1
|
da Silveira BP, Cohen ND, Lawhon SD, Watson RO, Bordin AI. Protective immune response against Rhodococcus equi: An innate immunity-focused review. Equine Vet J 2025; 57:563-586. [PMID: 39258739 PMCID: PMC11982438 DOI: 10.1111/evj.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Rhodococcus equi causes pyogranulomatous pneumonia in foals and immunocompromised people. Despite decades of research efforts, no vaccine is available against this common cause of disease and death in foals. The purpose of this narrative review is to summarise the current understanding of interactions between R. equi and the host innate immune system, to describe features of the immune response that are associated with resistance or susceptibility to R. equi infection, and help guide strategies for developing novel approaches for preventing R. equi infections. Virulence of R. equi in foals has been attributed to the virulence associated protein A which allows intracellular survival in macrophages by preventing acidification of R. equi-containing vacuole. Additionally, foal susceptibility to R. equi infection is associated with immaturity and naivety of innate and adaptive immune systems, while adult horses with fully functional immune system are resistant to pneumonia. Specific interaction between R. equi and innate immune cells can result in bacterial survival or death; learning how to manipulate these responses to control infection is critical to prevent pneumonia in foals. Administration of live vaccines and stimulation of innate immune responses appears to improve foals' immune response and has the potential to overcome the challenges of foal active vaccination and elicit protection against pneumonia.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical SciencesTexas A&M University, School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Noah D. Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical SciencesTexas A&M University, School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Sara D. Lawhon
- Department of Veterinary PathobiologyTexas A&M University, School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Robert O. Watson
- Department of Microbial Pathogenesis & ImmunologyTexas A&M University, School of MedicineCollege StationTexasUSA
- Present address:
Division of Infectious DiseasesDepartment of Medicine, Vanderbilt University Medical CenterNashvilleTNUSA
| | - Angela I. Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical SciencesTexas A&M University, School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| |
Collapse
|
2
|
Monreal-Escalante E, Angulo M, Ramos-Vega A, Trujillo E, Angulo C. Plant-made trained immunity-based vaccines: Beyond one approach. Int J Pharm 2025; 675:125572. [PMID: 40204041 DOI: 10.1016/j.ijpharm.2025.125572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Plant-made vaccines and trained immunity-based vaccines (TIbV or TRAIMbV) represent two strategies for enhancing immunity against diseases. Plants provide an effective and cost-efficient vaccine production platform, while TIbV induces innate immune memory that can protect against both homologous and heterologous diseases. Both strategies are generally compatible; however, they have not been explored in a transdisciplinary manner. Despite their strengths in vaccinology, each faces limitations that hinder widespread adoption and health benefits. This review revisits both strategies, discussing their fundamental knowledge alongside practical and experimental examples, ultimately highlighting their limitations and perspectives to pave the way for a unified approach to combat diseases. Future scenarios are envisioned and presented if research on plant-made trained immunity-based vaccines is adopted.
Collapse
Affiliation(s)
- Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico; SECIHTI-Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Miriam Angulo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Abel Ramos-Vega
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Dirección: Boulevard de la Tecnología No.1036, Código Postal 62790 Xochitepec, Morelos, Mexico
| | - Edgar Trujillo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.
| |
Collapse
|
3
|
Jurczak M, Druszczynska M. Beyond Tuberculosis: The Surprising Immunological Benefits of the Bacillus Calmette-Guérin (BCG) Vaccine in Infectious, Auto-Immune, and Inflammatory Diseases. Pathogens 2025; 14:196. [PMID: 40005571 PMCID: PMC11857995 DOI: 10.3390/pathogens14020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/08/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine, best known for its role in preventing tuberculosis, has recently garnered attention for its broader immunomodulatory effects. By inducing trained immunity, BCG reprograms innate immune cells, enhancing their responses to various pathogens. This process, driven by epigenetic and metabolic reprogramming, suggests that BCG may have therapeutic potential far beyond tuberculosis. Emerging evidence points to its potential benefits in conditions such as autoimmune diseases, cancer, and viral infections. Furthermore, by modulating immune activity, BCG has been proposed to reduce chronic inflammation and promote immune tolerance. This review delves into the multifaceted role of BCG, highlighting its potential as a versatile therapeutic tool for managing a wide range of diseases.
Collapse
Affiliation(s)
- Magdalena Jurczak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
- The Bio-Med-Chem Doctoral of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, 92-215 Lodz, Poland
| | - Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| |
Collapse
|
4
|
Xie M, Tsai CY, Woo J, Nuritdinov F, Cristaldo M, Odjourian NM, Antilus-Sainte R, Dougher M, Gengenbacher M. BAFF and APRIL immunotherapy following Bacille Calmette-Guérin vaccination enhances protection against pulmonary tuberculosis in mice. Front Immunol 2025; 16:1551183. [PMID: 39981256 PMCID: PMC11839638 DOI: 10.3389/fimmu.2025.1551183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Bacille Calmette-Guérin (BCG), the only tuberculosis vaccine currently in clinical use, provides inadequate long-term protection. Administered at birth, BCG induces broad immune responses against a large number of antigens shared with Mycobacterium tuberculosis (Mtb), but protection wanes over time. We have previously shown that unconventional B cell subsets play a role in tuberculosis control. Methods High-dimensional flow cytometry and multiplex cytokine analysis were employed to investigate the effects of immunotherapy on BCG-vaccinated mice in an Mtb challenge model. Results In this study, we investigate the potential of recombinant cytokines targeting B cells - B-cell activating factor (BAFF) and A proliferation-inducing ligand (APRIL) - to modulate BCG immunity and improve protection in mice. Both cytokines play overlapping roles in B cell development and peripheral survival. Following subcutaneous BCG vaccination, immunotherapy with BAFF or APRIL resulted in an increased frequency of unconventional B cells potentially transitioning into antibody-producing plasma cells. Concurrently, we observed an increased frequency of central memory T cells, a subset critical for protective immunity. Changes in cellular immune responses were accompanied by reduced pro-inflammatory cytokine profiles and a contraction of the leukocyte population in lungs. Importantly, mice receiving BCG vaccination followed by BAFF or APRIL immunotherapy exhibited superior long-term protection against pulmonary tuberculosis relative to controls that received only BCG. Conclusion In summary, our findings demonstrate that combining BCG vaccination with B cell targeted immunomodulatory therapies can improve long-term protection against pulmonary tuberculosis, highlighting the continued relevance and underutilized potential of BCG as a vaccine platform.
