1
|
Peart RA, Woods C. Caprellidae (Crustacea: Amphipoda) of Aotearoa New Zealand waters: a constantly changing landscape. Zootaxa 2025; 5568:1-65. [PMID: 40173558 DOI: 10.11646/zootaxa.5568.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Indexed: 04/04/2025]
Abstract
A snapshot of the changing landscape of the Aotearoa New Zealand caprellid fauna is presented. This study is primarily an examination of historic material, mainly from the NIWA Invertebrate Collection. The caprellid fauna from this region suffers from similar problems to many amphipod groups recorded in the Southern Hemisphere. These problems primarily have arisen from Northern Hemisphere researchers (during the years 1760-1920), examining the fauna, and after seeing similarities to known, familiar fauna, assume they are the same organism, creating a concept of 'cosmopolitan' species. The fauna is rarely examined in detail as it is abundant, diverse and not considered commercially important. Therefore, the assumed 'cosmopolitan' species names are used regularly and repeatedly in ecological and other studies, forming assumptions regarding distributions and influence. This situation is compounded by the introduction of invasive species and the need to assess potential related impacts. Therefore, to resolve some of these issues, this study uses an integrative (using both morphological and molecular methods where possible) approach to review the known species of the family Caprellidae from New Zealand waters and describes six new species: Caprella perplexa sp. nov., Caprella sarahae sp. nov., Caprella serenae sp. nov., Caprellina judyae sp. nov., Caprellina plumea sp. nov., Noculacia anima sp. nov. and one resurrected species, Caprella novaezealandiae to the fauna. A dichotomous key to the New Zealand caprellid fauna is provided, and molecular and morphological analysis and biogeographic comments on the origins of the fauna are also provided. This paper specifically examines the complex of caprellid species from Aotearoa New Zealand and almost doubles the described fauna from 8 species to 15 species.
Collapse
Affiliation(s)
- Rachael A Peart
- National Institute of Water and Atmospheric Research; Private Bag 14901; Kilbirnie; Wellington; 6241.
| | - Chris Woods
- National Institute of Water and Atmospheric Research; PO Box 8602; Christchurch; New Zealand; 8011.
| |
Collapse
|
2
|
Trokhymchuk R, Schmidt-Rhaesa A, Utevsky S, Kristensen RM, Kieneke A. Towards a better understanding of deep-sea tardigrade biogeography: numerous new records from the Southern Ocean. Zootaxa 2024; 5543:1-39. [PMID: 39646124 DOI: 10.11646/zootaxa.5543.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 12/10/2024]
Abstract
To date, only eight species of marine tardigrades have been recorded from the Southern Ocean. A total of 1210 tardigrade specimens were collected during various marine expeditions with R/V POLARSTERN: ANDEEP-1, ANDEEP-2, ANDEEP-3 and ANDEEP-SYSTCO. The sampled tardigrades belong to five families (Batillipedidae, Coronarctidae, Halechiniscidae, Styraconyxidae and Echiniscoididae), seven genera (Batillipes, Coronarctus, Moebjergarctus, Angursa, Styraconyx, Tholoarctus, Isoechiniscoides) and 15 species (Batillipes wyedeleinorum, Coronarctus dissimilis, Coronarctus tenellus, Coronarctus cf. tenellus, Moebjergarctus clarionclippertonensis, Angursa sp., A. abyssalis, A. antarctica, A. capsula, A. lanceolata, A. lingua, Styraconyx qivitoq, S. takeshii, Tholoarctus oleseni, Isoechiniscoides aff. sifae sp. can.). For the genera Batillipes, Coronarctus, Moebjergarctus, Tholoarctus and Isoechiniscoides, these new distribution data are the southernmost records and first reports from the Southern Ocean. Furthermore, the genera Styraconyx, Batillipes and Isoechiniscoides are reported from the abyssal zone for the first time. These new findings significantly expand our previous knowledge of both geographic and bathymetric distribution of marine Tardigrada.
Collapse
Affiliation(s)
- Roman Trokhymchuk
- VN Karazin Kharkiv National University; Svobody Square; 4; 61022; Kharkiv; Ukraine; German Centre for Marine Biodiversity Research (DZMB); Senckenberg am Meer; Südstrand 44; 26382; Wilhelmshaven; Germany.
| | - Andreas Schmidt-Rhaesa
- ZTM; Leibniz Institute for the Analysis of Biodiversity Change; Martin-Luther-King-Platz 3; 20146 Hamburg; Germany.
| | - Serge Utevsky
- VN Karazin Kharkiv National University; Svobody Square; 4; 61022; Kharkiv; Ukraine.
| | | | - Alexander Kieneke
- German Centre for Marine Biodiversity Research (DZMB); Senckenberg am Meer; Südstrand 44; 26382; Wilhelmshaven; Germany.
| |
Collapse
|
3
|
Taormina B, Leclerc JC, Rusig AM, Navon M, Deloor M, Claquin P, Dauvin JC. Diversity and structure of epibenthic communities across subtidal artificial hard habitats in the Bay of Cherbourg (English Channel). BIOFOULING 2024; 40:847-861. [PMID: 39450610 DOI: 10.1080/08927014.2024.2419572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
To inform the performance of ecological engineering designs for artificial structures at sea, it is essential to characterise their impacts on the epibenthic communities colonising them. In this context, the present study aims to compare the community structure among natural and four different artificial hard habitats with different ages and features installed in the Bay of Cherbourg (English Channel): i) cinder blocks and ii) boulders, both installed six years prior to the study, and iii) smooth and iv) rugous concrete dykes, both installed one year prior to this study. Results showed that artificial habitats installed six years ago harboured communities with functional and taxonomic diversity characteristic of mature communities but were still different from those of natural habitat. Conversely, the two dyke habitats installed one year prior to this study presented a poorly diversified community dominated by opportunistic taxa. Furthermore, while the concrete used for the two dyke habitats presented different rugosity properties, both habitats supported similar communities, suggesting that such eco-engineering measures did not affect the settlement of early colonisers. Overall, this study highlights the need for long-term monitoring to comprehensively evaluate epibenthic colonisation of artificial structures.
Collapse
Affiliation(s)
- Bastien Taormina
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), Normandie Université, UNICAEN, Caen, France
- Laboratoire Morphodynamique Continentale et Côtière, CNRS UMR 6143 M2C, Normandie Université, UNICAEN, Caen, France
- Institute of Marine Research, Bergen, Norway
| | - Jean-Charles Leclerc
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), Normandie Université, UNICAEN, Caen, France
- Laboratoire Morphodynamique Continentale et Côtière, CNRS UMR 6143 M2C, Normandie Université, UNICAEN, Caen, France
- UMR 7144AD2M, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Anne-Marie Rusig
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), Normandie Université, UNICAEN, Caen, France
| | - Maxime Navon
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), Normandie Université, UNICAEN, Caen, France
| | - Maël Deloor
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), Normandie Université, UNICAEN, Caen, France
| | - Pascal Claquin
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), Normandie Université, UNICAEN, Caen, France
| | - Jean-Claude Dauvin
- Laboratoire Morphodynamique Continentale et Côtière, CNRS UMR 6143 M2C, Normandie Université, UNICAEN, Caen, France
| |
Collapse
|
4
|
Soto I, Balzani P, Carneiro L, Cuthbert RN, Macêdo R, Serhan Tarkan A, Ahmed DA, Bang A, Bacela-Spychalska K, Bailey SA, Baudry T, Ballesteros-Mejia L, Bortolus A, Briski E, Britton JR, Buřič M, Camacho-Cervantes M, Cano-Barbacil C, Copilaș-Ciocianu D, Coughlan NE, Courtois P, Csabai Z, Dalu T, De Santis V, Dickey JWE, Dimarco RD, Falk-Andersson J, Fernandez RD, Florencio M, Franco ACS, García-Berthou E, Giannetto D, Glavendekic MM, Grabowski M, Heringer G, Herrera I, Huang W, Kamelamela KL, Kirichenko NI, Kouba A, Kourantidou M, Kurtul I, Laufer G, Lipták B, Liu C, López-López E, Lozano V, Mammola S, Marchini A, Meshkova V, Milardi M, Musolin DL, Nuñez MA, Oficialdegui FJ, Patoka J, Pattison Z, Pincheira-Donoso D, Piria M, Probert AF, Rasmussen JJ, Renault D, Ribeiro F, Rilov G, Robinson TB, Sanchez AE, Schwindt E, South J, Stoett P, Verreycken H, Vilizzi L, Wang YJ, Watari Y, Wehi PM, Weiperth A, Wiberg-Larsen P, Yapıcı S, Yoğurtçuoğlu B, Zenni RD, Galil BS, Dick JTA, Russell JC, Ricciardi A, Simberloff D, Bradshaw CJA, Haubrock PJ. Taming the terminological tempest in invasion science. Biol Rev Camb Philos Soc 2024; 99:1357-1390. [PMID: 38500298 DOI: 10.1111/brv.13071] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Standardised terminology in science is important for clarity of interpretation and communication. In invasion science - a dynamic and rapidly evolving discipline - the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalised', 'pest') to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' - populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species.
