
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Peter C. McEwen
- Orthopaedic Research Institute of Queensland, Townsville, QLD, Australia
| | - Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
41
|
Parksepp M, Haring L, Kilk K, Taalberg E, Kangro R, Zilmer M, Vasar E. A Marked Low-Grade Inflammation and a Significant Deterioration in Metabolic Status in First-Episode Schizophrenia: A Five-Year Follow-Up Study. Metabolites 2022; 12:983. [PMID: 36295885 PMCID: PMC9610466 DOI: 10.3390/metabo12100983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 08/31/2023] Open
Abstract
The objective of this study was to evaluate how schizophrenia spectrum disorders and applied long-term (5.1 years) antipsychotic (AP) treatment affect the serum level of acylcarnitines (ACs), cytokines and metabolic biomarkers and to characterize the dynamics of inflammatory and metabolic changes in the early course of the disorder. A total of 112 adults participated in the study (54 patients with first-episode psychosis (FEP) and 58 control subjects). Biomolecule profiles were measured at the onset of first-episode psychosis and 0.6 years and 5.1 years after the initiation of APs. The results of the present study confirmed that specific metabolic-inflammatory imbalance characterizes AP-naïve patients. Short-term (0.6-years) AP treatment has a favourable effect on psychotic symptoms, as well as the recovery of metabolic flexibility and resolution of low-level inflammation. However, 5.1 years of AP treatment resulted in weight gain and increased serum levels of interleukin (IL)-2, IL-4, IL-6, IL-10, interferon-γ, hexoses, acetylcarnitine, short-chain ACs (C3, C4) and long-chain ACs (C16:2, C18:1, C18:2). In conclusion, despite the improvement in psychotic symptoms, 5.1 years of AP treatment was accompanied by a pronounced metabolic-inflammatory imbalance, which was confirmed by the presence of enhanced pro-inflammatory activity and increased obesity with changes in the metabolism of carbohydrates, lipids, and their metabolites.
Collapse
Affiliation(s)
- Madis Parksepp
- Institute of Clinical Medicine, University of Tartu, 50417 Tartu, Estonia
- Psychiatry Clinic of Viljandi Hospital, 71024 Viljandi, Estonia
| | - Liina Haring
- Institute of Clinical Medicine, University of Tartu, 50417 Tartu, Estonia
- Psychiatry Clinic of Tartu University Hospital, 50417 Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Kalle Kilk
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Egon Taalberg
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Raul Kangro
- Institute of Mathematics and Statistics, University of Tartu, 51009 Tartu, Estonia
| | - Mihkel Zilmer
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Eero Vasar
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| |
Collapse
|
42
|
Zachut M, Tam J, Contreras GA. Modulating immunometabolism in transition dairy cows: the role of inflammatory lipid mediators. Anim Front 2022; 12:37-45. [PMID: 36268169 PMCID: PMC9564993 DOI: 10.1093/af/vfac062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Genaro Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
43
|
Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S. PPAR-γ Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Cells 2022; 11:3215. [PMID: 36291082 PMCID: PMC9601205 DOI: 10.3390/cells11203215] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has emerged as one of the most extensively studied transcription factors since its discovery in 1990, highlighting its importance in the etiology and treatment of numerous diseases involving various types of cancer, type 2 diabetes mellitus, autoimmune, dermatological and cardiovascular disorders. Ligands are regarded as the key determinant for the tissue-specific activation of PPAR-γ. However, the mechanism governing this process is merely a contradictory debate which is yet to be systematically researched. Either these receptors get weakly activated by endogenous or natural ligands or leads to a direct over-activation process by synthetic ligands, serving as complete full agonists. Therefore, fine-tuning on the action of PPAR-γ and more subtle modulation can be a rewarding approach which might open new avenues for the treatment of several diseases. In the recent era, researchers have sought to develop safer partial PPAR-γ agonists in order to dodge the toxicity induced by full agonists, akin to a balanced activation. With a particular reference to cancer, this review concentrates on the therapeutic role of partial agonists, especially in cancer treatment. Additionally, a timely examination of their efficacy on various other disease-fate decisions has been also discussed.