Collapse
Affiliation(s)
- Min Xie
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Chen-Yu Tsai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Joshua Woo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Frank Nuritdinov
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Melissa Cristaldo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Narineh M. Odjourian
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | | | - Maureen Dougher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| |
Collapse
|
5
|
Messina NL, Germano S, Chung AW, van de Sandt CE, Stevens NE, Allen LF, Bonnici R, Croda J, Counoupas C, Grubor‐Bauk B, Haycroft ER, Kedzierska K, McDonald E, McElroy R, Netea MG, Novakovic B, Perrett KP, Pittet LF, Purcell RA, Subbarao K, Triccas JA, Lynn DJ, Curtis N. Effect of Bacille Calmette-Guérin vaccination on immune responses to SARS-CoV-2 and COVID-19 vaccination. Clin Transl Immunology 2025; 14:e70023. [PMID: 39872402 PMCID: PMC11761716 DOI: 10.1002/cti2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/30/2025] Open
Abstract
Objectives Bacille Calmette-Guérin (BCG) vaccination has off-target effects on disease risk for unrelated infections and immune responses to vaccines. This study aimed to determine the immunomodulatory effects of BCG vaccination on immune responses to vaccines against SARS-CoV-2. Methods Blood samples, from a subset of 275 SARS-CoV-2-naïve healthcare workers randomised to BCG vaccination (BCG group) or no BCG vaccination (Control group) in the BRACE trial, were collected before and 28 days after the primary course (two doses) of ChAdOx1-S (Oxford-AstraZeneca) or BNT162b2 (Pfizer-BioNTech) vaccination. SARS-CoV-2-specific antibodies were measured using ELISA and multiplex bead array, whole blood cytokine responses to γ-irradiated SARS-CoV-2 (iSARS) stimulation were measured by multiplex bead array, and SARS-CoV-2-specific T-cell responses were measured by activation-induced marker and intracellular cytokine staining assays. Results After randomisation (mean 11 months) but prior to COVID-19 vaccination, the BCG group had lower cytokine responses to iSARS stimulation than the Control group. After two doses of ChAdOx1-S, differences in iSARS-induced cytokine responses between the BCG group and Control group were found for three cytokines (CTACK, TRAIL and VEGF). No differences were found between the groups after BNT162b2 vaccination. There were also no differences between the BCG and Control groups in COVID-19 vaccine-induced antigen-specific antibody responses, T-cell activation or T-cell cytokine production. Conclusion BCG vaccination induced a broad and persistent reduction in ex vivo cytokine responses to SARS-CoV-2. Following COVID-19 vaccination, this effect was abrogated, and BCG vaccination did not influence adaptive immune responses to COVID-19 vaccine antigens.
Collapse
Affiliation(s)
- Nicole L Messina
- Infectious Diseases Group, Infection, Immunity and Global Health ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
- Department of PaediatricsThe University of MelbourneParkvilleVICAustralia
| | - Susie Germano
- Infectious Diseases Group, Infection, Immunity and Global Health ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Natalie E Stevens
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideSAAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkSAAustralia
| | - Lilith F Allen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Rhian Bonnici
- Infectious Diseases Group, Infection, Immunity and Global Health ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
| | - Julio Croda
- Universidade Federal de Mato Grosso do Sul‐UFMSCampo GrandeMSBrazil
- Fiocruz Mato Grosso do SulFundação Oswaldo CruzCampo GrandeMSBrazil
- Department of Epidemiology of Microbial DiseasesYale School of Public HealthNew HavenCTUSA
| | - Claudio Counoupas
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
- Sydney Institute for Infectious Diseases and the Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Centre for Infection and ImmunityCentenary InstituteCamperdownNSWAustralia
| | - Branka Grubor‐Bauk
- Viral Immunology Group, Adelaide Medical School, Basil Hetzel Institute for Translational Health ResearchUniversity of AdelaideAdelaideSAAustralia
| | - Ebene R Haycroft
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Ellie McDonald
- Infectious Diseases Group, Infection, Immunity and Global Health ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
| | - Rebecca McElroy
- Infectious Diseases Group, Infection, Immunity and Global Health ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| | - Boris Novakovic
- Department of PaediatricsThe University of MelbourneParkvilleVICAustralia
- Molecular Immunity Group, Infection and Immunity ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
| | - Kirsten P Perrett
- Department of PaediatricsThe University of MelbourneParkvilleVICAustralia
- Population Allergy GroupMurdoch Children's Research InstituteParkvilleVICAustralia
- Department of Allergy and ImmunologyThe Royal Children's Hospital MelbourneParkvilleVICAustralia
| | - Laure F Pittet
- Infectious Diseases Group, Infection, Immunity and Global Health ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
- Department of PaediatricsThe University of MelbourneParkvilleVICAustralia
- Immunology, Vaccinology, Rheumatology and Infectious Diseases UnitGeneva University Hospitals and Faculty of MedicineGenevaSwitzerland
| | - Ruth A Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - James A Triccas
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
- Sydney Institute for Infectious Diseases and the Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Centre for Infection and ImmunityCentenary InstituteCamperdownNSWAustralia
| | - David J Lynn
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideSAAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkSAAustralia
| | - Nigel Curtis
- Infectious Diseases Group, Infection, Immunity and Global Health ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
- Department of PaediatricsThe University of MelbourneParkvilleVICAustralia
- Department of Infectious DiseasesThe Royal Children's Hospital MelbourneParkvilleVICAustralia
| |
Collapse
|
6
|