Collapse
Affiliation(s)
- Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Laís Carneiro
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos, 100, Curitiba, 81530-000, Brazil
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Rafael Macêdo
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
| | - Ali Serhan Tarkan
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullaj Area, Hawally, 32093, Kuwait
| | - Alok Bang
- Biology Group, School of Arts and Sciences, Azim Premji University, Bhopal, Madhya Pradesh, 462010, India
| | - Karolina Bacela-Spychalska
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Łódź, 90-237, Poland
| | - Sarah A Bailey
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd, Burlington, Ontario, ON L7S 1A1, Canada
| | - Thomas Baudry
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interaction, UMR, CNRS 7267 Équipe Écologie Évolution Symbiose, 3 rue Jacques Fort, Poitiers, Cedex, 86000, France
| | - Liliana Ballesteros-Mejia
- Institut de Systématique, Évolution, Biodiversité, Muséum National d'Histoire Naturelle, Centre national de la recherche scientifique, École Pratique des Hautes Études, Sorbonne Université, Université des Antilles, 45 Rue Buffon, Entomologie, Paris, 75005, France
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Alejandro Bortolus
- Grupo de Ecología en Ambientes Costeros. Instituto Patagónico para el Estudio de los Ecosistemas Continentales Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Nacional Patagónico, Boulevard Brown 2915, Puerto Madryn, Chubut, U9120ACD, Argentina
| | - Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstraße 1-3, Kiel, 24148, Germany
| | - J Robert Britton
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Miloš Buřič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Morelia Camacho-Cervantes
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacan, Mexico City, 04510, Mexico
| | - Carlos Cano-Barbacil
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, Gelnhausen, 63571, Germany
| | - Denis Copilaș-Ciocianu
- Laboratory of Evolutionary Ecology of Hydrobionts, Nature Research Centre, Akademijos 2, Vilnius, 08412, Lithuania
| | - Neil E Coughlan
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Republic of Ireland
| | - Pierre Courtois
- Centre d'Économie de l'Environnement - Montpellier, Université de Montpellier, Centre national de la recherche scientifique, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Institut Agro, Avenue Agropolis, Montpellier, 34090, France
| | - Zoltán Csabai
- University of Pécs, Department of Hydrobiology, Ifjúság 6, Pécs, H-7673, Hungary
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno 3, Tihany, H-8237, Hungary
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Cnr R40 and D725 Roads, Nelspruit, 1200, South Africa
| | - Vanessa De Santis
- Water Research Institute-National Research Council, Largo Tonolli 50, Verbania-Pallanza, 28922, Italy
| | - James W E Dickey
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstraße 1-3, Kiel, 24148, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
- Freie Universität Berlin, Institute of Biology, Königin-Luise-Straße 1-3, Berlin, 14195, Germany
| | - Romina D Dimarco
- Department of Biology and Biochemistry, University of Houston, Science & Research Building 2, 3455 Cullen Blvd, Houston, TX, 77204-5001, USA
| | | | - Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-Consejo Nacional de Investigaciones Científicas y Técnicas, CC34, 4107, Yerba Buena, Tucumán, Argentina
| | - Margarita Florencio
- Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, Edificio de Biología, Darwin, 2, 28049, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global, 28049, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Clara S Franco
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, Girona, Catalonia, 17003, Spain
| | - Emili García-Berthou
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, Girona, Catalonia, 17003, Spain
| | - Daniela Giannetto
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Milka M Glavendekic
- Department of Landscape Architecture and Horticulture, University of Belgrade-Faculty of Forestry, Belgrade, Serbia
| | - Michał Grabowski
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Łódź, 90-237, Poland
| | - Gustavo Heringer
- Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen (HfWU), Schelmenwasen 4-8, Nürtingen, 72622, Germany
- Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras (UFLA), Lavras, 37203-202, Brazil
| | - Ileana Herrera
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo, Km 2.5 Vía La Puntilla, Samborondón, 091650, Ecuador
- Instituto Nacional de Biodiversidad, Casilla Postal 17-07-8982, Quito, 170501, Ecuador
| | - Wei Huang
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Katie L Kamelamela
- School of Ocean Futures, Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA
| | - Natalia I Kirichenko
- Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Federal Research Centre 'Krasnoyarsk Science Centre SB RAS', Akademgorodok 50/28, Krasnoyarsk, 660036, Russia
- Siberian Federal University, Institute of Ecology and Geography, 79 Svobodny pr, Krasnoyarsk, 660041, Russia
- Saint Petersburg State Forest Technical University, Institutski Per. 5, Saint Petersburg, 194021, Russia
| | - Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Melina Kourantidou
- Department of Business and Sustainability, University of Southern Denmark, Degnevej 14, Esbjerg, 6705, Denmark
- AMURE-Aménagement des Usages des Ressources et des Espaces marins et littoraux, UMR 6308, Université de Bretagne Occidentale, IUEM- Institut Universitaire Européen de la Mer, rue Dumont d'Urville, Plouzané, 29280, France
- Marine Policy Center, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Irmak Kurtul
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
- Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, Bornova, İzmir, 35100, Turkey
| | - Gabriel Laufer
- Área Biodiversidad y Conservación, Museo Nacional de Historia Natural, Miguelete 1825, Montevideo, 11800, Uruguay
| | - Boris Lipták
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Slovak Environment Agency, Tajovského 28, Banská Bystrica, 975 90, Slovak Republic
| | - Chunlong Liu
- The Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, 266005, China
| | - Eugenia López-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340, Ciudad de México, 11340, Mexico
| | - Vanessa Lozano
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39/A, Sassari, 07100, Italy
- National Biodiversity Future Centre, Piazza Marina, 61, Palermo, 90133, Italy
| | - Stefano Mammola
- National Biodiversity Future Centre, Piazza Marina, 61, Palermo, 90133, Italy
- Molecular Ecology Group, Water Research Institute, National Research Council, Corso Tonolli 50, Pallanza, 28922, Italy
- Finnish Museum of Natural History, University of Helsinki, Pohjoinen Rautatiekatu 13, Helsinki, 00100, Finland
| | - Agnese Marchini
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, Pavia, 27100, Italy
| | - Valentyna Meshkova
- Department of Entomology, Phytopathology, and Physiology, Ukrainian Research Institute of Forestry and Forest Melioration, Pushkinska 86, Kharkiv, UA-61024, Ukraine
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1283, Suchdol, Prague, 16500, Czech Republic
| | - Marco Milardi
- Southern Indian Ocean Fisheries Agreement (SIOFA), 13 Rue de Marseille, Le Port, La Réunion, 97420, France
| | - Dmitrii L Musolin
- European and Mediterranean Plant Protection Organization, 21 bd Richard Lenoir, Paris, 75011, France
| | - Martin A Nuñez
- Department of Biology and Biochemistry, University of Houston, Science & Research Building 2, 3455 Cullen Blvd, Houston, TX, 77204-5001, USA
| | - Francisco J Oficialdegui
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jiří Patoka
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Prague, 16500, Czech Republic
| | - Zarah Pattison
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
- Modelling, Evidence and Policy Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Daniel Pincheira-Donoso
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Marina Piria
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
- University of Zagreb Faculty of Agriculture, Department of Fisheries, Apiculture, Wildlife management and Special Zoology, Svetošimunska cesta 25, Zagreb, 10000, Croatia
| | - Anna F Probert
- Zoology Discipline, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| | - Jes Jessen Rasmussen
- Norwegian Institute for Water Research, Njalsgade 76, Copenhagen S, 2300, Denmark
| | - David Renault
- Université de Rennes, Centre national de la recherche scientifique (CNRS), Écosystèmes, biodiversité, évolution, Rennes, 35000, France
| | - Filipe Ribeiro
- Marine and Environmental Sciences Centre / Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, P.O. Box 8030, Haifa, 31080, Israel
| | - Tamara B Robinson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Axel E Sanchez
- Posgrado en Hidrociencias, Colegio de Postgraduados, Carretera México-Texcoco 36.5 km, Montecillo, Texcoco, C.P. 56264, Mexico
| | - Evangelina Schwindt
- Grupo de Ecología en Ambientes Costeros, Instituto de Biología de Organismos Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard Brown 2915, Puerto Madryn, U9120ACD, Argentina
| | - Josie South
- Water@Leeds, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter Stoett
- Ontario Tech University, 2000 Simcoe St N, Oshawa, Ontario, L1G 0C5, Canada
| | - Hugo Verreycken
- Research Institute for Nature and Forest, Havenlaan 88 Box 73, Brussels, 1000, Belgium
| | - Lorenzo Vilizzi
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Yong-Jian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, F9F4+6FV, Dangui Rd, Hongshan, Wuhan, 430070, China
| | - Yuya Watari
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Priscilla M Wehi
- Te Pūnaha Matatini National Centre of Research Excellence in Complex Systems, University of Auckland, Private Bag 29019, Aotearoa, Auckland, 1142, New Zealand
- Centre for Sustainability, University of Otago, 563 Castle Street North, Dunedin North, Aotearoa, Dunedin, 9016, New Zealand
| | - András Weiperth
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Ave 1/C, Budapest, H-1117, Hungary
| | - Peter Wiberg-Larsen
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé 4-8, Aarhus, 8000, Denmark
| | - Sercan Yapıcı
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Baran Yoğurtçuoğlu
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara, 06800, Turkey
| | - Rafael D Zenni
- Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras (UFLA), Lavras, 37203-202, Brazil
| | - Bella S Galil
- Steinhardt Museum of Natural History, Tel Aviv University, Klaunserstr. 12, Tel Aviv, Israel
| | - Jaimie T A Dick
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - James C Russell
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Anthony Ricciardi
- Redpath Museum and Bieler School of Environment, McGill University, 859 Sherbrooke Street West, Montréal, Quebec, Quebec, H3A 0C4, Canada
| | - Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Corey J A Bradshaw
- Global Ecology, Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 5001, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Phillip J Haubrock
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullaj Area, Hawally, 32093, Kuwait
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, Gelnhausen, 63571, Germany
| |
Collapse
|
5
|
Radashevsky VI, Malyar VV, Pankova VV. Cryptic invasions of Pseudopolydora (Annelida: Spionidae), with description of a new species from Queensland, Australia. Zootaxa 2024; 5486:213-240. [PMID: 39646834 DOI: 10.11646/zootaxa.5486.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 12/10/2024]
Abstract
During surveys worldwide, we collected adult and larval specimens of Pseudopolydora Czerniavsky, 1881 similar to P. achaeta Radashevsky & Hsieh, 2000 and P. rosebelae Radashevsky & Migotto, 2009 far from their type localities in Taiwan and Brazil, respectively. Analysis of sequence data of five gene fragments: mitochondrial COI and 16S rDNA, nuclear 18S rDNA and 28S rDNA, and Histone 3 (3114 bp in total) of individuals from Nha Trang Bay (Vietnam), São Paulo (Brazil), Florida (USA), and the Caribbean Sea (Martinique) confirmed their conspecificity with P. achaeta from Taiwan. Based on the morphology, we also report this species for the first time for the East Sea (South Korea) and provide new records for the north-western part of the Sea of Japan (Russia). The analysis also showed the conspecificity of worms from Vietnam with P. rosebelae from Brazil. Based on the morphology, we also report P. rosebelae for the first time for the Caribbean Sea (Belize), South China Sea (Thailand), and Hawaii. Developed pelagic larvae of P. achaeta and P. rosebelae from Nha Trang Bay are described and illustrated. A worm from the Great Barrier Reef (Queensland, Australia) earlier identified as P. cf. rosebelae, is referred to the new species Pseudopolydora nivea sp. nov. Following our earlier hypothesis about the origin of Pseudopolydora in the Indo-West Pacific Ocean, we explain the occurrence of these worms, including Pseudopolydora floridensis Delgado-Blas, 2008, on the Atlantic coasts of North and South America by unintentional transportation in ballast water, followed by successful invasions. We assume that the penetration of warm waters of the East China Sea through the Korea Strait and the warming of the waters of the Sea of Japan have led to the extension of the range of tropical-subtropical P. achaeta to the north-western part of the Sea of Japan.