Collapse
Affiliation(s)
- Sangeeta Ballav
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Bini Biswas
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Vishal Kumar Sahu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Amit Ranjan
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| |
Collapse
|
44
|
Gopalakrishnan A, Joseph J, Shirey KA, Keegan AD, Boukhvalova MS, Vogel SN, Blanco JCG. Protection against influenza-induced Acute Lung Injury (ALI) by enhanced induction of M2a macrophages: possible role of PPARγ/RXR ligands in IL-4-induced M2a macrophage differentiation. Front Immunol 2022; 13:968336. [PMID: 36052067 PMCID: PMC9424652 DOI: 10.3389/fimmu.2022.968336] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Many respiratory viruses cause lung damage that may evolve into acute lung injury (ALI), a cytokine storm, acute respiratory distress syndrome, and ultimately, death. Peroxisome proliferator activated receptor gamma (PPARγ), a member of the nuclear hormone receptor (NHR) family of transcription factors, regulates transcription by forming heterodimers with another NHR family member, Retinoid X Receptor (RXR). Each component of the heterodimer binds specific ligands that modify transcriptional capacity of the entire heterodimer by recruiting different co-activators/co-repressors. However, the role of PPARγ/RXR ligands in the context of influenza infection is not well understood. PPARγ is associated with macrophage differentiation to an anti-inflammatory M2 state. We show that mice lacking the IL-4Rα receptor, required for M2a macrophage differentiation, are more susceptible to mouse-adapted influenza (A/PR/8/34; "PR8")-induced lethality. Mice lacking Ptgs2, that encodes COX-2, a key proinflammatory M1 macrophage mediator, are more resistant. Blocking the receptor for COX-2-induced Prostaglandin E2 (PGE2) was also protective. Treatment with pioglitazone (PGZ), a PPARγ ligand, increased survival from PR8 infection, decreased M1 macrophage gene expression, and increased PPARγ mRNA in lungs. Conversely, conditional knockout mice expressing PPARγ-deficient macrophages were significantly more sensitive to PR8-induced lethality. These findings were extended in cotton rats: PGZ blunted lung inflammation and M1 cytokine gene expression after challenge with non-adapted human influenza. To study mechanisms by which PPARγ/RXR transcription factors induce canonical M2a genes, WT mouse macrophages were treated with IL-4 in the absence or presence of rosiglitazone (RGZ; PPARγ ligand), LG100754 (LG; RXR ligand), or both. IL-4 dose-dependently induced M2a genes Arg1, Mrc1, Chil3, and Retnla. Treatment of macrophages with IL-4 and RGZ and/or LG differentially affected induction of Arg1 and Mrc1 vs. Chil3 and Retnla gene expression. In PPARγ-deficient macrophages, IL-4 alone failed to induce Arg1 and Mrc1 gene expression; however, concurrent treatment with LG or RGZ + LG enhanced IL-4-induced Arg1 and Mrc1 expression, but to a lower level than in WT macrophages, findings confirmed in the murine alveolar macrophage cell line, MH-S. These findings support a model in which PPARγ/RXR heterodimers control IL-4-induced M2a differentiation, and suggest that PPARγ/RXR agonists should be considered as important tools for clinical intervention against influenza-induced ALI.
