1
|
Suhrkamp I, Fonfara M, Magdalena M, Hartmann JN, Rodriguez E, Harder J, Emmert H, Weidinger S. Th2-Polarised CD4 + T Cells Enhance Staphylococcus aureus Growth in a 3D Skin Model. Clin Exp Allergy 2025. [PMID: 39973113 DOI: 10.1111/cea.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Affiliation(s)
- Ina Suhrkamp
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Melina Fonfara
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Magdalena Magdalena
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan N Hartmann
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Elke Rodriguez
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Harder
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hila Emmert
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
2
|
Jung K, Ku JY, Kwon JS, Won G, Yoon H, Oh SI, Kim MH, Kim C, Yoon JS. IFN-γ/TNF-α Synergism Induces Pro-Inflammatory Cytokine and Chemokine Production by In Vitro Canine Keratinocytes. Vet Sci 2025; 12:55. [PMID: 39852930 PMCID: PMC11769522 DOI: 10.3390/vetsci12010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Activated keratinocytes play a crucial role in skin inflammation through the production of multiple inflammatory mediators; however, little is known about cytokine secretion by activated keratinocytes in dogs. This study aimed to investigate the effects of the Th1 and Th2 types of cytokines on the production of keratinocyte-derived inflammatory mediators. Canine progenitor epidermal keratinocytes (CPEKs) were incubated with canine recombinant IL-4, IL-13, an IL4/IL13 mixture, IFN-γ, TNF-α, or an IFN-γ/TNF-α mixture for 24 h following 100% confluency. Culture supernatants were analyzed for cytokine concentration, including chemokine ligand (CXCL) 8, IL-10, IL-6, IL-1ß, IL-12, and chemokine ligand 2 (CCL2) by enzyme-linked immunosorbent assay. CPEKs incubated with the IFN-γ/TNF-α mixture showed significantly increased IL-6 concentration. In addition, significantly increased concentrations of CXCL8 were detected in CPEKs incubated with TNF-α and with the IFN-γ/TNF-α mixture. CCL2 concentrations increased in cells incubated with IFN-γ, TNF-α, and the IFN-γ/TNF-α mixture. The IFN-γ/TNF-α mixture synergistically enhanced CCL2 production. Dose-dependent elevations were also observed in IL-6 in response to the IFN-γ/TNF-α mixture, and in CCL2 in response to IFN-γ, TNF-α, and the IFN-γ/TNF-α mixture. These findings indicate that IFN-γ and TNF-α synergistically increase pro-inflammatory cytokines and chemokines secreted by canine keratinocytes. This in vitro culture system could be useful to investigate cytokine-mediated crosstalk between keratinocytes and immune cells and new therapeutic strategies for keratinocyte-mediated inflammatory skin diseases.
Collapse
Affiliation(s)
- Kyungsook Jung
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea;
| | - Ji-Yeong Ku
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54896, Republic of Korea; (J.-Y.K.); (J.-S.K.); (G.W.); (H.Y.); (S.-I.O.)
| | - Je-Seong Kwon
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54896, Republic of Korea; (J.-Y.K.); (J.-S.K.); (G.W.); (H.Y.); (S.-I.O.)
| | - Gayeon Won
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54896, Republic of Korea; (J.-Y.K.); (J.-S.K.); (G.W.); (H.Y.); (S.-I.O.)
| | - Hakyoung Yoon
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54896, Republic of Korea; (J.-Y.K.); (J.-S.K.); (G.W.); (H.Y.); (S.-I.O.)
| | - Sang-Ik Oh
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54896, Republic of Korea; (J.-Y.K.); (J.-S.K.); (G.W.); (H.Y.); (S.-I.O.)
| | - Mi Hye Kim
- College of Korean Medicine, Woosuk University, Wanju 55338, Republic of Korea;
| | - Chongchan Kim
- Korea Thumb Vet Co., Ltd., 470-15 Seonhwa-ro, Iksan 54631, Republic of Korea;
| | - Ji-Seon Yoon
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54896, Republic of Korea; (J.-Y.K.); (J.-S.K.); (G.W.); (H.Y.); (S.-I.O.)
