1
|
Zhang G, Yin X, Tang X, Wang K, Liu Y, Gong L, Tian Z. Integrated metabolomics and network pharmacology analysis to reveal the mechanisms of naringin against atherosclerosis. J Pharm Pharmacol 2025; 77:621-634. [PMID: 39946214 DOI: 10.1093/jpp/rgae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/02/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVES The purpose of this study was to explore the mechanism of naringin in atherosclerotic mice from the perspective of network pharmacology and non-targeted metabolomics. METHODS ApoE-/- mice were induced to establish an atherosclerotic model to explore the pharmacodynamics and potential mechanism of naringin in atherosclerosis (AS). Pathological section and blood lipid levels were used to evaluate the intervention effects. The core targets, metabolites, and related pathways of naringin alleviating atherosclerotic were predicted through network pharmacology and metabolomics analysis. Furthermore, the inflammatory factors and pathway-related protein expression were detected using ELISA and Western blot methods. KEY FINDINGS It turned out that compared with the model group, the naringin could reduce the development degree in atherosclerotic mice. The network pharmacology suggested that PI3K-AKT pathway was an important mechanism for naringin to interfere with AS. Serum metabolic data were collected and analyzed, and a total of 27 potential biomarkers were identified, involving vitamin B6 metabolism, arginine metabolism, and retinol metabolism. The experiment verified that naringin inhibited inflammation in AS through the PI3K-AKT/TLR4/NF-κB pathway. CONCLUSIONS This study provides a strategy combining metabolomics and network pharmacology to explore the alleviation of AS by naringin and offers a new idea for its application.
Collapse
Affiliation(s)
- Gaoning Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoyi Yin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Tang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Kexin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yifan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lili Gong
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhenhua Tian
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
2
|
Ai X, Zhang Q, Ma Q, Fang M, Zhu K, Cai Y, Yang Q, Zhang L. Transcriptomics and metabolomics analysis of the pathogenesis of a novel hyperlipidemia-susceptible rat strain. Exp Anim 2025; 74:160-172. [PMID: 39496388 PMCID: PMC12044359 DOI: 10.1538/expanim.24-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
Wistar-SD Hypercholesterolemia (WSHc) Rat is a novel hyperlipidemia-susceptible rat that we discovered and bred earlier, which can be used as an ideal animal model for the study of non-alcoholic fatty liver disease (NAFLD). However, its pathogenesis of hyperlipidemia and genetic and biological characteristics need to be further investigated. In the current study, WSHc rats were fed a high-fat diet (HFD) and standard chow (SC), with age-matched Wistar rats as the control group undergoing the same treatment, followed by serum lipid level measurement. It was found that HFD-fed WSHc rats developed dyslipidemia. Transcriptomic analysis was performed to detect genes associated with cholesterol metabolism in the liver, and 119 differentially expressed genes were discovered through bioinformatics analysis and molecular biology verification. Additionally, Srebf1 was identified as a HUB gene and Nr1d1 as an independent key gene using the protein-protein interaction network and one-cluster clustering analysis. The two genes had also been further validated in molecular biology experiments and were consistent with transcriptomic results. Serum lipid metabolomics analysis identified 7 lipid subclasses and 84 lipid molecules using UHPLC-Q-TOF/MS. There were 62 and 70 lipid molecules with significant differences in the metabolic profiles of serum lipid mediators in the WSHc+HFD group compared to the WSHc+SC and Wistar+HFD groups, respectively, and the differential metabolites were mainly produced via sphingolipid and glycerophospholipid metabolism. In sum, the hypercholesterolemia model can be established with WSHc rats after the HFD induction, and the pathogenesis involves the Srebf1 and Nr1d1 genes and the sphingolipid and glycerophospholipid metabolism pathways.
Collapse
Affiliation(s)
- Xiufeng Ai
- Animal Experimental Research Center/Institute of Comparative Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, P.R. China
| | - Qian Zhang
- Animal Experimental Research Center/Institute of Comparative Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, P.R. China
| | - Quanxin Ma
- Key laboratory of silkworm and bee resource utilization and innovation of Zhejiang Province, College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310058, P.R. China
- Hangzhou Lifutai Biotechnology Co., LTD, 9 Juyuan Road, Binjiang District, Hangzhou, Zhejiang 310051, P.R. China
| | - Mingsun Fang
- Animal Experimental Research Center/Institute of Comparative Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, P.R. China
| | - Keyan Zhu
- Animal Experimental Research Center/Institute of Comparative Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, P.R. China
| | - Yueqin Cai
- Animal Experimental Research Center/Institute of Comparative Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, P.R. China
| | - Qinqin Yang
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, 132 Tianmushan Road, Xihu District, Hangzhou, Zhejiang 310007, P.R. China
| | - Lizong Zhang
- Animal Experimental Research Center/Institute of Comparative Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
3
|
Qin Y, Zhang J, Wang A, Sun W, Qin X, Qi F, Wang Y, Du L, Liu X, Sun H, Guo Z, Guo X. Multi-omics analysis of two rat models reveals potential role of vesicle transport and autophagy in right ventricular remodeling. Sci Rep 2025; 15:13401. [PMID: 40251385 PMCID: PMC12008301 DOI: 10.1038/s41598-025-98347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025] Open
Abstract
Right ventricular failure as a severe consequence of pulmonary arterial hypertension (PAH) is an independent risk factor for poor prognosis, although the pathogenesis of right ventricular remodeling (RVR) remains unclear. Exploring the shared molecular pathways and key molecules in the right ventricle in monocrotaline (MCT) and pulmonary artery banding (PAB) rat models may reveal critical RVR mechanisms. Untargeted proteome and metabolome analysis were performed on the right ventricular myocardium of two RVR models (MCT-induced PAH rats and PAB-operated rats) to identify the altered proteins and metabolites, followed by validation using parallel reaction monitoring analysis and quantitative real-time polymerase chain reaction (qPCR). The multi-omics profiles of MCT and PAB rat models were compared to explore the key dysregulated molecules and pathways in RVR. Our proteomics study identified 25 shared RVR-altered differentially expressed proteins. Multiple common biological pathways were identified between PAB and MCT rat models, encompassing myocardial remodeling and energy metabolism alternation, etc. Various molecules and pathways related to vesicle transport and autophagy were identified, including nidogen-1, the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) signaling pathway, and the microautophagy pathway (all previously unreported in RVR). Glycerophospholipid metabolism was the sole statistically significant common metabolic pathway enriched by metabolomics. Underreported biological processes, including vesicle transport and autophagy, may contribute to the pathophysiology of PAH-induced RVR.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing, China
| | - Jing Zhang
- Department of Cardiology, Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing, China
| | - Aiwei Wang
- Core Facility of Instrument, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaohan Qin
- Department of Cardiology, Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing, China
| | - Feng Qi
- Core Facility of Instrument, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yufei Wang
- Department of Cardiology, Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing, China
| | - Le Du
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiaoyan Liu
- Core Facility of Instrument, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Haidan Sun
- Core Facility of Instrument, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Core Facility of Instrument, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Xiaoxiao Guo
- Department of Cardiology, Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing, China.
| |
Collapse
|
4
|
Ying Z, Yang Q, Xie S, Cai M, Fan W, Gao H, Feng X, Wu Y. Active dry yeast enhances immunity through modulation of gut microbiota and serum metabolic processes in captive forest musk deer (Moschus berezovskii). BMC Vet Res 2025; 21:262. [PMID: 40221712 PMCID: PMC11992737 DOI: 10.1186/s12917-025-04705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The forest musk deer (FMD, Moschus berezovskii), an endangered small ruminant, is listed as a class I protected wild animals in China. However, compared to their wild counterparts, captive FMD are more prone to gastrointestinal diseases caused by gut microbial dysbiosis, which severely limits population growth and increases the risk of mortality. Active dry yeast (ADY), as a commonly used feed additive, has been widely applied in domestic livestock to improve gut microbiota and enhance immune function. Whether dietary supplementation with ADY in captive FMD contributes to gut microbial homeostasis and physical health is still unclear. Thus, the study aimed to evaluate the effects of dietary supplementation with ADY on the immunity, gut microbial composition, and serum metabolites in FMD. METHODS Fourteen male FMD from the Chongqing Institute of Medicinal Plant Cultivation (Chongqing, China), with similar initial bodyweights (7.0±0.3kg) and an average age of 4.5 years, were selected and randomly divided into two groups. The control group was fed a standard diet, while the ADY group received the standard diet supplemented with ADY at a dosage of 10 g/kg DM. RESULTS ADY supplementation significantly increased the concentrations of immunoglobulin A (IgA), immunoglobulin G (IgG) and immunoglobulin M (IgM) in the serum. ADY improved the richness and diversity of the gut microbiota, increased the relative abundance of the Firmicutes and Bacteroidota, but decreased the relative abundance of the Proteobacteria. A widely targeted metabolomics analysis identified a total of 25 differential metabolites, with 10 being upregulated and 15 downregulated. Many differential metabolites, for example phosphatidylcholine, Glu-His, L-cysteine and other differential metabolites contributed to strengthening the immunity of the FMD by affecting arachidonic acid metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, and so on. CONCLUSION Dietary supplementation with ADY positively impacts the immunity of FMD by modulating the composition of the gut microbial communities and serum metabolites.
Collapse
Affiliation(s)
- Zaixiang Ying
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Qinlin Yang
- Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, China
| | - Shan Xie
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Mingcheng Cai
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Wenqiao Fan
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Hanyu Gao
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Xiaolan Feng
- Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, China.
| | - Yongjiang Wu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China.
| |
Collapse
|
5
|
Fernandes Silva L, Laakso M. Advances in Metabolomics: A Comprehensive Review of Type 2 Diabetes and Cardiovascular Disease Interactions. Int J Mol Sci 2025; 26:3572. [PMID: 40332079 PMCID: PMC12027308 DOI: 10.3390/ijms26083572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 05/08/2025] Open
Abstract
Type 2 diabetes (T2D) and cardiovascular diseases (CVDs) are major public health challenges worldwide. Metabolomics, the exhaustive assessment of metabolites in biological systems, offers important insights regarding the metabolic disturbances related to these disorders. Recent advances toward the integration of metabolomics into clinical practice to facilitate the discovery of novel biomarkers that can improve the diagnosis, prognosis, and treatment of T2D and CVDs are discussed in this review. Metabolomics offers the potential to characterize the key metabolic alterations associated with disease pathophysiology and treatment. T2D is a heterogeneous disease that develops through diverse pathophysiological processes and molecular mechanisms; therefore, the disease-causing pathways of T2D are not completely understood. Recent studies have identified several robust clusters of T2D variants representing biologically meaningful, distinct pathways, such as the beta cell and proinsulin cluster related to pancreatic insulin secretion, obesity, lipodystrophy, the liver/lipid cluster, glycemia, and blood pressure, and metabolic syndrome clusters representing different pathways causing insulin resistance. Regarding CVDs, recent studies have allowed the metabolomic profile to delineate pathways that contribute to atherosclerosis and heart failure, as well as to the development of targeted therapy. This review also covers the role of metabolomics in integrated metabolic genomics and other omics platforms to better understand disease mechanisms, along with the transition toward precision medicine. This review further investigates the use of metabolomics in multi-metabolite modeling to enhance risk prediction models for predicting the first occurrence of major adverse cardiovascular events among individuals with T2D, highlighting the value of such approaches in optimizing the preventive and therapeutic models used in clinical practice.
Collapse
Affiliation(s)
- Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland;
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Medicine, Kuopio University Hospital, 70200 Kuopio, Finland
| |
Collapse
|
6
|
Chen X, Wang Z, Fu W, Wei Z, Gu J, Wang C, Zhang Z, Yu X, Hu W. Metabolomics study of osteopetrosis caused by CLCN7 mutation reveals novel pathway and potential biomarkers. Front Endocrinol (Lausanne) 2025; 15:1418932. [PMID: 40018371 PMCID: PMC11865745 DOI: 10.3389/fendo.2024.1418932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 03/01/2025] Open
Abstract
Objective CLCN7 mutation caused abnormal osteoclasts, resulting in osteopetrosis. Depending on the type of mutation, CLCN7 mutations can lead to severe or relatively benign forms of osteopetrosis. However, the serum metabolic alterations in osteopetrosis caused by CLCN7 mutation are still unknown. We aimed to investigate the differences in the metabolome of osteopetrosis patients caused by CLCN7 mutation versus healthy controls (HC), uncovering potential subtype diagnosis biomarkers. Methods 19 osteopetrosis patients caused by CLCN7 mutation and 19 HC were recruited for liquid chromatography-tandem mass spectrometry analysis. The screened pathway was validated in the myeloid cell specific Clcn7G763R mutant mouse model by quantitative real-time PCR analysis. Results Three metabolic pathways were significantly enriched, including glycerophospholipid metabolism (P=0.036948), arachidonic acid metabolism (P=0.0058585) and linoleic acid metabolism (P=0.032035). Ten differential expressed metabolites were located in these three pathways and classified ability with areas under the curve over 0.7 in receiver operating characteristic analysis, suggesting a certain accuracy for being the potential biological markers. Especially, we found that the proteins in glycerophospholipid metabolism were predicted to interact with ClC-7 and further verified that the expression of coding genes were significantly up-regulated in myeloid cell specific Clcn7G763R mutant mouse. Conclusion This study provides data on serum metabolomics in osteopetrosis caused by CLCN7 mutation and provides new potential metabolic markers and pathways for diagnosis and pathogenesis of osteopetrosis.
