1
|
Zhang F, Ramar S, Wang Y, Xu H, Zhang K, Awadasseid A, Rao G, Zhang W. Advances in cancer immunotherapy using small-molecular inhibitors targeting the PD-1/PD-L1 interaction. Bioorg Med Chem 2025; 127:118238. [PMID: 40367914 DOI: 10.1016/j.bmc.2025.118238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Cancer cells evade immune responses by interacting with PD-1 and its ligand, PD-L1. Although monoclonal antibodies targeting this pathway have revolutionized oncology, their high production costs, poor oral bioavailability, and limited tumor penetration remain significant challenges. Small-molecule inhibitors provide a promising alternative, offering advantages such as improved tumor penetration and cost-effectiveness. This review highlights advancements in small-molecule PD-1/PD-L1 inhibitors, focusing on their mechanisms, structural designs, and therapeutic potential. Key innovations, including biphenyl scaffolds, heterocyclic frameworks, enhance binding efficiency and immune activation. The article effectively integrates fundamental principles of drug chemistry with real-world clinical needs, offering a comprehensive approach to the design of PD-1/PD-L1 small-molecule inhibitors. It systematically classifies various molecular structures, analyzes relevant industrial cases, and incorporates the most recent research findings. By examining these aspects, it uncovers the underlying logic driving the design process and provides a fresh, innovative perspective on advancing the field of immune small-molecule inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Feng Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Sivaramakarthikeyan Ramar
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Moganshan Institute ZJUT, Deqing 313202, China
| | - Yu Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Haoran Xu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Koutian Zhang
- Zhejiang Qingzhenghong Technology Co., Ltd, Hangzhou 311121, China
| | - Annoor Awadasseid
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Zhejiang Qingzhenghong Technology Co., Ltd, Hangzhou 311121, China.
| | - Guowu Rao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Zhejiang Jieyuan Med-Tech Co., Ltd., Hangzhou 311113, China.
| |
Collapse
|
2
|
Rahimi A, Baghernejadan Z, Hazrati A, Malekpour K, Samimi LN, Najafi A, Falak R, Khorramdelazad H. Combination therapy with immune checkpoint inhibitors in colorectal cancer: Challenges, resistance mechanisms, and the role of microbiota. Biomed Pharmacother 2025; 186:118014. [PMID: 40157004 DOI: 10.1016/j.biopha.2025.118014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Colorectal cancer (CRC) is still one of the leading causes of cancer deaths worldwide. Even though there has been progress in cancer immunotherapy, the results of applying immune checkpoint inhibitors (ICIs) have been unsatisfactory, especially in microsatellite stable (MSS) CRC. Single-agent ICIs that target programmed cell death-1 (PD-1)/ PD-L1, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell Ig- and mucin-domain-containing molecule-3 (TIM-3), and lymphocyte activation gene (LAG)-3 have emerged as having specific benefits. However, many primary and secondary resistance mechanisms are available in the tumor microenvironment (TME) that prevent it from happening. Combination strategies, such as the use of anti-PD-1 and anti-CTLA-4, can be effective in overcoming these resistance pathways, but toxicities remain a significant concern. Moreover, ICIs have been integrated with various treatment modalities, including chemotherapy, radiotherapy, antibiotics, virotherapy, polyadenosine diphosphate-ribose polymerase (PARP) inhibitors, and heat shock protein 90 (HSP90) inhibitors. The outcomes observed in both preclinical and clinical settings have been encouraging. Interestingly, manipulating gut microbiota via fecal microbiota transplantation (FMT) has been identified as a new strategy to increase the efficacy of immunotherapy in CRC patients. Therefore, integrating ICIs with other treatment approaches holds promise in enhancing the prognosis of CRC patients. This review focuses on the unmet need for new biomarkers to select patients for combination therapies and the ongoing work to overcome resistance and immune checkpoint blockade.
Collapse
Affiliation(s)
- Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
3
|
Wang Z, He H, Liao X, Yuan L, Sun S, Xu C, Yang X, Zang Q, Peng X, Chen J, Guo X. Discovery of Dual PD-L1/HDAC3 Inhibitors for Tumor Immunotherapy. J Med Chem 2025; 68:8046-8064. [PMID: 40230281 DOI: 10.1021/acs.jmedchem.4c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Targeting programmed cell death protein-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway has been considered as one of the most promising strategies for tumor immunotherapy. However, single-target PD-1/PD-L1 inhibitors frequently exhibit limited efficacy, highlighting the urgent need for new therapies. Herein, a series of dual PD-L1/HDAC3 inhibitors were developed through a pharmacophore fusion strategy for the first time. Among them, compound PH3 was identified as the most promising dual PD-L1/HDAC3 inhibitor, with potent PD-1/PD-L1 inhibitory activity (IC50 = 89.4 nM) and selective HDAC3 inhibitory activity (IC50 = 107 nM). Moreover, PH3 exhibited superior in vitro antitumor activities and in vitro immune activation effects. Additionally, PH3 showed potent and dose-dependent antitumor efficacy in the B16-F10 melanoma mouse model without obvious toxicity. Furthermore, PH3 increased the infiltration of CD3+CD8+ and CD3+CD4+ cells in the tumor microenvironment. Collectively, PH3 represented a novel dual PD-L1/HDAC3 inhibitor deserving further investigation as a tumor immunotherapy agent.
Collapse
Affiliation(s)
- Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - HaiQi He
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xiaotong Liao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Lin Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Shuding Sun
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Chenglong Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xixiang Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Qinru Zang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Key Laboratory for Tissue Engineering of Jiangxi Province, School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xia Guo
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| |
Collapse
|
4
|
Bracken OV, De Maeyer RPH, Akbar AN. Enhancing immunity during ageing by targeting interactions within the tissue environment. Nat Rev Drug Discov 2025; 24:300-315. [PMID: 39875569 DOI: 10.1038/s41573-024-01126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Immunity declines with age. This results in a higher risk of age-related diseases, diminished ability to respond to new infections and reduced response to vaccines. The causes of this immune dysfunction are cellular senescence, which occurs in both lymphoid and non-lymphoid tissue, and chronic, low-grade inflammation known as 'inflammageing'. In this Review article, we highlight how the processes of inflammation and senescence drive each other, leading to loss of immune function. To break this cycle, therapies are needed that target the interactions between the altered tissue environment and the immune system instead of targeting each component alone. We discuss the relative merits and drawbacks of therapies that are directed at eliminating senescent cells (senolytics) and those that inhibit inflammation (senomorphics) in the context of tissue niches. Furthermore, we discuss therapeutic strategies designed to directly boost immune cell function and improve immune surveillance in tissues.
Collapse
Affiliation(s)
| | - Roel P H De Maeyer
- Division of Medicine, University College London, London, UK
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK.
| |
Collapse
|
5
|
Cheng B, Li H, Hong Y, Zhou Y, Chen J, Shao C, Kong Z. Research progress in bifunctional small molecules for cancer immunotherapy. Eur J Med Chem 2025; 286:117289. [PMID: 39919914 DOI: 10.1016/j.ejmech.2025.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/09/2025]
Abstract
Immunotherapy has become one of the most revolutionary modalities for cancer treatment with the approval of many anti-PD-L1 (programmed cell death-ligand 1)/PD-1 (programmed cell death-1) monoclonal antibodies (mAbs). However, anti-PD-L1/PD-1 mAbs suffer from several drawbacks including limited clinical efficacy (∼20 %), poor pharmacokinetics, and the development of immune resistance. Hence, the search for PD-1/PD-L1-based combination therapies and other PD-L1-based bifunctional small molecule modulators [e.g. PD-L1/HDAC (Histone Deacetylase), PD-L1/CXCL12 (C-X-C chemokine ligand 12), PD-L1/Tubulin, PD-L1/IDO1 (Indoleamine 2,3 dioxygenase 1), PD-L1/PARP (Poly(ADP-ribose) polymerase), PD-L1/STING (Stimulator of interferon genes), and PD-L1/NAMPT (Nicotinamide phosphoribosyltransferase)-targeting dual inhibitors] has been intensified with considerable strides achieved in the past couple of years. Herein, we summarize the latest development of bifunctional small molecules as immunotherapy for tumor treatment, including those PD-L1-based, A2AR (Adenosine 2A receptor)-based, IDO1-based, Toll-like receptor (TLR)-based, SHP2 (Src homology 2 domain-containing phosphatase 2)-based, and HPK1 (Hematopoietic progenitor kinase 1)-based dual-acting compounds. In addition, we also summarize the tumorigenesis and synergy mechanism of various targets. Finally, the challenges and future directions for bifunctional small molecules for cancer immunotherapy are also discussed in detail.
Collapse
Affiliation(s)
- Binbin Cheng
- Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China; Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Hongqiao Li
- The Central Hospital of Huangshi, Huangshi, 435000, China
| | - Yimeng Hong
- Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China
| | - Yingxing Zhou
- Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China; Huangshi Key Laboratory of Molecular Diagnosis and Individualized Treatment, Huangshi Love&health Hospital Affiliated of Hubei Polytechnic University, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China.
| | - Zhihua Kong
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, FoShan, 528200, China.
| |
Collapse
|
6
|
Theivendren P, Kunjiappan S, Pavadai P, Ravi K, Murugavel A, Dayalan A, Santhana Krishna Kumar A. Revolutionizing Cancer Immunotherapy: Emerging Nanotechnology-Driven Drug Delivery Systems for Enhanced Therapeutic Efficacy. ACS MEASUREMENT SCIENCE AU 2025; 5:31-55. [PMID: 39991031 PMCID: PMC11843507 DOI: 10.1021/acsmeasuresciau.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 02/25/2025]
Abstract
Cancer immunotherapy is an innovative way of treating cancer by stimulating individual cells to overcome cancer. Widespread biomedical studies were carried out with the aim of exploring immunotherapy cancer therapeutics, and this review spotlights some mechanisms in which it was developed, namely immune checkpoint inhibitors (E.G PD-1/PD-L1, CTLA-4), adoptive cell therapy (e.g., CAR T-cell therapy), and cancer vaccines. Although it has shown clinical benefit in a number of cancer types, including melanoma and non-small-cell lung cancer, several challenges have dampened enthusiasm for this approach, from the differing patient response rates to toxicities. Nanotechnology in drug delivery systems must play a role in overcoming the same. Nanotechnology enables increased specificity and controlled drug release, improved solubility and bioavailability, can treat the tumor specifically, and localized drug delivery at the disease site decreases systemic toxicity. The review also features advances in the construction of lipid-based, polymeric, and inorganic nanoparticles that improve drug stability and allow the delivery of cotherapeutic agents. Nanotechnology-based delivery systems can be used alone or in combination with immunotherapy to assist in improving the immune response, gaining access to the tumor microenvironment, and overcoming biological barriers. Thus, the nano-DDS were both safe and effective in preclinical studies, and ongoing clinical trials have shown that they are capable of increasing the therapeutic index of anticancer drugs. Lastly, the review also discusses current challenges and regulatory issues in advancing these technologies and highlights the importance of further research to devise appropriate methodology for efficient functionalization of nanotechnology for individualized cancer solutions in cancer treatment.