| |
Collapse
|
3
|
Yue C, Zhou H, Wang X, Yu J, Hu Y, Zhou P, Zhao F, Zeng F, Li G, Li Y, Feng Y, Sun X, Huang S, He M, Wu W, Huang N, Li J. Atopic dermatitis: pathogenesis and therapeutic intervention. MedComm (Beijing) 2024; 5:e70029. [PMID: 39654684 PMCID: PMC11625510 DOI: 10.1002/mco2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
The skin serves as the first protective barrier for nonspecific immunity and encompasses a vast network of skin-associated immune cells. Atopic dermatitis (AD) is a prevalent inflammatory skin disease that affects individuals of all ages and races, with a complex pathogenesis intricately linked to genetic, environmental factors, skin barrier dysfunction as well as immune dysfunction. Individuals diagnosed with AD frequently exhibit genetic predispositions, characterized by mutations that impact the structural integrity of the skin barrier. This barrier dysfunction leads to the release of alarmins, activating the type 2 immune pathway and recruiting various immune cells to the skin, where they coordinate cutaneous immune responses. In this review, we summarize experimental models of AD and provide an overview of its pathogenesis and the therapeutic interventions. We focus on elucidating the intricate interplay between the immune system of the skin and the complex regulatory mechanisms, as well as commonly used treatments for AD, aiming to systematically understand the cellular and molecular crosstalk in AD-affected skin. Our overarching objective is to provide novel insights and inform potential clinical interventions to reduce the incidence and impact of AD.
Collapse
Affiliation(s)
- Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yuting Feng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaochi Sun
- Department of CardiologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shishi Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Mingxiang He
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| |
Collapse
|
4
|
Mohd Kasim VNK, Lee YZ, Bakrin IH, Hussain MK, Israf DA, Shaari K, Tan JW, Lee MT, Tham CL. Oral and topical administration of a geranyl acetophenone attenuates DNCB-induced atopic dermatitis-like skin lesions in BALB/c mice. Sci Rep 2024; 14:17623. [PMID: 39085287 PMCID: PMC11291929 DOI: 10.1038/s41598-024-66601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic, allergic inflammatory skin disorder that lacks a definite cure. Using a mouse DNCB-induced AD-like skin lesions model, this study evaluated the potential therapeutic utility of tHGA as an oral and topical treatment for AD. Male BALB/c mice were sensitised and challenged with 1% and 0.5% DNCB on their shaved dorsal skin. Mice in the treatment group were administered tHGA (20, 40, and 80 mg/kg) orally three times per week for 2 weeks, or tHGA (0.2%, 1%, and 5%) topically once daily for 12 days. On day 34, the mice were euthanized, and blood and dorsal skin samples were obtained for analysis. All doses of orally and topically administered tHGA significantly improved scratching, epidermal thickness, blood eosinophilia and mast cell infiltration. There was a minor discrepancy between the two routes of administration, with orally treated tHGA showing significant reductions in Scoring of Atopic Dermatitis (SCORAD), tissue eosinophil infiltration, serum IgE and skin IL-4 levels with treatment of 40 and 80 mg/kg tHGA, whereas topically applied tHGA showed significant reductions in all dosages. These findings suggest that tHGA exhibited therapeutic potential for AD as both oral and topical treatment ameliorates AD-like symptoms in the murine model.
Collapse
Affiliation(s)
| | - Yu Zhao Lee
- Faculty of Applied Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Ikmal Hisyam Bakrin
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Premier Integrated Labs Sdn Bhd, Pantai Hospital Kuala Lumpur, Bangsar, 59100, Kuala Lumpur, Malaysia
| | - Mohd Khairi Hussain
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Daud Ahmad Israf
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ji Wei Tan
- School of Science, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- UCSI Wellbeing Research Centre, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Chau Ling Tham
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
De Felice B, De Luca P, Montanino C, Mallardo M, Babino G, Mattera E, Sorbo R, Ragozzino G, Argenziano G, Daniele A, Nigro E. LncRNA microarray profiling identifies novel circulating lncRNAs in hidradenitis suppurativa. Mol Med Rep 2024; 30:112. [PMID: 38757342 PMCID: PMC11094584 DOI: 10.3892/mmr.2024.13236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/13/2024] [Indexed: 05/18/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) have been demonstrated to be involved in biological processes, both physiological and pathological, including cancer, cardiovascular diseases, multiple sclerosis, autoimmune hepatitis and types I and II diabetes. LncRNAs are also known to have a critical role in the physiology of skin, and in the pathology of cutaneous diseases. LncRNAs are involved in a wide range of biological activities, including transcriptional post‑transcriptional processes, epigenetics, RNA splicing, gene activation and or silencing, modifications and/or editing; therefore, lncRNAs may be useful as potential targets for disease treatment. Hidradenitis suppurativa (HS), also termed acne inversa, is a major skin disease, being an inflammatory disorder that affects ~1% of global population in a chronic manner. Its pathogenesis, however, is only partly understood, although immune dysregulation is known to have an important role. To investigate the biological relevance of lncRNAs with HS, the most differentially expressed lncRNAs and mRNAs were first compared. Furthermore, the lncRNA‑microRNA regulatory network was also defined via reverse transcription‑quantitative PCR analysis, whereby a trio of lncRNA expression signatures, lncRNA‑TINCR, lncRNA‑RBM5‑ASI1 and lncRNA‑MRPL23‑AS1, were found to be significantly overexpressed in patients with HS compared with healthy controls. In conclusion, the three lncRNAs isolated in the present study may be useful for improving the prognostic prediction of HS, as well as contributing towards an improved understanding of the underlying pathogenic mechanisms, thereby potentially providing new therapeutic targets.