Collapse
Affiliation(s)
- Xi Chen
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyuan Wang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzhen Fu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Wei
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiemei Gu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Wang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangtian Yu
- Clinical Research Center, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Hu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Xie S, Yang Q, Ying Z, Cai M, Fan W, Gao H, Feng X, Wu Y. Dietary supplementation with Epimedium contributes to the improvement of hormone levels, gut microbiota, and serum metabolite composition in the Chinese forest musk deer ( Moschus berezovskii). Front Vet Sci 2025; 11:1497115. [PMID: 39911481 PMCID: PMC11794312 DOI: 10.3389/fvets.2024.1497115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025] Open
Abstract
The Chinese forest musk deer (Moschus berezovskii) is a small ruminant animal with special economic value. It is listed as a National Level I key protected species in China. However, these animals are prone to stress responses in captive environments. Epimedium, a traditional Chinese herb with aphrodisiac and anti-stress properties, may have potential benefits for the health of the captive Chinese forest musk deer, though its efficacy requires further investigation. This study aimed to evaluate the effects of dietary supplementation with Epimedium on the hormone levels, gut microbiota composition, and serum metabolism of the Chinese forest musk deer. The fourteen adult male Chinese forest musk deer with similar initial body weights (7.0 ± 0.3 kg) and an average age of 4.5 years were randomly divided into two groups, each containing seven animals. The control group was fed a standard diet without Epimedium, while the Epimedium group received the standard diet supplemented with 15 g Epimedium /kg DM. The results indicated that the inclusion of Epimedium in the diet increased dry matter intake (DMI) and improved the ratio of feed to gain (F/G), with an increase in fecal testosterone levels (p < 0.05). 16S rDNA sequencing analysis revealed that Epimedium enhanced the richness and diversity of the gut microbiota in the Chinese forest musk deer, increasing the relative abundance of beneficial bacteria such as Firmicutes, while reducing the relative abundance of the potentially pathogenic Proteobacteria (p < 0.05). A widely targeted metabolomics analysis identified 25 differential metabolites between the two groups. Significant alterations were observed in key metabolic pathways related to lipid metabolism, hormone regulation, and antioxidation, such as ovarian steroidogenesis, tyrosine metabolism, and glycerophospholipid metabolism. Furthermore, correlation analysis between gut microbiota and serum differential metabolites showed that the relative abundances of Clostridia_vadinBB60_group and UCG-010 were positively correlated with anserine and 7-ketocholesterol, respectively (p < 0.05). In conclusion, Epimedium positively influenced feed intake and hormone levels in the Chinese forest musk deer by modulating gut microbiota composition and serum metabolism.
Collapse
Affiliation(s)
- Shan Xie
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Qinlin Yang
- Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, China
| | - Zaixiang Ying
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Mingcheng Cai
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Wenqiao Fan
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Hanyu Gao
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Xiaolan Feng
- Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, China
| | - Yongjiang Wu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
| |
Collapse
|
8
|
Jia M, Ma Q, Wang H, Yan X, Wang L, Xing B, Lu Q, Wang J. Exploring the Effects of Gracilaria lemaneiformis Polysaccharides on the Fecal Microbiota and Fecal Metabolites of Fattening Pigs Based on 16S rDNA and Metabolome Sequencing. Animals (Basel) 2025; 15:153. [PMID: 39858153 PMCID: PMC11758644 DOI: 10.3390/ani15020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Sixty Duroc × (Landrace × Yorkshire) castrated male finishing pigs were randomly divided into negative control (NC) and gracilaria lemaneiformis polysaccharides (GLP) groups to study the effects of GLP on the fecal microbiota and fecal metabolites of fattening pigs. The NC group was fed a basic diet, and the GLP group was fed a basic diet supplemented with 0.1% GLP. The diversity of the species and the fecal metabolites were analyzed using 16S rDNA sequencing and metabolome sequencing, respectively. The serum immune and antioxidant indices were analyzed using the ELISA assay. The abundances of hazardous bacteria such as Proteobacteria at the phylum level and Shigella at the genus level were extremely significantly decreased (p < 0.01) and those of beneficial bacteria such as Firmicutes at the phylum level (p < 0.01), Clostridium at the genus level (p < 0.01), and Lactobacillus at the genus level (p < 0.05) were significantly increased in the GLP group compared with the NC group. A total of 41 differentially expressed metabolites were identified. The expression of anti-inflammatory and antioxidant active substances, such as methyl cinnamate, protopanaxatriol, and isovanillic acid, was elevated in the GLP group. The ELISA assay showed increased GSH-Px activity (p < 0.01), T-AOC (p < 0.01), IgG (p < 0.01), IgA (p < 0.05), and IgM (p < 0.05) in the GLP group. These results indicate that dietary GLP supplementation can improve the antioxidant ability, anti-inflammatory ability, and immune level of fattening pigs by regulating fecal flora and metabolites and could be used as a functional feed additive.
Collapse
Affiliation(s)
- Mingyang Jia
- Key Laboratory of Livestock and Poultry Breeding and Nutrition Regulation in Henan Province, Institute of Animal Husbandry, Henanmn Academy of Agricultural Sciences, Zhengzhou 450002, China; (M.J.); (X.Y.); (B.X.)
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang453003, China;
| | - Qiang Ma
- Key Laboratory of Livestock and Poultry Breeding and Nutrition Regulation in Henan Province, Institute of Animal Husbandry, Henanmn Academy of Agricultural Sciences, Zhengzhou 450002, China; (M.J.); (X.Y.); (B.X.)
| | - Hongjun Wang
- Animal Disease Prevention and Control Center of Xin’an County, Luoyang 471800, China
| | - Xiangzhou Yan
- Key Laboratory of Livestock and Poultry Breeding and Nutrition Regulation in Henan Province, Institute of Animal Husbandry, Henanmn Academy of Agricultural Sciences, Zhengzhou 450002, China; (M.J.); (X.Y.); (B.X.)
| | - Lei Wang
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang453003, China;
| | - Baosong Xing
- Key Laboratory of Livestock and Poultry Breeding and Nutrition Regulation in Henan Province, Institute of Animal Husbandry, Henanmn Academy of Agricultural Sciences, Zhengzhou 450002, China; (M.J.); (X.Y.); (B.X.)
| | - Qingxia Lu
- Key Laboratory of Livestock and Poultry Breeding and Nutrition Regulation in Henan Province, Institute of Animal Husbandry, Henanmn Academy of Agricultural Sciences, Zhengzhou 450002, China; (M.J.); (X.Y.); (B.X.)
| | - Jing Wang
- Key Laboratory of Livestock and Poultry Breeding and Nutrition Regulation in Henan Province, Institute of Animal Husbandry, Henanmn Academy of Agricultural Sciences, Zhengzhou 450002, China; (M.J.); (X.Y.); (B.X.)
| |
Collapse
|
9
|
Che C, Yang P, Qin K, Li Y, Fan Z, Li W, Gao S, Wang C, Mu C, Wang H. Based on metabolomics analysis: metabolic mechanism of intestinal tract of Scylla paramamosain under low-salt saline-alkali water aquaculture environment. BMC Genomics 2024; 25:1232. [PMID: 39707184 DOI: 10.1186/s12864-024-11138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND In recent years, the total production of mud crab Scylla paramamosain has been declining, and the breeding areas are faced with land shortage and shortage of breeding production, which needs to be solved urgently. S. paramamosain can survive and grow in a wide range of salinities is an excellent variety suitable for saline-alkali water aquaculture. As a species with high economic value and strong adaptability to the environment, its cultivation under low salt conditions can not only improve the utilization efficiency of saline-alkali land, but also provide new possibilities for the sustainable development of aquaculture. RESULTS A total of 248 different metabolites were identified by LC/GC-MS in the intestinal tract of S. paramamosain. These different metabolites were mainly concentrated in 'Lipids and lips-like molecules'. Among them, 112 metabolites are upregulated, and among these upregulated metabolites are mainly 'Fatty Acyls' and 'Glycerophospholipids'. The upregulation of these metabolites indicates an increase in lipid storage of S. paramamosain, which may increase the resistance of S. paramamosain to adverse environmental stress. Among them, 136 metabolic differentiates were down-regulated, mainly 'Carboxylic acids and derivatives'. The down-regulation of these organic acids may indicate that organic acids are used as energy sources for the immune response to long-term environmental stress. CONCLUSION Under long-term chloride type low-salt saline-alkali water stress, S. paramamosain will shift to another homeostasis for development.
Collapse
Affiliation(s)
- Chenxi Che
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Peng Yang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Kangxiang Qin
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Yuntao Li
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Ziwei Fan
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Wenjun Li
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Shan Gao
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Changkao Mu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Huan Wang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China.
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
10
|
Wang D, Song J, Wang J, Quan R. Serum metabolic alterations in chickens upon infectious bursal disease virus infection. BMC Vet Res 2024; 20:569. [PMID: 39696379 DOI: 10.1186/s12917-024-04402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Infectious bursal disease virus (IBDV) is a highly contagious immunosuppressive virus of chickens. Chickens acquire infection by the oral route under natural conditions. Although the histological and pathological changes after IBDV infection are well described, the alterations in serum metabolome have not been reported. In this study, SPF chickens were infected with attenuated IBDV (atIBDV) strain LM and very virulent IBDV (vvIBDV) strain LX, respectively. On the seventh day after oral infection, serum samples of experimental chickens were identified using ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS). The serum metabolic profiles were analyzed by multivariate statistical methods. KEGG enrichment analysis was performed to evaluate the dysregulated biological pathways. RESULTS We identified 368 significantly altered metabolites in response to both atIBDV and vvIBDV infection. The metabolic disorder of amino acid and lipid was associated with IBDV infection, especially tryptophan, glycerophospholipid, lysine, and tyrosine metabolism. The differential metabolites enriched in the four metabolic pathways were PC(20:4(5Z,8Z,11Z,14Z)/18:0), PE(16:0/18:2(9Z,12Z)), PE(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(18:0/20:4(5Z,8Z,11Z,14Z)), PE(18:0/20:4(8Z,11Z,14Z,17Z)), PE(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(20:3(8Z,11Z,14Z)/16:0), PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0), PE-NMe(20:5(5Z,8Z,11Z,14Z,17Z)/18:0), PS(20:3(5Z,8Z,11Z)/18:2(9Z,12Z)), 2-aminobenzoic acid, 4-(2-aminophenyl)-2,4-dioxobutanoic acid, N-acetylserotonin, 5-hydroxyindoleacetate, indole-3-acetaldehyde, indole-3-acetate, p-coumaric acid, L-tyrosine, homovanillin, and S-glutaryldihydrolipoamide. CONCLUSION The atIBDV and vvIBDV infection causes metabolic changes in chicken serum. The differential metabolites and dysregulated metabolic pathways reflect the host response to the IBDV infection.
Collapse
Affiliation(s)
- Dan Wang
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China.
| |
Collapse
|
11
|
Shen X, Wang C, Zhou X, Zhou W, Hornburg D, Wu S, Snyder MP. Nonlinear dynamics of multi-omics profiles during human aging. NATURE AGING 2024; 4:1619-1634. [PMID: 39143318 PMCID: PMC11564093 DOI: 10.1038/s43587-024-00692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
Aging is a complex process associated with nearly all diseases. Understanding the molecular changes underlying aging and identifying therapeutic targets for aging-related diseases are crucial for increasing healthspan. Although many studies have explored linear changes during aging, the prevalence of aging-related diseases and mortality risk accelerates after specific time points, indicating the importance of studying nonlinear molecular changes. In this study, we performed comprehensive multi-omics profiling on a longitudinal human cohort of 108 participants, aged between 25 years and 75 years. The participants resided in California, United States, and were tracked for a median period of 1.7 years, with a maximum follow-up duration of 6.8 years. The analysis revealed consistent nonlinear patterns in molecular markers of aging, with substantial dysregulation occurring at two major periods occurring at approximately 44 years and 60 years of chronological age. Distinct molecules and functional pathways associated with these periods were also identified, such as immune regulation and carbohydrate metabolism that shifted during the 60-year transition and cardiovascular disease, lipid and alcohol metabolism changes at the 40-year transition. Overall, this research demonstrates that functions and risks of aging-related diseases change nonlinearly across the human lifespan and provides insights into the molecular and biological pathways involved in these changes.
Collapse
Affiliation(s)
- Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Singapore, Singapore
| | - Chuchu Wang
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Hornburg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Yan L, Xu J, Lou F, Dong Y, Lv S, Kang N, Luo Z, Liu Y, Pu J, Zhong X, Ji P, Xie P, Jin X. Alterations of oral microbiome and metabolic signatures and their interaction in oral lichen planus. J Oral Microbiol 2024; 16:2422164. [PMID: 39498115 PMCID: PMC11533246 DOI: 10.1080/20002297.2024.2422164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/03/2024] [Accepted: 09/03/2024] [Indexed: 11/07/2024] Open
Abstract
Background Oral lichen planus (OLP) is a chronic oral mucosal inflammatory disease with a risk of becoming malignant. Emerging evidence suggests that microbial imbalance plays an important role in the development of OLP. However, the association between the oral microbiota and the metabolic features in OLP is still unclear. Methods We conducted 16S rRNA sequencing and metabolomics profiling on 95 OLP patients and 105 healthy controls (HC).To study oral microbes and metabolic changes in OLP, we applied differential analysis, Spearman correlation analysis and four machine learning algoeithms. Results The alpha and beta diversity both differed between OLP and HC. After adjustment for gender and age, we found an increase in the relative abundance of Pseudomonas, Aggregatibacter, Campylobacter, and Lautropia in OLP, while 18 genera decreased in OLP. A total of 153 saliva metabolites distinguishing OLP from HC were identified. Notably, correlations were found between Oribacterium, specific lipid and amino acid metabolites, and OLP's clinical phenotype. Additionally, the combination of Pseudomonas, Rhodococcus and (±)10-HDoHE effectively distinguished OLP from HC. Conclusions Based on multi-omics data, this study provides comprehensive evidence of a novel interplay between oral microbiome and metabolome in OLP pathogenesis using the oral microbiota and metabolites of OLP patients.