Collapse
Affiliation(s)
- Panneerselvam Theivendren
- Department
of Pharmaceutical Chemistry, Swamy Vivekanandha
College of Pharmacy, Elayampalayam 637205, Namakkal, Tamil Nadu, India
| | - Selvaraj Kunjiappan
- Department
of Biotechnology, Kalasalingam Academy of
Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Parasuraman Pavadai
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M. S. R. Nagar, Bengaluru 560054, Karnataka, India
| | - Kaveena Ravi
- Department
of Pharmaceutics, Swamy Vivekananda College
of Pharmacy, Elayampalayam 637205, Namakkal, Tamil Nadu, India
| | - Anusuya Murugavel
- Center
for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Avinash Dayalan
- Center
for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - A. Santhana Krishna Kumar
- Department
of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung City 80424, Taiwan
- Department
of Chemistry, Saveetha School of Engineering, Saveetha Institute of
Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
7
|
Sobral PS, Carvalho T, Izadi S, Castilho A, Silva Z, Videira PA, Pereira F. Advancements in drug discovery: integrating CADD tools and drug repurposing for PD-1/PD-L1 axis inhibition. RSC Adv 2025; 15:2298-2316. [PMID: 39867321 PMCID: PMC11755407 DOI: 10.1039/d4ra08245a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
Despite significant strides in improving cancer survival rates, the global cancer burden remains substantial, with an anticipated rise in new cases. Immune checkpoints, key regulators of immune responses, play a crucial role in cancer evasion mechanisms. The discovery of immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 has revolutionized cancer treatment, with monoclonal antibodies (mAbs) becoming widely prescribed. However, challenges with current mAb ICIs, such as limited oral bioavailability, adverse effects, and high costs, underscore the need to explore alternative small-molecule inhibitors. In this work, we aimed to identify new potential ICI among all FDA-approved drugs. We employed QSAR models to predict PD-1/PD-L1 inhibition, utilizing a diverse dataset of 29 197 molecules sourced from ChEMBL, PubChem, and recent literature. Machine learning techniques, including Random Forest, Support Vector Machine, and Convolutional Neural Network, were employed for benchmarking to assess model performance. Additionally, we undertook a drug repurposing strategy, leveraging the best in silico model for a virtual screening campaign involving 1576 off-patent approved drugs. Only two virtual screening hits were proposed based on the criteria established for this approach, including: (1) QSAR probability of being active against PD-L1; (2) QSAR applicability domain; (3) prediction of the affinity between the PD-L1 and ligands through molecular docking. One of the proposed hits was sonidegib, an anticancer drug, featuring a biphenyl system. Sonidegib was subsequently validated for in vitro PD-1/PD-L1 binding modulation using ELISA and flow cytometry. This integrated approach, which combines computer-aided drug design (CADD) tools, QSAR modelling, drug repurposing, and molecular docking, offers a pioneering strategy to expedite drug discovery for PD-1/PD-L1 axis inhibition. The findings underscore the potential to identify a wider range small molecules to contribute to the ongoing efforts to advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Patrícia S Sobral
- LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal
| | - Tiago Carvalho
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Shiva Izadi
- University of Natural Resources and Life Sciences, Department of Applied Genetics and Cell Biology Vienna Austria
| | - Alexandra Castilho
- University of Natural Resources and Life Sciences, Department of Applied Genetics and Cell Biology Vienna Austria
| | - Zélia Silva
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Paula A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Florbela Pereira
- LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal
| |
Collapse
|
8
|
Su XZ, Xu F, Stadler RV, Teklemichael AA, Wu J. Malaria: Factors affecting disease severity, immune evasion mechanisms, and reversal of immune inhibition to enhance vaccine efficacy. PLoS Pathog 2025; 21:e1012853. [PMID: 39847577 PMCID: PMC11756774 DOI: 10.1371/journal.ppat.1012853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025] Open
Abstract
Malaria is a complex parasitic disease caused by species of Plasmodium parasites. Infection with the parasites can lead to a spectrum of symptoms and disease severity, influenced by various parasite, host, and environmental factors. There have been some successes in developing vaccines against the disease recently, but the vaccine efficacies require improvement. Some issues associated with the difficulties in developing a sterile vaccine include high antigenic diversity, switching expression of the immune targets, and inhibition of immune pathways. Current vaccine research focuses on identifying conserved and protective epitopes, developing multivalent vaccines (including the whole parasite), and using more powerful adjuvants. However, overcoming the systematic immune inhibition and immune cell dysfunction/exhaustion may be required before high titers of protective antibodies can be achieved. Increased expression of surface molecules such as CD86 and MHC II on antigen-presenting cells and blocking immune checkpoint pathways (interactions of PD-1 and PD-L1; CTLA-4 and CD80) using small molecules could be a promising approach for enhancing vaccine efficacy. This assay reviews the factors affecting the disease severity, the genetics of host-parasite interaction, immune evasion mechanisms, and approaches potentially to improve host immune response for vaccine development.
Collapse
Affiliation(s)
- Xin-zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fangzheng Xu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rachel V. Stadler
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Awet Alem Teklemichael
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
9
|
Sasmal P, Prabitha P, Prashantha Kumar BR, Swetha BR, Babasahib SK, Raghavendra NM. Beyond peptides: Unveiling the design strategies, structure activity correlations and protein-ligand interactions of small molecule inhibitors against PD-1/PD-L1. Bioorg Chem 2025; 154:108036. [PMID: 39693923 DOI: 10.1016/j.bioorg.2024.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
The landscape of cancer treatment has been transformed by the emergence of immunotherapy, especially through the use of antibodies that target the PD-1/PD-L1 pathway. Recently, there has been a notable increase in interest surrounding immune checkpoint inhibitors for cancer therapy. While antibody-based approaches have drawbacks like high costs and prolonged activity, the approval of monoclonal antibodies such as pembrolizumab and nivolumab has paved the way for a range of alternative therapies, including peptides, peptidomimetics, and small-molecule inhibitors. These smaller molecules, which target the PD-1/PD-L1 interaction, are seen as potential substitutes or supplements to monoclonal antibodies. Our focus in this article is primarily on exploring small molecules designed for PD-1/PD-L1 checkpoint pathway modulation in cancer immunotherapy, along with highlighting current advances in their structural and preclinical/clinical development. The pursuit of therapeutics based on small-molecule inhibitors of the PD-1/PD-L1 axis offers a promising yet intricate avenue for advancing cancer treatment.
Collapse
Affiliation(s)
- Pujan Sasmal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar - 160 062, Punjab, India; Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy (ABMRCP), Bengaluru 560 107, Karnataka, India.
| | - P Prabitha
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - B R Swetha
- Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University (DSU), Bengaluru 560 111, Karnataka, India
| | - Sajeev Kumar Babasahib
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University (DSU), Bengaluru 560 111, Karnataka, India
| | - Nulgumnalli Manjunathaiah Raghavendra
- Department of Pharmaceutical Chemistry, College of Pharmaceutical Sciences, Dayananda Sagar University (DSU), Bengaluru 560 111, Karnataka, India; Department of Pharmaceutical Chemistry, R R College of Pharmacy, Bengaluru 560 090, Karnataka, India.
| |
Collapse
|
10
|
Mamani UF, Ibrahim MN, Liu Y, Fetse J, Lin CY, Kandel S, Nakhjiri M, Koirala S, Guo Y, Alahmari M, Cheng K. Exploring Multivalency in the Development of Anti-PD-L1 Peptides for Cancer Immunotherapy. Pharm Res 2024; 41:2275-2288. [PMID: 39681781 DOI: 10.1007/s11095-024-03803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE The PD-1/PD-L1 pathway is one of the most effective immune checkpoint pathways utilized for cancer immunotherapy. Despite the success of anti-PD-1/PD-L1 mAbs, there is growing interest in developing low molecular weight anti-PD-1/PD-1 agents, such as peptides, because of their improved tumor penetration. We recently developed a small anti-PD-L1 peptide and demonstrated its promising anti-tumor activity. In this study, we investigate multivalency as a strategy to increase the binding avidity and blocking efficiency of the anti-PD-L1 peptide. METHODS Multivalent peptide inhibitors are designed with multiple copies of a peptide inhibitor in a single molecule. We synthesized peptides with different valences and examined their activity. We also investigated how spacer length affects the activity of these multivalent peptides. RESULTS Using this strategy, we developed a multivalent peptide that demonstrated approximately 40 times higher blocking efficiency and improved stability compared to the original peptide. Increasing the valency enhanced the peptide's specificity, which is essential for minimizing side effects. CONCLUSIONS Multivalency approach represents a promising platform for improving the efficacy of peptide-based checkpoint inhibitors.