Collapse
Affiliation(s)
- Bruna De Felice
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, I-81100 Caserta, Italy
| | | | - Concetta Montanino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, I-81100 Caserta, Italy
| | - Marta Mallardo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, I-81100 Caserta, Italy
- CEINGE-Franco Salvatore Advanced Biotechnology, I-80145 Naples, Italy
| | - Graziella Babino
- Dermatology Unit, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Edi Mattera
- Department of Internal and Experimental Medicine and Surgery Unit of Internal Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Raffaele Sorbo
- Department of Internal and Experimental Medicine and Surgery Unit of Internal Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Giovanni Ragozzino
- Department of Internal and Experimental Medicine and Surgery Unit of Internal Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Giuseppe Argenziano
- Dermatology Unit, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Aurora Daniele
- CEINGE-Franco Salvatore Advanced Biotechnology, I-80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Ersilia Nigro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, I-81100 Caserta, Italy
- CEINGE-Franco Salvatore Advanced Biotechnology, I-80145 Naples, Italy
| |
Collapse
|
6
|
Al B, Traidl S, Holzscheck N, Freimooser S, Mießner H, Reuter H, Dittrich-Breiholz O, Werfel T, Seidel JA. Single-cell RNA sequencing reveals 2D cytokine assay can model atopic dermatitis more accurately than immune-competent 3D setup. Exp Dermatol 2024; 33:e15077. [PMID: 38711200 DOI: 10.1111/exd.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 05/08/2024]
Abstract
Modelling atopic dermatitis (AD) in vitro is paramount to understand the disease pathophysiology and identify novel treatments. Previous studies have shown that the Th2 cytokines IL-4 and IL-13 induce AD-like features in keratinocytes in vitro. However, it has not been systematically researched whether the addition of Th2 cells, their supernatants or a 3D structure is superior to model AD compared to simple 2D cell culture with cytokines. For the first time, we investigated what in vitro option most closely resembles the disease in vivo based on single-cell RNA sequencing data (scRNA-seq) obtained from skin biopsies in a clinical study and published datasets of healthy and AD donors. In vitro models were generated with primary fibroblasts and keratinocytes, subjected to cytokine treatment or Th2 cell cocultures in 2D/3D. Gene expression changes were assessed using qPCR and Multiplex Immunoassays. Of all cytokines tested, incubation of keratinocytes and fibroblasts with IL-4 and IL-13 induced the closest in vivo-like AD phenotype which was observed in the scRNA-seq data. Addition of Th2 cells to fibroblasts failed to model AD due to the downregulation of ECM-associated genes such as POSTN. While keratinocytes cultured in 3D showed better stratification than in 2D, changes induced with AD triggers did not better resemble AD keratinocyte subtypes observed in vivo. Taken together, our comprehensive study shows that the simple model using IL-4 or IL-13 in 2D most accurately models AD in fibroblasts and keratinocytes in vitro, which may aid the discovery of novel treatment options.
Collapse
Affiliation(s)
- Benjamin Al
- Discovery, Beiersdorf AG, Hamburg, Germany
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | | | - Sina Freimooser
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | | | | | | | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
7
|
Roh YJ, Choi YH, Shin SH, Lee MK, Won YJ, Lee JH, Cho BS, Park KY, Seo SJ. Adipose tissue-derived exosomes alleviate particulate matter-induced inflammatory response and skin barrier damage in atopic dermatitis-like triple-cell model. PLoS One 2024; 19:e0292050. [PMID: 38241278 PMCID: PMC10798485 DOI: 10.1371/journal.pone.0292050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/11/2023] [Indexed: 01/21/2024] Open
Abstract
Recently, particulate matter (PM) has been shown to exacerbate atopic dermatitis (AD) by inducing an inflammatory response. Meanwhile, several studies revealed that exosomes derived from adipose tissue-derived mesenchymal stem cells promote wound healing and alleviate inflammation via their regenerative and immunomodulatory capacities. Our study aimed to investigate the effects of human adipose tissue-derived mesenchymal stem cell-derived (ASC)-exosomes in PM-induced AD. An AD-like triple-cell model was established by treating human keratinocytes, dermal fibroblasts, and mast cells with polyinosinic:polycytidylic acid (Poly I:C) and interleukin 1 alpha (IL-1α). The effects of PM and ASC-exosomes on the expression of pro-inflammatory cytokines and skin barrier proteins were examined using quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence. PM increased pro-inflammatory cytokines (IL-6, IL-1β, and IL-1α) and decreased the anti-inflammatory cytokine IL-10, while the mRNA expression of skin barrier proteins (loricrin and filaggrin) decreased. However, when the cells were treated with ASC-exosomes, the PM-induced effects on pro-inflammatory cytokines and skin barrier proteins were reversed. Our results confirmed that PM-induced inflammation and skin barrier damage were alleviated by ASC-exosomes in our AD-like triple-cell model. These data suggest that ASC-exosomes can serve as a therapeutic agent for PM-exacerbated AD.