Nassuuna J, Zirimenya L, Nkurunungi G, Natukunda A, Zziwa C, Ninsiima C, Apule B, Onen C, Amongi S, Serubanja J, Tumwesige P, Nsubuga D, Amongin R, van Dam GJ, Corstjens PLAM, Kayiwa J, Kabagenyi J, Cose S, Wajja A, Kaleebu P, Webb EL, Elliott AM. The effect of BCG revaccination on the response to unrelated vaccines in urban Ugandan adolescents (POPVAC C): an open-label, randomised controlled trial. Lancet Glob Health 2024; 12:e1849-e1859. [PMID: 39424573 PMCID: PMC11483248 DOI: 10.1016/s2214-109x(24)00282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/10/2024] [Accepted: 06/27/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Immune responses induced by several important vaccines differ between populations, with reduced responses in low-income and rural settings compared with high-income and urban settings. BCG immunisation boosts immune responses to some unrelated vaccines in high-income populations. We aimed to test the hypothesis that BCG revaccination can enhance responses to unrelated vaccines in Ugandan schoolchildren. METHODS We conducted an open-label, randomised controlled trial to compare the effects of BCG revaccination versus no BCG revaccination on the immunogenicity of subsequent unrelated vaccines among adolescents aged 13-17 years who are participants in an urban Ugandan birth cohort study, in which BCG vaccination was documented at birth. Participants were excluded if they had received any of the trial vaccines or related agents when aged 5 years or older. Computer-generated 1:1 randomisation was implemented in REDCap. Participants were excluded if they were concurrently enrolled in other trials; had a clinically significant history of immunodeficiency, or serious psychiatric conditions or moderate to severe acute illnesses; were taking immunosuppressive medications; had allergies to vaccine components, a predisposition towards developing keloid scarring; positive HIV tests or pregnancy tests; were female participants who were lactating; or if they planned to use investigational drugs, vaccines, blood products, or any combination thereof. Trial participants assigned to the BCG revaccination group received the live parenteral BCG-Russia vaccine (Serum Institute of India, Pune, India; 0·1 mL intradermally, right upper arm) at week 0. All participants received yellow fever vaccine (YF-17D; Sanofi Pasteur, Lyon, France; 0·5 mL intramuscularly, left upper arm), live oral typhoid vaccine (Ty21a; PaxVax, London, UK; one capsule per day taken for three alternate days), and quadrivalent virus-like particle human papillomavirus (HPV) vaccine (Merck, Rahway, NJ, USA; 0·5 mL intramuscularly, left upper arm) at week 4; and toxoid vaccines (tetanus-diphtheria; Serum Institute of India; 0·5 mL intramuscularly, left upper arm) and an HPV booster at week 28. An additional HPV vaccination at week 8 was provided to female participants older than 14 years who had not previously been vaccinated. The primary outcomes were yellow fever neutralising antibody titres at 4 weeks post-YF-17D vaccination, Salmonella enterica serovar Typhi (henceforth S Typhi) O-lipopolysaccharide (O:LPS)-specific IgG concentration at 4 weeks post-Ty21a vaccination, and HPV-16 and HPV-18 L1 protein-specific IgG concentration at 4 weeks post-HPV vaccination. Primary outcome assays were conducted at week 8, and at week 52 for tetanus-diphtheria. We conducted an intention-to-treat analysis comparing log-transformed outcomes between trial groups, with results back-transformed to geometric mean ratios (GMRs). The safety population comprised all randomly allocated participants. The trial was registered at the ISRCTN Registry (ISRCTN10482904) and is complete. FINDINGS Between Aug 31 and Oct 12, 2020, we screened 376 potential participants for eligibility. We enrolled and randomly allocated 300 participants to the two groups (151 [50%] to the BCG group and 149 [50%] to the no BCG group). 178 (59%) of 300 participants were male and 122 (41%) were female. 142 (91%) of 151 participants in the BCG group and 139 (93%) of 149 in the no BCG group completed follow-up. There was no effect of BCG revaccination, compared with no BCG revaccination, on the response observed for any vaccine. Yellow fever plaque reduction neutralising reference tests (PRNT50) titres (the reciprocal of the last plasma dilution that reduced by 50%) had a GMR of 0·95 (95% CI 0·75-1·19; p=0·62) and PRNT90 (reciprocal of the last plasma dilution that reduced by 90%) had a GMR of 0·94 (0·74-1·19; p=0·60); IgG to S Typhi O:LPS was 0·99 (0·80-1·23; p=0·94); IgG to HPV-16 was 0·97 (0·69-1·35; p=0·85) and to HPV-18 was 1·03 (0·76-1·40; p=0·83); and toxoid-specific IgG for tetanus was 1·13 (0·87-1·47; p=0·36) and was 1·00 (0·87-1·16; p=0·97) for diphtheria. There were no serious adverse events in either group. INTERPRETATION We found no evidence that BCG revaccination is an effective strategy to improve immunogenicity of other vaccines in this low-income, urban setting. FUNDING UK Medical Research Council. TRANSLATION For the Luganda translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Jacent Nassuuna
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Ludoviko Zirimenya
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Agnes Natukunda
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Christopher Zziwa
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Caroline Ninsiima
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Barbara Apule
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Caroline Onen
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Susan Amongi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Joel Serubanja
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Pius Tumwesige
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Denis Nsubuga
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Rebecca Amongin
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Govert J van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - John Kayiwa
- Department of Arbovirology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Joyce Kabagenyi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Stephen Cose
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Anne Wajja
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Global Health and Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Pontiano Kaleebu
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Emily L Webb
- International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Alison M Elliott
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
7
|
Messina NL, Pittet LF, McDonald E, Moore C, Barry S, Bonten M, Byrne A, Campbell J, Croda J, Croda MG, Dalcolmo M, de Almeida E Val FF, de Oliveira RD, Dos Santos G, Douglas MW, Gardiner K, Gwee A, Jardim BA, Kollmann T, Lacerda MV, Lucas M, Lynn DJ, Manning L, Marshall H, O'Connell A, Perrett KP, Post JJ, Prat-Aymerich C, Rocha JL, Rodriguez-Baño J, Wadia U, Warris A, Davidson A, Curtis N. BCG vaccination of healthcare workers for protection against COVID-19: 12-month outcomes from an international randomised controlled trial. J Infect 2024; 89:106245. [PMID: 39127450 PMCID: PMC11409612 DOI: 10.1016/j.jinf.2024.106245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVES Bacille Calmette-Guérin (BCG) vaccine has immunomodulatory effects that may provide protection against unrelated infectious diseases. We aimed to determine whether BCG vaccination protects adults against COVID-19. DESIGN Phase III double-blind randomised controlled trial. SETTING Healthcare centres in Australia, Brazil, the Netherlands, Spain, and the United Kingdom during the COVID-19 pandemic. PARTICIPANTS 3988 healthcare workers with no prior COVID-19 and no contraindication to BCG. INTERVENTION Randomised 1:1 using a web-based procedure to receive a single 0.1 mL intradermal dose of BCG-Denmark (BCG group, n = 1999) or saline (placebo group, n = 1989). MAIN OUTCOME MEASURES Difference in incidence of (i) symptomatic and (ii) severe COVID-19 during the 12 months following randomisation in the modified intention to treat (mITT) population (confirmed SARS-CoV-2 