Collapse
Affiliation(s)
- Umar-Farouk Mamani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Mohammed Nurudeen Ibrahim
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - John Fetse
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Sashi Kandel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Maryam Nakhjiri
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Sushil Koirala
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Yuhan Guo
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Mohammed Alahmari
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
11
|
Shafi H, Lora AJ, Donow HM, Dickinson SE, Wondrak GT, Chow HHS, Curiel-Lewandrowski C, Mansour HM. Comprehensive Advanced Physicochemical Characterization and In Vitro Human Cell Culture Assessment of BMS-202: A Novel Inhibitor of Programmed Cell Death Ligand. Pharmaceutics 2024; 16:1409. [PMID: 39598533 PMCID: PMC11597381 DOI: 10.3390/pharmaceutics16111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: BMS-202, is a potent small molecule with demonstrated antitumor activity. The study aimed to comprehensively characterize the physical and chemical properties of BMS-202 and evaluate its suitability for topical formulation, focusing on uniformity, stability and safety profiles. Methods: A range of analytical techniques were employed to characterize BMS-202. Scanning Electron Microscopy (SEM) was used to assess morphology, Differential Scanning Calorimetry (DSC) provided insights of thermal behavior, and Hot-Stage Microscopy (HSM) corroborated these thermal behaviors. Molecular fingerprinting was conducted using Raman spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy, with chemical uniformity of the batch further validated by mapping through FTIR and Raman microscopies. The residual water content was measured using Karl Fisher Coulometric titration, and vapor sorption isotherms examined moisture uptake across varying relative humidity levels. In vitro safety assessments involved testing with skin epithelial cell lines, such as HaCaT and NHEK, and Transepithelial Electrical Resistance (TEER) to evaluate barrier integrity. Results: SEM revealed a distinctive needle-like morphology, while DSC indicated a sharp melting point at 110.90 ± 0.54 ℃ with a high enthalpy of 84.41 ± 0.38 J/g. HSM confirmed the crystalline-to-amorphous transition at the melting point. Raman and FTIR spectroscopy, alongside chemical imaging, confirmed chemical uniformity as well as validated the batch consistency. A residual water content of 2.76 ± 1.37 % (w/w) and minimal moisture uptake across relative humidity levels demonstrated its low hygroscopicity and suitability for topical formulations. Cytotoxicity testing showed dose-dependent reduction in skin epithelial cell viability at high concentrations (100 µM and 500 µM), with lower doses (0.1 µM to 10 µM) demonstrating acceptable safety. TEER studies indicated that BMS-202 does not disrupt the HaCaT cell barrier function. Conclusions: The findings from this study establish that BMS-202 has promising physicochemical and in vitro characteristics at therapeutic concentrations for topical applications, providing a foundation for future formulation development focused on skin-related cancers or localized immune modulation.
Collapse
Affiliation(s)
- Hasham Shafi
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
| | - Andrea J. Lora
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
| | - Haley M. Donow
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
| | - Sally E. Dickinson
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Department of Pharmacology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Georg T. Wondrak
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, Tucson, AZ 85721, USA
| | - H.-H. Sherry Chow
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Division of Hematology and Oncology, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Clara Curiel-Lewandrowski
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Division of Dermatology, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85724, USA
| | - Heidi M. Mansour
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33174, USA
- Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
12
|
Lok V, Olson-McPeek S, Spiegelhoff G, Cortez J, Detz D, Czerniecki B. Immunotherapies in breast cancer: harnessing the cancer immunity cycle. Expert Opin Ther Targets 2024; 28:925-935. [PMID: 39523444 DOI: 10.1080/14728222.2024.2427038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Immunotherapies have found limited success in breast cancerdue to significant challenges within the tumor that block T-cell activity and function. AREAS COVERED The current review discusses clinically relevant immunotherapeutics and trials within the framework of the cancer-immunity cycle. EXPERT OPINION Current therapies such as antibody-drug conjugates and immune checkpoint blockade require proper biomarker selection, such as PD1 expression and the degree of tumor-infiltrating lymphocyte (TIL) infiltration to subset potential responders. HER2 and other tumor-associated antigens have served as valuable benchmarks for developing novel therapies, such as antibody engagers and CAR T-cells. However, further research is essential to identify and validate new target antigens that can enhance therapeutic efficacy and broaden the clinical applicability of these approaches.
Collapse
Affiliation(s)
- Vincent Lok
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Sy Olson-McPeek
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Grace Spiegelhoff
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Jaqueline Cortez
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - David Detz
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Brian Czerniecki
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
13
|
Martínez-Pérez A, Granda-Díaz R, Aguilar-García C, Sordo-Bahamonde C, Gonzalez S. Deciphering LAG-3: unveiling molecular mechanisms and clinical advancements. Biomark Res 2024; 12:126. [PMID: 39425148 PMCID: PMC11487938 DOI: 10.1186/s40364-024-00671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Treatment based on immune checkpoint blockade has revolutionized cancer therapy. Despite the remarkable success achieved and the preclinical development of multiple checkpoint inhibitors targeting other checkpoints, only antibodies targeting the PD-1/PD-L1 axis and CTLA-4 have been approved for patient treatment, especially in solid tumors. Currently, with the approval of relatlimab, a LAG-3 blocking antibody, a third player, has been used in the fight against cancer. The endorsement of relatlimab marks a significant milestone in cancer immunotherapy, opening new avenues for combination therapies and enhancing treatment outcomes. However, the complex biology of LAG-3 may hinder its full development as a therapeutic alternative. In this review, we provide in-depth insight into the biology of LAG-3 and its current and future development in cancer treatment.
Collapse
Affiliation(s)
- Alejandra Martínez-Pérez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rocío Granda-Díaz
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Candelaria Aguilar-García
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
14
|
Abdel-Rahman SA, Gabr MT. Small molecules from antibody pharmacophores (SMAbPs) as a hit identification workflow for immune checkpoints. SCIENCE ADVANCES 2024; 10:eadq5540. [PMID: 39413175 PMCID: PMC11482313 DOI: 10.1126/sciadv.adq5540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Small-molecule modulators of immune checkpoints are poised to revolutionize cancer immunotherapy. However, efficient strategies for hit identification are lacking. We introduce small molecules from antibody pharmacophores (SMAbPs), a workflow leveraging cocrystal structures of checkpoints with antibodies to create pharmacophore maps for virtual screening. Applying SMAbPs to five immune checkpoints yielded hits with submicromolar potency in both cell-free and cellular assays. Notably, SMAbPs identified the most potent T cell immunoglobulin and mucin-domain containing-3 and V-domain immunoglobulin suppressor of T cell activation (VISTA) inhibitors reported to date and first-in-class modulators of B and T lymphocyte attenuator, 4-IBB, and CD27. Targeting inhibitory and costimulatory checkpoints with hits identified through SMAbPs demonstrated remarkable in vivo antitumor activity, exemplified by MG-V-53 (VISTA inhibitor) and MG-C-30 (CD27 agonist), which significantly reduced tumor volumes in MC38 and EG7-OVA mouse models, respectively.
Collapse
Affiliation(s)
- Somaya A. Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Moustafa T. Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Gu F, Lin B, Peng Z, Liu S, Wu Y, Luo M, Ding N, Zhan Q, Cao P, Zhou Z, Cao T. Ring Transformation of Cyclopropenes to Benzo-Fused Five-Membered Oxa- and Aza-Heterocycles via a Formal [4+1] Cyclization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407931. [PMID: 39206752 PMCID: PMC11516165 DOI: 10.1002/advs.202407931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Indexed: 09/04/2024]
Abstract
In the context of the growing importance of heterocyclic compounds across various disciplines, numerous strategies for their construction have emerged. Exploiting the distinctive properties of cyclopropenes, this study introduces an innovative approach for the synthesis of benzo-fused five-membered oxa- and aza-heterocycles through a formal [4+1] cyclization and subsequent acid-catalyzed intramolecular O- to N- rearrangement. These transformations exhibit mild reaction conditions and a wide substrate scope. The applications in the late-stage modification of complex molecules and in the synthesis of a potential PD-L1 gene down-regulator, make this method highly appealing in related fields. Combined experimental mechanistic studies and DFT calculations demonstrate Rh(III)-mediated sequential C─H coupling/π-allylation/dynamically favorable O-attack route.
Collapse
Affiliation(s)
- Fengyan Gu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Binyan Lin
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Zhi‐Huan Peng
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Shijie Liu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Yuanqing Wu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Mei Luo
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Ning Ding
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Qichen Zhan
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
- Jiangsu Provincial Medicinal Innovation CenterAffiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingJiangsu210028China
- The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People's HospitalQuzhouZhejiang324000China
- Gaoyou Hospital of Traditional Chinese MedicineYangzhouJiangsu225600China
| | - Zhi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Tao Cao
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| |
Collapse
|
16
|
Timilsina HP, Arya SP, Tan X. Biotechnological Advances Utilizing Aptamers and Peptides Refining PD-L1 Targeting. Front Biosci (Elite Ed) 2024; 16:28. [PMID: 39344385 DOI: 10.31083/j.fbe1603028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
While monoclonal antibodies have shown success in cancer immunotherapy, their limitations prompt exploration of alternative approaches such as aptamers and peptides targeting programmed death ligand 1 (PD-L1). Despite the significance of these biotechnological tools, a comprehensive review encompassing both aptamers and peptides for PD-L1 targeting is lacking. Addressing this gap is crucial for consolidating recent advancements and insights in this field. Biotechnological advances leveraging aptamers and peptides represent a cutting-edge approach in refining the targeting proteins. Our review aims to provide valuable guidance for researchers and clinicians, highlighting the biotechnological advances utilizing aptamers and peptides refining PD-L1 targeting.
Collapse
Affiliation(s)
- Hari Prasad Timilsina
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Satya Prakash Arya
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
17
|
Ciesiołkiewicz A, Lizandra Perez J, Skalniak L, Noceń P, Berlicki Ł. Miniprotein engineering for inhibition of PD-1/PD-L1 interaction. Protein Sci 2024; 33:e5106. [PMID: 39012010 PMCID: PMC11250529 DOI: 10.1002/pro.5106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024]
Abstract
Miniproteins constitute an excellent basis for the development of structurally demanding functional molecules. The engrailed homeodomain, a three-helix-containing miniprotein, was applied as a scaffold for constructing programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) interaction inhibitors. PD-L1 binders were initially designed using the computer-aided approach and subsequently optimized iteratively. The conformational stability was assessed for each obtained miniprotein using circular dichroism spectroscopy, indicating that numerous mutations could be introduced. The formation of a sizable hydrophobic surface at the inhibitor that fits the molecular target imposed the necessity for the incorporation of additional charged amino acid residues to retain its appropriate solubility. Finally, the miniprotein effectively binding to PD-L1 (KD = 51.4 nM) that inhibits PD-1/PD-L1 interaction in cell-based studies with EC50 = 3.9 μM, was discovered.