Collapse
Affiliation(s)
- Li Yan
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Jingyi Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Fangzhi Lou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yunmei Dong
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Shiping Lv
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ning Kang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Zhuoyan Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Tang BB, Su CX, Wen N, Zhang Q, Chen JH, Liu BB, Wang YQ, Huang CQ, Hu YL. FMT and TCM to treat diarrhoeal irritable bowel syndrome with induced spleen deficiency syndrome- microbiomic and metabolomic insights. BMC Microbiol 2024; 24:433. [PMID: 39455910 PMCID: PMC11515126 DOI: 10.1186/s12866-024-03592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Diarrheal irritable bowel syndrome (IBS-D) is a functional bowel disease with diarrhea, and can be associated with common spleen deficiency syndrome of the prevelent traditional Chinese medicine (TCM) syndrome. Fecal microbiota transplantation (FMT) could help treating IBS-D, but may provide variable effects. Our study evaluated the efficacy of TCM- shenling Baizhu decoction and FMT in treating IBS-D with spleen deficiency syndrome, with significant implications on gut microbiome and serum metabolites. METHODS The new borne rats were procured from SPF facility and separated as healthy (1 group) and IBS-D model ( 3 groups) rats were prepared articially using mother's separation and senna leaf treatment. 2 groups of IBS-D models were further treated with TCM- shenling Baizhu decoction and FMT. The efficacy was evaluated by defecation frequency, bristol stool score, and intestinal tight junction proteins (occludin-1 and claudin-1) expression. Microbiomic analysis was conducted using 16 S rRNA sequencing and bioinformatics tools. Metabolomics were detected in sera of rats by LC-MS and annotated by using KEGG database. RESULTS Significant increment in occludin-1 and claudin-1 protein expression alleviated the diarrheal severity in IBS-D rats (P < 0.05) after treatment with FMT and TCM. FMT and TCM altered the gut microbiota and regulated the tryptophan metabolism, steroid hormone biosynthesis and glycerophospholipid metabolism of IBS-D rats with spleen deficiency syndrome.The microbial abundance were changed in each case e.g., Monoglobus, Dubosiella, and Akkermansia and othe metabolic profiles. CONCLUSION FMT and TCM treatment improved the intestinal barrier function by regulating gut microbiota and improved metabolic pathways in IBS-D with spleen deficiency syndrome.
Collapse
Affiliation(s)
- Bin-Bin Tang
- Second Outpatient Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Cheng-Xia Su
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Na Wen
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Qian Zhang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Jian-Hui Chen
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin-Bin Liu
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Yi-Qing Wang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Chao-Qun Huang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China.
| | - Yun-Lian Hu
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China.
- Hubei Shizhen Laboratory, Wuhan, China.
| |
Collapse
|
14
|
Ban D, GeSang Z, Fan Y, Fu G, Yang H, Si L. Therapeutic potential of compound extract from Dracocephalum Rupestre Hance and Berberidis Radix against Salmonella-induced lamb diarrhea. Sci Rep 2024; 14:23789. [PMID: 39394233 PMCID: PMC11470057 DOI: 10.1038/s41598-024-73034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/12/2024] [Indexed: 10/13/2024] Open
Abstract
Lamb diarrhea is primarily induced by bacterial infections, causing great economic and health challenges. Traditional antibiotic treatments raise concerns over drug resistance and environmental contamination. We explored the therapeutic potential of a compound extract from Dracocephalum rupestre Hance and Berberidis Radix against Salmonella-induced diarrhea in lamb. Twenty-five five-week-old Kunming mice (20 ± 5 g) were used. A controlled laboratory experiment, combing histological examinations, serum cytokine level analysis, gut microbiota composition analysis, and short-chain fatty acid quantification were conducted. Results demonstrated significant reparative effects on intestinal mucosal damage of the compound. Compound treatment notably reduced serum levels of inflammatory cytokines (IL-6, IL-8, sigA, and TNF-α), indicating an anti-inflammatory effect. Gene expression analysis of mucosal repair markers (PCNA, TGF, and EGFR) confirmed the positive impacts on intestinal recovery processes after treatment. Microbiota analysis revealed concentration-dependent alterations in gut microbial composition, with a notable increase in beneficial bacterial genera such as Muribaculum and Prevotella, suggesting the role of the compound in promoting gut health. Additionally, short-chain fatty acid analysis indicated an increase in beneficial acids, which are critical for the gut and overall health. This investigation highlights the potential therapeutic benefits of Dracocephalum rupestre Hance combining Berberidis Radix in lamb with Salmonella-induced diarrhea.
Collapse
Affiliation(s)
- Dan Ban
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, No. 56 Duodi Road, Lasa, 850000, Tibet, China
| | - Zhuoga GeSang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, No. 56 Duodi Road, Lasa, 850000, Tibet, China
| | - Yueyuan Fan
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Fengyuan Road, Panlong District, Kunming, 650201, China
| | - Guowen Fu
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Fengyuan Road, Panlong District, Kunming, 650201, China
| | - Hongjiao Yang
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Fengyuan Road, Panlong District, Kunming, 650201, China
| | - Langyuzhen Si
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, No. 56 Duodi Road, Lasa, 850000, Tibet, China.
- Institute of Grassland Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, No. 56 Duodi Road, Lasa, 850000, Tibet, China.
| |
Collapse
|
15
|
Rossdale J, Graby J, Harris M, Jones C, Greenish D, Bartlett J, Gilroy A, Sanghera J, Pauling JD, Skeoch S, Flower V, Mackenzie Ross R, Suntharalingam J, Rodrigues JCL. Coronary artery calcification is prevalent in systemic sclerosis and is associated with adverse prognosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2024; 9:192-202. [PMID: 39386266 PMCID: PMC11459481 DOI: 10.1177/23971983241264090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/02/2024] [Indexed: 10/12/2024]
Abstract
Objective Coronary artery calcification assessed on thoracic computed tomography represents the calcific component of established coronary artery disease, is a biomarker of total atheromatous plaque burden and predicts mortality. Systemic sclerosis is a pro-inflammatory condition, and inflammation is also a driver of coronary artery disease. We assessed coronary artery calcification prevalence, mortality risk and potential clinical impact on primary prevention in a cohort of patients with systemic sclerosis, differentiated by clinical phenotype including the presence of interstitial lung disease and pulmonary arterial hypertension. Methods Retrospective analysis of 258 computed tomographies in systemic sclerosis patients from three prospectively maintained clinical and research databases at a single tertiary rheumatology/pulmonary hypertension (PH) service between March 2007 and September 2020 (mean age = 65 ± 12, 14% male). Co-morbidities, statin prescription and all-cause mortality were recorded. Patients were subtyped according to underlying systemic sclerosis complications. Computed tomographies were re-reviewed for coronary artery calcification; severity was graded using a 4-point scale per vessel and summed for total coronary artery calcification score. The impact of reporting coronary artery calcification was assessed against pre-existing statin prescriptions. Results Coronary artery calcification was present in 58% (149/258). Coronary artery calcification was more prevalent in systemic sclerosis-pulmonary arterial hypertension than in systemic sclerosis subgroups with interstitial lung disease or without pulmonary arterial hypertension, controlling for age, sex, co-morbidities and smoking status (71%; χ 2(13) = 81.4; p < 0.001). The presence and severity of coronary artery calcification were associated with increased risk of mortality independently of age and co-morbidities (hazard ratio = 2.8; 95% confidence interval = 1.2-6.6; p = 0.018). The 'number needed to report' coronary artery calcification presence to potentially impact management was 3. Conclusions Coronary artery calcification is common in systemic sclerosis. Coronary artery calcification predicts mortality independently of age and confounding co-morbidities which suggests this finding has clinical relevance and is a potential target for screening and therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer Rossdale
- Respiratory Department, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
- Department of Life Sciences, University of Bath, Bath, UK
| | - John Graby
- Cardiology Department, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
- Department for Health, University of Bath, Bath, UK
| | - Maredudd Harris
- Radiology Department, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Calum Jones
- Radiology Department, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Davyd Greenish
- Radiology Department, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Jessica Bartlett
- Radiology Department, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Andrew Gilroy
- Radiology Department, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Jamie Sanghera
- Respiratory Department, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - John D Pauling
- Royal National Hospital for Rheumatic Diseases, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
- Rheumatology Department, North Bristol NHS Trust, Bristol, UK
| | - Sarah Skeoch
- Royal National Hospital for Rheumatic Diseases, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Victoria Flower
- Department of Life Sciences, University of Bath, Bath, UK
- Royal National Hospital for Rheumatic Diseases, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Rob Mackenzie Ross
- Respiratory Department, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Jay Suntharalingam
- Respiratory Department, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
- Department of Life Sciences, University of Bath, Bath, UK
| | - Jonathan CL Rodrigues
- Department for Health, University of Bath, Bath, UK
- Radiology Department, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| |
Collapse
|
16
|
Ye Q, Zhou Y, Xu K, Jiang Z. Causality of blood metabolites and metabolic pathways on peripheral arteriosclerosis: a Mendelian randomization study. Front Nutr 2024; 11:1421531. [PMID: 39296501 PMCID: PMC11409423 DOI: 10.3389/fnut.2024.1421531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Background Peripheral arteriosclerosis is caused by any atherosclerosis outside the heart and brain. However, the underlying biological mechanisms are not fully understood. This study aims to explore the causal relationship between blood metabolites and peripheral arteriosclerosis. Methods A Mendelian randomization (MR) analysis was implemented to estimate the causality of blood metabolites on peripheral arteriosclerosis. A genome-wide association study (GWAS) of 1,400 metabolites was used as the exposure, whereas two different GWAS datasets of peripheral arteriosclerosis were the outcomes. Inverse-variance weighted (IVW) was the main analysis of causal analysis. MR-Egger, the simple mode, weighted median and weighted mode were used to increase the stability and robustness of the results. Cochran Q test, MR-Egger intercept test, the funnel plot, and MR-Pleiotropy RESidual Sum and Outlier were used for sensitivity analyses. Furthermore, metabolic pathway enrichment analysis was performed using MetaboAnalyst5.0. Results In this MR study, eight blood metabolites have a strong causal relationship with peripheral arteriosclerosis, including 1-myristoyl-2-arachidonoyl-GPC (14:0/20:4), 1-palmitoyl-2-arachidonoyl-gpc (16:0/20:4n6), 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE, 1-palmitoyl-2-dihomo-linolenoyl-GPC, Gamma-glutamylleucine, Deoxycholic acid glucuronide and two named X- (X-24546, X-26111). In addition, five important metabolic pathways in peripheral arteriosclerosis were identified through metabolic pathway analysis. Conclusion This study provides evidence for the causal relationship between blood metabolites and peripheral arteriosclerosis, and these eight blood metabolites provide new perspectives for screening and prevention of peripheral arteriosclerosis in the future.
Collapse
Affiliation(s)
- Qian Ye
- Department of Clinical Laboratory, Wenzhou People's Hospital, The Third Affiliated Hospital of Shanghai University, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yilin Zhou
- College of Engineering, Boston University, Boston, MA, United States
| | - Kai Xu
- Department of Clinical Laboratory, Wenzhou People's Hospital, The Third Affiliated Hospital of Shanghai University, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhili Jiang
- Cardiac Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Tian B, Xu LL, Jiang LD, Lin X, Shen J, Shen H, Su KJ, Gong R, Qiu C, Luo Z, Yao JH, Wang ZQ, Xiao HM, Zhang LS, Deng HW. Identification of the serum metabolites associated with cow milk consumption in Chinese Peri-/Postmenopausal women. Int J Food Sci Nutr 2024; 75:537-549. [PMID: 38918932 DOI: 10.1080/09637486.2024.2366223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Cow milk consumption (CMC) and downstream alterations of serum metabolites are commonly considered important factors regulating human health status. Foods may lead to metabolic changes directly or indirectly through remodelling gut microbiota (GM). We sought to identify the metabolic alterations in Chinese Peri-/Postmenopausal women with habitual CMC and explore if the GM mediates the CMC-metabolite associations. 346 Chinese Peri-/Postmenopausal women participants were recruited in this study. Fixed effects regression and partial least squares discriminant analysis (PLS-DA) were applied to reveal alterations of serum metabolic features in different CMC groups. Spearman correlation coefficient was computed to detect metabolome-metagenome association. 36 CMC-associated metabolites including palmitic acid (FA(16:0)), 7alpha-hydroxy-4-cholesterin-3-one (7alphaC4), citrulline were identified by both fixed effects regression (FDR < 0.05) and PLS-DA (VIP score > 2). Some significant metabolite-GM associations were observed, including FA(16:0) with gut species Bacteroides ovatus, Bacteroides sp.D2. These findings would further prompt our understanding of the effect of cow milk on human health.
Collapse
Affiliation(s)
- Bo Tian
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Lu-Lu Xu
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Lin-Dong Jiang
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Rui Gong
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, China
- Department of Cadre Ward Endocrinology, Gansu Provincial Hospital, Lanzhou, China
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Zhe Luo
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Jia-Heng Yao
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Zhuo-Qi Wang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Li-Shu Zhang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
18
|
He M, Shi J, Wu C, Xu YJ, Liu Y. Integrating Lipidomics, Metabolomics, and Network Pharmacology to Reveal the Mechanism of Cannabidiol against Inflammation in High-Fat, High-Cholesterol Diet-Induced Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19246-19256. [PMID: 39150414 DOI: 10.1021/acs.jafc.4c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Inflammation plays a critical role in the development of numerous diseases. Cannabidiol (CBD), found in hemp, exhibits significant pharmacological activities. Accumulating evidence suggests that CBD has anti-inflammatory and cardiovascular protection effects, but the potential mechanisms require further exploration. In this study, we aimed to reveal the mechanisms of CBD against high-fat, high-cholesterol (HFC) diet-induced inflammation combining metabolomics with network pharmacology. First, plasma lipidomics results indicated that oxidized lipids could serve as potential biomarkers for HFC diet-induced inflammation, and CBD reversed the elevated levels of oxidized lipids. The HFC diet was also found to enhance intestinal permeability, facilitating the entry of lipopolysaccharides (LPSs) into the circulatory system and subsequently increasing systemic inflammation. Additionally, cell metabolomic results indicated that CBD could reverse 10 important differential metabolites in LPS-induced RAW 264.7 cells. Using network pharmacology, we identified 49 core targets, and enrichment analysis revealed that arachidonic acid was the most significantly affected by CBD, which was closely associated with inflammation. Further integrated analysis focused on three key targets, including PTGS2, ALOX5, and ALOX15. Molecular docking showed high affinities between key targets and CBD, and qPCR further demonstrated that CBD could reverse the mRNA expression of these key targets in RAW 264.7 cells. Collectively, this finding integrates lipidomics and metabolomics with network pharmacology to elucidate the anti-inflammatory effects of CBD and validates key therapeutic targets.