Collapse
Affiliation(s)
- Yoon Jin Roh
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yong Hee Choi
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sun Hye Shin
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yu Jin Won
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul, Korea
| | - Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul, Korea
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Wang M, Zhang L, Hao H, Yan M, Zhu Z. Applications of Engineered Skin Tissue for Cosmetic Component and Toxicology Detection. Cell Transplant 2024; 33:9636897241235464. [PMID: 38491929 PMCID: PMC10944590 DOI: 10.1177/09636897241235464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 03/18/2024] Open
Abstract
The scale of the cosmetic market is increasing every day. There are many safety risks to cosmetics, but they benefit people at the same time. The skin can become red, swollen, itchy, chronically toxic, and senescent due to the misuse of cosmetics, triggering skin injuries, with contact dermatitis being the most common. Therefore, there is an urgent need for a system that can scientifically and rationally detect the composition and perform a toxicological assessment of cosmetic products. Traditional detection methods rely on instrumentation and method selection, which are less sensitive and more complex to perform. Engineered skin tissue has emerged with the advent of tissue engineering technology as an emerging bioengineering technology. The ideal engineered skin tissue is the basis for building good in vitro structures and physiological functions in this field. This review introduces the existing cosmetic testing and toxicological evaluation methods, the current development status, and the types and characteristics of engineered skin tissue. The application of engineered skin tissue in the field of cosmetic composition detection and toxicological evaluation, as well as the different types of tissue engineering scaffold materials and three-dimensional (3D) organoid preparation approaches, is highlighted in this review to provide methods and ideas for constructing the next engineered skin tissue for cosmetic raw material component analysis and toxicological evaluation.
Collapse
Affiliation(s)
- Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Linfeng Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Haojie Hao
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Muyang Yan
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Ziying Zhu
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
9
|
Footner E, Firipis K, Liu E, Baker C, Foley P, Kapsa RMI, Pirogova E, O'Connell C, Quigley A. Layer-by-Layer Analysis of In Vitro Skin Models. ACS Biomater Sci Eng 2023; 9:5933-5952. [PMID: 37791888 DOI: 10.1021/acsbiomaterials.3c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In vitro human skin models are evolving into versatile platforms for the study of skin biology and disorders. These models have many potential applications in the fields of drug testing and safety assessment, as well as cosmetic and new treatment development. The development of in vitro skin models that accurately mimic native human skin can reduce reliance on animal models and also allow for more precise, clinically relevant testing. Recent advances in biofabrication techniques and biomaterials have led to the creation of increasingly complex, multilayered skin models that incorporate important functional components of skin, such as the skin barrier, mechanical properties, pigmentation, vasculature, hair follicles, glands, and subcutaneous layer. This improved ability to recapitulate the functional aspects of native skin enhances the ability to model the behavior and response of native human skin, as the complex interplay of cell-to-cell and cell-to-material interactions are incorporated. In this review, we summarize the recent developments in in vitro skin models, with a focus on their applications, limitations, and future directions.