Collapse
Affiliation(s)
| | - Juan Lizandra Perez
- Department of Bioorganic ChemistryWrocław University of Science and TechnologyWrocławPoland
| | | | - Paweł Noceń
- Department of Bioorganic ChemistryWrocław University of Science and TechnologyWrocławPoland
| | - Łukasz Berlicki
- Department of Bioorganic ChemistryWrocław University of Science and TechnologyWrocławPoland
| |
Collapse
|
18
|
Labuschagne Naidoo RB, Steel HC, Theron AJ, Anderson R, Tintinger GR, Rossouw TM. Persistently Elevated Expression of Systemic, Soluble Co-Inhibitory Immune Checkpoint Molecules in People Living with HIV before and One Year after Antiretroviral Therapy. Pathogens 2024; 13:540. [PMID: 39057767 PMCID: PMC11279922 DOI: 10.3390/pathogens13070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Increasing drug resistance and the absence of a cure necessitates exploration of novel treatment strategies for people living with HIV (PLWH). Targeting of soluble co-inhibitory immune checkpoint molecules (sICMs) represents a novel, potentially effective strategy in the management of HIV. METHODS In this retrospective, longitudinal, observational study, the plasma levels of five prominent co-inhibitory sICMs-CTLA-4, LAG-3, PD-1 and its ligand PD-L1, as well as TIM-3-were quantified in 68 PLWH-before and one year after antiretroviral therapy (ART)-and compared with those of 15 healthy control participants. RESULTS Relative to control participants, PLWH had substantially elevated pre-treatment levels of all five co-inhibitory sICMs (p < 0.0001-p < 0.0657), which, over the 12-month period of ART, remained significantly higher than those of controls (p < 0.0367-p < 0.0001). PLWH with advanced disease, reflected by a CD4+ T cell count <200 cells/mm3 before ART, had the lowest levels of CTLA-4 and LAG-3, while participants with pre-treatment HIV viral loads ≥100,000 copies/mL had higher pre-treatment levels of TIM-3, which also persisted at 12 months. CONCLUSIONS Plasma levels of CTLA-4, LAG-3, PD-1, PD-L1 and TIM-3 were significantly elevated in treatment-naïve PLWH and remained so following one year of virally-suppressive ART, possibly identifying LAG-3 and TIM-3 in particular as potential targets for adjuvant immunotherapy.
Collapse
Affiliation(s)
- Robyn-Brooke Labuschagne Naidoo
- Department of Internal Medicine, School of Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria 0002, South Africa; (R.-B.L.N.); (G.R.T.)
| | - Helen C. Steel
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Annette J. Theron
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Ronald Anderson
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Gregory R. Tintinger
- Department of Internal Medicine, School of Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria 0002, South Africa; (R.-B.L.N.); (G.R.T.)
| | - Theresa M. Rossouw
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| |
Collapse
|
19
|
McDowell RC, Booth JD, McGowan A, Kolodziejczyk W, Hill GA, Banerjee S, Feng M, Kapusta K. Computational Approach for the Development of pH-Selective PD-1/PD-L1 Signaling Pathway Inhibition in Fight with Cancer. Cancers (Basel) 2024; 16:2295. [PMID: 39001358 PMCID: PMC11240404 DOI: 10.3390/cancers16132295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Immunotherapy, particularly targeting the PD-1/PD-L1 pathway, holds promise in cancer treatment by regulating the immune response and preventing cancer cells from evading immune destruction. Nonetheless, this approach poses a risk of unwanted immune system activation against healthy cells. To minimize this risk, our study proposes a strategy based on selective targeting of the PD-L1 pathway within the acidic microenvironment of tumors. We employed in silico methods, such as virtual screening, molecular mechanics, and molecular dynamics simulations, analyzing approximately 10,000 natural compounds from the MolPort database to find potential hits with the desired properties. The simulations were conducted under two pH conditions (pH = 7.4 and 5.5) to mimic the environments of healthy and cancerous cells. The compound MolPort-001-742-690 emerged as a promising pH-selective inhibitor, showing a significant affinity for PD-L1 in acidic conditions and lower toxicity compared to known inhibitors like BMS-202 and LP23. A detailed 1000 ns molecular dynamics simulation confirmed the stability of the inhibitor-PD-L1 complex under acidic conditions. This research highlights the potential of using in silico techniques to discover novel pH-selective inhibitors, which, after experimental validation, may enhance the precision and reduce the toxicity of immunotherapies, offering a transformative approach to cancer treatment.
Collapse
Affiliation(s)
- Roderick C McDowell
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Jordhan D Booth
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Allyson McGowan
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Wojciech Kolodziejczyk
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Glake A Hill
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Santanu Banerjee
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Manliang Feng
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Karina Kapusta
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| |
Collapse
|
20
|
Hec-Gałązka A, Tyrcha U, Barczyński J, Bielski P, Mikitiuk M, Gudz GP, Kitel R, Musielak B, Plewka J, Sitar T, Holak TA. Nonsymmetrically Substituted 1,1'-Biphenyl-Based Small Molecule Inhibitors of the PD-1/PD-L1 Interaction. ACS Med Chem Lett 2024; 15:828-836. [PMID: 38894909 PMCID: PMC11181486 DOI: 10.1021/acsmedchemlett.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Therapeutic antibodies directed against either programmed cell death-1 protein (PD-1) or its ligand PD-L1 have demonstrated efficacy in the treatment of various cancers. In contrast with antibodies, small molecules have the potential for increased tissue penetration; better pharmacology; and therefore, improved antitumor activity. A series of nonsymmetric C2 inhibitors were synthesized and evaluated for PD-1/PD-L1 interaction inhibition. These compounds induced PD-L1 dimerization and effectively blocked PD-L1/PD-1 interaction in a homogeneous time-resolved fluorescence (HTRF) assay with most inhibitors exhibiting IC50 values in the single-digit nM range and below. Their high inhibitory potency was also demonstrated in a cell-based coculture PD-1 signaling assay where 2 exhibited an EC50 inhibitory activity of 21.8 nM, which approached that of the PD-L1 antibody durvalumab (EC50 = 0.3-1.8 nM). Structural insight into how these inhibitors interact with PD-L1 was gained by using NMR and X-ray cocrystal structure studies. These data support further preclinical evaluation of these compounds as antibody alternatives.
Collapse
Affiliation(s)
- Aleksandra Hec-Gałązka
- Jagiellonian
University, Doctoral School
of Exact and Natural Sciences, prof. S. Łojasiewicza 11, 30-348 Krakow, Poland
- Department
of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Recepton
Sp. z o.o., ul. Trzy
Lipy 3, 80-172 Gdansk, Poland
| | - Urszula Tyrcha
- Recepton
Sp. z o.o., ul. Trzy
Lipy 3, 80-172 Gdansk, Poland
| | - Jan Barczyński
- Recepton
Sp. z o.o., ul. Trzy
Lipy 3, 80-172 Gdansk, Poland
| | - Przemyslaw Bielski
- Jagiellonian
University, Doctoral School
of Exact and Natural Sciences, prof. S. Łojasiewicza 11, 30-348 Krakow, Poland
- Department
of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Recepton
Sp. z o.o., ul. Trzy
Lipy 3, 80-172 Gdansk, Poland
| | | | - Ganna P. Gudz
- Department
of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Radosław Kitel
- Department
of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Bogdan Musielak
- Department
of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Jacek Plewka
- Department
of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Tomasz Sitar
- Recepton
Sp. z o.o., ul. Trzy
Lipy 3, 80-172 Gdansk, Poland
| | - Tad A. Holak
- Recepton
Sp. z o.o., ul. Trzy
Lipy 3, 80-172 Gdansk, Poland
| |
Collapse
|
21
|
Rapoport BL, Anderson R. Strategies to optimize the promise of checkpoint-targeted anti-cancer therapy. Immunotherapy 2024; 16:565-568. [PMID: 38717385 PMCID: PMC11290365 DOI: 10.1080/1750743x.2024.2343271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/11/2024] [Indexed: 07/26/2024] Open
Affiliation(s)
- Bernardo L Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa
- Medical Oncology Centre of Rosebank, Johannesburg, 2196, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
22
|
van der Straat R, Draijer R, Surmiak E, Butera R, Land L, Magiera-Mularz K, Musielak B, Plewka J, Holak TA, Dömling A. 1,5-Disubstituted tetrazoles as PD-1/PD-L1 antagonists. RSC Med Chem 2024; 15:1210-1215. [PMID: 38665826 PMCID: PMC11042242 DOI: 10.1039/d3md00746d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/21/2024] [Indexed: 04/28/2024] Open
Abstract
The progress in cancer survival and treatment has witnessed a remarkable transformation through the innovative approach of targeting the inhibitory immune checkpoint protein PD-1/PD-L1 complex by mAbs, e.g. pembrolizumab (Keytruda). While generating 17.2 billion U.S. dollars in revenue in 2021, the true significance of these developments lies in their ability to enhance cancer patient outcomes. Despite the proven efficacy of mAbs in inhibiting the PD-1/PD-L1 signaling pathways, they face significant challenges, including limited response rates, high production costs, missing oral bioavailability, and extended half-lives that can lead to immune-related adverse effects. A promising alternative approach involves the use of small molecules acting as PD-1/PD-L1 antagonists to stimulate PD-L1 dimerization. However, the precise mechanisms of action of these molecules remain partially understood, posing challenges to their development. In this context, our research focuses on the creation of a novel scaffold based on the Ugi tetrazole four-component reaction (UT-4CR) to develop low-molecular-weight inhibitors of PD-L1. Employing structure-based methods, we synthesized a library of small compounds using biphenyl vinyl isocyanide, leading to the discovery of a structure-activity relationship among 1,5-disubstituted tetrazole-based inhibitors. Supported by a cocrystal structure with PD-L1, these inhibitors underwent biophysical testing, including HTRF and protein NMR experiments, resulting in the identification of potent candidates with sub-micromolar PD-L1 affinities. This finding opens opportunities to the further development of a new class of PD-L1 antagonists, holding promise for improved cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Robin van der Straat
- Department of Drug Design, University of Groningen 9713 AV Groningen The Netherlands
| | - Rosalie Draijer
- Department of Drug Design, University of Groningen 9713 AV Groningen The Netherlands
| | - Ewa Surmiak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University 30-387 Kraków Poland
| | - Roberto Butera
- Department of Drug Design, University of Groningen 9713 AV Groningen The Netherlands
| | - Lennart Land
- Department of Drug Design, University of Groningen 9713 AV Groningen The Netherlands
| | - Katarzyna Magiera-Mularz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University 30-387 Kraków Poland
| | - Bogdan Musielak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University 30-387 Kraków Poland
| | - Jacek Plewka
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University 30-387 Kraków Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University 30-387 Kraków Poland
| | - Alexander Dömling
- Department of Drug Design, University of Groningen 9713 AV Groningen The Netherlands
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palackȳ University in Olomouc Olomouc Czech Republic
| |
Collapse
|
23
|
Javed SA, Najmi A, Ahsan W, Zoghebi K. Targeting PD-1/PD-L-1 immune checkpoint inhibition for cancer immunotherapy: success and challenges. Front Immunol 2024; 15:1383456. [PMID: 38660299 PMCID: PMC11039846 DOI: 10.3389/fimmu.2024.1383456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The programmed death-1 receptor (PD-1) acts as a T-cell brake, and its interaction with ligand-1 (PD-L-1) interferes with signal transduction of the T-cell receptor. This leads to suppression of T-cell survival, proliferation, and activity in the tumor microenvironment resulting in compromised anticancer immunity. PD-1/PD-L-1 interaction blockade shown remarkable clinical success in various cancer immunotherapies. To date, most PD-1/PD-L-1 blockers approved for clinical use are monoclonal antibodies (mAbs); however, their therapeutic use are limited owing to poor clinical responses in a proportion of patients. mAbs also displayed low tumor penetration, steep production costs, and incidences of immune-related side effects. This strongly indicates the importance of developing novel inhibitors as cancer immunotherapeutic agents. Recently, advancements in the small molecule-based inhibitors (SMIs) that directly block the PD-1/PD-L-1 axis gained attention from the scientific community involved in cancer research. SMIs demonstrated certain advantages over mAbs, including longer half-lives, low cost, greater cell penetration, and possibility of oral administration. Currently, several SMIs are in development pipeline as potential therapeutics for cancer immunotherapy. To develop new SMIs, a wide range of structural scaffolds have been explored with excellent outcomes; biphenyl-based scaffolds are most studied. In this review, we analyzed the development of mAbs and SMIs targeting PD-1/PD-L-1 axis for cancer treatment. Altogether, the present review delves into the problems related to mAbs use and a detailed discussion on the development and current status of SMIs. This article may provide a comprehensive guide to medicinal chemists regarding the potential structural scaffolds required for PD-1/PD-L-1 interaction inhibition.