Collapse
Affiliation(s)
- Mengxue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cong Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Yang K, Li J, Hui X, Wang W, Liu Y. Assessing the causal relationship between metabolic biomarkers and coronary artery disease by Mendelian randomization studies. Sci Rep 2024; 14:19034. [PMID: 39152174 PMCID: PMC11329738 DOI: 10.1038/s41598-024-69879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
The development of coronary artery disease (CAD) is significantly affected by impaired endocrine and metabolic status. Under this circumstance, improved prevention and treatment of CAD may result from knowing the connection between metabolites and CAD. This study aims to delve into the causal relationship between human metabolic biomarkers and CAD by using two-sample Mendelian randomization (MR). Utilizing two-sample bidirectional MR analysis, we assessed the correlation between 1400 blood metabolites and CAD, and the metabolites data from the CLSA, encompassing 8299 participants. Metabolite analysis identified 1091 plasma metabolites and 309 ratios as instrumental variables. To evaluate the causal link between metabolites and CAD, we analyzed three datasets: ebi-a-GCST005195 (547,261 European & East Asian samples), bbj-a-159 (29,319 East Asian CAD cases & 183,134 East Asian controls), and ebi-a-GCST005194 (296,525 European & East Asian samples). To estimate causal links, we utilized the IVW method. To conduct sensitivity analysis, we used MR-Egger, Weighted Median, and MR-PRESSO. Additionally, we employed MR-Egger interception and Cochran's Q statistic to assess potential heterogeneity and pleiotropy. What's more, replication and reverse analyses were performed to verify the reliability of the results and the causal order between metabolites and disease. Furthermore, we conducted a pathway analysis to identify potential metabolic pathways. 59 blood metabolites and 27 metabolite ratios nominally associated with CAD (P < 0.05) were identified by IVW analysis method. A total of four known blood metabolites, namely beta-hydroxyisovaleroylcarnitine (OR 1.06, 95% CI 1.027-1.094, FDR 0.07), 1-palmitoyl-2-arachidonoyl (OR 1.07, 95% CI 1.029-1.110, FDR 0.09), 1-stearoyl-2- docosahexaenoyl (OR 1.07, 95% CI 1.034-1.113, FDR 0.07) and Linoleoyl-arachidonoyl-glycerol, (OR 1.07, 95% CI 1.036-1.105, FDR 0.05), and two metabolite ratios, namely spermidine to N-acetylputrescine ratio (OR 0.94, 95% CI 0.903-0.972, FDR 0.09) and benzoate to linoleoyl-arachidonoyl-glycerol ratio (OR 0.87, 95% CI 0.879-0.962, FDR 0.07), were confirmed as having a significant causal relationship with CAD, after correcting for the FDR method (p < 0. 1). A causal relationship was found to be established between beta -hydroxyisovalerylcarnitine and CAD with the validation in other two datasets. Moreover, multiple metabolic pathways were discovered to be associated with CAD. Our study supports the hypothesis that metabolites have an impact on CAD by demonstrating a causal relationship between human metabolites and CAD. This study is important for new strategies for the prevention and treatment of CAD.
Collapse
Affiliation(s)
- Kai Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People's Republic of China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jixin Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Xiaoshan Hui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People's Republic of China
| | - Wenru Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Yongmei Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People's Republic of China.
| |
Collapse
|
20
|
Jannati S, Patnaik R, Banerjee Y. Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling. Int J Mol Sci 2024; 25:8727. [PMID: 39201414 PMCID: PMC11355043 DOI: 10.3390/ijms25168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Non-vitamin K oral anticoagulants (NOACs) have revolutionized anticoagulant therapy, offering improved safety and efficacy over traditional agents like warfarin. This review comprehensively examines the dual roles of NOACs-apixaban, rivaroxaban, edoxaban, and dabigatran-not only as anticoagulants, but also as modulators of inflammation via protease-activated receptor (PAR) signaling. We highlight the unique pharmacotherapeutic properties of each NOAC, supported by key clinical trials demonstrating their effectiveness in preventing thromboembolic events. Beyond their established anticoagulant roles, emerging research suggests that NOACs influence inflammation through PAR signaling pathways, implicating factors such as factor Xa (FXa) and thrombin in the modulation of inflammatory responses. This review synthesizes current evidence on the anti-inflammatory potential of NOACs, exploring their impact on inflammatory markers and conditions like atherosclerosis and diabetes. By delineating the mechanisms by which NOACs mediate anti-inflammatory effects, this work aims to expand their therapeutic utility, offering new perspectives for managing inflammatory diseases. Our findings underscore the broader clinical implications of NOACs, advocating for their consideration in therapeutic strategies aimed at addressing inflammation-related pathologies. This comprehensive synthesis not only enhances understanding of NOACs' multifaceted roles, but also paves the way for future research and clinical applications in inflammation and cardiovascular health.
Collapse
Affiliation(s)
- Shirin Jannati
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Rajashree Patnaik
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Yajnavalka Banerjee
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
21
|
Wu Y, Xing L, Lu L, Liu S, Zhao D, Lin L, Wang S, Li C, Pan Y. Alterations in the Salivary Microbiome and Metabolism in Patients With Carotid Atherosclerosis from Rural Northeast China. J Am Heart Assoc 2024; 13:e034014. [PMID: 39082416 PMCID: PMC11964033 DOI: 10.1161/jaha.123.034014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/25/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Periodontitis and atherosclerosis are both chronic inflammatory diseases with a high prevalence. Increasing evidence supports the independent association between severe periodontitis and atherosclerotic cardiovascular disease, in which oral microorganisms may play an important role. We aimed to evaluate the characteristic changes of salivary microbiome and metabolome in patients with carotid atherosclerosis (CAS) and periodontitis. METHODS AND RESULTS The subjects were obtained from a cross-sectional study that included 1933 participants aged 40 years or older from rural northeast China. The study enrolled 48 subjects with CAS and 48 controls without CAS matched by sex, age, body mass index, and prevalence of hypertension, diabetes, and dyslipidemia. We performed full-length 16S rDNA gene sequencing and untargeted metabolomics of saliva samples from 96 subjects. We found that CAS was closely associated with an increased abundance of Streptococcus, Lactobacillus, and Cutibacterium. Furthermore, patients with CAS had higher prevalence of severe periodontitis than the control group. Notably, periodontal pathogens such as Tannerella and Anaeroglobus were not only associated with periodontitis but also enriched in patients with CAS, whereas periodontal health-associated Neisseria was more abundant in those without CAS. We also identified 2 lipid metabolism pathways, including glycerophospholipid and sphingolipid metabolism, as associated with CAS. The levels of trimethylamine N-oxide and inflammatory mediator leukotriene D4 were significantly higher in patients with CAS, whereas the levels of carnosine were significantly lower, than those in controls. Additionally, serum levels of inflammatory marker high-sensitivity C-reactive protein were significantly increased in CAS and positively correlated with the abundance of Anaeroglobus and leukotriene D4 in saliva. CONCLUSIONS Our study suggests that characteristic changes in salivary microbiota and metabolites are closely related to CAS, and periodontitis and associated microorganisms may be involved in the initiation and progression of CAS.
Collapse
Affiliation(s)
- Yahong Wu
- Department of Periodontology, School and Hospital of StomatologyChina Medical University, Liaoning Provincial Key Laboratory of Oral DiseasesShenyangChina
| | - Liying Xing
- Institute of Chronic DiseaseLiaoning Provincial Center for Disease Control and PreventionShenyangChina
| | - Lijie Lu
- Department of Periodontology, School and Hospital of StomatologyChina Medical University, Liaoning Provincial Key Laboratory of Oral DiseasesShenyangChina
| | - Shuang Liu
- Department of Cardiovascular UltrasoundThe Fourth Hospital of China Medical UniversityShenyangChina
| | - Dan Zhao
- Department of Implant Dentistry, Beijing Stomatological HospitalCapital Medical UniversityBeijingChina
| | - Li Lin
- Department of Periodontology, School and Hospital of StomatologyChina Medical University, Liaoning Provincial Key Laboratory of Oral DiseasesShenyangChina
| | - Songlin Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological HospitalCapital Medical UniversityBeijingChina
| | - Chen Li
- Department of Periodontology, School and Hospital of StomatologyChina Medical University, Liaoning Provincial Key Laboratory of Oral DiseasesShenyangChina
| | - Yaping Pan
- Department of Periodontology, School and Hospital of StomatologyChina Medical University, Liaoning Provincial Key Laboratory of Oral DiseasesShenyangChina
| |
Collapse
|
22
|
Mu W, Han X, Tong M, Ben S, Yao M, Zhao Y, Xia J, Ren L, Huang C, Li D, Li X, Jiang Q, Yan B. Identification of the Metabolic Signature of Aging Retina. Transl Vis Sci Technol 2024; 13:8. [PMID: 39102240 PMCID: PMC11309042 DOI: 10.1167/tvst.13.8.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose This study aims to explore the metabolic signature of aging retina and identify the potential metabolic biomarkers for the diagnosis of retinal aging. Methods Retinal samples were collected from both young (two months) and aging (14 months) mice to conduct an unbiased metabolic profiling. Liquid chromatography-tandem mass spectrometry analysis was conducted to screen for the metabolic biomarkers and altered signaling pathways associated with retinal aging. Results We identified 166 metabolites differentially expressed between young and aged retinas using a threshold of orthogonal projection to latent structures discriminant analysis variable importance in projection >1 and P < 0.05. These metabolites were significantly enriched in several metabolic pathways, including purine metabolism, citrate cycle, phenylalanine, tyrosine and tryptophan biosynthesis, glycerophospholipid metabolism, and alanine, aspartate and glutamate metabolism. Among these significantly enriched pathways, glycerophospholipid metabolites emerged as promising candidates for retinal aging biomarkers. We assessed the potential of these metabolites as biomarkers through an analysis of their sensitivity and specificity, determined by the area under the receiver-operating characteristic (ROC) curves. Notably, the metabolites like PC (15:0/22:6), PC (17:0/14:1), LPC (P-16:0), PE (16:0/20:4), and PS (17:0/16:1) demonstrated superior performance in sensitivity, specificity, and accuracy in predicting retinal aging. Conclusions This study sheds light on the molecular mechanisms underlying retinal aging by identifying distinct metabolic profiles and pathways. These findings provide a valuable foundation for developing future clinical applications in diagnosing, identifying, and treating age-related retinal degeneration. Translational Relevance This study sheds light on novel metabolic profiles and biomarkers in aging retinas, potentially paving the way for targeted interventions in preventing, diagnosing, and treating age-related retinal degeneration and other retinal diseases.
Collapse
Affiliation(s)
- Wan Mu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Han
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Ming Tong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Shuai Ben
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mudi Yao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Xia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Ren
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Duo Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Healy DR, Zarei I, Mikkonen S, Soininen S, Viitasalo A, Haapala EA, Auriola S, Hanhineva K, Kolehmainen M, Lakka TA. Longitudinal associations of an exposome score with serum metabolites from childhood to adolescence. Commun Biol 2024; 7:890. [PMID: 39039257 PMCID: PMC11263428 DOI: 10.1038/s42003-024-06146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/05/2024] [Indexed: 07/24/2024] Open
Abstract
Environmental and lifestyle factors, including air pollution, impaired diet, and low physical activity, have been associated with cardiometabolic risk factors in childhood and adolescence. However, environmental and lifestyle exposures do not exert their physiological effects in isolation. This study investigated associations between an exposome score to measure the impact of multiple exposures, including diet, physical activity, sleep duration, air pollution, and socioeconomic status, and serum metabolites measured using LC-MS and NMR, compared to the individual components of the score. A general population of 504 children aged 6-9 years at baseline was followed up for eight years. Data were analysed with linear mixed-effects models using the R software. The exposome score was associated with 31 metabolites, of which 12 metabolites were not associated with any individual exposure category. These findings highlight the value of a composite score to predict metabolic changes associated with multiple environmental and lifestyle exposures since childhood.