Collapse
Affiliation(s)
- Vasily I Radashevsky
- A.V. Zhirmunsky National Scientific Center of Marine Biology; Far Eastern Branch of the Russian Academy of Sciences; 17 Palchevsky Street; Vladivostok 690041; Russia.
| | - Vasily V Malyar
- A.V. Zhirmunsky National Scientific Center of Marine Biology; Far Eastern Branch of the Russian Academy of Sciences; 17 Palchevsky Street; Vladivostok 690041; Russia.
| | - Victoria V Pankova
- A.V. Zhirmunsky National Scientific Center of Marine Biology; Far Eastern Branch of the Russian Academy of Sciences; 17 Palchevsky Street; Vladivostok 690041; Russia.
| |
Collapse
|
6
|
Mesas A, Aguilera VM, González CE, Giesecke R, Escribano R, Vargas CA. Molecular evidence for a new endemic species of Acartia (Copepoda, Calanoida) from the Southeast Pacific coast. Sci Rep 2024; 14:12366. [PMID: 38811606 PMCID: PMC11137159 DOI: 10.1038/s41598-024-62080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
The loss of biodiversity in marine populations is one of the consequences of the increased events of extreme environmental conditions in the oceans, which can condition the persistence of populations to future scenarios of climate change. Therefore, it is extremely necessary to explore and monitor the genetic diversity of natural populations. In the Southeast Pacific Ocean (SEPO), specifically on the coast of Chile, the presence of the copepod Acartia tonsa has been indicated solely using morphological evidence, due to the absence of genetic information. In the present work, the genetic diversity, population structure and phylogenetic position within the genus Acartia, of populations identified morphologically as A. tonsa, was evaluated by amplification of the mitochondrial cytochrome c oxidase subunit I and nuclear marker 18 s. Our results showed that the populations identified as A. tonsa correspond to a new monophyletic group endemic to SEPO (GMYC = 1.00; PTP = 0.95). The populations showed moderate to high genetic diversity with an incipient structuring between populations and biogeographic zones. Our results suggest that despite the homogenizing effect of the Humboldt Current, isolation by distance and contrasting environmental conditions at different geographic scales have an important influence on the genetic diversity of zooplankton in the SEPO region.
Collapse
Affiliation(s)
- Andrés Mesas
- Millennium Institute of Oceanography, Universidad de Concepción, Concepción, Chile.
- Coastal Ecosystems and Global Environmental Change Lab (ECCALab), Department of Aquatic System, Faculty of Environmental Sciences, Universidad de Concepción, Concepción, Chile.
| | - Víctor M Aguilera
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Bernardo Ossandón #877, C.P. 1781681, Coquimbo, Chile
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Carolina E González
- Millennium Institute of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Ricardo Giesecke
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Rubén Escribano
- Millennium Institute of Oceanography, Universidad de Concepción, Concepción, Chile
- Department of Oceanography, Faculty of Natural and Oceanographic Sciences, University of Concepción, 4030000, Concepción, Chile
| | - Cristian A Vargas
- Millennium Institute of Oceanography, Universidad de Concepción, Concepción, Chile
- Coastal Ecosystems and Global Environmental Change Lab (ECCALab), Department of Aquatic System, Faculty of Environmental Sciences, Universidad de Concepción, Concepción, Chile
- Coastal Social-Ecological Millennium Institute (SECOS), Universidad de Concepción & P. Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Sak S, Karaytuğ S, Huys R. A revision of the genus Arenopontia Kunz, 1937 (Copepoda, Harpacticoida, Arenopontiidae), including the description of five new species. Zootaxa 2024; 5433:1-50. [PMID: 39645765 DOI: 10.11646/zootaxa.5433.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 12/10/2024]
Abstract
A revision of the genus Arenopontia Kunz, 1937 (Harpacticoida, Arenopontiidae) is presented based on morphological examination of a wide range of material. The genus, as redefined herein, encompasses A. subterranea Kunz, 1937 (type species by monotypy), A. problematica Masry, 1970, A. nesaie Cottarelli, 1975 and A. riedli Lindgren, 1976, in addition to five new species from European waters: A. adriatica sp. nov., A. anatolica sp. nov., A. basibuyuki sp. nov., A. gunduzi sp. nov. and A. syltensis sp. nov. Arenopontia pontica Apostolov, 1969 is considered unidentifiable and confirmed as a species inquirenda. The widely accepted notion that A. subterranea represents a cosmopolitan species displaying high intraspecific variability is rejected. Previous illustrated records attributed to the type species are critically reassessed and indicate that future examination of additional material from sandy beaches in the Northern Hemisphere will lead to further splintering of "A. subterranea" into a complex of cryptic lineages. Arenopontia subterranea and A. syltensis sp. nov. occur sympatrically on the Isle of Sylt while extensive sampling in the Black Sea revealed a similar overlap in distribution between A. anatolica sp. nov. and A. basibuyuki sp. nov. This study provides yet another example of how rigorous morphology-based analysis of pseudocosmopolitan taxa allows resolution of previously unrecognized cryptic status into multiple named species without recourse to molecular sequence data. A key to the nine valid species of Arenopontia is presented and distribution data for each species are collated.
Collapse
Affiliation(s)
- Serdar Sak
- Department of Biology; Faculty of Science and Literature; Balıkesir University; Balıkesir; Türkiye.
| | - Süphan Karaytuğ
- Department of Biology; Faculty of Science; Mersin University; Mersin; Türkiye.
| | - Rony Huys
- Department of Life Sciences; Natural History Museum; Cromwell Road; London SW7 5BD; UK.
| |
Collapse
|
8
|
Vera-Escalona I, Brante A. A simulation study evaluating how population survival and genetic diversity in a newly established population can be affected by propagule size, extinction rates, and initial heterozygosity. PeerJ 2024; 12:e16628. [PMID: 38239294 PMCID: PMC10795529 DOI: 10.7717/peerj.16628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/16/2023] [Indexed: 01/22/2024] Open
Abstract
The introduction and establishment of invasive species in regions outside their native range, is one of the major threats for the conservation of ecosystems, affecting native organisms and the habitat where they live in, causing substantial biological and monetary losses worldwide. Due to the impact of invasive species, it is important to understand what makes some species more invasive than others. Here, by simulating populations using a forward-in-time approach combining ecological and single polymorphic nucleotides (SNPs) we evaluated the relation between propagule size (number of individuals = 2, 10, 100, and 1,000), extinction rate (with values 2%, 5%, 10%, and 20%), and initial heterozygosity (0.1, 0.3, and 0.5) on the population survival and maintenance of the heterozygosity of a simulated invasive crab species over 30 generations assuming a single introduction. Our results revealed that simulated invasive populations with initial propagule sizes of 2-1,000 individuals experiencing a high extinction rate (10-20% per generation) were able to maintain over 50% of their initial heterozygosity during the first generations and that under scenarios with lower extinction rates invasive populations with initial propagule sizes of 10-1,000 individuals can survive up to 30 generations and maintain 60-100% of their initial heterozygosity. Our results can help other researchers better understand, how species with small propagule sizes and low heterozygosities can become successful invaders.
Collapse
Affiliation(s)
- Iván Vera-Escalona
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, BioBío, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, BioBío, Chile
| | - Antonio Brante
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, BioBío, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, BioBío, Chile
| |
Collapse
|
9
|
Anthony CJ, Bentlage B, Helm RR. Animal evolution at the ocean's water-air interface. Curr Biol 2024; 34:196-203.e2. [PMID: 38194916 DOI: 10.1016/j.cub.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/28/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2024]
Abstract
Innovation is a key to evolutionary success and entrance into novel ecosystems.1 Species that float freely at the ocean's surface, termed obligate neuston (also called pleuston, here referred to simply as neuston), include highly specialized taxa from distinct evolutionary lineages that evolved floating morphologies.2 In 1958, Soviet scientist, A.I. Savilov,3 stated that floating animal species are derived from benthic ancestors, rather than species from the adjacent pelagic zone, and that floating morphologies are homologous to benthic attachment structures. To test Savilov's hypothesis, we constructed molecular phylogenies and ancestral states for all major floating groups for which molecular data were available. Our results reveal that four of the five clades examined arose directly from a substrate-attached ancestor, although that substrate was not necessarily the benthos, as Savilov stated, and instead included epibiotic and rafting ancestors. Despite their diverse evolutionary origins, floating animals use gas-trapping mechanisms to remain at the surface,4,5,6 and many of these gas-trapping structures appear to be homologous to substrate attachment structures. We also reconstruct the trophic habits of floating mollusks and their sister species, revealing that prey preference remains conserved upon entering the ocean's surface ecosystem. Colonization of the ocean's surface seems to have occurred through successive evolutionary steps from the seafloor. Our results suggest that these steps often included transitions through epibiotic (where species attach to other living organisms) or rafting (where species attach to floating debris) habits. The water-air interface, despite its unique properties, may, in some ways, be just another substrate.