Collapse
Affiliation(s)
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | | |
Collapse
|
24
|
Domingo-Contreras E, Tormo JR, Gonzalez-Menendez V, Mackenzie TA, Martín-Serrano J, Magiera-Mularz K, Kitel R, Reyes F, Genilloud O, Fernández-Godino R, Ramos MC, Castillo F. Discovery of bioactive natural products of microbial origin as inhibitors of the PD-1/PD-L1 protein-protein interaction. Int J Biol Macromol 2024; 264:130458. [PMID: 38423421 DOI: 10.1016/j.ijbiomac.2024.130458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
The PD-1/PD-L1 protein-protein interaction (PPI) controls an adaptive immune resistance mechanism exerted by tumor cells to evade immune responses. The large-molecule nature of current commercial monoclonal antibodies against this PPI hampers their effectiveness by limiting tumor penetration and inducing severe immune-related side effects. Synthetic small-molecule inhibitors may overcome such limitations and have demonstrated promising clinical translation, but their design is challenging. Microbial natural products (NPs) are a source of small molecules with vast chemical diversity that have proved anti-tumoral activities, but which immunotherapeutic properties as PD-1/PD-L1 inhibitors had remained uncharacterized so far. Here, we have developed the first cell-based PD-1/PD-L1 blockade reporter assay to screen NPs libraries. In this study, 6000 microbial extracts of maximum biosynthetic diversity were screened. A secondary metabolite called alpha-cyclopiazonic acid (α-CPA) of a bioactive fungal extract was confirmed as a new PD-1/PD-L1 inhibitor with low micromolar range in the cellular assay and in an additional cell-free competitive assay. Thermal denaturation experiments with PD-1 confirmed that the mechanism of inhibition is based on its stabilization upon binding to α-CPA. The identification of α-CPA as a novel PD-1 stabilizer proves the unprecedented resolution of this methodology at capturing specific PD-1/PD-L1 PPI inhibitors from chemically diverse NP libraries.
Collapse
Affiliation(s)
- Elisabeth Domingo-Contreras
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - José R Tormo
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Victor Gonzalez-Menendez
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Thomas A Mackenzie
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Jesús Martín-Serrano
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Katarzyna Magiera-Mularz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa Str 2, 30-387 Krakow, Poland
| | - Radoslaw Kitel
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa Str 2, 30-387 Krakow, Poland
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Rosario Fernández-Godino
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Maria C Ramos
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain.
| | - Francisco Castillo
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain.
| |
Collapse
|
25
|
Zhang J, Joshua AM, Li Y, O'Meara CH, Morris MJ, Khachigian LM. Targeted therapy, immunotherapy, and small molecules and peptidomimetics as emerging immunoregulatory agents for melanoma. Cancer Lett 2024; 586:216633. [PMID: 38281663 DOI: 10.1016/j.canlet.2024.216633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Primary cutaneous melanoma is the most lethal of all skin neoplasms and its incidence is increasing. Clinical management of advanced melanoma in the last decade has been revolutionised by the availability of immunotherapies and targeted therapies, used alone and in combination. This article summarizes advances in the treatment of late-stage melanoma including use of protein kinase inhibitors, antibody-based immune checkpoint inhibitors, adoptive immunotherapy, vaccines and more recently, small molecules and peptidomimetics as emerging immunoregulatory agents.
Collapse
Affiliation(s)
- Jingwen Zhang
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincent's Hospital, Garvan Institute of Medical Research, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Yue Li
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Connor H O'Meara
- Department of Otorhinolaryngology, Head & Neck Surgery, ANU Medical School and Canberra Health Services, Australian National University, Acton, Canberra, ACT, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
26
|
Wojciechowicz K, Spodzieja M, Wardowska A. The BTLA-HVEM complex - The future of cancer immunotherapy. Eur J Med Chem 2024; 268:116231. [PMID: 38387336 DOI: 10.1016/j.ejmech.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
The BTLA-HVEM complex plays a pivotal role in cancer and cancer immunotherapy by regulating immune responses. Dysregulation of BTLA and HVEM expression contributes to immunosuppression and tumor progression across various cancer types. Targeting the interaction between BTLA and HVEM holds promise for enhancing anti-tumor immune responses. Disruption of this complex presents a valuable avenue for advancing cancer immunotherapy strategies. Aberrant expression of BTLA and HVEM adversely affects immune cell function, particularly T cells, exacerbating tumor evasion mechanisms. Understanding and modulating the BTLA-HVEM axis represents a crucial aspect of designing effective immunotherapeutic interventions against cancer. Here, we summarize the current knowledge regarding the structure and function of BTLA and HVEM, along with their interaction with each other and various immune partners. Moreover, the expression of soluble and transmembrane forms of BTLA and HVEM in different types of cancer and their impact on the prognosis of patients is also discussed. Additionally, inhibitors of the proteins binding that might be used to block BTLA-HVEM interaction are reviewed. All the presented data highlight the plausible clinical application of BTLA-HVEM targeted therapies in cancer and autoimmune disease management. However, further studies are required to confirm the practical use of this concept. Despite the increasing number of reports on the BTLA-HVEM complex, many aspects of its biology and function still need to be elucidated. This review can be regarded as an encouragement and a guide to follow the path of BTLA-HVEM research.
Collapse
Affiliation(s)
- Karolina Wojciechowicz
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Poland.
| | - Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Poland
| | - Anna Wardowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Poland.