Collapse
Affiliation(s)
- Darren R Healy
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland.
| | - Iman Zarei
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland
| | - Santtu Mikkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Finland
- Department of Technical Physics, University of Eastern Finland, Kuopio Campus, Finland
| | - Sonja Soininen
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
- Physician and Nursing Services, Health and Social Services Centre, Wellbeing Services County of North Savo, Varkaus, Finland
| | - Anna Viitasalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Eero A Haapala
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio Campus, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland
| | - Timo A Lakka
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| |
Collapse
|
24
|
Sun D, Hou D, Zheng Y, Xiang W, Huang Y, Wu H, Zou J. Multi-Omics Reveals the Effects of Spirulina platensis Powder Replacement of Fish Meal on Intestinal Metabolism and Stress in Zig-Zag Eel ( Mastacembelus armatus). Antioxidants (Basel) 2024; 13:851. [PMID: 39061919 PMCID: PMC11273650 DOI: 10.3390/antiox13070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The booming aquaculture industry has created a strong demand for fishmeal and increased environmental pressures. Spirulina, as a potential alternative to fishmeal, has been shown to have growth-promoting and animal health-enhancing properties. In this study, 600 large spiny loaches, divided into five experimental groups, F0, F1, F2, F3, and F4, were reared for 10 weeks using Spirulina platensis powder (SPP) as a substitute for 0%, 5%, 10%, 15%, and 20% of fishmeal, respectively. The results of intestinal physiological indexes showed that superoxide dismutase was lower than F0 in all treatment groups, and the activity of F3 was significantly lower than F0 (p < 0.05). The activity of malondialdehyde was significantly higher than that of F0 in all groups except F3 (p < 0.05). The addition of SPP also led to a decrease in the activity of acid phosphatase in the intestine, which was significantly lower in all treatment groups compared to the F0 group (p < 0.05). The results of serum physiology showed that the activity of superoxide dismutase in serum gradually increased with the increase in the percentage of SPP addition, and the F3 group produced a significant difference from the F0 group (p < 0.05). The transcriptomics results showed that DEGs in the low percentage substitution group (<15%) were mostly enriched in metabolism-related pathways, such as bile secretion; DEGs in the high percentage substitution group (>15%) were mostly enriched in inflammation-related pathways, such as complement p and coagulation cascades. Metabolomics confirmed that nicotinate and nicotinamide metabolism and glycerophospholipid metabolism were the two pathways that were significantly enriched in the treatment groups of fishmeal replacement by SPP. The present study demonstrated that a low percentage (<15%) of fishmeal replacement by SPP in feed mobilized MA digestive metabolism, whereas a high percentage (>15%) of replacement induced intestinal stress. Considering the health and farm efficiency aspects, the proportion of SPP in feed formulation for MA should be less than 15%.
Collapse
Affiliation(s)
- Di Sun
- College of Marine Sciences, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou 510642, China; (D.S.); (D.H.); (Y.Z.)
| | - Dongqiang Hou
- College of Marine Sciences, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou 510642, China; (D.S.); (D.H.); (Y.Z.)
| | - Yushun Zheng
- College of Marine Sciences, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou 510642, China; (D.S.); (D.H.); (Y.Z.)
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Haizhu District, Guangzhou 510301, China;
| | - Yingshi Huang
- Faculty of Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Hualian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Haizhu District, Guangzhou 510301, China;
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou 510642, China; (D.S.); (D.H.); (Y.Z.)
| |
Collapse
|
25
|
Xu Z, Mou C, Ji R, Chen H, Ding Y, Jiang X, Meng F, He F, Luo B, Yu J. Alterations in metabolome and lipidome in patients with in-stent restenosis. CNS Neurosci Ther 2024; 30:e14832. [PMID: 39009504 PMCID: PMC11249805 DOI: 10.1111/cns.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
CONTEXT In-stent restenosis (ISR) can lead to blood flow obstruction, insufficient blood supply to the brain, and may even result in serious complications such as stroke. Endothelial cell hyperproliferation and thrombosis are the primary etiologies, frequently resulting in alterations in intravascular metabolism. However, the metabolic changes related to this process are still undermined. OBJECTIVE We tried to characterize the serum metabolome of patients with ISR and those with non-restenosis (NR) using metabolomics and lipidomics, exploring the key metabolic pathways of this pathological phenomenon. RESULTS We observed that the cysteine and methionine pathways, which are associated with cell growth and oxidative homeostasis, showed the greatest increase in the ISR group compared to the NR group. Within this pathway, the levels of N-formyl-l-methionine and L-methionine significantly increased in the ISR group, along with elevated levels of downstream metabolites such as 2-ketobutyric acid, pyruvate, and taurocholate. Additionally, an increase in phosphatidylcholine (PC) and phosphatidylserine (PS), as well as a decrease in triacylglycerol in the ISR group, indicated active lipid metabolism in these patients, which could be a significant factor contributing to the recurrence of blood clots after stent placement. Importantly, phenol sulfate and PS(38:4) were identified as potential biomarkers for distinguishing ISR, with an area under the curve of more than 0.85. CONCLUSIONS Our study revealed significant metabolic alterations in patients with ISR, particularly in the cysteine and methionine pathways, with phenol sulfate and PS(38:4) showing promise for ISR identification.
Collapse
Affiliation(s)
- Ziqi Xu
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Chenye Mou
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Renjie Ji
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Hanfen Chen
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yuge Ding
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Xiaoyi Jiang
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fanxia Meng
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fangping He
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jie Yu
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
26
|
Karthikeyan BS, Hyötyläinen T, Ghaffarzadegan T, Triplett E, Orešič M, Ludvigsson J. Prenatal exposure to environmental contaminants and cord serum metabolite profiles in future immune-mediated diseases. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:647-658. [PMID: 38678133 PMCID: PMC11303251 DOI: 10.1038/s41370-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Prenatal exposure to environmental contaminants is a significant health concern because it has the potential to interfere with host metabolism, leading to adverse health effects in early childhood and later in life. Growing evidence suggests that genetic and environmental factors, as well as their interactions, play a significant role in the development of autoimmune diseases. OBJECTIVE In this study, we hypothesized that prenatal exposure to environmental contaminants impacts cord serum metabolome and contributes to the development of autoimmune diseases. METHODS We selected cord serum samples from All Babies in Southeast Sweden (ABIS) general population cohort, from infants who later developed one or more autoimmune-mediated and inflammatory diseases: celiac disease (CD), Crohn's disease (IBD), hypothyroidism (HT), juvenile idiopathic arthritis (JIA), and type 1 diabetes (T1D) (all cases, N = 62), along with matched controls (N = 268). Using integrated exposomics and metabolomics mass spectrometry (MS) based platforms, we determined the levels of environmental contaminants and metabolites. RESULTS Differences in exposure levels were found between the controls and those who later developed various diseases. High contaminant exposure levels were associated with changes in metabolome, including amino acids and free fatty acids. Specifically, we identified marked associations between metabolite profiles and exposure levels of deoxynivalenol (DON), bisphenol S (BPS), and specific per- and polyfluorinated substances (PFAS). IMPACT STATEMENT Abnormal metabolism is a common feature preceding several autoimmune and inflammatory diseases. However, few studies compared common and specific metabolic patterns preceding these diseases. Here we hypothesized that exposure to environmental contaminants impacts cord serum metabolome, which may contribute to the development of autoimmune diseases. We found differences in exposure levels between the controls and those who later developed various diseases, and importantly, on the metabolic changes associated with the exposures. High contaminant exposure levels were associated with specific changes in metabolome. Our study suggests that prenatal exposure to specific environmental contaminants alters the cord serum metabolomes, which, in turn, might increase the risk of various immune-mediated diseases.
Collapse
Affiliation(s)
- Bagavathy Shanmugam Karthikeyan
- School of Science and Technology, Örebro University, SE-702 81, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-702 81, Örebro, Sweden
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, SE-702 81, Örebro, Sweden
| | | | - Eric Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences University of Florida, Gainesville, 32611-0700, FL, USA
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-702 81, Örebro, Sweden.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-20520, Finland.
| | - Johnny Ludvigsson
- Crown Princess Victoria's Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, SE-581 85, Sweden
| |
Collapse
|
27
|
Gao T, Wang Q, Sun H, Liu Y, Li J, He Y. Physiological Adaptation of Fenneropenaeus chinensis in Response to Saline-Alkaline Stress Revealed by a Combined Proteomics and Metabolomics Method. BIOLOGY 2024; 13:488. [PMID: 39056683 PMCID: PMC11274245 DOI: 10.3390/biology13070488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
The rapid development of the mariculture industry has been hindered by limited coastal aquaculture space. To utilize the abundant inland saline-alkaline water, we studied the physiological effects of high carbonate alkalinity stress and high pH stress on Fenneropenaeus chinensis. The study employed quantitative proteomics by tandem mass tag (TMT) and non-targeted metabolomics analysis using a liquid chromatograph mass spectrometer (LC-MS) to understand the physiological and biochemical adaptive mechanisms of the hepatopancreas of F. chinensis in response to saline-alkaline stress at the molecular level. We designed two stress groups as follows: a high carbonate alkalinity (CA) group and a combined high carbonate alkalinity and high pH (CP) group. The study found that the protein and metabolic profiles of the two stress groups were changed, and the CP group, which was exposed to dual stresses, incurred more severe damage to the hepatopancreas compared to that of the CA group. After exposure to CA and CP, the hepatopancreas of F. chinensis showed significant alterations in 455 proteins and 50 metabolites, and 1988 proteins and 272 metabolites, respectively. In addition, F. chinensis upregulated the level of energy metabolism in the hepatopancreas to defend against osmotic imbalance caused by CA or CP stress, which was demonstrated by the significant upregulation of important proteins and metabolites in glycolysis, pyruvate metabolism, TCA cycle, and fatty acid oxidation. Additionally, pattern recognition receptors, the phenol oxidase system, and various immune-related metabolic enzymes and metabolites were also affected. The immune homeostasis of F. chinensis was affected by the alteration of the antioxidant system following exposure to CA or CP. These findings provide valuable information for F. chinensis saline-alkaline water cultivation practices.
Collapse
Affiliation(s)
- Tian Gao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (T.G.); (H.S.); (Y.L.)
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Qiong Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Huarui Sun
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (T.G.); (H.S.); (Y.L.)
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (T.G.); (H.S.); (Y.L.)
| | - Jitao Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Yuying He
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| |
Collapse
|
28
|
Ji L, Chen C, Zhu J, Hong X, Liu X, Wei C, Zhu X, Li W. Integrated time-series biochemical, transcriptomic, and metabolomic analyses reveal key metabolites and signaling pathways in the liver of the Chinese soft-shelled turtle ( Pelodiscus sinensis) against Aeromonas hydrophila infection. Front Immunol 2024; 15:1376860. [PMID: 38799475 PMCID: PMC11116567 DOI: 10.3389/fimmu.2024.1376860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Aeromonas hydrophila, a bacterium widely distributed in the natural environment, causes multiple diseases in various animals. Exploring the mechanism of the host defense against A. hydrophila can help develop efficient strategies against Aeromonas infection. Methods Herein, we investigated the temporal influence of A. hydrophila on the Chinese soft-shelled turtle, an economically important species, at the biochemical, transcriptomic, and metabolomic levels. Plasma parameters were detected with the test kits. Transcriptome and metabolome were respectively applied to screen the differentially expressed genes and metabolites. Results The contents or activities of these plasma parameters were significantly increased at 24 hpi and declined at 96 hpi, indicating that 24 and 96 hpi were two important time points during infection. Totals of 3121 and 274 differentially expressed genes (DEGs) from the transcriptome while 74 and 91 differentially abundant metabolites (DAMs) from the metabolome were detected at 24 and 96 hpi. The top DEGs at 24 hpi included Ccl2, Ccl3, Ccl4, Il1β, Il6, Il7, Il15, Tnf, and Tnfr1 while Zap70, Cd3g, Cd8a, Itk, Pik3r3, Cd247, Malt1, and Cd4 were the most abundant at 96 hpi. The predominant DAMs included O-phospho-L-serine, γ-Aminobutyric acid, orotate, L-tyrosine, and L-tryptophan at 24 hpi, as well as L-glutamic acid, L-arginine, glutathione, glutathione disulfide, and citric acid at 96 hpi. Discussion The combined analysis of DEGs and DAMs revealed that tryptophan metabolism, nicotinate and nicotinamide metabolism, as well as starch and sucrose metabolism, were the most important signaling pathways at the early infective stage while tyrosine metabolism, pyrimidine metabolism, as well as alanine, aspartate and glutamate metabolism were the most crucial pathways at the later stage. In general, our results indicated that the Chinese soft-shelled turtle displays stage-specific physiological responses to resist A. hydrophila infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Xu X, Khunsriraksakul C, Eales JM, Rubin S, Scannali D, Saluja S, Talavera D, Markus H, Wang L, Drzal M, Maan A, Lay AC, Prestes PR, Regan J, Diwadkar AR, Denniff M, Rempega G, Ryszawy J, Król R, Dormer JP, Szulinska M, Walczak M, Antczak A, Matías-García PR, Waldenberger M, Woolf AS, Keavney B, Zukowska-Szczechowska E, Wystrychowski W, Zywiec J, Bogdanski P, Danser AHJ, Samani NJ, Guzik TJ, Morris AP, Liu DJ, Charchar FJ, Tomaszewski M. Genetic imputation of kidney transcriptome, proteome and multi-omics illuminates new blood pressure and hypertension targets. Nat Commun 2024; 15:2359. [PMID: 38504097 PMCID: PMC10950894 DOI: 10.1038/s41467-024-46132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation. Imputation of kidney proteome and microRNAome uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration with plasma proteomics and metabolomics illuminated circulating levels of myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We showed that genetically determined reduction in renal expression may mimic the effects of rare loss-of-function variants on kidney mRNA/protein and lead to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation (r = 0.81) in expression of protein-coding genes between cells harvested from urine and the kidney highlighting a diagnostic potential of urinary cell transcriptomics. We uncovered adenylyl cyclase activators as a repurposing opportunity for hypertension and illustrated examples of BP-elevating effects of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our studies provide new biological insights into genetic regulation of BP with potential to drive clinical translation in hypertension.