Collapse
Affiliation(s)
- Colin J Anthony
- Marine Laboratory, University of Guam, Mangilao, Guam 96913, USA
| | - Bastian Bentlage
- Marine Laboratory, University of Guam, Mangilao, Guam 96913, USA
| | - Rebecca R Helm
- Earth Commons Institute, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
10
|
Kara J, Molina-Acevedo IC, Macdonald A, Zanol J, Simon C. A closer look at the taxonomic and genetic diversity of endemic South African Marphysa Quatrefages, 1865. PeerJ 2023; 11:e16665. [PMID: 38130925 PMCID: PMC10734438 DOI: 10.7717/peerj.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The current study investigates the final unresolved cosmopolitan species of Marphysa in South Africa, Marphysa corallina, collected from KwaZulu Natal, Eastern and Western Cape provinces, together with another species collected from northern KwaZulu Natal. Morphological and genetic data prove that M. corallina, originally described from Hawaii, does not occur in South Africa. The curvature of the inner base on maxilla I, the elevated inner base of maxilla II, and the ventral cirrus as a transverse welt with a rounded tip allow us to identify it as a new species of Treadwellphysa, T. izinqa sp. nov. (common name: brown wonderworm). Characteristic traits include the basal reddish and distal golden colour of the subacicular hook, the ear-shaped postchaetal lobe, and tridentate falcigers which is reported for the first time for the genus. This species is harvested as bait on the south coast of SA, although less frequently than the more common blood wonderworm, Marphysa haemasona Quatrefages, 1866, and can be distinguished by its more uniform brown colouration and white-tipped antennae. A second species, Marphysa mzingazia sp. nov., is characterized by red eyes, six branchial filaments extending to the posterior end, the golden aciculae in posterior chaetigers, weakly bidentate yellow/brown subacicular hooks, and the presence of similar sized spinigers along the body. A molecular analysis based on cytochrome oxidase I fragments confirm both taxa as different species. A key for all South African species of Marphysa is included.
Collapse
Affiliation(s)
- Jyothi Kara
- Research and Exihibitions, Iziko South African Museums, Cape Town, Western Cape, South Africa
- Conservation and Marine Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | | | - Angus Macdonald
- Biological Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Joana Zanol
- Department of Invertebrates, Universidade Federal do Rio de Janeiro, São Cristovão, Brazil
| | - Carol Simon
- Botany and Zoology, University of Stellenbosch, Stellenbosch, Western Cape, South Africa
| |
Collapse
|
11
|
Radashevsky VI, Malyar VV, Pankova VV, Choi JW, Yum S, Carlton JT. Searching for a Home Port in a Polyvectic World: Molecular Analysis and Global Biogeography of the Marine Worm Polydora hoplura (Annelida: Spionidae). BIOLOGY 2023; 12:780. [PMID: 37372065 DOI: 10.3390/biology12060780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
The spionid polychaete Polydora hoplura Claparède, 1868 is a shell borer widely occurring across the world and considered introduced in many areas. It was originally described in the Gulf of Naples, Italy. Adult diagnostic features are the palps with black bands, prostomium weakly incised anteriorly, caruncle extending to the end of chaetiger 3, short occipital antenna, and heavy sickle-shaped spines in the posterior notopodia. The Bayesian inference analysis of sequence data of four gene fragments (2369 bp in total) of the mitochondrial 16S rDNA, nuclear 18S, 28S rDNA and Histone 3 has shown that worms with these morphological features from the Mediterranean, northern Europe, Brazil, South Africa, Australia, Republic of Korea, Japan and California are genetically identical, form a well-supported clade, and can be considered conspecific. The genetic analysis of a 16S dataset detected 15 haplotypes of this species, 10 of which occur only in South Africa. Despite the high genetic diversity of P. hoplura in South Africa, we tentatively propose the Northwest Pacific, or at the most the Indo-West Pacific, as its home region, not the Atlantic Ocean or the Eastern Pacific Ocean. The history of the discovery of P. hoplura around the world appears to be intimately linked to global shipping commencing in the mid-19th century, followed by the advent of the global movement of commercial shellfish (especially the Pacific oyster Magallana gigas) in the 20th century, interlaced with continued, complex dispersal by vessels and aquaculture. Given that P. hoplura has been detected in only a few of the 17 countries where Pacific oysters have been established, we predict that it may already be present in many more regions. As global connectivity through world trade continues to increase, it is likely that novel populations of P. hoplura will continue to emerge.
Collapse
Affiliation(s)
- Vasily I Radashevsky
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky Street, Vladivostok 690041, Russia
| | - Vasily V Malyar
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky Street, Vladivostok 690041, Russia
| | - Victoria V Pankova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky Street, Vladivostok 690041, Russia
| | - Jin-Woo Choi
- Blue Carbon Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungshic Yum
- Ecological Risk Research Division, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - James T Carlton
- Coastal and Ocean Studies Program, Williams College-Mystic Seaport, Mystic, CT 06355, USA
| |
Collapse
|
12
|
Boo GH, Bottalico A, Le Gall L, Yoon HS. Genetic Diversity and Phylogeography of a Turf-Forming Cosmopolitan Marine Alga, Gelidium crinale (Gelidiales, Rhodo-Phyta). Int J Mol Sci 2023; 24:ijms24065263. [PMID: 36982334 PMCID: PMC10049384 DOI: 10.3390/ijms24065263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Cosmopolitan species are rare in red algae, which have a low-dispersal capacity unless they are dispersed by human-mediated introductions. Gelidium crinale, a turf-forming red alga, has a widespread distribution in tropical and temperate waters. To decipher the genetic diversity and phylogeography of G. crinale, we analyzed mitochondrial COI-5P and plastid rbcL sequences from collections in the Atlantic, Indian, and Pacific Oceans. Phylogenies of both markers statistically supported the monophyly of G. crinale, with a close relationship to G. americanum and G. calidum from the Western Atlantic. Based on the molecular analysis from these materials, Pterocladia heteroplatos from India is here merged with G. crinale. Phylogeny and TCS networks of COI-5P haplotypes revealed a geographic structure of five groups: (i) Atlantic-Mediterranean, (ii) Ionian, (iii) Asian, (iv) Adriatic-Ionian, and (v) Australasia-India-Tanzania-Easter Island. The most common ancestor of G. crinale likely diverged during the Pleistocene. The Bayesian Skyline Plots suggested the pre-LGM population expansion. Based on geographical structure, lineage-specific private haplotypes, the absence of shared haplotypes between lineages, and AMOVA, we propose that the cosmopolitan distribution of G. crinale has been shaped by Pleistocene relicts. The survival of the turf species under environmental stresses is briefly discussed.
Collapse
Affiliation(s)
- Ga Hun Boo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Antonella Bottalico
- Department of Biosciences, Biotechnologies and Environment, University of Bari “A. Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Line Le Gall
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 75005 Paris, France
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence:
| |
Collapse
|
13
|
Boring can get you far: shell-boring Dipolydora from Temperate Northern Pacific, with emphasis on the global history of Dipolydora giardi (Mesnil, 1893) (Annelida: Spionidae). Biol Invasions 2022. [DOI: 10.1007/s10530-022-02941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Halasan LC, Lin HC. Integrated morphometrics reveals conservatism in the cryptic yellowstripe scad (Perciformes: Carangidae) lineages from the Tropical Western Pacific. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Calder DR, Carlton JT, Keith I, Ashton GV, Larson K, Ruiz GM, Herrera E, Golfin G. Biofouling hydroids (Cnidaria: Hydrozoa) from a Tropical Eastern Pacific island, with remarks on their biogeography. J NAT HIST 2022. [DOI: 10.1080/00222933.2022.2068387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Dale R. Calder
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
- Department of Invertebrate Zoology, Royal British Columbia Museum, Victoria, British Columbia, Canada
| | - James T. Carlton
- Williams College-Mystic Seaport Ocean & Coastal Studies Program, Mystic, CT, USA
| | - Inti Keith
- Charles Darwin Research Station, Charles Darwin Foundation, Santa Cruz, Ecuador
| | - Gail V. Ashton
- Smithsonian Environmental Research Center, Edgewater, MD and Tiburon, CA, USA
| | - Kristen Larson
- Smithsonian Environmental Research Center, Edgewater, MD and Tiburon, CA, USA
| | - Gregory M. Ruiz
- Smithsonian Environmental Research Center, Edgewater, MD and Tiburon, CA, USA
| | - Esteban Herrera
- Sistema Nacional de Áreas de Conservación/Área de Conservación Marina, Cocos, Costa Rica
| | - Geiner Golfin
- Sistema Nacional de Áreas de Conservación/Área de Conservación Marina, Cocos, Costa Rica
| |
Collapse
|
16
|
Holman LE, Parker-Nance S, de Bruyn M, Creer S, Carvalho G, Rius M. Managing human-mediated range shifts: understanding spatial, temporal and genetic variation in marine non-native species. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210025. [PMID: 35067092 PMCID: PMC8784926 DOI: 10.1098/rstb.2021.0025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The use of molecular tools to manage natural resources is increasingly common. However, DNA-based methods are seldom used to understand the spatial and temporal dynamics of species' range shifts. This is important when managing range shifting species such as non-native species (NNS), which can have negative impacts on biotic communities. Here, we investigated the ascidian NNS Ciona robusta, Clavelina lepadiformis, Microcosmus squamiger and Styela plicata using a combined methodological approach. We first conducted non-molecular biodiversity surveys for these NNS along the South African coastline, and compared the results with historical surveys. We detected no consistent change in range size across species, with some displaying range stability and others showing range shifts. We then sequenced a section of cytochrome c oxidase subunit I (COI) from tissue samples and found genetic differences along the coastline but no change over recent times. Finally, we found that environmental DNA metabarcoding data showed broad congruence with both the biodiversity survey and the COI datasets, but failed to capture the complete incidence of all NNS. Overall, we demonstrated how a combined methodological approach can effectively detect spatial and temporal variation in genetic composition and range size, which is key for managing both thriving NNS and threatened species. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (part I)’.