Collapse
Affiliation(s)
- Archana Gopalakrishnan
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - John Joseph
- Sigmovir Biosystems, Inc., Rockville, MD, United States
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Achsah D. Keegan
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Center for Vascular and Inflammatory Diseases, University of Maryland, School of Medicine, Baltimore, MD, United States
| | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
45
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
46
|
Zhang M, Zhang Y, Jiao X, Lai L, Qian Y, Sun B, Yang W. Identification and validation of immune related core transcription factors GTF2I in NAFLD. PeerJ 2022; 10:e13735. [PMID: 35891648 PMCID: PMC9308966 DOI: 10.7717/peerj.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/25/2022] [Indexed: 01/17/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide that endangers human health. Transcription factors (TFs) have gradually become hot spots for drug development in NAFLD for their impacts on metabolism. However, the specific TFs that regulate immune response in the development of NAFLD is not clear. This study aimed to investigate the TFs involved in the immune response of NAFLD and provide novel targets for drug development. Methods Microarray data were obtained from liver samples from 26 normal volunteers and 109 NAFLD patients using the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were analyzed by limma package. Differentially expressed transcription factors (DETFs) were obtained on DEGs combined with Cistrome Cancer database. Immune signatures and pathways hallmark were identified by ssGSSEA and GSVA. The co-regulation network was constructed by the above results. Further, quantitative Real-time Polymerase Chain Reaction (qRT-PCR), Western blot (WB) and Immunohistochemistry (IHC) were used to validate the relationship between GTF2I and NAFLD. CIBERSORT analysis was performed to identify cell types to explore the relationship between differential expression of GTF2I and immune cell surface markers. Results A total of 617 DEGs and six DETFs (ESR1, CHD2, GTF2I, EGR1, HCFC1, SP2) were obtained by differential analysis. Immune signatures and pathway hallmarks were identified by ssGSSEA and GSVA. GTF2I and CHD2 were screened through the co-regulatory networks of DEGs, DETFs, immune signatures and pathway hallmarks. Furthermore, qRT-PCR, WB and IHC indicated that GTF2I but not CHD2 was significantly upregulated in NAFLD. Finally, in silico, our data confirmed that GTF2I has a wide impact on the immune profile by negatively regulating the expression of the chemokine receptor family (227/261, count of significance). Conclusion GTF2I plays a role in NAFLD by negatively regulating the chemokine receptor family, which affects the immune profile. This study may provide a potential target for the diagnosis or therapy of NAFLD.
Collapse
Affiliation(s)
- Minbo Zhang
- Department of Gastroenterology and Hepatology, Tongji Hospital of Tongji University, Shanghai, China
| | - Yu Zhang
- Department of Gastroenterology and Hepatology, Tongji Hospital of Tongji University, Shanghai, China
| | - Xiaoxiao Jiao
- Department of Gastroenterology and Hepatology, Tongji Hospital of Tongji University, Shanghai, China
| | - Linying Lai
- Department of Gastroenterology and Hepatology, Tongji Hospital of Tongji University, Shanghai, China
| | - Yiting Qian
- Department of Gastroenterology and Hepatology, Tongji Hospital of Tongji University, Shanghai, China
| | - Bo Sun
- Department of Gastroenterology and Hepatology, Tongji Hospital of Tongji University, Shanghai, China
| | - Wenzhuo Yang
- Department of Gastroenterology and Hepatology, Tongji Hospital of Tongji University, Shanghai, China
| |
Collapse
|
47
|
Wang S, Liu G, Li Y, Pan Y. Metabolic Reprogramming Induces Macrophage Polarization in the Tumor Microenvironment. Front Immunol 2022; 13:840029. [PMID: 35874739 PMCID: PMC9302576 DOI: 10.3389/fimmu.2022.840029] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/09/2022] [Indexed: 12/18/2022] Open
Abstract
Macrophages are one of the most important cells in the innate immune system, they are converted into two distinct subtypes with completely different molecular phenotypes and functional features under different stimuli of the microenvironment: M1 macrophages induced by IFN-γ/lipopolysaccharides(LPS) and M2 macrophages induced by IL-4/IL-10/IL-13. Tumor-associated macrophages (TAMs) differentiate from macrophages through various factors in the tumor microenvironment (TME). TAMs have the phenotype and function of M2 macrophages and are capable of secreting multiple cytokines to promote tumor progression. Both tumor cells and macrophages can meet the energy needs for rapid cell growth and proliferation through metabolic reprogramming, so a comprehensive understanding of pro-tumor and antitumor metabolic switches in TAM is essential to understanding immune escape mechanisms. This paper focuses on the functions of relevant signaling pathways and cytokines during macrophage polarization and metabolic reprogramming, and briefly discusses the effects of different microenvironments and macrophage pathogenicity, in addition to describing the research progress of inhibitory drugs for certain metabolic and polarized signaling pathways.