Collapse
Affiliation(s)
- Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | | | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sebastien Rubin
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Scannali
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sushant Saluja
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Havell Markus
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Lida Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Maciej Drzal
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Akhlaq Maan
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Abigail C Lay
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Priscilla R Prestes
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Jeniece Regan
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Avantika R Diwadkar
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Grzegorz Rempega
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Jakub Ryszawy
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Robert Król
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - John P Dormer
- Department of Cellular Pathology, University Hospitals of Leicester, Leicester, UK
| | - Monika Szulinska
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Marta Walczak
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Antczak
- Department of Urology and Uro-oncology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Pamela R Matías-García
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK
| | | | - Wojciech Wystrychowski
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Zywiec
- Department of Internal Medicine, Diabetology and Nephrology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Pawel Bogdanski
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Tomasz J Guzik
- Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK.
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK.
| |
Collapse
|
30
|
Jensen GL, Cederholm T, Ballesteros-Pomar MD, Blaauw R, Correia MITD, Cuerda C, Evans DC, Fukushima R, Gautier JBO, Gonzalez MC, van Gossum A, Gramlich L, Hartono J, Heymsfield SB, Jager-Wittenaar H, Jayatissa R, Keller H, Malone A, Manzanares W, McMahon MM, Mendez Y, Mogensen KM, Mori N, Muscaritoli M, Nogales GC, Nyulasi I, Phillips W, Pirlich M, Pisprasert V, Rothenberg E, de van der Schueren M, Shi HP, Steiber A, Winkler MF, Compher C, Barazzoni R. Guidance for assessment of the inflammation etiologic criterion for the GLIM diagnosis of malnutrition: A modified Delphi approach. JPEN J Parenter Enteral Nutr 2024; 48:145-154. [PMID: 38221842 DOI: 10.1002/jpen.2590] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND The Global Leadership Initiative on Malnutrition (GLIM) approach to malnutrition diagnosis is based on assessment of three phenotypic (weight loss, low body mass index, and reduced skeletal muscle mass) and two etiologic (reduced food intake/assimilation and disease burden/inflammation) criteria, with diagnosis confirmed by fulfillment of any combination of at least one phenotypic and at least one etiologic criterion. The original GLIM description provided limited guidance regarding assessment of inflammation, and this has been a factor impeding further implementation of the GLIM criteria. We now seek to provide practical guidance for assessment of inflammation. METHODS A GLIM-constituted working group with 36 participants developed consensus-based guidance through a modified Delphi review. A multiround review and revision process served to develop seven guidance statements. RESULTS The final round of review was highly favorable, with 99% overall "agree" or "strongly agree" responses. The presence of acute or chronic disease, infection, or injury that is usually associated with inflammatory activity may be used to fulfill the GLIM disease burden/inflammation criterion, without the need for laboratory confirmation. However, we recommend that recognition of underlying medical conditions commonly associated with inflammation be supported by C-reactive protein (CRP) measurements when the contribution of inflammatory components is uncertain. Interpretation of CRP requires that consideration be given to the method, reference values, and units (milligrams per deciliter or milligram per liter) for the clinical laboratory that is being used. CONCLUSION Confirmation of inflammation should be guided by clinical judgment based on underlying diagnosis or condition, clinical signs, or CRP.
Collapse
Affiliation(s)
- Gordon L Jensen
- Deans Office and Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Tommy Cederholm
- Clinical Nutrition & Metabolism, Uppsala University, Uppsala, Sweden
- Theme Inflammation & Ageing, Karolinska University Hospital, Stockholm, Sweden
| | | | - Renee Blaauw
- Division of Human Nutrition, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - M Isabel T D Correia
- Food Science Post Graduation Program; Surgery Department, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristina Cuerda
- Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - David C Evans
- Trauma, Critical Care, General & Gastrointestinal Surgery, OhioHealth Grant Medical Center, Columbus, Ohio, USA
| | - Ryoji Fukushima
- Department of Health and Dietetics, Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, Japan
| | | | | | - Andre van Gossum
- Department of Gastroenterology and Clinical Nutrition, Hospital Universitaire de Bruxelles, Brussels, Belgium
| | - Leah Gramlich
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph Hartono
- Indonesian Central Army Gatot Soebroto Hospital, Jakarta, Indonesia
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Harriët Jager-Wittenaar
- Department of Gastroenterology and Hepatology, Dietetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, The Netherlands
| | - Renuka Jayatissa
- Department of Nutrition and Food Science, International Institute of Health Sciences, Colobo, Sri Lanka
| | - Heather Keller
- Department of Kinesiology and Health Sciences, Schlegel-UW Research Institute for Aging, University of Waterloo, Waterloo, Ontario, Canada
| | - Ainsley Malone
- American Society for Parenteral and Enteral Nutrition, Columbus, Ohio, USA
| | - William Manzanares
- Critical Care Medicine, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - M Molly McMahon
- Division of Endocrinology, Metabolism, Diabetes and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Yolanda Mendez
- Internal Medicine, Clinical Nutrition, Colegio Mexicano de Nutrición Clínica y Terapia Nutricional, Mexico City, Mexico
| | - Kris M Mogensen
- Department of Nutrition, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Naoharu Mori
- Department of Palliative and Supportive Medicine, Graduate School of Medicine, Aichi Medical University, Nagakute, Japan
| | | | | | - Ibolya Nyulasi
- Department of Medicine, Central Clinical School, Monash University; Department of Dietetics, Nutrition and Sport, La Trobe University, Melbourne, Victoria, Australia
| | | | - Matthias Pirlich
- Departments of Endocrinology, Gastroenterology, and Clinical Nutrition, Imperial Oak Outpatient Clinic, Berlin, Germany
| | - Veeradej Pisprasert
- Division of Clinical Nutrition, Department of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Marian de van der Schueren
- School of Allied Health, HAN University of Applied Sciences; Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Han Ping Shi
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Alison Steiber
- Academy of Nutrition and Dietetics, Cleveland, Ohio, USA
| | - Marion F Winkler
- Surgical Nutrition Service, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Charlene Compher
- Department of Biobehavioral Health Science, University of Pennsylvania School of Nursing and Clinical Nutrition Support Service, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
31
|
Chen Z, Bai Y, Lou C, Wu B. Serum metabolome responses induced by long-term inoculation of suspended PM2.5 in chicken. Poult Sci 2024; 103:103283. [PMID: 38086244 PMCID: PMC10733702 DOI: 10.1016/j.psj.2023.103283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023] Open
Abstract
The adverse effects of exposure to fine particulate matter (PM2.5) on body health have attracted global public attention. However, there is limited research on PM2.5 in animal houses. Numerous studies have indicated that long-term exposure to high levels of PM2.5 can cause damage to multiple systems in animals. Poultry houses are one of the primary sources of PM2.5 emissions. However, there is limited research on the effects of PM2.5 exposure on poultry organisms. This study analyzed the histopathological changes in the lung tissue of poultry under PM2.5 exposure conditions. It used the LC-MS method to analyze the alterations in the serum metabolomic profile of poultry. This study confirmed that long-term exposure to high levels of PM2.5 had significantly reduced the growth performance of poultry. Histopathological slides of the lung tissue in chickens exposed to long-term retention of PM2.5 clearly showed significant damage. Furthermore, the serum metabolome analysis revealed significant changes in the serum metabolic profile of chickens exposed to long-term PM2.5 exposure. Specifically, there were notable alterations in the Glycerophospholipid metabolism, Steroid hormone biosynthesis, and Phenylalanine, tyrosine, and tryptophan biosynthesis pathways.
Collapse
Affiliation(s)
- Zhuo Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Cheng Lou
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| |
Collapse
|
32
|
Li J, Zhang X, Zhang Y, Dan X, Wu X, Yang Y, Chen X, Li S, Xu Y, Wan Q, Yan P. Increased Systemic Immune-Inflammation Index Was Associated with Type 2 Diabetic Peripheral Neuropathy: A Cross-Sectional Study in the Chinese Population. J Inflamm Res 2023; 16:6039-6053. [PMID: 38107379 PMCID: PMC10723178 DOI: 10.2147/jir.s433843] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Background Systemic immune-inflammation index (SII), a novel inflammatory marker, has been demonstrated to be associated with type 2 diabetes mellitus (T2DM) and its vascular complications, however, the relation between SII and diabetic peripheral neuropathy (DPN) has been never reported. We aimed to explore whether SII is associated with DPN in Chinese population. Methods A cross-sectional study was conducted among 1460 hospitalized patients with T2DM. SII was calculated as the platelet count × neutrophil count/lymphocyte count, and its possible association with DPN was investigated by correlation and multivariate logistic regression analysis, and subgroup analyses. Results Patients with higher SII quartiles had higher vibration perception threshold and prevalence of DPN (all P<0.01), and SII was independently positively associated with the prevalence of DPN (P<0.01). Multivariate logistic regression analysis showed that the risk of prevalence of DPN increased progressively across SII quartiles (P for trend <0.01), and participants in the highest quartile of SII was at a significantly increased risk of prevalent DPN compared to those in the lowest quartile after adjustment for potential confounding factors (odds rate: 1.211, 95% confidence intervals 1.045-1.404, P<0.05). Stratified analysis revealed positive associations of SII quartiles with risk of prevalent DPN only in men, people less than 65 years old, with body mass index <24 kg/m2, duration of diabetes >5 years, hypertension, dyslipidaemia, poor glycaemic control, and estimated glomerular filtration rate <90 mL/min/1.73 m2 (P for trend <0.01 or P for trend <0.05). The receiver operating characteristic curve analysis revealed that the optimal cut-off point of SII for predicting DPN was 617.67 in patients with T2DM, with a sensitivity of 45.3% and a specificity of 73%. Conclusion The present study showed that higher SII is independently associated with increased risk of DPN, and SII might serve as a new risk biomarker for DPN in Chinese population.
Collapse
Affiliation(s)
- Jia Li
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China, Luzhou, People’s Republic of China
| | - Xing Zhang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China, Luzhou, People’s Republic of China
| | - Yi Zhang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China, Luzhou, People’s Republic of China
| | - Xiaofang Dan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China, Luzhou, People’s Republic of China
| | - Xian Wu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China, Luzhou, People’s Republic of China
| | - Yuxia Yang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China, Luzhou, People’s Republic of China
| | - Xiping Chen
- Clinical medical college, Southwest Medical University, Luzhou, People’s Republic of China
| | - Shengxi Li
- Basic Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China, Luzhou, People’s Republic of China
| | - Qin Wan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China, Luzhou, People’s Republic of China
| | - Pijun Yan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China, Luzhou, People’s Republic of China
| |
Collapse
|
33
|
Liu L, Qi YF, Wang M, Chen BX, Zhou QB, Tong WX, Zhang Y. A serum metabolomics study of vascular cognitive impairment patients based on Traditional Chinese medicine syndrome differentiation. Front Mol Biosci 2023; 10:1305439. [PMID: 38116379 PMCID: PMC10728729 DOI: 10.3389/fmolb.2023.1305439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
Objective: Vascular cognitive impairment (VCI) accounts for approximately 50%-70% of all dementia cases and poses a significant burden on existing medical systems. Identifying an optimal strategy for preventing VCI and developing efficient symptomatic treatments remains a significant challenge. Syndrome differentiation represents a fundamental approach for personalized diagnosis and treatment in Traditional Chinese Medicine (TCM) and aligns with the principles of precision medicine. The objective of this study was to elucidate the metabolic characteristics of VCI based on TCM syndrome differentiation, thus providing novel insights into the diagnosis and treatment of VCI. Methods: A 2-year cross-sectional cognitive survey was conducted in four communities in Beijing between September 2020 and November 2022. The syndrome differentiation of participants was based on the Kidney-Yang Deficiency Syndrome Scale (KYDSS), which was originally developed by Delphi expert consultation. The identification of serum metabolites was performed by Ultra performance liquid chromatography (UPLC) analysis coupled with an electrospray ionization quadruple time-of-flight mass spectrometer (ESI-QTOF MS). Multivariate, univariate, and pathway analyses were used to investigate metabolic changes. Logistic regression models were also used to construct metabolite panels that were capable of discerning distinct groups. Phospholipase A2 (PLA2) levels were measured by a commercial ELISA kit. Results: A total of 2,337 residents completed the survey, and the prevalence of VCI was 9.84%. Of the patients with VCI, those with Kidney-Yang deficiency syndrome (VCIS) accounted for 70.87% of cases and exhibited more severe cognitive impairments. A total of 80 participants were included in metabolomics study, including 30 with VCIS, 20 without Kidney-Yang deficiency syndrome (VCINS), and 30 healthy control participants (C). Ultimately, 45 differential metabolites were identified when comparing the VCIS group with group C, 65 differential metabolites between the VCINS group and group C, and 27 differential metabolites between the VCIS group and the VCINS group. The downregulation of phosphatidylethanolamine (PE), and phosphatidylcholine (PC) along with the upregulation of lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC), phosphatidic acid (PA) and phospholipase A2 (PLA2) can be considered as the general metabolic characteristics associated with VCI. Dysfunction of glycerophospholipids, particularly LPEs and PCs, was identified as a key metabolic characteristic of VCIS. In particular Glycerophospho-N-Arachidonoyl Ethanolamine (GP-NArE) was discovered for the first time in VCI patients and is considered to represent a potential biomarker for VCIS. The upregulation of PLA2 expression was implicated in the induction of alterations in glycerophospholipid metabolism in both VCIS and VCINS. Moreover, robust diagnostic models were established based on these metabolites, achieving high AUC values of 0.9322, 0.9550, and 0.9450, respectively. Conclusion: These findings contribute valuable information relating to the intricate relationship between metabolic disorders in VCI, neurodegeneration and vascular/neuroinflammation. Our findings also provide a TCM perspective for the precise diagnosis and treatment of VCI in the context of precision medicine.