| |
Collapse
|
27
|
Awadasseid A, Wang R, Sun S, Zhang F, Wu Y, Zhang W. Small molecule and PROTAC molecule experiments in vitro and in vivo, focusing on mouse PD-L1 and human PD-L1 differences as targets. Biomed Pharmacother 2024; 172:116257. [PMID: 38350367 DOI: 10.1016/j.biopha.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
In recent years, several monoclonal antibodies (mAbs) targeting PD-L1 have been licensed by the FDA for use in the treatment of cancer, demonstrating the effectiveness of blocking immune checkpoints, particularly the PD-1/PD-L1 pathway. Although mAb-based therapies have made great strides, they still have their limitations, and new small-molecule or PROTAC-molecule inhibitors that can block the PD-1/PD-L1 axis are desperately needed. Therefore, it is crucial to translate initial in vitro discoveries into appropriate in vivo animal models when creating PD-L1-blocking therapies. Due to their widespread availability and low experimental expenses, classical immunocompetent mice are appealing for research purposes. However, it is yet unclear whether the mouse (m) PD-L1 interaction with human (h) PD-1 in vivo would produce a functional immunological checkpoint. In this review, we summarize the in vitro and in vivo experimental studies of small molecules and PROTAC molecules, particularly the distinctions between mPD-L1 as a target and hPD-L1 as a target.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Moganshan Institute ZJUT, Deqing 313202, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China; Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid 51111, Sudan
| | - Rui Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shishi Sun
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
28
|
Lee EJ, Kim YS, Kim JH, Woo KW, Park YH, Ha JH, Li W, Kim TI, An BK, Cho HW, Han JH, Choi JG, Chung HS. Uncovering the colorectal cancer immunotherapeutic potential: Evening primrose (Oenothera biennis) root extract and its active compound oenothein B targeting the PD-1/PD-L1 blockade. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155370. [PMID: 38266440 DOI: 10.1016/j.phymed.2024.155370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The emergence of immune checkpoint inhibitors, a novel class of immunotherapy drugs, represents a major breakthrough in cancer immunotherapy, substantially improving patient survival post-treatment. Blocking programmed death-ligand 1 (PD-L1) and programmed death protein-1 (PD-1) has demonstrated promising clinical results in various human cancer types. The US FDA has recently permitted only monoclonal antibody (mAb)-based PD-L1 or PD-1 blockers. Although these antibodies exhibit high antitumor efficacy, their size- and affinity-induced side effects limit their applicability. PURPOSE As small-molecule-based PD-1/PD-L1 blockers capable of reducing the side effects of antibody therapies are needed, this study focuses on exploring natural ingredient-based small molecules that can target hPD-L1/PD-1 using herbal medicines and their components. METHODS The antitumor potential of evening primrose (Oenothera biennis) root extract (EPRE), a globally utilized traditional herbal medicine, folk remedy, and functional food, was explored. A coculture system was established using human PD-L1-expressed murine MC38 cells (hPD-L1-MC38s) and CD8+ tumor-infiltrating T lymphocytes (CD8+ TILs) expressing humanized PD-1. The in vivo experiments utilized a colorectal cancer (CRC) C57BL/6 J mouse model bearing MC38 cells expressing humanized PD-L1 and PD-1 proteins. RESULTS EPRE and its active compound oenothein B effectively hindered the molecular interaction between hPD-L1 and hPD-1. EPRE stimulated tumor-specific T lymphocytes of a hPD-L1/PD-1 CRC mice. This action resulted in the elevated infiltration of cytotoxic CD8+T lymphocytes and subsequent tumor growth reduction. Moreover, the combined therapy of oenothein B, a PD-1/PD-L1 blocker, and FOLFOX (5-fluorouracil plus oxaliplatin) cooperatively suppressed hPD-L1-MC38s growth in the ex vivo model through activated CD8+ TIL antitumor immune response. Oenothein B exhibited a high binding affinity for hPD-L1 and hPD-1. We believe that this study is the first to uncover the inhibitory effects of EPRE and its component, oenothein B, on PD-1/PD-L1 interactions. CONCLUSION This study identified a promising small-molecule candidate from natural products that blocks the hPD-L1/PD-1 signaling pathway. These findings emphasize the potential of EPRE and oenothein B as effective anticancer drugs.
Collapse
Affiliation(s)
- Eun-Ji Lee
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Young Soo Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Ji Hye Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Kyeong Wan Woo
- National Development Institute of Korea Medicine, 27, Wondogwandeok-gil, Jangheung-eup, Jangheung-gun, Jeollanam-do 59319, Republic of Korea
| | - Young-Hoon Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80, Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Jung-Hye Ha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80, Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Wei Li
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Tae In Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Byeong Kwan An
- National Development Institute of Korea Medicine, 94, Hwarang-ro, Gyeongsan-si, Gyeongsangbuk-do 38540, Republic of Korea
| | - Hyun Woo Cho
- National Development Institute of Korea Medicine, 27, Wondogwandeok-gil, Jangheung-eup, Jangheung-gun, Jeollanam-do 59319, Republic of Korea
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), 70, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| |
Collapse
|
29
|
Ou Y, Wang M, Xu Q, Sun B, Jia Y. Small molecule agents for triple negative breast cancer: Current status and future prospects. Transl Oncol 2024; 41:101893. [PMID: 38290250 PMCID: PMC10840364 DOI: 10.1016/j.tranon.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis. The number of cases increased by 2.26 million in 2020, making it the most commonly diagnosed cancer type in the world. TNBCs lack hormone receptor (HR) and human epidermal growth factor 2 (HER2), which limits treatment options. Currently, paclitaxel-based drugs combined with other chemotherapeutics remain the main treatment for TNBC. There is currently no consensus on the best therapeutic regimen for TNBC. However, there have been successful clinical trials exploring large-molecule monoclonal antibodies, small-molecule targeted drugs, and novel antibody-drug conjugate (ADC). Although monoclonal antibodies have produced clinical success, their large molecular weight can limit therapeutic benefits. It is worth noting that in the past 30 years, the FDA has approved small molecule drugs for HER2-positive breast cancers. The lack of effective targets and the occurrence of drug resistance pose significant challenges in the treatment of TNBC. To improve the prognosis of TNBC, it is crucial to search for effective targets and to overcome drug resistance. This review examines the clinical efficacy, adverse effects, resistance mechanisms, and potential solutions of targeted small molecule drugs in both monotherapies and combination therapies. New therapeutic targets, including nuclear export protein 1 (XPO1) and hedgehog (Hh), are emerging as potential options for researchers and become integrated into clinical trials for TNBC. Additionally, there is growing interest in the potential of targeted protein degradation chimeras (PROTACs), degraders of rogue proteins, as a future therapy direction. This review provides potentially valuable insights with clinical implications.
Collapse
Affiliation(s)
- Yan Ou
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mengchao Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qian Xu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Binxu Sun
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
30
|
Abdel-Rahman SA, Gabr M. Small Molecule Immunomodulators as Next-Generation Therapeutics for Glioblastoma. Cancers (Basel) 2024; 16:435. [PMID: 38275876 PMCID: PMC10814352 DOI: 10.3390/cancers16020435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Glioblastoma (GBM), the most aggressive astrocytic glioma, remains a therapeutic challenge despite multimodal approaches. Immunotherapy holds promise, but its efficacy is hindered by the highly immunosuppressive GBM microenvironment. This review underscores the urgent need to comprehend the intricate interactions between glioma and immune cells, shaping the immunosuppressive tumor microenvironment (TME) in GBM. Immunotherapeutic advancements have shown limited success, prompting exploration of immunomodulatory approaches targeting tumor-associated macrophages (TAMs) and microglia, constituting a substantial portion of the GBM TME. Converting protumor M2-like TAMs to antitumor M1-like phenotypes emerges as a potential therapeutic strategy for GBM. The blood-brain barrier (BBB) poses an additional challenge to successful immunotherapy, restricting drug delivery to GBM TME. Research efforts to enhance BBB permeability have mainly focused on small molecules, which can traverse the BBB more effectively than biologics. Despite over 200 clinical trials for GBM, studies on small molecule immunomodulators within the GBM TME are scarce. Developing small molecules with optimal brain penetration and selectivity against immunomodulatory pathways presents a promising avenue for combination therapies in GBM. This comprehensive review discusses various immunomodulatory pathways in GBM progression with a focus on immune checkpoints and TAM-related targets. The exploration of such molecules, with the capacity to selectively target key immunomodulatory pathways and penetrate the BBB, holds the key to unlocking new combination therapy approaches for GBM.
Collapse
Affiliation(s)
- Somaya A. Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Moustafa Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
31
|
Fuchs N, Zhang L, Calvo-Barreiro L, Kuncewicz K, Gabr M. Inhibitors of Immune Checkpoints: Small Molecule- and Peptide-Based Approaches. J Pers Med 2024; 14:68. [PMID: 38248769 PMCID: PMC10817355 DOI: 10.3390/jpm14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The revolutionary progress in cancer immunotherapy, particularly the advent of immune checkpoint inhibitors, marks a significant milestone in the fight against malignancies. However, the majority of clinically employed immune checkpoint inhibitors are monoclonal antibodies (mAbs) with several limitations, such as poor oral bioavailability and immune-related adverse effects (irAEs). Another major limitation is the restriction of the efficacy of mAbs to a subset of cancer patients, which triggered extensive research efforts to identify alternative approaches in targeting immune checkpoints aiming to overcome the restricted efficacy of mAbs. This comprehensive review aims to explore the cutting-edge developments in targeting immune checkpoints, focusing on both small molecule- and peptide-based approaches. By delving into drug discovery platforms, we provide insights into the diverse strategies employed to identify and optimize small molecules and peptides as inhibitors of immune checkpoints. In addition, we discuss recent advances in nanomaterials as drug carriers, providing a basis for the development of small molecule- and peptide-based platforms for cancer immunotherapy. Ongoing research focused on the discovery of small molecules and peptide-inspired agents targeting immune checkpoints paves the way for developing orally bioavailable agents as the next-generation cancer immunotherapies.
Collapse
Affiliation(s)
- Natalie Fuchs
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Longfei Zhang
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Laura Calvo-Barreiro
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Katarzyna Kuncewicz
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
- Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Moustafa Gabr
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| |
Collapse
|
32
|
Rohit S, Patel M, Jagtap Y, Shah U, Patel A, Patel S, Solanki N. Structural Insights of PD-1/PD-L1 Axis: An In silico Approach. Curr Protein Pept Sci 2024; 25:638-650. [PMID: 38706351 DOI: 10.2174/0113892037297012240408063250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Interaction of PD-1 protein (present on immune T-cell) with its ligand PD-L1 (over-expressed on cancerous cell) makes the cancerous cell survive and thrive. The association of PD-1/PD-L1 represents a classical protein-protein interaction (PPI), where receptor and ligand binding through a large flat surface. Blocking the PD-1/PDL-1 complex formation can restore the normal immune mechanism, thereby destroying cancerous cells. However, the PD-1/PDL1 interactions are only partially characterized. OBJECTIVE We aim to comprehend the time-dependent behavior of PD-1 upon its binding with PD-L1. METHODS The current work focuses on a molecular dynamics simulation (MDs) simulation study of apo and ligand bound PD-1. RESULTS Our simulation reveals the flexible nature of the PD-1, both in apo and bound form. Moreover, the current study also differentiates the type of strong and weak interactions which could be targeted to overcome the complex formation. CONCLUSION The current article could provide a valuable structural insight about the target protein (PD-1) and its ligand (PD-L1) which could open new opportunities in developing small molecule inhibitors (SMIs) targeting either PD-1 or PD-L1.