Collapse
Affiliation(s)
- Luke E Holman
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | - Shirley Parker-Nance
- Zoology Department, Institute for Coastal and Marine Research Nelson Mandela University Ocean Sciences Campus, Gqeberha (Port Elizabeth), South Africa.,South African Environmental Observation Network (SAEON) Elwandle Coastal Node, Nelson Mandela University Ocean Sciences Campus, Gqeberha (Port Elizabeth), South Africa
| | - Mark de Bruyn
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia.,Molecular Ecology and Evolution Group, School of Natural Sciences, Bangor University, Bangor, UK
| | - Simon Creer
- Molecular Ecology and Evolution Group, School of Natural Sciences, Bangor University, Bangor, UK
| | - Gary Carvalho
- Molecular Ecology and Evolution Group, School of Natural Sciences, Bangor University, Bangor, UK
| | - Marc Rius
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK.,Centre for Advanced Studies of Blanes (CEAB, CSIC), Accés a la Cala Sant Francesc 14, 17300 Blanes, Spain.,Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
17
|
Figueroa NN, Brante A, Viard F, Leclerc JC. Greater functional similarity in mobile compared to sessile assemblages colonizing artificial coastal habitats. MARINE POLLUTION BULLETIN 2021; 172:112844. [PMID: 34399279 DOI: 10.1016/j.marpolbul.2021.112844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Among anthropogenic habitats built in the marine environment, floating and non-floating structures can be colonized by distinct assemblages. However, there is little knowledge whether these differences are also reflected in the functional structure. This study compared the functional diversity of sessile and mobile invertebrate assemblages that settle over three months on floating vs. non-floating artificial habitats, in two Chilean ports. Using morphological, trophic, behavioral, and life history traits, we found differences between mobile and sessile assemblages regarding the effect of the type of habitat on the functional diversity. Compared to sessile assemblages, a greater functional similarity was observed for mobile assemblages, which suggests that their dispersal capacity enables them to balance the reduced connectivity between settlement structures. No traits, prevailing or selected in one or the other habitat type, was however clearly identified; a result warranting for further studies focusing on more advanced stages of community development.
Collapse
Affiliation(s)
- Naily Nashira Figueroa
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Concepción, Chile
| | - Antonio Brante
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Frédérique Viard
- ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jean-Charles Leclerc
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile; Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France.
| |
Collapse
|
18
|
Le Moan A, Roby C, Fraïsse C, Daguin-Thiébaut C, Bierne N, Viard F. An introgression breakthrough left by an anthropogenic contact between two ascidians. Mol Ecol 2021; 30:6718-6732. [PMID: 34547149 DOI: 10.1111/mec.16189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 01/28/2023]
Abstract
Human-driven translocations of species have diverse evolutionary consequences such as promoting hybridization between previously geographically isolated taxa. This is well illustrated by the solitary tunicate, Ciona robusta, native to the North East Pacific and introduced in the North East Atlantic. It is now co-occurring with its congener Ciona intestinalis in the English Channel, and C. roulei in the Mediterranean Sea. Despite their long allopatric divergence, first and second generation crosses showed a high hybridization success between the introduced and native taxa in the laboratory. However, previous genetic studies failed to provide evidence of recent hybridization between C. robusta and C. intestinalis in the wild. Using SNPs obtained from ddRAD-sequencing of 397 individuals from 26 populations, we further explored the genome-wide population structure of the native Ciona taxa. We first confirmed results documented in previous studies, notably (i) a chaotic genetic structure at regional scale, and (ii) a high genetic similarity between C. roulei and C. intestinalis, which is calling for further taxonomic investigation. More importantly, and unexpectedly, we also observed a genomic hotspot of long introgressed C. robusta tracts into C. intestinalis genomes at several locations of their contact zone. Both the genomic architecture of introgression, restricted to a 1.5 Mb region of chromosome 5, and its absence in allopatric populations suggest introgression is recent and occurred after the introduction of the non-native species. Overall, our study shows that anthropogenic hybridization can be effective in promoting introgression breakthroughs between species at a late stage of the speciation continuum.
Collapse
Affiliation(s)
- Alan Le Moan
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France.,Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Charlotte Roby
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | | | | | | | - Frédérique Viard
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France.,ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
19
|
Borges LMS, Treneman NC, Haga T, Shipway JR, Raupach MJ, Altermark B, Carlton JT. Out of taxonomic crypsis: A new trans-arctic cryptic species pair corroborated by phylogenetics and molecular evidence. Mol Phylogenet Evol 2021; 166:107312. [PMID: 34530118 DOI: 10.1016/j.ympev.2021.107312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 01/17/2023]
Abstract
Cryptic species are a common phenomenon in cosmopolitan marine species. The use of molecular tools has often uncovered cryptic species occupying a fraction of the geographic range of the original morphospecies. Shipworms (Teredinidae) are marine bivalves, living in drift and fixed wood, many of which have a conserved morphology across cosmopolitan distributions. Herein novel and GenBank mitochondrial (cytochrome c oxidase subunit I) and nuclear (18S rRNA) DNA sequences are employed to produce a phylogeny of the Teredinidae and delimit a cryptic species pair in the Psiloteredo megotara complex. The anatomy, biogeography, and ecology of P. megotara, Psiloteredo sp. and Nototeredo edax are compared based on private and historic museum collections and a thorough literature review. Morphological and anatomical characters of P. megotara from the North Atlantic and Psiloteredo sp. from Japan were morphologically indistinguishable, and differ in pallet architecture and soft tissue anatomy from N. edax. The two Psiloteredo species were then delimited as genetically distinct species using four molecular-based methods. Consequently, the Northwest Pacific species, Psiloteredo pentagonalis, first synonymized with N. edax and then with P. megotara, is resurrected. Nototeredo edax, P. megotara and P. pentagonalis are redescribed based upon morphological and molecular characters. Phylogenetic analysis further revealed cryptic species complexes within the cosmopolitan species Bankia carinata and possibly additional cryptic lineages within the cosmopolitan Lyrodus pedicellatus.
Collapse
Affiliation(s)
- Luísa M S Borges
- L(3) Scientific Solutions, Runder Berg 7e, 21502 Geesthacht, Germany.
| | - Nancy C Treneman
- Oregon Institute of Marine Biology, P.O. Box 5389, Charleston, OR 97420, USA.
| | - Takuma Haga
- National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan.
| | - J Reuben Shipway
- Institute of Marine Sciences, University of Portsmouth, Ferry Rd, Portsmouth, UK. & Microbiology Department, University of Massachusetts, Amherst, MA, USA.
| | - Michael J Raupach
- Sektion Hemiptera, Bavarian State Collection of Zoology (SNSB - ZSM), Münchhausenstraße 21, 81247 München, Germany.
| | - Bjørn Altermark
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, PB 6050 Langnes, 9037 Tromsø, Norway.
| | - James T Carlton
- Ocean & Coastal Studies Program, Williams College-Mystic Seaport, Mystic, CT 06355, USA.
| |
Collapse
|
20
|
Ros M, Guerra-García JM, Lignot JH, Rivera-Ingraham GA. Environmental stress responses in sympatric congeneric crustaceans: Explaining and predicting the context-dependencies of invader impacts. MARINE POLLUTION BULLETIN 2021; 170:112621. [PMID: 34147858 DOI: 10.1016/j.marpolbul.2021.112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
The role of ecophysiology in mediating marine biological pollution is poorly known. Here we explore how physiological plasticity to environmental stress can explain and predict the context-dependencies of invasive species impacts. We use the case of two sympatric skeleton shrimps, the invader Caprella scaura and its congener C. equilibra, which is currently replaced by the former on the South European coast. We compare their physiological responses to hyposalinity stress under suboptimal low and high temperature, while inferring on hypoxia tolerance. We use an energy-redox approach, analyzing mortality rate, the energetic balance and the consequent effects on the oxidative homeostasis. We found that decreased seawater salinity and/or oxygen levels can weaken biotic resistance, especially in females of C. equilibra, leading to periods of heightened vulnerability to invasion. Our approach provides mechanistic insights towards understanding the factors promoting invader impacts, highlighting the potential of ecophysiology for improving invasive species management.