naïve at inclusion). RESULTS Of the 3988 participants randomised, 3386 had a negative baseline SARS-CoV-2 test and were included in the mITT population. The 12-month adjusted estimated risk of symptomatic COVID-19 was higher in the BCG group (22.6%; 95% confidence interval [CI] 20.6 to 24.5%) compared with the placebo group (19.6%; 95% CI 17.6 to 21.5%); adjusted difference +3.0% points (95% CI 0.2 to 5.8%; p = 0.04). The 12-month adjusted estimated risk of severe COVID-19 (mainly comprising those reporting being unable to work for ≥3 consecutive days) was 11.0% in the BCG group (95% CI 9.5 to 12.4%) compared with 9.6% in the placebo group (95% CI 8.3 to 11.1%); adjusted difference +1.3% points (95% CI -0.7 to 3.3%, p = 0.2). Breakthrough COVID-19 (post COVID-19 vaccination) and asymptomatic SARS-CoV-2 infections were similar in the two groups. There were 18 hospitalisations due to COVID-19 (11 in BCG group, 7 in placebo group; adjusted hazard ratio 1.56, 95% CI 0.60 to 4.02, p = 0.4) and two deaths due to COVID-19, both in the placebo group. CONCLUSIONS Compared to placebo, vaccination with BCG-Denmark increased the risk of symptomatic COVID-19 over 12 months among healthcare workers and did not decrease the risk of severe COVID-19 or post-vaccination breakthrough COVID-19. TRIAL REGISTRATION ClinicalTrials.gov NCT04327206.
Collapse
Affiliation(s)
- Nicole L Messina
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Laure F Pittet
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Immunology, Vaccinology, Rheumatology and Infectious Diseases Unit, Geneva and University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Ellie McDonald
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Cecilia Moore
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Simone Barry
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Marc Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, the Netherlands; European Clinical Research Alliance on Infectious Diseases, Utrecht, Netherlands
| | - Anthony Byrne
- St Vincent's Hospitals, Darlinghurst, New South Wales, Australia; Partners In Health, Socios En Salud, Peru; Thoracic Society of Australia & New Zealand (NSW/ACT Branch), Australia
| | - John Campbell
- Exeter Collaboration for Academic Primary Care, University of Exeter Medical School, Exeter, United Kingdom
| | - Julio Croda
- Fiocruz Mato Grosso do Sul, Fundação Oswaldo Cruz, Campo Grande, Mato Grosso do Sul, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Mariana G Croda
- Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Margareth Dalcolmo
- Centro de Referência Professor Hélio Fraga, ENSP/FIOCRUZ (Fundação Oswaldo Cruz), Rio de Janeiro, Brazil
| | | | - Roberto D de Oliveira
- State University of Mato Grosso do Sul, Dourados, Brazil; Post Graduate Program in Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Glauce Dos Santos
- Centro de Referência Professor Hélio Fraga, ENSP/FIOCRUZ (Fundação Oswaldo Cruz), Rio de Janeiro, Brazil
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Syndey at Westmead Hospital, Westmead, New South Wales, Australia; Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Kaya Gardiner
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Research Operations, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Amanda Gwee
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Infectious Diseases, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia; Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Bruno A Jardim
- Institute of Clinical Research Carlos Borborema, Doctor Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Tobias Kollmann
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Marcus Vg Lacerda
- Institute of Clinical Research Carlos Borborema, Doctor Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil; Instituto Leônidas & Maria Deane, Oswaldo Cruz Foundation Ministry of Health, Manaus, Brazil; University of Texas Medical Branch, Galveston, TX, USA
| | - Michaela Lucas
- Department of Immunology, Pathwest, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia; Department of Immunology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; Department of Immunology, Perth Children's Hospital, Nedlands, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Laurens Manning
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Helen Marshall
- The University of Adelaide and the Women's and Children's Health Network, Adelaide, SA, Australia
| | - Abby O'Connell
- Exeter Clinical Trials Unit, University of Exeter, Exeter, United Kingdom
| | - Kirsten P Perrett
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Population Allergy Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Jeffrey J Post
- Department of Infectious Diseases, Prince of Wales Hospital, Randwick, New South Wales, Australia; School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Cristina Prat-Aymerich
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, the Netherlands; European Clinical Research Alliance on Infectious Diseases, Utrecht, Netherlands
| | - Jorge L Rocha
- Helio Fraga Reference Center, Oswaldo Cruz Foundation Ministry of Health, Curicica, Brazil
| | - Jesus Rodriguez-Baño
- Division of Infectious Diseases and Microbiology, Department of Medicine, Hospital Universitario Virgen Macarena, University of Seville, Biomedicines Institute of Seville-Consejo Superior de Investigaciones Científicas, Seville, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carloss III, Madrid, Spain
| | - Ushma Wadia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom; Department of Infectious Diseases, Great Ormond Street Hospital, London, United Kingdom
| | - Andrew Davidson
- Melbourne Children's Trial Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Nigel Curtis
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Infectious Diseases, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
8
|
Peña-Bates C, Lascurain R, Ortiz-Navarrete V, Chavez-Galan L. The BCG vaccine and SARS-CoV-2: Could there be a beneficial relationship? Heliyon 2024; 10:e38085. [PMID: 39347386 PMCID: PMC11437859 DOI: 10.1016/j.heliyon.2024.e38085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
The COVID-19 disease continues to cause complications and deaths worldwide. Identifying effective immune protection strategies remains crucial to address this ongoing challenge. The Bacillus Calmette-Guérin (BCG) vaccine, developed initially to prevent pulmonary tuberculosis, has gained relevance due to its ability to induce cross-protection against other pathogens of the airways. This review summarizes research on the immunological protection provided by BCG, along with its primary clinical and therapeutic uses. It also explores the immunological features of COVID-19, the mechanisms implicated in host cell death, and its association with chronic pulmonary illnesses such as tuberculosis, which has led to complications in diagnosis and management. While vaccines against COVID-19 have been administered globally, uncertainty still exists about its effectiveness. Additionally, it is uncertain whether the utilization of BCG can regulate the immune response to pathogens such as SARS-CoV-2.