Collapse
Affiliation(s)
- Shilin Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
48
|
PPARα Signaling: A Candidate Target in Psychiatric Disorder Management. Biomolecules 2022; 12:biom12050723. [PMID: 35625650 PMCID: PMC9138493 DOI: 10.3390/biom12050723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Peroxisome proliferator-activator receptors (PPARs) regulate lipid and glucose metabolism, control inflammatory processes, and modulate several brain functions. Three PPAR isoforms have been identified, PPARα, PPARβ/δ, and PPARγ, which are expressed in different tissues and cell types. Hereinafter, we focus on PPARα involvement in the pathophysiology of neuropsychiatric and neurodegenerative disorders, which is underscored by PPARα localization in neuronal circuits involved in emotion modulation and stress response, and its role in neurodevelopment and neuroinflammation. A multiplicity of downstream pathways modulated by PPARα activation, including glutamatergic neurotransmission, upregulation of brain-derived neurotrophic factor, and neurosteroidogenic effects, encompass mechanisms underlying behavioral regulation. Modulation of dopamine neuronal firing in the ventral tegmental area likely contributes to PPARα effects in depression, anhedonia, and autism spectrum disorder (ASD). Based on robust preclinical evidence and the initial results of clinical studies, future clinical trials should assess the efficacy of PPARα agonists in the treatment of mood and neurodevelopmental disorders, such as depression, schizophrenia, and ASD.
Collapse
|
49
|
Katkar GD, Sayed IM, Anandachar MS, Castillo V, Vidales E, Toobian D, Usmani F, Sawires JR, Leriche G, Yang J, Sandborn WJ, Das S, Sahoo D, Ghosh P. Artificial intelligence-rationalized balanced PPARα/γ dual agonism resets dysregulated macrophage processes in inflammatory bowel disease. Commun Biol 2022; 5:231. [PMID: 35288651 PMCID: PMC8921270 DOI: 10.1038/s42003-022-03168-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
A computational platform, Boolean network explorer (BoNE), has recently been developed to infuse AI-enhanced precision into drug discovery; it enables invariant Boolean Implication Networks of disease maps for prioritizing high-value targets. Here we used BoNE to query an Inflammatory Bowel Disease (IBD)-map and prioritize a therapeutic strategy that involves dual agonism of two nuclear receptors, PPARα/γ. Balanced agonism of PPARα/γ was predicted to modulate macrophage processes, ameliorate colitis, 'reset' the gene expression network from disease to health. Predictions were validated using a balanced and potent PPARα/γ-dual-agonist (PAR5359) in Citrobacter rodentium- and DSS-induced murine colitis models. Using inhibitors and agonists, we show that balanced-dual agonism promotes bacterial clearance efficiently than individual agonists, both in vivo and in vitro. PPARα is required and sufficient to induce the pro-inflammatory cytokines and cellular ROS, which are essential for bacterial clearance and immunity, whereas PPARγ-agonism blunts these responses, delays microbial clearance; balanced dual agonism achieved controlled inflammation while protecting the gut barrier and 'reversal' of the transcriptomic network. Furthermore, dual agonism reversed the defective bacterial clearance observed in PBMCs derived from IBD patients. These findings not only deliver a macrophage modulator for use as barrier-protective therapy in IBD, but also highlight the potential of BoNE to rationalize combination therapy.
Collapse
Affiliation(s)
- Gajanan D Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California San Diego, San Diego, USA.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Eleadah Vidales
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Daniel Toobian
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Fatima Usmani
- Department of Pathology, University of California San Diego, San Diego, USA
| | - Joseph R Sawires
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - William J Sandborn
- Department of Medicine, University of California San Diego, San Diego, USA.
| | - Soumita Das
- Department of Pathology, University of California San Diego, San Diego, USA.
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, USA. .,Department of Pediatrics, University of California San Diego, San Diego, USA. .,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA. .,Department of Medicine, University of California San Diego, San Diego, USA. .,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, USA. .,Veterans Affairs Medical Center, La Jolla, San Diego, USA.
| |
Collapse
|