Collapse
Affiliation(s)
- Macarena Ros
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - José M Guerra-García
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6, 41012 Sevilla, Spain
| | - Jehan-Hervé Lignot
- UMR 9190 MARBEC, CNRS-Ifremer-IRD-Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Georgina A Rivera-Ingraham
- Laboratoire Environnement de Petit Saut, Hydreco-Guyane, BP 823, 97310 Kourou, French Guiana; Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
21
|
Tessens B, Monnens M, Backeljau T, Jordaens K, Van Steenkiste N, Breman FC, Smeets K, Artois T. Is ‘everything everywhere’? Unprecedented cryptic diversity in the cosmopolitan flatworm
Gyratrix hermaphroditus. ZOOL SCR 2021. [DOI: 10.1111/zsc.12507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bart Tessens
- Research Group Zoology: Biodiversity and Toxicology Centre for Environmental Sciences Hasselt University Diepenbeek Belgium
| | - Marlies Monnens
- Research Group Zoology: Biodiversity and Toxicology Centre for Environmental Sciences Hasselt University Diepenbeek Belgium
| | - Thierry Backeljau
- Department of Biology Evolutionary Ecology Group University of Antwerp Antwerp Belgium
- Royal Belgian Institute of Natural Sciences (RBINS: Taxonomy and Phylogeny & JEMU) Brussels Belgium
| | - Kurt Jordaens
- Royal Museum for Central Africa (RMCA: Entomology Section & JEMU) Tervuren Belgium
| | - Niels Van Steenkiste
- Research Group Zoology: Biodiversity and Toxicology Centre for Environmental Sciences Hasselt University Diepenbeek Belgium
- Departments of Botany and Zoology University of British Columbia Vancouver BC Canada
| | - Floris C. Breman
- Royal Belgian Institute of Natural Sciences (RBINS: Taxonomy and Phylogeny & JEMU) Brussels Belgium
| | - Karen Smeets
- Research Group Zoology: Biodiversity and Toxicology Centre for Environmental Sciences Hasselt University Diepenbeek Belgium
| | - Tom Artois
- Research Group Zoology: Biodiversity and Toxicology Centre for Environmental Sciences Hasselt University Diepenbeek Belgium
| |
Collapse
|
22
|
Maynou F, Costa S, Freitas R, Solé M. Effects of triclosan exposure on the energy budget of Ruditapes philippinarum and R. decussatus under climate change scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146068. [PMID: 33676217 DOI: 10.1016/j.scitotenv.2021.146068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
We built a simulation model based on Dynamic Energy Budget theory (DEB) to assess the growth and reproductive potential of the native European clam Ruditapes decussatus and the introduced Manila clam Ruditapes philippinarum under current temperature and pH conditions in a Portuguese estuary and under those forecasted for the end of the 21st c. The climate change scenario RCP8.5 predicts temperature increase of 3 °C and a pH decrease of 0.4 units. The model was run under additional conditions of exposure to the emerging contaminant triclosan (TCS) and in the absence of this compound. The parameters of the DEB model were calibrated with the results of laboratory experiments complemented with data from the literature available for these two important commercial shellfish resources. For each species and experimental condition (eight combinations), we used data from the experiments to produce estimates for the key parameters controlling food intake flux, assimilation flux, somatic maintenance flux and energy at the initial simulation time. The results showed that the growth and reproductive potential of both species would be compromised under future climate conditions, but the effect of TCS exposure had a higher impact on the energy budget than forecasted temperature and pH variations. The egg production of R. philippinarum was projected to suffer a more marked reduction with exposure to TCS, regardless of the climatic factor, while the native R. decussatus appeared more resilient to environmental causes of stress. The results suggest a likely decrease in the rates of expansion of the introduced R. philippinarum in European waters, and negative effects on fisheries and aquaculture production of exposure to emerging contaminants (e.g., TCS) and climate change.
Collapse
Affiliation(s)
- Francesc Maynou
- Institut de Ciències del Mar, CSIC, Psg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Solé
- Institut de Ciències del Mar, CSIC, Psg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| |
Collapse
|
23
|
Huveneers C, Jaine FRA, Barnett A, Butcher PA, Clarke TM, Currey-Randall LM, Dwyer RG, Ferreira LC, Gleiss AC, Hoenner X, Ierodiaconou D, Lédée EJI, Meekan MG, Pederson H, Rizzari JR, van Ruth PD, Semmens JM, Taylor MD, Udyawer V, Walsh P, Heupel MR, Harcourt R. The power of national acoustic tracking networks to assess the impacts of human activity on marine organisms during the COVID-19 pandemic. BIOLOGICAL CONSERVATION 2021; 256:108995. [PMID: 34580542 PMCID: PMC8457752 DOI: 10.1016/j.biocon.2021.108995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/22/2020] [Accepted: 01/16/2021] [Indexed: 05/16/2023]
Abstract
COVID-19 restrictions have led to an unprecedented global hiatus in anthropogenic activities, providing a unique opportunity to assess human impact on biological systems. Here, we describe how a national network of acoustic tracking receivers can be leveraged to assess the effects of human activity on animal movement and space use during such global disruptions. We outline variation in restrictions on human activity across Australian states and describe four mechanisms affecting human interactions with the marine environment: 1) reduction in economy and trade changing shipping traffic; 2) changes in export markets affecting commercial fisheries; 3) alterations in recreational activities; and 4) decline in tourism. We develop a roadmap for the analysis of acoustic tracking data across various scales using Australia's national Integrated Marine Observing System (IMOS) Animal Tracking Facility as a case study. We illustrate the benefit of sustained observing systems and monitoring programs by assessing how a 51-day break in white shark (Carcharodon carcharias) cage-diving tourism due to COVID-19 restrictions affected the behaviour and space use of two resident species. This cessation of tourism activities represents the longest break since cage-diving vessels started day trips in this area in 2007. Long-term monitoring of the local environment reveals that the activity space of yellowtail kingfish (Seriola lalandi) was reduced when cage-diving boats were absent compared to periods following standard tourism operations. However, white shark residency and movements were not affected. Our roadmap is globally applicable and will assist researchers in designing studies to assess how anthropogenic activities can impact animal movement and distributions during regional, short-term through to major, unexpected disruptions like the COVID-19 pandemic.
Collapse
Affiliation(s)
- Charlie Huveneers
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Fabrice R A Jaine
- Integrated Marine Observing System (IMOS) Animal Tracking Facility, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Adam Barnett
- College of Science & Engineering James Cook University, Cairns, QLD, 4878, Australia
| | - Paul A Butcher
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW 2450, Australia
| | - Thomas M Clarke
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | | | - Ross G Dwyer
- Global Change Ecology Research Group, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | | | - Adrian C Gleiss
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Xavier Hoenner
- CSIRO Oceans and Atmosphere, CSIRO, Hobart, TAS 7000, Australia
| | - Daniel Ierodiaconou
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Warrnambool, VIC 3280, Australia
| | - Elodie J I Lédée
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mark G Meekan
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | | | - Justin R Rizzari
- School of Life and Environmental Sciences, Deakin University, Queenscliff, VIC, 3225, Australia
| | - Paul D van Ruth
- South Australian Research and Development Institute - Aquatic Sciences, West Beach, SA 5024, Australia
| | - Jayson M Semmens
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Matthew D Taylor
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, NSW 2315, Australia
| | - Vinay Udyawer
- Australian Institute of Marine Science, Darwin, NT 0810, Australia
| | - Peter Walsh
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Michelle R Heupel
- Integrated Marine Observing System (IMOS), University of Tasmania, Hobart, TAS 7000, Australia
| | - Robert Harcourt
- Integrated Marine Observing System (IMOS) Animal Tracking Facility, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
24
|
Abstract
Sabellida Levinsen, 1883 is a large morphologically uniform group of sedentary annelids commonly known as fanworms. These annelids live in tubes made either of calcareous carbonate or mucus with agglutinated sediment. They share the presence of an anterior crown consisting of radioles and the division of the body into thorax and abdomen marked by a chaetal and fecal groove inversion. This study synthesises the current state of knowledge about the diversity of fanworms in the broad sense (morphological, ecological, species richness), the species occurrences in the different biogeographic regions, highlights latest surveys, provides guidelines for identification of members of each group, and describe novel methodologies for species delimitation. As some members of this group are well-known introduced pests, we address information about these species and their current invasive status. In addition, an overview of the current evolutionary hypothesis and history of the classification of members of Sabellida is presented. The main aim of this review is to highlight the knowledge gaps to stimulate research in those directions.
Collapse
|
25
|
Taverna A, de Aranzamendi MC, Maggioni T, Alurralde G, Turon X, Tatián M. Morphology, genetics, and historical records support the synonymy of two ascidian species and suggest their spread throughout areas of the Southern Hemisphere. INVERTEBR SYST 2021. [DOI: 10.1071/is20060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Taxonomic uncertainties and the lack of ecological knowledge can hinder the correct identification and the assignment of biogeographic status of marine species. The ascidian Asterocarpa humilis (Heller, 1878), originally described from New Zealand, has a broad distribution in shallow temperate areas of the Southern Hemisphere, having recently colonised areas of the Northern Hemisphere. A closely related species, Cnemidocarpa robinsoni Hartmeyer, 1916, has been reported in the South-Eastern Pacific and the South-Western Atlantic, and several authors considered it a junior synonym of A. humilis. We gathered for the first time morphological and genetic data from specimens from distant areas. We studied the morphology of specimens collected at seven locations of South America. We also re-examined specimens from museum collections and revised the available literature on these species. Genetic data were obtained from specimens from Argentina and compared with available sequences of A. humilis from Chile, New Zealand, England and France. Morphological and genetic analyses showed that all compared specimens were conspecific. Furthermore, specimens from different continents shared haplotypes and exhibited low genetic distance among them. These results, the biological characteristics of this ascidian, and its longstanding presence in different habitats from disjoint areas, allow us to question its native range. We support the idea that A. humilis is a cryptogenic and neocosmopolitan species that has been transported by maritime traffic through the Southern Hemisphere, revealing frequent processes of exchange through this wide area for more than a century, with presumably associated alterations in the marine biota.