Collapse
Affiliation(s)
- Carlos Peña-Bates
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Ricardo Lascurain
- Unidad de Enlace Científico, Faculty of Medicine, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
| | - Vianney Ortiz-Navarrete
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
9
|
Wu L, Yang L, Qian X, Hu W, Wang S, Yan J. Mannan-Decorated Lipid Calcium Phosphate Nanoparticle Vaccine Increased the Antitumor Immune Response by Modulating the Tumor Microenvironment. J Funct Biomater 2024; 15:229. [PMID: 39194667 DOI: 10.3390/jfb15080229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
With the rapid development of tumor immunotherapy, nanoparticle vaccines have attracted much attention as potential therapeutic strategies. A systematic review and analysis must be carried out to investigate the effect of mannose modification on the immune response to nanoparticles in regulating the tumor microenvironment, as well as to explore its potential clinical application in tumor therapy. Despite the potential advantages of nanoparticle vaccines in immunotherapy, achieving an effective immune response in the tumor microenvironment remains a challenge. Tumor immune escape and the overexpression of immunosuppressive factors limit its clinical application. Therefore, our review explored how to intervene in the immunosuppressive mechanism in the tumor microenvironment through the use of mannan-decorated lipid calcium phosphate nanoparticle vaccines to improve the efficacy of immunotherapy in patients with tumors and to provide new ideas and strategies for the field of tumor therapy.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 19077, Singapore
| | - Lei Yang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wang Hu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Adiga V, Bindhu H, Ahmed A, Chetan Kumar N, Tripathi H, D’Souza G, Dias M, Shivalingaiah S, Rao S, K N S, Hawrylowicz C, Dwarkanath P, Vyakarnam A. Immune profiling reveals umbilical cord blood mononuclear cells from South India display an IL-8 dominant, CXCL-10 deficient polyfunctional monocyte response to pathogen-associated molecular patterns that is distinct from adult blood cells. Clin Exp Immunol 2024; 217:263-278. [PMID: 38695079 PMCID: PMC11310697 DOI: 10.1093/cei/uxae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 08/10/2024] Open
Abstract
Neonate responses to pathogen-associated molecular patterns (PAMPS) differ from adults; such understanding is poor in Indian neonates, despite recognized significant infectious risk. Immune profiling analysis was undertaken of 10 secreted mediators contextualized with cellular source induced by six PAMPs in umbilical cord (CB; n = 21) and adult-blood (PBMC; n = 14) from a tertiary care hospital in South India. Differential cytokine expression analysis (minimum log2-fold difference; adj P-value < 0.05) identified bacterial PAMPs induced higher concentrations of IL-1β, IL-10, TNF-α in adults versus IL-8, GM-CSF, IFN-γ, and IL-2 in CB. CB responded to poly I:C and SARS-CoV-2 lysate with a dominant IL-8 response, whereas in PBMC, CXCL-10 dominated poly I:C, but not SARS-CoV-2, responses, highlighting potential IL-8 importance, in the absence of Type I Interferons, in antiviral CB immunity. Candida albicans was the only PAMP to uniformly induce higher secretion of effectors in CB. The predominant source of IL-8/IL-6/TNF-α/IL-1β in both CB and PBMC was polyfunctional monocytes and IFN-γ/IL-2/IL-17 from innate lymphocytes. Correlation matrix analyses revealed IL-8 to be the most differentially regulated, correlating positively in CB versus negatively in PBMC with IL-6, GM-CSF, IFN-γ, IL-2, consistent with more negatively regulated cytokine modules in adults, potentially linked to higher anti-inflammatory IL-10. Cord and adult blood from India respond robustly to PAMPs with unique effector combinations. These data provide a strong foundation to monitor, explore, mechanisms that regulate such immunity during the life course, an area of significant global health importance given infection-related infant mortality incidence.
Collapse
Affiliation(s)
- Vasista Adiga
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
- Department of Biotechnology, PES University, Bangalore, Karnataka, India
| | - Hima Bindhu
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Asma Ahmed
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Nirutha Chetan Kumar
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Himanshu Tripathi
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - George D’Souza
- Department of Pulmonary Medicine, St. John’s Medical College, Bangalore, India
| | - Mary Dias
- Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | | | - Srishti Rao
- Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Shanti K N
- Department of Biotechnology, PES University, Bangalore, Karnataka, India
| | - Catherine Hawrylowicz
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King’s College, London, UK
| | - Pratibha Dwarkanath
- Division of Nutrition, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Annapurna Vyakarnam
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King’s College, London, UK
| |
Collapse
|
11
|
Eggenhuizen PJ, Ooi JD. The Influence of Cross-Reactive T Cells in COVID-19. Biomedicines 2024; 12:564. [PMID: 38540178 PMCID: PMC10967880 DOI: 10.3390/biomedicines12030564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 01/22/2025] Open
Abstract
Memory T cells form from the adaptive immune response to historic infections or vaccinations. Some memory T cells have the potential to recognise unrelated pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and generate cross-reactive immune responses. Notably, such T cell cross-reactivity has been observed between SARS-CoV-2 and other human coronaviruses. T cell cross-reactivity has also been observed between SARS-CoV-2 variants from unrelated microbes and unrelated vaccinations against influenza A, tuberculosis and measles, mumps and rubella. Extensive research and debate is underway to understand the mechanism and role of T cell cross-reactivity and how it relates to Coronavirus disease 2019 (COVID-19) outcomes. Here, we review the evidence for the ability of pre-existing memory T cells to cross-react with SARS-CoV-2. We discuss the latest findings on the impact of T cell cross-reactivity and the extent to which it can cross-protect from COVID-19.