Collapse
Affiliation(s)
- Li Liu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi-fei Qi
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Bao-xin Chen
- Second Department of Encephalopathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-bing Zhou
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-xin Tong
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Fu M, He R, Zhang Z, Ma F, Shen L, Zhang Y, Duan M, Zhang Y, Wang Y, Zhu L, He J. Multinomial machine learning identifies independent biomarkers by integrated metabolic analysis of acute coronary syndrome. Sci Rep 2023; 13:20535. [PMID: 37996510 PMCID: PMC10667512 DOI: 10.1038/s41598-023-47783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
A multi-class classification model for acute coronary syndrome (ACS) remains to be constructed based on multi-fluid metabolomics. Major confounders may exert spurious effects on the relationship between metabolism and ACS. The study aims to identify an independent biomarker panel for the multiclassification of HC, UA, and AMI by integrating serum and urinary metabolomics. We performed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics study on 300 serum and urine samples from 44 patients with unstable angina (UA), 77 with acute myocardial infarction (AMI), and 29 healthy controls (HC). Multinomial machine learning approaches, including multinomial adaptive least absolute shrinkage and selection operator (LASSO) regression and random forest (RF), and assessment of the confounders were applied to integrate a multi-class classification biomarker panel for HC, UA and AMI. Different metabolic landscapes were portrayed during the transition from HC to UA and then to AMI. Glycerophospholipid metabolism and arginine biosynthesis were predominant during the progression from HC to UA and then to AMI. The multiclass metabolic diagnostic model (MDM) dependent on ACS, including 2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), argininosuccinic acid, and cyclic GMP, demarcated HC, UA, and AMI, providing a C-index of 0.84 (HC vs. UA), 0.98 (HC vs. AMI), and 0.89 (UA vs. AMI). The diagnostic value of MDM largely derives from the contribution of 2-ketobutyric acid, and LysoPC(18:2(9Z,12Z)) in serum. Higher 2-ketobutyric acid and cyclic GMP levels were positively correlated with ACS risk and atherosclerosis plaque burden, while LysoPC(18:2(9Z,12Z)) and argininosuccinic acid showed the reverse relationship. An independent multiclass biomarker panel for HC, UA, and AMI was constructed using the multinomial machine learning methods based on serum and urinary metabolite signatures.
Collapse
Affiliation(s)
- Meijiao Fu
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ruhua He
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Zhihan Zhang
- Department of Cardiology, Hanzhong Central Hospital, Hanzhong, 723200, Shanxi, China
| | - Fuqing Ma
- Department of Cardiology, The Fifth People's Hospital of Ningxia, Shizuishan, 753000, Ningxia, China
| | - Libo Shen
- Center for Cardiovascular Diseases, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, Ningxia, China
| | - Yu Zhang
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Mingyu Duan
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yameng Zhang
- Department of Cardiology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yifan Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Li Zhu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Jun He
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
35
|
Winkler MS, Bahls M, Böger RH, Ittermann T, Dörr M, Friedrich N, Schwedhelm E. Association of Asymmetric and Symmetric Dimethylarginine with Inflammation in the Population-Based Study of Health in Pomerania. Biomolecules 2023; 13:1612. [PMID: 38002294 PMCID: PMC10669713 DOI: 10.3390/biom13111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The amino acids arginine (Arg), asymmetric (ADMA) and symmetric dimethylarginine (SDMA) are related to nitric oxide (NO) metabolism and potential markers of two different disease entities: cardiovascular disease such as atherosclerosis and systemic inflammation in critically ill patients with sepsis. Although very different in their pathophysiological genesis, both entities involve the functional integrity of blood vessels. In this context, large population-based data associating NO metabolites with proinflammatory markers, e.g., white blood cell count (WBC), high-sensitivity C-reactive protein (hsCRP), and fibrinogen, or cytokines are sparse. We investigated the association of Arg, ADMA and SDMA with WBC, hsCRP, and fibrinogen in 3556 participants of the Study of Health in Pomerania (SHIP)-TREND study. Furthermore, in a subcohort of 456 subjects, 31 inflammatory markers and cytokines were analyzed. We identified Arg and SDMA to be positively associated with hsCRP (β coefficient 0.010, standard error (SE) 0.002 and 0.298, 0.137, respectively) as well as fibrinogen (β 5.23 × 10-3, SE 4.75 × 10-4 and 0.083, 0.031, respectively). ADMA was not associated with WBC, hsCRP, or fibrinogen. Furthermore, in the subcohort, Arg was inversely related to a proliferation-inducing ligand (APRIL). SDMA was positively associated with osteocalcin, tumor necrosis factor receptor 1 and 2, and soluble cluster of differentiation 30. Our findings provide new insights into the involvement of Arg, ADMA, and SDMA in subclinical inflammation in the general population.
Collapse
Affiliation(s)
- Martin Sebastian Winkler
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, 37075 Göttingen, Germany
| | - Martin Bahls
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Rainer H. Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany (E.S.)
| | - Till Ittermann
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Nele Friedrich
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany (E.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
36
|
Zhan Y, Wang H, Wu Z, Zeng Z. Study on the Common Molecular Mechanism of Metabolic Acidosis and Myocardial Damage Complicated by Neonatal Pneumonia. Metabolites 2023; 13:1118. [PMID: 37999214 PMCID: PMC10673214 DOI: 10.3390/metabo13111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023] Open
Abstract
Pneumonia is a common clinical disease in the neonatal period and poses a serious risk to infant health. Therefore, the understanding of molecular mechanisms is of great importance for the development of methods for the rapid and accurate identification, classification and staging, and even disease diagnosis and therapy of pneumonia. In this study, a nontargeted metabonomic method was developed and applied for the analysis of serum samples collected from 20 cases in the pneumonia control group (PN) and 20 and 10 cases of pneumonia patients with metabolic acidosis (MA) and myocardial damage (MD), respectively, with the help of ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). The results showed that compared with the pneumonia group, 23 and 21 differential metabolites were identified in pneumonia with two complications. They showed high sensitivity and specificity, with the area under the curve (ROC) of the receiver operating characteristic curve (ROC) larger than 0.7 for each differential molecule. There were 14 metabolites and three metabolic pathways of sphingolipid metabolism, porphyrin and chlorophyll metabolism, and glycerophospholipid metabolism existing in both groups of PN and MA, and PN and MD, all involving significant changes in pathways closely related to amino acid metabolism disorders, abnormal cell apoptosis, and inflammatory responses. These findings of molecular mechanisms should help a lot to fully understand and even treat the complications of pneumonia in infants.
Collapse
Affiliation(s)
- Yifei Zhan
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China;
| | - Huaiyan Wang
- Department of Neonatology, Changzhou Medical Center, Changzhou Maternity and Child Health Care Hospital, Nanjing Medical University, Changzhou 213000, China;
| | - Zeying Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Chemical Engineering and Material Sciences, Changzhou Institute of Technology, Changzhou 213032, China
| | - Zhongda Zeng
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China;
| |
Collapse
|
37
|
Zheng X, Zhu Y, Zhao Z, Chu Y, Yang W. The role of amino acid metabolism in inflammatory bowel disease and other inflammatory diseases. Front Immunol 2023; 14:1284133. [PMID: 37936710 PMCID: PMC10626463 DOI: 10.3389/fimmu.2023.1284133] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammation is a characteristic symptom of the occurrence and development of many diseases, which is mainly characterized by the infiltration of inflammatory cells such as macrophages and granulocytes, and the increased release of proinflammatory factors. Subsequently, macrophage differentiates and T cells and other regulated factors exhibit anti-inflammatory function, releasing pro- and anti-inflammatory factors to maintain homeostasis. Although reports define various degrees of metabolic disorders in both the inflamed and non-inflamed parts of inflammatory diseases, little is known about the changes in amino acid metabolism in such conditions. This review aims to summarize amino acid changes and mechanisms involved in the progression of inflammatory bowel disease (IBD) and other inflammatory diseases. Since mesenchymal stem cells (MSCs) and their derived exosomes (MSC-EXO) have been found to show promising effects in the treatment of IBD and other inflammatory diseases,their potential in the modulation of amino acid metabolism in the treatment of inflammation is also discussed.
Collapse
Affiliation(s)
- Xiaowen Zheng
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yi Zhu
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Zihan Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Wenjing Yang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
38
|
Hoffman SS, Liang D, Hood RB, Tan Y, Terrell ML, Marder ME, Barton H, Pearson MA, Walker DI, Barr DB, Jones DP, Marcus M. Assessing Metabolic Differences Associated with Exposure to Polybrominated Biphenyl and Polychlorinated Biphenyls in the Michigan PBB Registry. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107005. [PMID: 37815925 PMCID: PMC10564108 DOI: 10.1289/ehp12657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Polybrominated biphenyls (PBB) and polychlorinated biphenyls (PCB) are persistent organic pollutants with potential endocrine-disrupting effects linked to adverse health outcomes. OBJECTIVES In this study, we utilize high-resolution metabolomics (HRM) to identify internal exposure and biological responses underlying PCB and multigenerational PBB exposure for participants enrolled in the Michigan PBB Registry. METHODS HRM profiling was conducted on plasma samples collected from 2013 to 2014 from a subset of participants enrolled in the Michigan PBB Registry, including 369 directly exposed individuals (F0) who were alive when PBB mixtures were accidentally introduced into the food chain and 129 participants exposed to PBB in utero or through breastfeeding, if applicable (F1). Metabolome-wide association studies were performed for PBB-153 separately for each generation and Σ PCB (PCB-118, PCB-138, PCB-153, and PCB-180) in the two generations combined, as both had direct PCB exposure. Metabolite and metabolic pathway alterations were evaluated following a well-established untargeted HRM workflow. RESULTS Mean levels were 1.75 ng / mL [standard deviation (SD): 13.9] for PBB-153 and 1.04 ng / mL (SD: 0.788) for Σ PCB . Sixty-two and 26 metabolic features were significantly associated with PBB-153 in F0 and F1 [false discovery rate (FDR) p < 0.2 ], respectively. There were 2,861 features associated with Σ PCB (FDR p < 0.2 ). Metabolic pathway enrichment analysis using a bioinformatics tool revealed perturbations associated with Σ PCB in numerous oxidative stress and inflammation pathways (e.g., carnitine shuttle, glycosphingolipid, and vitamin B9 metabolism). Metabolic perturbations associated with PBB-153 in F0 were related to oxidative stress (e.g., pentose phosphate and vitamin C metabolism) and in F1 were related to energy production (e.g., pyrimidine, amino sugars, and lysine metabolism). Using authentic chemical standards, we confirmed the chemical identity of 29 metabolites associated with Σ PCB levels (level 1 evidence). CONCLUSIONS Our results demonstrate that serum PBB-153 is associated with alterations in inflammation and oxidative stress-related pathways, which differed when stratified by generation. We also found that Σ PCB was associated with the downregulation of important neurotransmitters, serotonin, and 4-aminobutanoate. These findings provide novel insights for future investigations of molecular mechanisms underlying PBB and PCB exposure on health. https://doi.org/10.1289/EHP12657.
Collapse
Affiliation(s)
- Susan S. Hoffman
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Donghai Liang
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Robert B. Hood
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | | | - M. Elizabeth Marder
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| | - Hillary Barton
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Melanie A. Pearson
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Douglas I. Walker
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Dean P. Jones
- School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michele Marcus
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Wang F, Tessier AJ, Liang L, Wittenbecher C, Haslam DE, Fernández-Duval G, Heather Eliassen A, Rexrode KM, Tobias DK, Li J, Zeleznik O, Grodstein F, Martínez-González MA, Salas-Salvadó J, Clish C, Lee KH, Sun Q, Stampfer MJ, Hu FB, Guasch-Ferré M. Plasma metabolomic profiles associated with mortality and longevity in a prospective analysis of 13,512 individuals. Nat Commun 2023; 14:5744. [PMID: 37717037 PMCID: PMC10505179 DOI: 10.1038/s41467-023-41515-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023] Open
Abstract
Experimental studies reported biochemical actions underpinning aging processes and mortality, but the relevant metabolic alterations in humans are not well understood. Here we examine the associations of 243 plasma metabolites with mortality and longevity (attaining age 85 years) in 11,634 US (median follow-up of 22.6 years, with 4288 deaths) and 1878 Spanish participants (median follow-up of 14.5 years, with 525 deaths). We find that, higher levels of N2,N2-dimethylguanosine, pseudouridine, N4-acetylcytidine, 4-acetamidobutanoic acid, N1-acetylspermidine, and lipids with fewer double bonds are associated with increased risk of all-cause mortality and reduced odds of longevity; whereas L-serine and lipids with more double bonds are associated with lower mortality risk and a higher likelihood of longevity. We further develop a multi-metabolite profile score that is associated with higher mortality risk. Our findings suggest that differences in levels of nucleosides, amino acids, and several lipid subclasses can predict mortality. The underlying mechanisms remain to be determined.
Collapse
Affiliation(s)
- Fenglei Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anne-Julie Tessier
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Clemens Wittenbecher
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- SciLifeLab, Division of Food Science and Nutrition, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Danielle E Haslam
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gonzalo Fernández-Duval
- Department of Preventive Medicine and Public Health, Navarra Health Research Institute (IDISNA), University of Navarra, Pamplona, Spain
| | - A Heather Eliassen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathryn M Rexrode
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Deirdre K Tobias
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Oana Zeleznik
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Miguel A Martínez-González
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Preventive Medicine and Public Health, Navarra Health Research Institute (IDISNA), University of Navarra, Pamplona, Spain
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jordi Salas-Salvadó
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Clary Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyu Ha Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Meir J Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
Ooi TC, Ahmad A, Rajab NF, Sharif R. The Effects of 12 Weeks Colostrum Milk Supplementation on the Expression Levels of Pro-Inflammatory Mediators and Metabolic Changes among Older Adults: Findings from the Biomarkers and Untargeted Metabolomic Analysis. Nutrients 2023; 15:3184. [PMID: 37513601 PMCID: PMC10384749 DOI: 10.3390/nu15143184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 07/30/2023] Open
Abstract
Senescence is a normal biological process that is accompanied with a series of deteriorations in physiological function. This study aimed to investigate the effects of bovine colostrum milk supplementation on metabolic changes and the expression of various biomarkers on inflammation, antioxidant and oxidative damage, nutrient metabolism, and genomic stability among older adults. Older adults (50-69 years old) who participated in the 12-week randomized, double-blinded, placebo-controlled trial were instructed to consume the IgCo bovine colostrum-enriched skim milk or regular skim milk (placebo) twice daily. Following 12 weeks of intervention, participants in the intervention group had lower expression levels in pro-inflammatory mediators (CRP, IL-6, and TNF-α), with significant (p < 0.05) interaction effects of the group and time observed. However, no significant interaction effect was observed in the vitamin D, telomerase, 8-OHdG, MDA, and SOD activities. UPLC-MS-based untargeted metabolomics analysis revealed that 22 metabolites were upregulated and 11 were downregulated in the intervention group compared to the placebo group. Glycerophospholipid metabolism, along with cysteine and methionine metabolism were identified as the potential metabolic pathways that are associated with bovine colostrum milk consumption. In conclusion, consuming bovine colostrum milk may induce metabolic changes and reduce the expression of various pro-inflammatory mediators, thus improving the immune function in older adults.