Collapse
|
26
|
Simberloff D. Maintenance management and eradication of established aquatic invaders. HYDROBIOLOGIA 2021; 848:2399-2420. [PMID: 32836349 PMCID: PMC7407435 DOI: 10.1007/s10750-020-04352-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 05/04/2023]
Abstract
Although freshwater invasions have not been targeted for maintenance management or eradication as often as terrestrial invasions have, attempts to do so are frequent. Failures as well as successes abound, but several methods have been improved and new approaches are on the horizon. Many freshwater fish and plant invaders have been eliminated, especially by chemical and physical methods for fishes and herbicides for plants. Efforts to maintain invasive freshwater fishes at low levels have sometimes succeeded, although continuing the effort has proven challenging. By contrast, successful maintenance management of invasive freshwater plants is uncommon, although populations of several species have been managed by biological control. Invasive crayfish populations have rarely been controlled for long. Marine invasions have proven far less tractable than those in fresh water, with a few striking eradications of species detected before they had spread widely, and no marine invasions have been substantially managed for long at low levels. The rapid development of technologies based on genetics has engendered excitement about possibly eradicating or controlling terrestrial invaders, and such technologies may also prove useful for certain aquatic invaders. Methods of particular interest, alone or in various combinations, are gene-silencing, RNA-guided gene drives, and the use of transgenes.
Collapse
Affiliation(s)
- Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
27
|
Leclerc JC, Brante A, Viard F. Rapid recovery of native habitat-builders following physical disturbance on pier pilings offsets colonization of cryptogenic and non-indigenous species in a Chilean port. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105231. [PMID: 33302154 DOI: 10.1016/j.marenvres.2020.105231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Examining the effects of disturbances within marine urban communities can shed light on their assembly rules and invasion processes. The effects of physical disturbance, through the removal of dominant native habitat-builders, were investigated in the recolonization of disturbed patches and colonization of plates on pier pilings, in a Chilean port. On pilings, disturbance substantially affected community structure after 3 months, although it slowly converged across treatments after 10 months. On plates, cryptogenic and non-indigenous species richness increased with removal severity, which was not observed in natives. Opportunistic taxa took advantage of colonizing at an early successional stage, illustrating a competition-colonization trade-off, although indirect effects might be at play (e.g. trophic competition or selective predation). Recovery of the habitat-builders then occurred at the expense of cryptogenic and non-indigenous taxa. Whether natives could continue winning against increasing propagule and colonization pressures in marine urban habitats deserves further attention. The interactions between disturbance and biological invasions herein experimentally shown in situ contribute to our understanding of multiple changes imposed by marine urbanization in a growing propagule transport network.
Collapse
Affiliation(s)
- Jean-Charles Leclerc
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Casilla 297, Concepción, Chile; Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France.
| | - Antonio Brante
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Casilla 297, Concepción, Chile
| | - Frédérique Viard
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France; ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
28
|
Darling JA, Martinson J, Pagenkopp Lohan KM, Carney KJ, Pilgrim E, Banerji A, Holzer KK, Ruiz GM. Metabarcoding quantifies differences in accumulation of ballast water borne biodiversity among three port systems in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141456. [PMID: 32846346 PMCID: PMC8190815 DOI: 10.1016/j.scitotenv.2020.141456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 04/14/2023]
Abstract
Characterizing biodiversity conveyed in ships' ballast water (BW), a global driver of biological invasions, is critically important for understanding risks posed by this key vector and establishing baselines to evaluate changes associated with BW management. Here we employ high throughput sequence (HTS) metabarcoding of the 18S small subunit rRNA to test for and quantify differences in the accumulation of BW-borne biodiversity among three distinct recipient port systems in the United States. These systems were located on three different coasts (Pacific, Gulf, and Atlantic) and chosen to reflect distinct trade patterns and source port biogeography. Extensive sampling of BW tanks (n = 116) allowed detailed exploration of molecular diversity accumulation. Our results indicate that saturation of introduced zooplankton diversity may be achieved quickly, with fewer than 25 tanks needed to achieve 95% of the total extrapolated diversity, if source biogeography is relatively limited. However, as predicted, port systems with much broader source geographies require more extensive sampling to estimate diversity, which continues to accumulate after sampling >100 discharges. The ability to identify BW sources using molecular indicators was also found to depend on the breadth of source biogeography and the extent to which sources had been sampled. These findings have implications both for the effort required to fully understand introduced diversity and for projecting risks associated with future changes to maritime traffic that may increase source biogeography for many recipient ports. Our data also suggest that molecular diversity may not decline significantly with BW age, indicating either that some organisms survive longer than recognized in previous studies or that nucleic acids from dead organisms persist in BW tanks. We present evidence for detection of potentially invasive species in arriving BW but discuss important caveats that preclude strong inferences regarding the presence of living representatives of these species in BW tanks.
Collapse
Affiliation(s)
- John A Darling
- United States Environmental Protection Agency, Center for Environmental Measurement & Modeling, USA.
| | - John Martinson
- United States Environmental Protection Agency, Center for Environmental Measurement & Modeling, USA
| | | | | | - Erik Pilgrim
- United States Environmental Protection Agency, Center for Environmental Measurement & Modeling, USA
| | - Aabir Banerji
- United States Environmental Protection Agency, Center for Computational Toxicology & Exposure, USA
| | | | - Gregory M Ruiz
- Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| |
Collapse
|
29
|
Disentangling invasions in the sea: molecular analysis of a global polychaete species complex (Annelida: Spionidae: Pseudopolydora paucibranchiata). Biol Invasions 2020. [DOI: 10.1007/s10530-020-02346-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Global phylogeography suggests extensive eucosmopolitanism in Mesopelagic Fishes (Maurolicus: Sternoptychidae). Sci Rep 2020; 10:20544. [PMID: 33239750 PMCID: PMC7689477 DOI: 10.1038/s41598-020-77528-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 11/18/2022] Open
Abstract
Fishes in the mesopelagic zone (200–1000 m) have recently been highlighted for potential exploitation. Here we assess global phylogeography in Maurolicus, the Pearlsides, an ecologically important group. We obtained new sequences from mitochondrial COI and nuclear ITS-2 from multiple locations worldwide, representing 10 described species plus an unknown central South Pacific taxon. Phylogenetic analyses identified five geographically distinct groupings, three of which comprise multiple described species. Species delimitation analyses suggest these may represent four species. Maurolicus muelleri and M. australis are potentially a single species, although as no shared haplotypes are found between the two disjunct groups, we suggest maintenance of these as two species. Maurolicus australis is a predominantly southern hemisphere species found in the Pacific, Indian and southern South Atlantic Oceans, comprising five previously allopatric species. M. muelleri (previously two species) is distributed in the North Atlantic and Mediterranean Sea. Maurolicus weitzmani (previously two species) inhabits the eastern equatorial Atlantic, Gulf of Mexico and western North and South Atlantic. Maurolicus mucronatus is restricted to the Red Sea. No Maurolicus have previously been reported in the central South Pacific but we have identified a distinct lineage from this region, which forms a sister group to Maurolicus from the Red Sea.
Collapse
|
31
|
Tempesti J, Mangano MC, Langeneck J, Lardicci C, Maltagliati F, Castelli A. Non-indigenous species in Mediterranean ports: A knowledge baseline. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105056. [PMID: 33070931 DOI: 10.1016/j.marenvres.2020.105056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Port areas have been considered bioinvasion hotspots due to the concentration of several invasion vectors. However, the actual distribution of non-indigenous species (NIS) in Mediterranean ports is still poorly understood. Here we conducted a literature review with the aim to provide a knowledge baseline about NIS distribution in Mediterranean ports. NIS distribution in Mediterranean ports showed a high degree of heterogeneity in terms of studies across the whole basin, with a limited knowledge on both specific taxa and geographical areas, as well as a generally low proportion of investigated ports. The low rate of specific studies designed to monitor these particular environments may represent the main source of knowledge gaps. Mediterranean ports host NIS from all regions of the world, playing a key role in marine bioglobalization. Our synthesis represents the first baseline addressing the presence of NIS in Mediterranean ports, which may be useful to define plans of NIS management and strategies focusing on a network of recognised focal hotspots.
Collapse
Affiliation(s)
- Jonathan Tempesti
- Dipartimento di Biologia, Università di Pisa, Via Derna, 1, 56126, Pisa, Italy
| | - Maria Cristina Mangano
- Stazione Zoologica Anton Dohrn, Dipartimento Ecologia Marina Integrata, Sede Interdipartimentale della Sicilia, Lungomare Cristoforo Colombo (complesso Roosevelt), 90142, Palermo, Italy
| | - Joachim Langeneck
- Dipartimento di Biologia, Università di Pisa, Via Derna, 1, 56126, Pisa, Italy
| | - Claudio Lardicci
- Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, 56126, Pisa, Italy
| | | | - Alberto Castelli
- Dipartimento di Biologia, Università di Pisa, Via Derna, 1, 56126, Pisa, Italy
| |
Collapse
|
32
|
Beermann J, Hall-Mullen AK, Havermans C, Coolen JW, Crooijmans RP, Dibbits B, Held C, Desiderato A. Ancient globetrotters-connectivity and putative native ranges of two cosmopolitan biofouling amphipods. PeerJ 2020; 8:e9613. [PMID: 33194336 PMCID: PMC7394068 DOI: 10.7717/peerj.9613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
The geographic distributions of some coastal marine species have appeared as cosmopolitan ever since they were first scientifically documented. In particular, for many benthic species that are associated with anthropogenic substrata, there is much speculation as to whether or not their broad distributions can be explained by natural mechanisms of dispersal. Here, we focused on two congeneric coastal crustaceans with cosmopolitan distributions—the tube-dwelling amphipods Jassa marmorata and Jassa slatteryi. Both species are common elements of marine biofouling on nearly all kinds of artificial hard substrata in temperate to warm seas. We hypothesized that the two species’ modern occurrences across the oceans are the result of human shipping activities that started centuries ago. Mitochondrial DNA sequences of the CO1 fragment of specimens from distinct marine regions around the world were analysed, evaluating genetic structure and migration models and making inferences on putative native ranges of the two Jassa species. Populations of both species exhibited considerable genetic diversity with differing levels of geographic structure. For both species, at least two dominant haplotypes were shared among several geographic populations. Rapid demographic expansion and high migration rates between geographically distant regions support a scenario of ongoing dispersal all over the world. Our findings indicate that the likely former native range of J. marmorata is the Northwest Atlantic, whereas the likely former native range of J. slatteryi is the Northern Pacific region. As corroborated by the genetic connectivity between populations, shipping still appears to be the more successful vector of the two species’ dispersal when compared to natural mechanisms. Historical invasion events that likely started centuries ago, along with current ongoing dispersal, confirm these species’ identities as true “neocosmopolitans”.