Collapse
Affiliation(s)
- Elizabeth Footner
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Kate Firipis
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Emily Liu
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Chris Baker
- Department of Dermatology, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Skin Health Institute, Carlton, VIC 3053, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Peter Foley
- Department of Dermatology, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Skin Health Institute, Carlton, VIC 3053, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Cathal O'Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
10
|
Lee JY, Jeong, Park Y, Jeong Y, Chang, Kang H. Anti-Inflammatory Response in TNFα/IFNγ-Induced HaCaT Keratinocytes and Probiotic Properties of Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474. J Microbiol Biotechnol 2023; 33:1039-1049. [PMID: 37280776 PMCID: PMC10468673 DOI: 10.4014/jmb.2301.01028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory disease caused by immune dysregulation. Meanwhile, the supernatant of lactic acid bacteria (SL) was recently reported to have anti-inflammatory effects. In addition, HaCaT keratinocytes stimulated by tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) are widely used for studying AD-like responses. In this study, we evaluated the anti-inflammatory effects of SL from lactic acid bacteria (LAB) on TNF-α/IFN-γ-induced HaCaT keratinocytes, and then we investigated the strains' probiotic properties. SL was noncytotoxic and regulated chemokines (macrophage-derived chemokine (MDC) and thymus and activation-regulated chemokine (TARC)) and cytokines (interleukin (IL)-4, IL-5, IL-25, and IL-33) in TNF-α/IFN-γ-induced HaCaT keratinocytes. SL from Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474 decreased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). Furthermore, the safety of the three strains was demonstrated via hemolysis, bile salt hydrolase (BSH) activity, and toxicity tests, and the stability was confirmed under simulated gastrointestinal conditions. Therefore, L. rhamnosus MG4644, L. paracasei MG4693, and Lc. lactis MG5474 have potential applications in functional food as they are stable and safe for intestinal epithelial cells and could improve atopic inflammation.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Jeong
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Yong Park
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Yulah Jeong
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Chang
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Ho Kang
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| |
Collapse
|
11
|
Kim J, Jung E, Yang W, Kim CK, Durnaoglu S, Oh IR, Kim CW, Sinskey AJ, Mihm MC, Lee JH. A Novel Multi-Component Formulation Reduces Inflammation In Vitro and Clinically Lessens the Symptoms of Chronic Eczematous Skin. Int J Mol Sci 2023; 24:12979. [PMID: 37629159 PMCID: PMC10454735 DOI: 10.3390/ijms241612979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Long-term treatments for inflammatory skin diseases like atopic dermatitis or eczema can cause adverse effects. Super Protein Multifunction (SPM) was investigated as a potential treatment for managing skin inflammation by monitoring the expression of pro-inflammatory cytokines induced using LPS and poly(I:C)/TNFα in HaCaT keratinocytes and Hs27 fibroblasts as measured via RT-PCR. SPM solution was also assessed for its effect on cytokine release, measured using ELISA, in a UVB-irradiated 3D human skin model. To evaluate the efficiency of SPM, 20 patients with mild eczematous skin were randomized to receive SPM or vehicle twice a day for three weeks in a double-blind controlled trial. In vitro studies showed SPM inhibited inflammation-induced IL-1β, IL-6, IL-33, IL-1α, TSLP, and TNFα expression or release. In the clinical study, the SPM group showed significant improvements in the IGA, PA, and DLQI scores compared to the vehicle group. Neither group showed significant differences in VAS (pruritus). Histological analysis showed reduced stratum corneum thickness and inflammatory cell infiltration. The results suggest that SPM may reduce inflammation in individuals with chronic eczematous skin.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| | - Eunjoong Jung
- Biocoz Global Korea, R & D Center, Seoul 03181, Republic of Korea; (E.J.); (W.Y.); (C.-K.K.); (S.D.); (I.-R.O.); (C.-W.K.)
| | - Wonmi Yang
- Biocoz Global Korea, R & D Center, Seoul 03181, Republic of Korea; (E.J.); (W.Y.); (C.-K.K.); (S.D.); (I.-R.O.); (C.-W.K.)
| | - Chun-Kang Kim
- Biocoz Global Korea, R & D Center, Seoul 03181, Republic of Korea; (E.J.); (W.Y.); (C.-K.K.); (S.D.); (I.-R.O.); (C.-W.K.)
| | - Serpen Durnaoglu
- Biocoz Global Korea, R & D Center, Seoul 03181, Republic of Korea; (E.J.); (W.Y.); (C.-K.K.); (S.D.); (I.-R.O.); (C.-W.K.)
| | - In-Rok Oh
- Biocoz Global Korea, R & D Center, Seoul 03181, Republic of Korea; (E.J.); (W.Y.); (C.-K.K.); (S.D.); (I.-R.O.); (C.-W.K.)
| | - Chan-Wha Kim
- Biocoz Global Korea, R & D Center, Seoul 03181, Republic of Korea; (E.J.); (W.Y.); (C.-K.K.); (S.D.); (I.-R.O.); (C.-W.K.)