Collapse
Affiliation(s)
- Shishir Rohit
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
- Department of Drug Discovery and Development, Kashiv BioSciences Pvt. Ltd., Ahmedabad, Gujrat, India
| | - Mehul Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| | - Yogesh Jagtap
- Department of Drug Discovery and Development, Kashiv BioSciences Pvt. Ltd., Ahmedabad, Gujrat, India
| | - Umang Shah
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| | - Ashish Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| | - Swayamprakash Patel
- Department of Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| | - Nilay Solanki
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| |
Collapse
|
33
|
Parvez A, Choudhary F, Mudgal P, Khan R, Qureshi KA, Farooqi H, Aspatwar A. PD-1 and PD-L1: architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Front Immunol 2023; 14:1296341. [PMID: 38106415 PMCID: PMC10722272 DOI: 10.3389/fimmu.2023.1296341] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
PD-1 (Programmed Cell Death Protein-1) and PD-L1 (Programmed Cell Death Ligand-1) play a crucial role in regulating the immune system and preventing autoimmunity. Cancer cells can manipulate this system, allowing them to escape immune detection and promote tumor growth. Therapies targeting the PD-1/PD-L1 pathway have transformed cancer treatment and have demonstrated significant effectiveness against various cancer types. This study delves into the structure and signaling dynamics of PD-1 and its ligands PD-L1/PD-L2, the diverse PD-1/PD-L1 inhibitors and their efficacy, and the resistance observed in some patients. Furthermore, this study explored the challenges associated with the PD-1/PD-L1 inhibitor treatment approach. Recent advancements in the combination of immunotherapy with chemotherapy, radiation, and surgical procedures to enhance patient outcomes have also been highlighted. Overall, this study offers an in-depth overview of the significance of PD-1/PD-L1 in cancer immunotherapy and its future implications in oncology.
Collapse
Affiliation(s)
- Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Furqan Choudhary
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Priyal Mudgal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Rahila Khan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, Saudi Arabia
| | - Humaira Farooqi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
34
|
Ma S, Tian Y, Peng J, Chen C, Peng X, Zhao F, Li Z, Li M, Zhao F, Sheng X, Zong R, Li Y, Zhang J, Yu M, Zhu Q, Tian X, Li Y, Neckenig MR, Liu H, Zhan P, Yue X, Wu Z, Gao L, Liang X, Liu X, Li C, Ma C. Identification of a small-molecule Tim-3 inhibitor to potentiate T cell-mediated antitumor immunotherapy in preclinical mouse models. Sci Transl Med 2023; 15:eadg6752. [PMID: 37967204 DOI: 10.1126/scitranslmed.adg6752] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
T cell immunoglobulin and mucin-containing molecule 3 (Tim-3), expressed in dysfunctional and exhausted T cells, has been widely acknowledged as a promising immune checkpoint target for tumor immunotherapy. Here, using a strategy combining virtual and functional screening, we identified a compound named ML-T7 that targets the FG-CC' cleft of Tim-3, a highly conserved binding site of phosphatidylserine (PtdSer) and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). ML-T7 enhanced the survival and antitumor activity of primary CD8+ cytotoxic T lymphocytes (CTLs) and human chimeric antigen receptor (CAR) T cells and reduced their exhaustion in vitro and in vivo. In addition, ML-T7 promoted NK cells' killing activity and DC antigen-presenting capacity, consistent with the reported activity of Tim-3. ML-T7 strengthened DCs' functions through both Tim-3 and Tim-4, which is consistent with the fact that Tim-4 contains a similar FG-CC' loop. Intraperitoneal dosing of ML-T7 showed comparable tumor inhibitory effects to the Tim-3 blocking antibody. ML-T7 reduced syngeneic tumor progression in both wild-type and Tim-3 humanized mice and alleviated the immunosuppressive microenvironment. Furthermore, combined ML-T7 and anti-PD-1 therapy had greater therapeutic efficacy than monotherapy in mice, supporting further development of ML-T7 for tumor immunotherapy. Our study demonstrates a potential small molecule for selectively blocking Tim-3 and warrants further study.
Collapse
Affiliation(s)
- Shuaiya Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Ye Tian
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Jiali Peng
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Chaojia Chen
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xueqi Peng
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Mengzhen Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Fangcheng Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xue Sheng
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Runzhe Zong
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yiquan Li
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Mingyan Yu
- Shandong Institute for Food and Drug Control, Jinan, Shandong 250101, P. R. China
| | - Qingfen Zhu
- Shandong Institute for Food and Drug Control, Jinan, Shandong 250101, P. R. China
| | - Xiaoyu Tian
- Center for Cell Structure and Function, Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Yuyang Li
- Center for Cell Structure and Function, Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Markus R Neckenig
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Huiqing Liu
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xuetian Yue
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
35
|
Wang RN, Yu Q, Wang XB, Zhu D, Li GL, Li ZX, Jiang W, Li W, Dang YJ. Bis(benzonitrile) dichloroplatinum (II) interrupts PD-1/PD-L1 interaction by binding to PD-1. Acta Pharmacol Sin 2023; 44:2103-2112. [PMID: 37193754 PMCID: PMC10545660 DOI: 10.1038/s41401-023-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/10/2023] [Indexed: 05/18/2023]
Abstract
Checkpoint inhibitors such as PD-1/PD-L1 antibody therapeutics are a promising option for the treatment of multiple cancers. Due to the inherent limitations of antibodies, great efforts have been devoted to developing small-molecule PD-1/PD-L1 signaling pathway inhibitors. In this study we established a high-throughput AlphaLISA assay to discover small molecules with new skeletons that could block PD-1/PD-L1 interaction. We screened a small-molecule library of 4169 compounds including natural products, FDA approved drugs and other synthetic compounds. Among the 8 potential hits, we found that cisplatin, a first-line chemotherapeutic drug, reduced AlphaLISA signal with an EC50 of 8.3 ± 2.2 μM. Furthermore, we showed that cisplatin-DMSO adduct, but not semplice cisplatin, inhibited PD-1/PD-L1 interaction. Thus, we assessed several commercial platinum (II) compounds, and found that bis(benzonitrile) dichloroplatinum (II) disturbed PD-1/PD-L1 interaction (EC50 = 13.2 ± 3.5 μM). Its inhibitory activity on PD-1/PD-L1 interaction was confirmed in co-immunoprecipitation and PD-1/PD-L1 signaling pathway blockade bioassays. Surface plasmon resonance assay revealed that bis(benzonitrile) dichloroplatinum (II) bound to PD-1 (KD = 2.08 μM) but not PD-L1. In immune-competent wild-type mice but not in immunodeficient nude mice, bis(benzonitrile) dichloroplatinum (II) (7.5 mg/kg, i.p., every 3 days) significantly suppressed the growth of MC38 colorectal cancer xenografts with increasing tumor-infiltrating T cells. These data highlight that platinum compounds are potential immune checkpoint inhibitors for the treatment of cancers.
Collapse
Affiliation(s)
- Rui-Na Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Yu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Bo Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Di Zhu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guo-Long Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Zeng-Xia Li
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Wei Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yong-Jun Dang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
36
|
Liu L, Lei Y, Zheng Z, Zhou X, Chen S, Zeng G, Yu L, Wang P, Chen L. 6-Mercaptopurine potently inhibits recruitment of SHP2 by phosphorylated PD-1 to inhibit PD-1 signalling and enhance T cell function. Immunology 2023; 170:230-242. [PMID: 37259771 DOI: 10.1111/imm.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Antibody inhibitors that block PD-1/PD-L1 interaction have been approved for oncological clinics, yielding impressive treatment effects. Small molecules inhibiting PD-1 signalling are at various stages of development, given that small molecular drugs are expected to outperform protein drugs in several ways. Currently, a significant portion of these small molecular inhibitors achieve this purpose by binding to a limited region of the PD-L1 protein, thereby limiting the choice of chemical structures. Alternative strategies for developing small-molecular PD-1 inhibitors are urgently needed to broaden the choice of chemical structures. Here, we report that 6-mercaptopurine (6-MP) inhibits PD-1 signalling, activates T cell function in vitro and in vivo and shrinks tumours by activating cytotoxic T cells. Mechanistically, 6-MP potently inhibited PD-1 signalling by blocking the recruitment of SHP2 by PD-1. Considering that 6-MP is a chemotherapeutic agent already approved by the FDA for childhood leukaemia, our work revealed a novel anti-tumour mechanism for this drug and suggests that 6-MP warrants further clinical evaluation for other tumour types.
Collapse
Affiliation(s)
- Lu Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuxi Lei
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zongyao Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xingang Zhou
- Department of Pathlogy & Laboratory Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuzhen Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Guandi Zeng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lei Yu
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Peng Wang
- Department of Pathlogy & Laboratory Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liang Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
37
|
Regnault R, Klupsch F, El-Bouazzati H, Magnez R, Le Biannic R, Leleu-Chavain N, Ahouari H, Vezin H, Millet R, Goossens JF, Thuru X, Bailly C. Novel PD-L1-Targeted Phenyl-Pyrazolone Derivatives with Antioxidant Properties. Molecules 2023; 28:molecules28083491. [PMID: 37110727 PMCID: PMC10144346 DOI: 10.3390/molecules28083491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Orally-active anticancer small molecules targeting the PD-1/PD-L1 immune checkpoint are actively searched. Phenyl-pyrazolone derivatives with a high affinity for PD-L1 have been designed and characterized. In addition, the phenyl-pyrazolone unit acts as a scavenger of oxygen free radicals, providing antioxidant effects. The mechanism is known for the drug edaravone (1) which is also an aldehyde-reactive molecule. The present study reports the synthesis and functional characterization of new molecules (2-5) with an improved anti-PD-L1 activity. The leading fluorinated molecule 5 emerges as a potent checkpoint inhibitor, avidly binding to PD-L1, inducing its dimerization, blocking PD-1/PD-L1 signaling mediated by phosphatase SHP-2 and reactivating the proliferation of CTLL-2 cells in the presence of PD-L1. In parallel, the compound maintains a significant antioxidant activity, characterized using electron paramagnetic resonance (EPR)-based free radical scavenging assays with the probes DPPH and DMPO. The aldehyde reactivity of the molecules was investigated using 4-hydroxynonenal (4-HNE), which is a major lipid peroxidation product. The formation of drug-HNE adducts, monitored by high resolution mass spectrometry (HRMS), was clearly identified and compared for each compound. The study leads to the selection of compound 5 and the dichlorophenyl-pyrazolone unit as a scaffold for the design of small molecule PD-L1 inhibitors endowed with antioxidant properties.