Collapse
Affiliation(s)
- Theng Choon Ooi
- Centre for Healthy Ageing and Wellness, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Azizan Ahmad
- School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nor Fadilah Rajab
- Centre for Healthy Ageing and Wellness, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Razinah Sharif
- Centre for Healthy Ageing and Wellness, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
41
|
Xia W, Yu H, Wang G. Coronary Artery Disease with Elevated Levels of HDL Cholesterol Is Associated with Distinct Lipid Signatures. Metabolites 2023; 13:695. [PMID: 37367853 DOI: 10.3390/metabo13060695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Levels of high-density lipoprotein cholesterol (HDL-C) are inversely associated with the incidence of coronary artery disease (CAD). However, the underlying mechanism of CAD in the context of elevated HDL-C levels is unclear. Our study aimed to explore the lipid signatures in patients with CAD and elevated HDL-C levels and to identify potential diagnostic biomarkers for these conditions. We measured the plasma lipidomes of forty participants with elevated HDL-C levels (men with >50 mg/dL and women with >60 mg/dL), with or without CAD, using liquid chromatography-tandem mass spectrometry. We analyzed four hundred fifty-eight lipid species and identified an altered lipidomic profile in subjects with CAD and high HDL-C levels. In addition, we identified eighteen distinct lipid species, including eight sphingolipids and ten glycerophospholipids; all of these, except sphingosine-1-phosphate (d20:1), were higher in the CAD group. Pathways for sphingolipid and glycerophospholipid metabolism were the most significantly altered. Moreover, our data led to a diagnostic model with an area under the curve of 0.935, in which monosialo-dihexosyl ganglioside (GM3) (d18:1/22:0), GM3 (d18:0/22:0), and phosphatidylserine (38:4) were combined. We found that a characteristic lipidome signature is associated with CAD in individuals with elevated HDL-C levels. Additionally, the disorders of sphingolipid as well as glycerophospholipid metabolism may underlie CAD.
Collapse
Affiliation(s)
- Wanying Xia
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, No. 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Haiyi Yu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, No. 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Guisong Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, No. 49 North Garden Road, Haidian District, Beijing 100191, China
| |
Collapse
|
42
|
Yang Y, Liu J, Ou H, Ma X, Li J, Shao B, Jin R, Zhao J. Study on the Mechanism of Jiaotai Pill Intervention on Insomnia Animal Model Based on Gut Microbiome and Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2442505. [PMID: 37260523 PMCID: PMC10229250 DOI: 10.1155/2023/2442505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 06/02/2023]
Abstract
Background With the continuous advancement of clinical application and experimental research of JTP, the application prospect of JTP in nervous system diseases and metabolic diseases is becoming increasingly clear. Jiaotai Pill (JTP) is a traditional Chinese medicine formula for insomnia, consisting of Coptidis rhizoma and Cinnamomi cortex, which dates back to Han Shi Yi Tong in the Ming Dynasty of China. Objective Based on the brain-gut axis theory, this paper aims to explore the potential mechanism of JTP in the intervention of insomnia by using intestinal microbiome and metabolomics technology, taking the animal model of insomnia as the research object, so as to provide experimental basis for its further application and research. Methods The insomnia mouse model was induced by intraperitoneal injection of para-chlorophenylalanine (PCPA). The clinical equivalent dose of JTP was administered by gavage for one week. The efficacy of JTP was evaluated by behavioral tests, serum biochemical detection, and brain histomorphological observation. The contents of cecum were analyzed by microbiomics and metabolomics. Results The results show that insomnia caused by PCPA led to daytime dysfunction, higher HPA axis hormone levels, and morphologically impaired hippocampus. JTP reversed these anomalies. Omics research indicates that JTP significantly reduced gut α diversity; at the phylum level, JTP reduced the relative abundance of Firmicutes, Deferribacterota, Cyanobacteria, and Actinobacteriota and increased the relative abundance of Verrucomicrobiota, Proteobacteria, and Desulfobacterota. At the genus level, JTP reduced the relative abundance of Muribaculaceae, Lachnospiraceae_NK4A136_group, Alistipes, Colidextribacter, Muribaculum, and Mucispirillum and increased the relative abundance of Bacteroides and Akkermansia. JTP also reversed the activation of the linoleic acid metabolism pathway induced by insomnia. The combined analysis of omics suggests that JTP may play a role by regulating the inflammatory state of the body. Further gene expression analysis of brain tissue confirmed this. Conclusions We hypothesize that JTP may achieve insomnia relief by eliminating inflammation-causing bacteria in the gut and reducing inflammation levels through the brain-gut axis, pointing to potential targets and pathways for future research on JTP.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| | - Jiao Liu
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| | - Haosong Ou
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| | - Xin Ma
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| | - Jia Li
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| | - Binghao Shao
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| | - Ruyi Jin
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| | - Junyun Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| |
Collapse
|
43
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 282] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
44
|
The Landscape of Lipid Metabolism in Lung Cancer: The Role of Structural Profiling. J Clin Med 2023; 12:jcm12051736. [PMID: 36902523 PMCID: PMC10002589 DOI: 10.3390/jcm12051736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
The aim of this study was to explore the relationship between lipids with different structural features and lung cancer (LC) risk and identify prospective biomarkers of LC. Univariate and multivariate analysis methods were used to screen for differential lipids, and two machine learning methods were used to define combined lipid biomarkers. A lipid score (LS) based on lipid biomarkers was calculated, and a mediation analysis was performed. A total of 605 lipid species spanning 20 individual lipid classes were identified in the plasma lipidome. Higher carbon atoms with dihydroceramide (DCER), phosphatidylethanolamine (PE), and phosphoinositols (PI) presented a significant negative correlation with LC. Point estimates revealed the inverse associated with LC for the n-3 PUFA score. Ten lipids were identified as markers with an area under the curve (AUC) value of 0.947 (95%, CI: 0.879-0.989). In this study, we summarized the potential relationship between lipid molecules with different structural features and LC risk, identified a panel of LC biomarkers, and demonstrated that the n-3 PUFA of the acyl chain of lipids was a protective factor for LC.
Collapse
|
45
|
Lim SY, Lim FLS, Criado-Navarro I, Yeo XH, Dayal H, Vemulapalli SD, Seah SJ, Laserna AKC, Yang X, Tan SH, Chan MY, Li SFY. Multi-Omics Investigation into Acute Myocardial Infarction: An Integrative Method Revealing Interconnections amongst the Metabolome, Lipidome, Glycome, and Metallome. Metabolites 2022; 12:1080. [PMID: 36355163 PMCID: PMC9693522 DOI: 10.3390/metabo12111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide. This work aims to investigate the translational potential of a multi-omics study (comprising metabolomics, lipidomics, glycomics, and metallomics) in revealing biomechanistic insights into AMI. Following the N-glycomics and metallomics studies performed by our group previously, untargeted metabolomic and lipidomic profiles were generated and analysed in this work via the use of a simultaneous metabolite/lipid extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis workflow. The workflow was applied to blood plasma samples from AMI cases (n = 101) and age-matched healthy controls (n = 66). The annotated metabolomic (number of features, n = 27) and lipidomic (n = 48) profiles, along with the glycomic (n = 37) and metallomic (n = 30) profiles of the same set of AMI and healthy samples were integrated and analysed. The integration method used here works by identifying a linear combination of maximally correlated features across the four omics datasets, via utilising both block-partial least squares-discriminant analysis (block-PLS-DA) based on sparse generalised canonical correlation analysis. Based on the multi-omics mapping of biomolecular interconnections, several postulations were derived. These include the potential roles of glycerophospholipids in N-glycan-modulated immunoregulatory effects, as well as the augmentation of the importance of Ca-ATPases in cardiovascular conditions, while also suggesting contributions of phosphatidylethanolamine in their functions. Moreover, it was shown that combining the four omics datasets synergistically enhanced the classifier performance in discriminating between AMI and healthy subjects. Fresh and intriguing insights into AMI, otherwise undetected via single-omics analysis, were revealed in this multi-omics study. Taken together, we provide evidence that a multi-omics strategy may synergistically reinforce and enhance our understanding of diseases.
Collapse
Affiliation(s)
- Si Ying Lim
- NUS Graduate School’s Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Felicia Li Shea Lim
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | | | - Xin Hao Yeo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Hiranya Dayal
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | | | - Song Jie Seah
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Anna Karen Carrasco Laserna
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Central Instrumentation Facility (Laguna Campus), Office of the Vice President for Research and Innovation, De La Salle University, Manila 1004, Philippines
| | - Xiaoxun Yang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Sock Hwee Tan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Mark Y. Chan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Sam Fong Yau Li
- NUS Graduate School’s Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
46
|
Zhou Y, Chen J, Li S, Chen A, Dai C, Liu M, Lu D, Chen Z, Wang X, Qian J, Ge J. Prognostic implication of lipidomics in patients with coronary total occlusion undergoing PCI. Eur J Clin Invest 2022; 52:e13826. [PMID: 35723949 PMCID: PMC9786902 DOI: 10.1111/eci.13826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/17/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Predictors of prognosis in patients with coronary chronic total occlusion (CTO) undergoing elective percutaneous coronary intervention (PCI) have remained lacking. Lipidomic profiling enables researchers to associate lipid species with disease progression and may improve the prediction of cardiovascular events. METHODS In the present study, 781 lipids were measured by targeted lipidomic profiling in 350 individuals (50 healthy controls, 50 patients with coronary artery disease and 250 patients with CTO). L1-regularized logistic regression was used to identify lipid species associated with adverse cardiovascular events and create predicting models, which were verified by 10-fold cross-validation (200 repeats). Comparisons were made between a traditional model constructed with clinical characteristics alone and a combined model built with both lipidomic data and traditional factors. RESULTS Twenty-four lipid species were dysregulated exclusively in patients with CTO, most of which belonged to sphingomyelin (SM) and triacylglycerol (TAG). Compared with traditional risk factors, new model combining lipids and traditional factors had significantly improved performance in predicting adverse cardiovascular events in CTO patients after PCI (area under the curve, 0.870 vs. 0.726, p < .05; Akaike information criterion, 129 versus 156; net reclassification improvement, 0.312, p < .001; integrated discrimination improvement, 0.244, p < .001). Nomogram was built based on the incorporated model and proved efficient by Kaplan-Meier method. CONCLUSIONS Lipidomic profiling revealed lipid species which may participate in the formation of CTO and could contribute to the risk stratification in CTO patients undergoing PCI.
Collapse
Affiliation(s)
- You Zhou
- Department of CardiologyShanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University; National Clinical Research Center for Interventional Medicine; Shanghai Clinical Research Center for Interventional MedicineShanghaiPeople's Republic of China
| | - Jinxiang Chen
- Department of CardiologyShanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University; National Clinical Research Center for Interventional Medicine; Shanghai Clinical Research Center for Interventional MedicineShanghaiPeople's Republic of China
| | - Su Li
- Department of CardiologyShanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University; National Clinical Research Center for Interventional Medicine; Shanghai Clinical Research Center for Interventional MedicineShanghaiPeople's Republic of China
| | - Ao Chen
- Department of CardiologyShanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University; National Clinical Research Center for Interventional Medicine; Shanghai Clinical Research Center for Interventional MedicineShanghaiPeople's Republic of China
| | - Chunfeng Dai
- Department of CardiologyShanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University; National Clinical Research Center for Interventional Medicine; Shanghai Clinical Research Center for Interventional MedicineShanghaiPeople's Republic of China
| | - Muyin Liu
- Department of CardiologyShanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University; National Clinical Research Center for Interventional Medicine; Shanghai Clinical Research Center for Interventional MedicineShanghaiPeople's Republic of China
| | - Danbo Lu
- Department of CardiologyShanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University; National Clinical Research Center for Interventional Medicine; Shanghai Clinical Research Center for Interventional MedicineShanghaiPeople's Republic of China
| | - Zhangwei Chen
- Department of CardiologyShanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University; National Clinical Research Center for Interventional Medicine; Shanghai Clinical Research Center for Interventional MedicineShanghaiPeople's Republic of China
| | - Xiangdong Wang
- Shanghai Institute of Clinical BioinformaticsFudan University Center of Clinical Bioinformatics; Shanghai Respiratory Research InstituteShanghaiPeople's Republic of China
| | - Juying Qian
- Department of CardiologyShanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University; National Clinical Research Center for Interventional Medicine; Shanghai Clinical Research Center for Interventional MedicineShanghaiPeople's Republic of China
| | - Junbo Ge
- Department of CardiologyShanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University; National Clinical Research Center for Interventional Medicine; Shanghai Clinical Research Center for Interventional MedicineShanghaiPeople's Republic of China
| |
Collapse
|