| | - Anthony J. Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin C. Mihm
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Ju Hee Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Lee J, Jo SE, Han SI, Kim JH. Ethanol-Extracted Acorn Induces Anti-Inflammatory Effects in Human Keratinocyte and Production of Hyaluronic Acid in Human Fibroblasts. J Med Food 2023; 26:595-604. [PMID: 37594560 DOI: 10.1089/jmf.2022.k.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Acorn (Quercus acutissima CARR.) has been used in traditional food and medicinal ethnopharmacology in Asia, and it has shown multifarious functions such as antidementia, antiobesity, and antiasthma functions. However, there is limited scientific evidence about the efficacy of acorn for ameliorating skin problems. Treatment with ethanol-extracted acorns (EeA's) ablated the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), monocyte chemoattractant protein-1 (MCP-1), and interleukin (IL)-8 stimulated by tumor necrosis factor (TNF)-α in human adult low calcium high temperature (HaCaT) cells under sublethal dosages. In addition, treatment with EeA dose dependently inhibited the ex vivo hyper keratin formation induced by TNF-α in HaCaT cells in conjunction with the blockade of cytokeratin-1 (CK-1) and cytokeratin-5 (CK-5) expression. Moreover, EeA treatment stimulated the expression of hyaluronic acid (HA) expression in human fibroblasts in a dose-dependent manner. Linoleamide was identified as the functional component of EeA using preparative high-performance liquid chromatography and ultra high performance liquid chromatography-mass spectrometry-mass spectrometry analysis, and the anti-inflammatory features and enhanced HA expression were verified. Collectively, these results suggest the efficacy of EeA supplementation in improving skin problems via anti-inflammation and upregulating HA production.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju, Korea
| | | | - Song-I Han
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju, Korea
| | - Jae-Hoon Kim
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju, Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Korea
| |
Collapse
|
13
|
Chaturvedi D, Paranjape S, Jain R, Dandekar P. Disease-related biomarkers as experimental endpoints in 3D skin culture models. Cytotechnology 2023; 75:165-193. [PMID: 37187945 PMCID: PMC10167092 DOI: 10.1007/s10616-023-00574-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
The success of in vitro 3D models in either recapitulating the normal tissue physiology or altered physiology or disease condition depends upon the identification and/or quantification of relevant biomarkers that confirm the functionality of these models. Various skin disorders, such as psoriasis, photoaging, vitiligo, etc., and cancers like squamous cell carcinoma and melanoma, etc. have been replicated via organotypic models. The disease biomarkers expressed by such cell cultures are quantified and compared with the biomarkers expressed in cultures depicting the normal tissue physiology, to identify the most prominent variations in their expression. This may also indicate the stage or reversal of these conditions upon treatment with relevant therapeutics. This review article presents an overview of the important biomarkers that have been identified in in-vitro 3D models of skin diseases as endpoints for validating the functionality of these models. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00574-2.
Collapse
Affiliation(s)
- Deepa Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
| | - Swarali Paranjape
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400019 India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
| |
Collapse
|
14
|
Chuah LH, Loo HL, Goh CF, Fu JY, Ng SF. Chitosan-based drug delivery systems for skin atopic dermatitis: recent advancements and patent trends. Drug Deliv Transl Res 2023; 13:1436-1455. [PMID: 36808298 PMCID: PMC9937521 DOI: 10.1007/s13346-023-01307-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/20/2023]
Abstract
Atopic dermatitis (AD) is a complex, relapsing inflammatory skin disease with a considerable social and economic burden globally. AD is primarily characterized by its chronic pattern and it can have important modifications in the quality of life of the patients and caretakers. One of the fastest-growing topics in translational medicine today is the exploration of new or repurposed functional biomaterials into drug delivery therapeutic applications. This area has gained a considerable amount of research which produced many innovative drug delivery systems for inflammatory skin diseases like AD. Chitosan, a polysaccharide, has attracted attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine, and has been considered a promising candidate for AD treatment due to its antimicrobial, antioxidative, and inflammatory response modulation properties. The current pharmacological treatment for AD involves prescribing topical corticosteroid and calcineurin inhibitors. However, the adverse reactions associated with the long-term usage of these drugs such as itching, burning, or stinging sensation are also well documented. Innovative formulation strategies, including the use of micro- and nanoparticulate systems, biopolymer hydrogel composites, nanofibers, and textile fabrication are being extensively researched with an aim to produce a safe and effective delivery system for AD treatment with minimal side effects. This review outlines the recent development of various chitosan-based drug delivery systems for the treatment of AD published in the past 10 years (2012-2022). These chitosan-based delivery systems include hydrogels, films, micro-, and nanoparticulate systems as well as chitosan textile. The global patent trends on chitosan-based formulations for the AD are also discussed.