Collapse
Affiliation(s)
- Peter J. Eggenhuizen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
| | | |
Collapse
|
12
|
van Meijgaarden KE, Li W, Moorlag SJCFM, Koeken VACM, Koenen HJPM, Joosten LAB, Vyakarnam A, Ahmed A, Rakshit S, Adiga V, Ottenhoff THM, Li Y, Netea MG, Joosten SA. BCG vaccination-induced acquired control of mycobacterial growth differs from growth control preexisting to BCG vaccination. Nat Commun 2024; 15:114. [PMID: 38167829 PMCID: PMC10761850 DOI: 10.1038/s41467-023-44252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Bacillus Calmette-Guèrin - vaccination induces not only protection in infants and young children against severe forms of tuberculosis, but also against non-tuberculosis related all-cause mortality. To delineate different factors influencing mycobacterial growth control, here we first investigate the effects of BCG-vaccination in healthy Dutch adults. About a quarter of individuals already control BCG-growth prior to vaccination, whereas a quarter of the vaccinees acquires the capacity to control BCG upon vaccination. This leaves half of the population incapable to control BCG-growth. Single cell RNA sequencing identifies multiple processes associated with mycobacterial growth control. These data suggest (i) that already controllers employ different mechanisms to control BCG-growth than acquired controllers, and (ii) that half of the individuals fail to develop measurable growth control irrespective of BCG-vaccination. These results shed important new light on the variable immune responses to mycobacteria in humans and may impact on improved vaccination against tuberculosis and other diseases.
Collapse
Affiliation(s)
| | - Wenchao Li
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Simone J C F M Moorlag
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Valerie A C M Koeken
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Centre Innovations in Care, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Laboratory Medical Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Annapurna Vyakarnam
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Laboratory of Human Immunology, Division of Infectious Diseases, St. John's Research Institute, Bangalore, India
- Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King's College, London, UK
| | - Asma Ahmed
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Laboratory of Human Immunology, Division of Infectious Diseases, St. John's Research Institute, Bangalore, India
| | - Srabanti Rakshit
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Laboratory of Human Immunology, Division of Infectious Diseases, St. John's Research Institute, Bangalore, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Laboratory of Human Immunology, Division of Infectious Diseases, St. John's Research Institute, Bangalore, India
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Yang Li
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
13
|
Taks EJ, Moorlag SJ, Föhse K, Simonetti E, van der Gaast-de Jongh CE, van Werkhoven CH, Bonten MJ, Oever JT, de Jonge MI, van de Wijgert JH, Netea MG. The impact of Bacillus Calmette-Guérin vaccination on antibody response after COVID-19 vaccination. iScience 2023; 26:108062. [PMID: 37860692 PMCID: PMC10583058 DOI: 10.1016/j.isci.2023.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
Earlier studies showed that BCG vaccination improves antibody responses of subsequent vaccinations. Similarly, in older volunteers we found an increased IgG receptor-binding domain (RBD) concentration after SARS-CoV-2 infection if they were recently vaccinated with BCG. This study aims to assess the effect of BCG on the serum antibody concentrations induced by COVID-19 vaccination in a population of adults older than 60 years. Serum was collected from 1,555 participants of the BCG-CORONA-ELDERLY trial a year after BCG or placebo, and we analyzed the anti-SARS-CoV-2 antibody concentrations using a fluorescent-microsphere-based multiplex immunoassay. Individuals who received the full primary COVID-19 vaccination series before serum collection and did not test positive for SARS-CoV-2 between inclusion and serum collection were included in analyses (n = 945). We found that BCG vaccination before first COVID-19 vaccine (median 347 days [IQR 329-359]) did not significantly impact the IgG RBD concentration after COVID-19 vaccination in an older European population.
Collapse
Affiliation(s)
- Esther J.M. Taks
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone J.C.F.M. Moorlag
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Konstantin Föhse
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elles Simonetti
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christa E. van der Gaast-de Jongh
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cornelis H. van Werkhoven
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc J.M. Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap ten Oever
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marien I. de Jonge
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| |
Collapse
|
14
|
Ziogas A, Bruno M, van der Meel R, Mulder WJM, Netea MG. Trained immunity: Target for prophylaxis and therapy. Cell Host Microbe 2023; 31:1776-1791. [PMID: 37944491 DOI: 10.1016/j.chom.2023.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/27/2023] [Accepted: 10/15/2023] [Indexed: 11/12/2023]
Abstract
Trained immunity is a de facto memory for innate immune responses, leading to long-term functional reprogramming of innate immune cells. In physiological conditions, trained immunity leads to adaptive states that enhance resistance against pathogens and contributes to immunosurveillance. Dysregulated trained immunity can however lead either to defective innate immune responses in severe infections or cancer or to inflammatory and autoimmune diseases if trained immunity is inappropriately activated. Here, we review the immunological and molecular mechanisms that mediate trained immunity induction and propose that trained immunity represents an important target for prophylactic and therapeutic approaches in human diseases. On the one hand, we argue that novel approaches that induce trained immunity may enhance vaccine efficacy. On the other hand, induction of trained immunity in cancer, and inhibition of exaggerated induction of trained immunity in inflammatory disorders, are viable targets amenable for new therapeutic approaches.
Collapse
Affiliation(s)
- Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Singh AK, Wang R, Lombardo KA, Praharaj M, Bullen CK, Um P, Gupta M, Srikrishna G, Davis S, Komm O, Illei PB, Ordonez AA, Bahr M, Huang J, Gupta A, Psoter KJ, Creisher PS, Li M, Pekosz A, Klein SL, Jain SK, Bivalacqua TJ, Yegnasubramanian S, Bishai WR. Intravenous BCG vaccination reduces SARS-CoV-2 severity and promotes extensive reprogramming of lung immune cells. iScience 2023; 26:107733. [PMID: 37674985 PMCID: PMC10477068 DOI: 10.1016/j.isci.2023.107733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/31/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG) confers heterologous immune protection against viral infections and has been proposed as vaccine against SARS-CoV-2 (SCV2). Here, we tested intravenous BCG vaccination against COVID-19 using the golden Syrian hamster model. BCG vaccination conferred a modest reduction on lung SCV2 viral load, bronchopneumonia scores, and weight loss, accompanied by a reversal of SCV2-mediated T cell lymphopenia, and reduced lung granulocytes. BCG uniquely recruited immunoglobulin-producing plasma cells to the lung suggesting accelerated local antibody production. BCG vaccination also recruited elevated levels of Th1, Th17, Treg, CTLs, and Tmem cells, with a transcriptional shift away from exhaustion markers and toward antigen presentation and repair. Similarly, BCG enhanced recruitment of alveolar macrophages and reduced key interstitial macrophage subsets, that show reduced IFN-associated gene expression. Our observations indicate that BCG vaccination protects against SCV2 immunopathology by promoting early lung immunoglobulin production and immunotolerizing transcriptional patterns among key myeloid and lymphoid populations.