Collapse
Affiliation(s)
- Jan Beermann
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany.,FB2, University of Bremen, Bremen, Germany
| | - Allison K Hall-Mullen
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,FB2, University of Bremen, Bremen, Germany
| | - Charlotte Havermans
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Helmholtz Young Investigator Group "Arctic Jellies", Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Joop Wp Coolen
- Wageningen Marine Research, Den Helder, The Netherlands.,Chair group Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen, The Netherlands
| | | | - Bert Dibbits
- Animal Breeding and Genomics, Wageningen University, Wageningen, The Netherlands
| | - Christoph Held
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Andrea Desiderato
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Programa de Pós-Graduação em Zoologia (PPGZOO), Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
33
|
Blakeslee AMH, Manousaki T, Vasileiadou K, Tepolt CK. An evolutionary perspective on marine invasions. Evol Appl 2020; 13:479-485. [PMID: 32431730 PMCID: PMC7045714 DOI: 10.1111/eva.12906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 11/29/2022] Open
Abstract
Species distributions are rapidly changing as human globalization increasingly moves organisms to novel environments. In marine systems, species introductions are the result of a number of anthropogenic mechanisms, notably shipping, aquaculture/mariculture, the pet and bait trades, and the creation of canals. Marine invasions are a global threat to human and non-human populations alike and are often listed as one of the top conservation concerns worldwide, having ecological, evolutionary, and social ramifications. Evolutionary investigations of marine invasions can provide crucial insight into an introduced species' potential impacts in its new range, including: physiological adaptation and behavioral changes to exploit new environments; changes in resident populations, community interactions, and ecosystems; and severe reductions in genetic diversity that may limit evolutionary potential in the introduced range. This special issue focuses on current research advances in the evolutionary biology of marine invasions and can be broadly classified into a few major avenues of research: the evolutionary history of invasive populations, post-invasion reproductive changes, and the role of evolution in parasite introductions. Together, they demonstrate the value of investigating marine invasions from an evolutionary perspective, with benefits to both fundamental and applied evolutionary biology at local and broad scales.
Collapse
Affiliation(s)
| | - Tereza Manousaki
- Institute of Marine Biology, Biotechnology and AquacultureHellenic Centre for Marine ResearchThalassocosmosGreece
| | | | - Carolyn K. Tepolt
- Department of BiologyWoods Hole Oceanographic InstitutionWoods HoleMAUSA
| |
Collapse
|
34
|
Kara J, Santos CSG, Macdonald AHH, Simon CA. Resolving the taxonomic identities and genetic structure of two cryptic Platynereis Kinberg species from South Africa. INVERTEBR SYST 2020. [DOI: 10.1071/is19072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The perceived cosmopolitanism of polychaete worms could be an artefact of historical factors such as poor original species descriptions, lack of type material and the European taxonomic bias, to name a few. Thus, it is possible that several cosmopolitan species hide complexes of cryptic and pseudocryptic species. Two putative cosmopolitan species, Platynereis dumerilii and Platynereis australis, collected in South Africa were investigated here (1) to determine whether the South African taxa are conspecific with the morphologically identical taxa from France and New Zealand (the respective type localities of P. dumerilii and P. australis), (2) to compare the South African species morphometrically to determine whether their morphological characters are reliable enough to separate them, and (3) to investigate whether these species have geographically structured populations along the coast of South Africa. Molecular data (COI and ITS1) confirm that P. dumerilii and P. australis do not occur in South Africa. Instead, the South African taxon formerly thought to be Platynereis dumerilii is new and is described here as Platynereis entshonae, sp. nov.; the identity of the other South African species is currently unresolved and is treated here as Platynereis sp. Surprisingly, Platynereis massiliensis (type locality: Marseilles) nested within the South African Platynereissp. clade but, since it is part of a cryptic species complex in the Mediterranean, the name is considered doubtful. Morphological characters traditionally used to define these South African Platynereis species are not reliable as predefined morphological groupings do not match phylogenetic clades and principal component scores revealed no separation in morphological characters that could distinguish between them. Haplotype networks and phylogenetic trees revealed that P. entshonae, sp. nov. and Platynereis sp. have geographically structured populations along the South African coast. http://zoobank.org/urn:lsid:zoobank.org:pub:6E36A210-9E48-430F-8A93-EDC27F0C5631
Collapse
|
35
|
Oricchio FT, Marques AC, Hajdu E, Pitombo FB, Azevedo F, Passos FD, Vieira LM, Stampar SN, Rocha RM, Dias GM. Exotic species dominate marinas between the two most populated regions in the southwestern Atlantic Ocean. MARINE POLLUTION BULLETIN 2019; 146:884-892. [PMID: 31426232 DOI: 10.1016/j.marpolbul.2019.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Human occupation of coastal areas promotes the establishment of non-native species but information on bioinvasions is usually biased toward the Northern Hemisphere. We assessed non-native species' importance in sessile communities at six marinas along the most urbanized area of the Southwestern Atlantic coastline. We found 67 species, of which 19 are exotic. The most frequent species was the exotic polychaete Branchiomma luctuosum, while the most abundant was the exotic bryozoan Schizoporella errata that monopolized the substrata in three marinas. Along with S. errata, the exotic polychaete Hydroides elegans and ascidian Styela plicata dominated space in the three remaining marinas, while native species were in general rare. We show that communities associated with artificial substrata along this Brazilian urbanized area are dominated by exotic species and that using abundance data along with species identity can improve our understanding of the importance of exotic species for the dynamics of biological communities.
Collapse
Affiliation(s)
- Felipe T Oricchio
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Rua Arcturus, 03 - Jardim Antares, 09606-070 São Bernardo do Campo, SP, Brazil.
| | - Antonio C Marques
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, R. Matão, Trav. 14, 05508-090 São Paulo, SP, Brazil
| | - Eduardo Hajdu
- Museu Nacional, Universidade Federal do Rio de Janeiro (UFRJ), Quinta da Boa Vista, s/n - São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
| | - Fabio B Pitombo
- Departamento de Biologia Marinha, Universidade Federal Fluminense, 24001-970 Niterói, RJ, Brazil
| | - Fernanda Azevedo
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Flávio D Passos
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6109, 13083-970 Campinas, SP, Brazil
| | - Leandro M Vieira
- Laboratório de Estudos de Bryozoa - LAEBry, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego 1235 - Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Sergio N Stampar
- Laboratório de Evolução e Diversidade Aquática - LEDA, Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), FCL/Assis, Av. Dom Antônio, 2100, 19806-900 Assis, SP, Brazil
| | - Rosana M Rocha
- Departamento de Zoologia, Universidade Federal do Paraná, 81531-980 Curitiba, PR, Brazil
| | - Gustavo M Dias
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Rua Arcturus, 03 - Jardim Antares, 09606-070 São Bernardo do Campo, SP, Brazil
| |
Collapse
|
36
|
Cabezas MP, Ros M, Santos AMD, Martínez-Laiz G, Xavier R, Montelli L, Hoffman R, Fersi A, Dauvin JC, Guerra-García JM. Unravelling the origin and introduction pattern of the tropical species Paracaprella pusilla Mayer, 1890 (Crustacea, Amphipoda, Caprellidae) in temperate European waters: first molecular insights from a spatial and temporal perspective. NEOBIOTA 2019. [DOI: 10.3897/neobiota.47.32408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Paracaprellapusilla Mayer, 1890 is a tropical caprellid species recently introduced to the Eastern Atlantic coast of the Iberian Peninsula and the Mediterranean Sea. In this study, we used direct sequencing of mitochondrial (COI and 16S) and nuclear (28S and ITS) genes to compare genetic differences in presumed native and introduced populations in order to infer its introduction pattern and to shed light on the native range of this species. The temporal pattern of genetic diversity at the westernmost limit of the geographic range of P.pusilla in Europe (the Atlantic coast of southern Spain) over an eight-year period was also investigated. Our results confirm P.pusilla as a neocosmopolitan species and suggest that the species is native to the Atlantic coast of Central and South America. Paracaprellapusilla seems to have been introduced into European waters from multiple introduction pathways and source populations, which are likely to include populations from coastal waters of Brazil. Multiple introduction pathways may have been involved, with the most important being commercial shipping through the Strait of Gibraltar. While this tropical species appears to be expanding in the Mediterranean, populations from the westernmost limit of its geographic range in Europe showed a temporal instability. This study constitutes the first molecular approach focused on this species, but it is also the first study of temporal change in genetic diversity of any introduced marine amphipod. Additional intensive sampling of this species, including both native and non-native populations, and detailed temporal studies are still necessary to properly understand how genetic diversity influences the introduction and survival of P.pusilla in invaded areas.
Collapse
|
37
|
Jarić I, Heger T, Castro Monzon F, Jeschke JM, Kowarik I, McConkey KR, Pyšek P, Sagouis A, Essl F. Crypticity in Biological Invasions. Trends Ecol Evol 2019; 34:291-302. [DOI: 10.1016/j.tree.2018.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 01/22/2023]
|