Collapse
Affiliation(s)
- Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Malaysia
| | - Hooi-Leong Loo
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Ju-Yen Fu
- Malaysian Palm Oil Board, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Arroyo AB, Bernal-Carrión M, Cantón-Sandoval J, Cabas I, Corbalán-Vélez R, Martínez-Menchón T, Ferri B, Cayuela ML, García-Moreno D, Mulero V. NAMPT and PARylation Are Involved in the Pathogenesis of Atopic Dermatitis. Int J Mol Sci 2023; 24:ijms24097992. [PMID: 37175698 PMCID: PMC10178103 DOI: 10.3390/ijms24097992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease of very high prevalence, especially in childhood, with no specific treatment or cure. As its pathogenesis is complex, multifactorial and not fully understood, further research is needed to increase knowledge and develop new targeted therapies. We have recently demonstrated the critical role of NAD+ and poly (ADP-ribose) (PAR) metabolism in oxidative stress and skin inflammation. Specifically, we found that hyperactivation of PARP1 in response to DNA damage induced by reactive oxygen species, and fueled by NAMPT-derived NAD+, mediated inflammation through parthanatos cell death in zebrafish and human organotypic 3D skin models of psoriasis. Furthermore, the aberrant induction of NAMPT and PARP activity was observed in the lesional skin of psoriasis patients, supporting the role of these signaling pathways in psoriasis and pointing to NAMPT and PARP1 as potential novel therapeutic targets in treating skin inflammatory disorders. In the present work, we report, for the first time, altered NAD+ and PAR metabolism in the skin of AD patients and a strong correlation between NAMPT and PARP1 expression and the lesional status of AD. Furthermore, using a human 3D organotypic skin model of AD, we demonstrate that the pharmacological inhibition of NAMPT and PARP reduces pathology-associated biomarkers. These results help to understand the complexity of AD and reveal new potential treatments for AD patients.
Collapse
Affiliation(s)
- Ana B Arroyo
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Martín Bernal-Carrión
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
| | - Joaquín Cantón-Sandoval
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Cabas
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Raúl Corbalán-Vélez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Teresa Martínez-Menchón
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Belén Ferri
- Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Diana García-Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Victoriano Mulero
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
16
|
Vieira J, Castelo J, Martins M, Saraiva N, Rosado C, Pereira-Leite C. Mixed Edge Activators in Ibuprofen-Loaded Transfersomes: An Innovative Optimization Strategy Using Box-Behnken Factorial Design. Pharmaceutics 2023; 15:pharmaceutics15041209. [PMID: 37111694 PMCID: PMC10143365 DOI: 10.3390/pharmaceutics15041209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Transfersomes have been highlighted as an interesting nanotechnology-based approach to facilitate the skin delivery of bioactive compounds. Nevertheless, the properties of these nanosystems still need to be improved to enable knowledge transfer to the pharmaceutical industry and the development of more efficacious topical medicines. Quality-by-design strategies, such as Box-Behnken factorial design (BBD), are in line with the current need to use sustainable processes to develop new formulations. Thus, this work aimed at optimizing the physicochemical properties of transfersomes for cutaneous applications, by applying a BBD strategy to incorporate mixed edge activators with opposing hydrophilic-lipophilic balance (HLB). Tween® 80 and Span® 80 were used as edge activators and ibuprofen sodium salt (IBU) was selected as the model drug. After the initial screening of the IBU solubility in aqueous media, a BBD protocol was implemented, and the optimized formulation displayed appropriate physicochemical properties for skin delivery. By comparing the optimized transfersomes to equivalent liposomes, the incorporation of mixed edge activators was found to be beneficial to upgrade the storage stability of the nanosystems. Furthermore, their cytocompatibility was shown by cell viability studies using 3D HaCaT cultures. Altogether, the data herein bode well for future advances in the use of mixed edge activators in transfersomes for the management of skin conditions.