Collapse
Affiliation(s)
- Alok K. Singh
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Rulin Wang
- Sydney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Kara A. Lombardo
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, MD, USA
| | - Monali Praharaj
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - C. Korin Bullen
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Peter Um
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Manish Gupta
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Geetha Srikrishna
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Stephanie Davis
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Oliver Komm
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Peter B. Illei
- Johns Hopkins University, School of Medicine, Department of Pathology, Baltimore, MD, USA
| | - Alvaro A. Ordonez
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, USA
| | - Melissa Bahr
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, USA
| | - Joy Huang
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Anuj Gupta
- Sydney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Kevin J. Psoter
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of General Pediatrics, Baltimore, MD, USA
| | - Patrick S. Creisher
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Maggie Li
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Andrew Pekosz
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Sabra L. Klein
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Sanjay K. Jain
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, USA
| | - Trinity J. Bivalacqua
- Perelman School of Medicine at the University of Pennsylvania, Division of Urology, Department of Surgery, Philadelphia, PA, USA
| | | | - William R. Bishai
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| |
Collapse
|
16
|
Ahmed A, Tripathi H, van Meijgaarden KE, Kumar NC, Adiga V, Rakshit S, Parthiban C, Eveline J S, D’Souza G, Dias M, Ottenhoff TH, Netea MG, Joosten SA, Vyakarnam A. BCG revaccination in adults enhances pro-inflammatory markers of trained immunity along with anti-inflammatory pathways. iScience 2023; 26:107889. [PMID: 37817935 PMCID: PMC10561055 DOI: 10.1016/j.isci.2023.107889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
This study characterized mechanisms of Bacille Calmette-Guérin (BCG) revaccination-induced trained immunity (TI) in India. Adults, BCG vaccinated at birth, were sampled longitudinally before and after a second BCG dose. BCG revaccination significantly elevated tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 in HLA-DR+CD16-CD14hi monocytes, demonstrating induction of TI. Mycobacteria-specific CD4+ T cell interferon (IFN) γ, IL-2, and TNF-α were significantly higher in re-vaccinees and correlated positively with HLA-DR+CD16-CD14hi TI responses. This, however, did not translate into increased mycobacterial growth control, measured by mycobacterial growth inhibition assay (MGIA). Post revaccination, elevated secreted TNF-α, IL-1β, and IL-6 to "heterologous" fungal, bacterial, and enhanced CXCL-10 and IFNα to viral stimuli were also observed concomitant with increased anti-inflammatory cytokine, IL-1RA. RNA sequencing after revaccination highlighted a BCG and LPS induced signature which included upregulated IL17 and TNF pathway genes and downregulated key inflammatory genes: CXCL11, CCL24, HLADRA, CTSS, CTSC. Our data highlight a balanced immune response comprising pro- and anti-inflammatory mediators to be a feature of BCG revaccination-induced immunity.
Collapse
Affiliation(s)
- Asma Ahmed
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Himanshu Tripathi
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | | | - Nirutha Chetan Kumar
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
- Department of Biotechnology, PES University, Bangalore, India
| | - Srabanti Rakshit
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Chaitra Parthiban
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Sharon Eveline J
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - George D’Souza
- Department of Pulmonary Medicine, St. John’s Medical College, Bangalore, India
| | - Mary Dias
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Tom H.M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Annapurna Vyakarnam
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
- Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King’s College, London, UK
| |
Collapse
|
17
|
Perera DJ, Domenech P, Babuadze GG, Naghibosadat M, Alvarez F, Koger-Pease C, Labrie L, Stuible M, Durocher Y, Piccirillo CA, Lametti A, Fiset PO, Elahi SM, Kobinger GP, Gilbert R, Olivier M, Kozak R, Reed MB, Ndao M. BCG administration promotes the long-term protection afforded by a single-dose intranasal adenovirus-based SARS-CoV-2 vaccine. iScience 2023; 26:107612. [PMID: 37670783 PMCID: PMC10475483 DOI: 10.1016/j.isci.2023.107612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
Recent publications have explored intranasal (i.n.) adenovirus-based (Ad) vaccines as an effective strategy for SARS-CoV-2 in pre-clinical models. However, the effects of prior immunizations and infections have yet to be considered. Here, we investigate the immunomodulatory effects of Mycobacterium bovis BCG pre-immunization followed by vaccination with an S-protein-expressing i.n. Ad, termed Ad(Spike). While i.n. Ad(Spike) retains some protective effect after 6 months, a single administration of BCG-Danish prior to Ad(Spike) potentiates its ability to control viral replication of the B.1.351 SARS-CoV-2 variant within the respiratory tract. Though BCG-Danish did not affect Ad(Spike)-generated humoral immunity, it promoted the generation of cytotoxic/Th1 responses over suppressive FoxP3+ TREG cells in the lungs of infected mice. Thus, this vaccination strategy may prove useful in limiting future pandemics by potentiating the long-term efficacy of mucosal vaccines within the context of the widely distributed BCG vaccine.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Pilar Domenech
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- McGill International TB Centre, McGill University, Montréal, QC, Canada
| | - George Giorgi Babuadze
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maedeh Naghibosadat
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Fernando Alvarez
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Lydia Labrie
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Matthew Stuible
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Yves Durocher
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - André Lametti
- Department of Pathology, McGill University, Montréal, QC, Canada
| | | | - Seyyed Mehdy Elahi
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Gary P. Kobinger
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Martin Olivier
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Robert Kozak
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michael B. Reed
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- McGill International TB Centre, McGill University, Montréal, QC, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- National Reference Centre for Parasitology, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
18
|
Rakshit S, Babji S, Parthiban C, Madhavan R, Adiga V, J SE, Chetan Kumar N, Ahmed A, Shivalingaiah S, Shashikumar N, V M, Johnson AR, Ramesh N, B RG, Asokan M, Mayor S, Kang G, D'souza G, Dias M, Vyakarnam A. Polyfunctional CD4 T-cells correlating with neutralising antibody is a hallmark of COVISHIELD TM and COVAXIN ® induced immunity in COVID-19 exposed Indians. NPJ Vaccines 2023; 8:134. [PMID: 37709772 PMCID: PMC10502007 DOI: 10.1038/s41541-023-00731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Detailed characterisation of immune responses induced by COVID-19 vaccines rolled out in India: COVISHIELDTM (CS) and COVAXIN® (CO) in a pre-exposed population is only recently being discovered. We addressed this issue in subjects who received their primary series of vaccination between November 2021 and January 2022. Both vaccines are capable of strongly boosting Wuhan Spike-specific neutralising antibody, polyfunctional Th1 cytokine producing CD4+ T-cells and single IFN-γ + CD8+ T-cells. Consistent with inherent differences in vaccine platform, the vector-based CS vaccine-induced immunity was of greater magnitude, breadth, targeting Delta and Omicron variants compared to the whole-virion inactivated vaccine CO, with CS vaccinees showing persistent CD8+ T-cells responses until 3 months post primary vaccination. This study provides detailed evidence on the magnitude and quality of CS and CO vaccine induced responses in subjects with pre-existing SARS-CoV-2 immunity in India, thereby mitigating vaccine hesitancy arguments in such a population, which remains a global health challenge.