Collapse
Affiliation(s)
- Romain Regnault
- ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, CHU Lille, University Lille, F-59000 Lille, France
| | - Frédérique Klupsch
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Hassiba El-Bouazzati
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
| | - Romain Magnez
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
| | - Raphaël Le Biannic
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Natascha Leleu-Chavain
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Hania Ahouari
- LASIRE Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement, F-59655 Villeneuve d'Ascq, France
- FR 2638-IMEC-Institut Michel-Eugène Chevreul, University Lille, F-59655 Lille, France
| | - Hervé Vezin
- LASIRE Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement, F-59655 Villeneuve d'Ascq, France
| | - Régis Millet
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Jean-François Goossens
- ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, CHU Lille, University Lille, F-59000 Lille, France
| | - Xavier Thuru
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
| | - Christian Bailly
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
- Oncowitan, Scientific Consulting Office, Wasquehal, F-59290 Lille, France
| |
Collapse
|
38
|
Sei S, Ahadova A, Keskin DB, Bohaumilitzky L, Gebert J, von Knebel Doeberitz M, Lipkin SM, Kloor M. Lynch syndrome cancer vaccines: A roadmap for the development of precision immunoprevention strategies. Front Oncol 2023; 13:1147590. [PMID: 37035178 PMCID: PMC10073468 DOI: 10.3389/fonc.2023.1147590] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Hereditary cancer syndromes (HCS) account for 5~10% of all cancer diagnosis. Lynch syndrome (LS) is one of the most common HCS, caused by germline mutations in the DNA mismatch repair (MMR) genes. Even with prospective cancer surveillance, LS is associated with up to 50% lifetime risk of colorectal, endometrial, and other cancers. While significant progress has been made in the timely identification of germline pathogenic variant carriers and monitoring and early detection of precancerous lesions, cancer-risk reduction strategies are still centered around endoscopic or surgical removal of neoplastic lesions and susceptible organs. Safe and effective cancer prevention strategies are critically needed to improve the life quality and longevity of LS and other HCS carriers. The era of precision oncology driven by recent technological advances in tumor molecular profiling and a better understanding of genetic risk factors has transformed cancer prevention approaches for at-risk individuals, including LS carriers. MMR deficiency leads to the accumulation of insertion and deletion mutations in microsatellites (MS), which are particularly prone to DNA polymerase slippage during DNA replication. Mutations in coding MS give rise to frameshift peptides (FSP) that are recognized by the immune system as neoantigens. Due to clonal evolution, LS tumors share a set of recurrent and predictable FSP neoantigens in the same and in different LS patients. Cancer vaccines composed of commonly recurring FSP neoantigens selected through prediction algorithms have been clinically evaluated in LS carriers and proven safe and immunogenic. Preclinically analogous FSP vaccines have been shown to elicit FSP-directed immune responses and exert tumor-preventive efficacy in murine models of LS. While the immunopreventive efficacy of "off-the-shelf" vaccines consisting of commonly recurring FSP antigens is currently investigated in LS clinical trials, the feasibility and utility of personalized FSP vaccines with individual HLA-restricted epitopes are being explored for more precise targeting. Here, we discuss recent advances in precision cancer immunoprevention approaches, emerging enabling technologies, research gaps, and implementation barriers toward clinical translation of risk-tailored prevention strategies for LS carriers. We will also discuss the feasibility and practicality of next-generation cancer vaccines that are based on personalized immunogenic epitopes for precision cancer immunoprevention.
Collapse
Affiliation(s)
- Shizuko Sei
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Derin B. Keskin
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Broad Institute of The Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Lena Bohaumilitzky
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Steven M. Lipkin
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
39
|
Thuru X, Magnez R, Vergoten G, Bailly C. A Potential Off-Target Effect of the Wnt/β-Catenin Inhibitor KYA1797K: PD-L1 Binding and Checkpoint Inhibition. Biomed Hub 2023; 8:1-9. [PMID: 36938364 PMCID: PMC10015704 DOI: 10.1159/000528499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/15/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction The quest for small molecule inhibitors of the PD-1/PD-L1 checkpoint continues in parallel to the extensive development of monoclonal antibodies directed against this immune checkpoint. Drug screening strategies are being set up to identify novel PD-L1 inhibitors. Methods A virtual screening based on molecular docking with the PD-L1 protein dimer has been performed to identify a new binder. Binding of the identified ligand to PD-L1 has been validated experimentally using a microscale thermophoresis (MST) assay. The cellular effect of the compound was evidenced using a fluorescence resonance energy transfer (FRET) assay based on activation of tyrosine phosphatase SHP-2. Results We have identified the potent Wnt/β-catenin inhibitor KYA1797K as a weak PD-L1 binder. Molecular docking suggested that the compound can bind to the interface of a PD-L1 dimer, with a geometry superimposable to that of the reference PD-L1 inhibitor BMS-202. The atypical 2-thioxo-4-thiazolidinone motif of KYA1797K, derived from the natural product rhodanine, plays a major role in the interaction with PD-L1. Binding of KYA1797K to recombinant hPD-L1 was validated experimentally, using MST. The drug was found to bind modestly but effectively to hPD-L1. The FRET assay confirmed the weak capacity of KYA1797K to interfere with the activation of SHP-2 upon its interaction with human PD-1. Discussion Collectively, the data show that KYA1797K could function as a weak modulator of the PD-1/PD-L1 checkpoint. This effect may contribute, at least partially, to the reported capacity of the β-catenin inhibitor to downregulate PD-L1 in cancer cells. The work also underlines the interest to further consider the rhodanine moiety as a chemical motif for the design of new PD-L1 binders.
Collapse
Affiliation(s)
- Xavier Thuru
- Inserm, CHU Lille, CNRS, UMR9020 − UMR1277 − Canther − Cancer Heterogeneity, Plasticity and Resistance to Therapies, University Lille, Lille, France
- *Xavier THURU,
| | - Romain Magnez
- Inserm, CHU Lille, CNRS, UMR9020 − UMR1277 − Canther − Cancer Heterogeneity, Plasticity and Resistance to Therapies, University Lille, Lille, France
| | - Gérard Vergoten
- Inserm, INFINITE − U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, Lille, France
| | - Christian Bailly
- Inserm, CHU Lille, CNRS, UMR9020 − UMR1277 − Canther − Cancer Heterogeneity, Plasticity and Resistance to Therapies, University Lille, Lille, France
- Oncowitan, Scientific Consulting Office, Lille (Wasquehal), France
- **Christian BAILLY,
| |
Collapse
|
40
|
Hall CP, Cronk JC, Rubens JA. STINGing the immune system: lessons learned through a model of G34-mutant pediatric high-grade glioma. J Clin Invest 2022; 132:164420. [PMID: 36377657 PMCID: PMC9663148 DOI: 10.1172/jci164420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are aggressive diseases with poor outcomes. The diverse molecular heterogeneity in these rare tumors and inadequate tumor models have limited the development of effective therapies. In this issue of the JCI, Haase et al. produced a genetically engineered mouse model of H3.3-G34R-mutant pHGG to help identify vulnerabilities in DNA repair pathways. The authors designed a therapy that combined radiation with DNA damage response inhibitors to induce an adaptive immune response and extend survival. These findings suggest that combinations of small-molecule therapies with immunotherapies could drive a more durable response and improve mortality for patients with pHGG.
Collapse
Affiliation(s)
- Connor P. Hall
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - James C. Cronk
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Jeffrey A. Rubens
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Kitel R, Rodríguez I, del Corte X, Atmaj J, Żarnik M, Surmiak E, Muszak D, Magiera-Mularz K, Popowicz GM, Holak TA, Musielak B. Exploring the Surface of the Ectodomain of the PD-L1 Immune Checkpoint with Small-Molecule Fragments. ACS Chem Biol 2022; 17:2655-2663. [PMID: 36073782 PMCID: PMC9486809 DOI: 10.1021/acschembio.2c00583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Development of small molecules targeting the PD-L1/PD-1 interface is advancing both in industry and academia, but only a few have reached early-stage clinical trials. Here, we take a closer look at the general druggability of PD-L1 using in silico hot spot mapping and nuclear magnetic resonance (NMR)-based characterization. We found that the conformational elasticity of the PD-L1 surface strongly influences the formation of hot spots. We deconstructed several generations of known inhibitors into fragments and examined their binding properties using differential scanning fluorimetry (DSF) and protein-based nuclear magnetic resonance (NMR). These biophysical analyses showed that not all fragments bind to the PD-L1 ectodomain despite having the biphenyl scaffold. Although most of the binding fragments induced PD-L1 oligomerization, two compounds, TAH35 and TAH36, retain the monomeric state of proteins upon binding. Additionally, the presence of the entire ectodomain did not affect the binding of the hit compounds and dimerization of PD-L1. The data demonstrated here provide important information on the PD-L1 druggability and the structure-activity relationship of the biphenyl core moiety and therefore may aid in the design of novel inhibitors and focused fragment libraries for PD-L1.
Collapse
Affiliation(s)
- Radoslaw Kitel
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ismael Rodríguez
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Xabier del Corte
- Departamento
de Química Orgánica I, Centro de Investigación
y Estudios Avanzados “Lucio Lascaray” − Facultad
de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad
7, 01006 Vitoria-Gasteiz, Spain
| | - Jack Atmaj
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Magdalena Żarnik
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ewa Surmiak
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Damian Muszak
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Katarzyna Magiera-Mularz
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Grzegorz M. Popowicz
- Institute
of Structural Biology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Tad A. Holak
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Bogdan Musielak
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland,
| |
Collapse
|
42
|
Abdel-Magid A. Inhibitors of Transforming Growth Factor Beta Receptor 1 (TGFβr1) May Enhance the Efficacy of Several Monoclonal Antibodies as Cancer Therapy. ACS Med Chem Lett 2022; 13:1405-1407. [PMID: 36105341 PMCID: PMC9465859 DOI: 10.1021/acsmedchemlett.2c00356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ahmed
F. Abdel-Magid
- Therachem Research Medilab, LLC,
100 Jade Park, Chelsea, Alabama 35043, United
States
| |
Collapse
|