Collapse
Affiliation(s)
- Srabanti Rakshit
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
| | - Sudhir Babji
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | - Chaitra Parthiban
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
| | - Ramya Madhavan
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vasista Adiga
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
- Department of Biotechnology, PES University, Bangalore, Karnataka, India
| | - Sharon Eveline J
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
| | - Nirutha Chetan Kumar
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
| | - Asma Ahmed
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
| | | | - Nandini Shashikumar
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
| | - Mamatha V
- St. John's Medical College, Bangalore, Karnataka, India
| | | | - Naveen Ramesh
- St. John's Medical College, Bangalore, Karnataka, India
| | | | | | - Satyajit Mayor
- National Centre for Biological Sciences, Bengaluru, Karnataka, India
| | - Gagandeep Kang
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | - George D'souza
- Department of Pulmonary Medicine, St. John's Medical College, Bangalore, Karnataka, India
| | - Mary Dias
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
- St. John's Medical College, Bangalore, Karnataka, India
| | - Annapurna Vyakarnam
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India.
- Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King's College, London, UK.
| |
Collapse
|
19
|
Geckin B, Zoodsma M, Kilic G, Debisarun PA, Rakshit S, Adiga V, Ahmed A, Parthiban C, Kumar NC, D’Souza G, Baltissen MP, Martens JHA, Domínguez-Andrés J, Li Y, Vyakarnam A, Netea MG. Differences in Immune Responses in Individuals of Indian and European Origin: Relevance for the COVID-19 Pandemic. Microbiol Spectr 2023; 11:e0023123. [PMID: 36779734 PMCID: PMC10100912 DOI: 10.1128/spectrum.00231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/14/2023] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, large differences in susceptibility and mortality due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been reported between populations in Europe and South Asia. While both host and environmental factors (including Mycobacterium bovis BCG vaccination) have been proposed to explain this, the potential biological substrate of these differences is unknown. We purified peripheral blood mononuclear cells from individuals living in India and the Netherlands at baseline and 10 to 12 weeks after BCG vaccination. We compared chromatin accessibility between the two populations at baseline, as well as gene transcription profiles and cytokine production capacities upon stimulation. The chromatin accessibility of genes important for adaptive immunity was higher in the Indians than in the Europeans, while the latter had more accessible chromatin regions in genes of the innate immune system. At the transcriptional level, we observed that the Indian volunteers displayed a more tolerant immune response to stimulation, in contrast to a more exaggerated response in the Europeans. BCG vaccination strengthened the tolerance program in the Indians but not in the Europeans. These differences may partly explain the different impact of COVID-19 on the two populations. IMPORTANCE In this study, we assessed the differences in immune responses in individuals from India and Europe. This aspect is of great relevance, because of the described differences in morbidity and mortality between India and Europe during the pandemic. We found a significant difference in chromatin accessibility in immune cells from the two populations, followed by a more balanced and effective response in individuals from India. These exciting findings represent a very important piece of the puzzle for understanding the COVID-19 pandemic at a global level.
Collapse
Affiliation(s)
- Büsra Geckin
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn Zoodsma
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Gizem Kilic
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Priya A. Debisarun
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Srabanti Rakshit
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Asma Ahmed
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Chaitra Parthiban
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Nirutha Chetan Kumar
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - George D’Souza
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Marijke P. Baltissen
- Department of Molecular Biology, Radboud University, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Joost H. A. Martens
- Department of Molecular Biology, Radboud University, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Annapurna Vyakarnam
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences & Medicine, Guy’s Hospital, King’s College London, London, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Efficacy of BCG Vaccination against COVID-19: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Med 2023; 12:jcm12031154. [PMID: 36769802 PMCID: PMC9917948 DOI: 10.3390/jcm12031154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Beneficial off-target effects of the Bacillus Calmette-Guérin (BCG) vaccination might offer general protection from respiratory tract infections. We conducted a systematic review and meta-analysis of published randomized controlled trials (RCTs) to ascertain BCG vaccination effectiveness against COVID-19. We looked up English RCTs from 1 January 2019 to 15 November 2022 in Embase, the Cochrane Library, and the Web of Science in this systematic review and meta-analysis. Nine RCTs, including 7963 participants, were included. The infection rate of COVID-19 was not decreased in people who were vaccinated with BCG (OR, 0.96; 95% CI, 0.82-1.13; I2 = 4%), and the BCG vaccination group did not have decreased COVID-19 related-hospitalization (OR, 0.66; 95% CI, 0.37-1.18; I2 = 42%), admission to the ICU (OR, 0.25; 95% CI, 0.05-1.18; I2 = 0%), and mortality (OR, 0.64; 95% CI, 0.17-2.44; I2 = 0%) compared with the control group. There is not sufficient evidence to support the use of BCG vaccination in the prevention of COVID-19 infection and severe COVID-19 and avoid overstating the role of BCG vaccination leading to its misuse.
Collapse
|