Collapse
Affiliation(s)
- João Vieira
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Jéssica Castelo
- School of Health Sciences and Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Marta Martins
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Nuno Saraiva
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Catarina Rosado
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Catarina Pereira-Leite
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Lee YJ, Yassa C, Park SH, Song SW, Jung WH, Lee YW, Kang H, Kim JE. Interactions between Malassezia and New Therapeutic Agents in Atopic Dermatitis Affecting Skin Barrier and Inflammation in Recombinant Human Epidermis Model. Int J Mol Sci 2023; 24:ijms24076171. [PMID: 37047166 PMCID: PMC10094540 DOI: 10.3390/ijms24076171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Several studies have reported the pathogenic role of Malassezia in atopic dermatitis (AD); the significance of Malassezia’s influence on AD needs to be further investigated. Dupilumab, a monoclonal antibody to anti-Interleukin (IL) 4Rα, and ruxolitinib, a Janus kinase (JAK)1/2 inhibitor, are the first approved biologics and inhibitors widely used for AD treatment. In this study, we aimed to investigate how Malassezia Restricta (M. restricta) affects the skin barrier and inflammation in AD and interacts with the AD therapeutic agents ruxolitinib and anti-IL4Rα. To induce an in vitro AD model, a reconstructed human epidermis (RHE) was treated with IL-4 and IL-13. M. restricta was inoculated on the surface of RHE, and anti-IL4Rα or ruxolitinib was supplemented to model treated AD lesions. Histological and molecular analyses were performed. Skin barrier and ceramide-related molecules were downregulated by M. restricta and reverted by anti-IL4Rα and ruxolitinib. Antimicrobial peptides, VEGF, Th2-related, and JAK/STAT pathway molecules were upregulated by M. restricta and suppressed by anti-IL4Rα and ruxolitinib. These findings show that M. restricta aggravated skin barrier function and Th2 inflammation and decreased the efficacy of anti-IL4Rα and ruxolitinib.
Collapse
|
18
|
Probing the human epidermis by combining ToF-SIMS and multivariate analysis. Biointerphases 2023; 18:011002. [PMID: 36754779 DOI: 10.1116/6.0002289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
The mammalian organism is continuously exposed to various biological and chemical threats from its surroundings. In order to provide protection against these threats, mammals have developed a specialized defense system at the interface with their environment. This system, known as the epidermis, is mainly composed of stratified keratinocytes organized in a complex self-renewing structure providing a mechanical and chemical barrier at the skin surface. However, numerous skin-related pathologies can interfere with the proper formation and function of the epidermal barrier. The pathogenesis of these alterations is often very complex. Understanding the changes induced in epidermal tissues by these pathologies at a molecular level is key for their treatment and prevention. In this context, this work aims at developing a thorough and reproducible characterization methodology of the human epidermis by applying ToF-SIMS to the study of an in vitro epidermal model known as reconstructed human epidermis (RHE). Indeed, although the potential of ToF-SIMS for the characterization of the mammalian skin has already been demonstrated, very few studies focus their efforts on the human epidermis itself. Here, we performed static ToF-SIMS characterizations of RHE cryosections, combining both high mass and high lateral resolution acquisitions. In addition, principal components analysis was used as a multivariate analysis tool. This contributed to the decorrelation of the complex datasets obtained from these biological systems and allowed capturing of their most statistically representative spectral features. Remarkably, this tool proved to be successful in extracting meaningful biological information from the datasets by yielding principal components distinguishing the cornified layers from the metabolically active epidermal cells. Finally, on the basis of multiple ToF-SIMS acquisitions, we showed that this methodology allows for the convenient production of experimental replicates, a key feature often difficult to achieve in ex vivo approaches.
Collapse
|
19
|
Progneaux A, Evrard C, De Glas V, Fontaine A, Dotreppe C, De Vuyst E, Nikkels AF, García-González V, Dumoutier L, Lambert de Rouvroit C, Poumay Y. Keratinocytes activated by IL-4/IL-13 express IL-2Rγ with consequences on epidermal barrier function. Exp Dermatol 2023; 32:660-670. [PMID: 36645024 DOI: 10.1111/exd.14749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023]
Abstract
Atopic dermatitis (AD) is a Th2-type inflammatory disease characterized by an alteration of epidermal barrier following the release of IL-4 and IL-13. These cytokines activate type II IL-4Rα/IL-13Rα1 receptors in the keratinocyte. Whilst IL-2Rγ, that forms type I receptor for IL-4, is only expressed in haematopoietic cells, recent studies suggest its induction in keratinocytes, which questions about its role. We studied expression of IL-2Rγ in keratinocytes and its role in alteration of keratinocyte function and epidermal barrier. IL-2Rγ expression in keratinocytes was studied using both reconstructed human epidermis (RHE) exposed to IL-4/IL-13 and AD skin. IL-2Rγ induction by type II receptor has been analyzed using JAK inhibitors and RHE knockout (KO) for IL13RA1. IL-2Rγ function was investigated in RHE KO for IL2RG. In RHE, IL-4/IL-13 induce expression of IL-2Rγ at the mRNA and protein levels. Its mRNA expression is also visualized in keratinocytes of lesional AD skin. IL-2Rγ expression is low in RHE treated with JAK inhibitors and absent in RHE KO for IL13RA1. Exposure to IL-4/IL-13 alters epidermal barrier, but this alteration is absent in RHE KO for IL2RG. A more important induction of IL-13Rα2 is reported in RHE KO for IL2RG than in not edited RHE. These results demonstrate IL-2Rγ induction in keratinocytes through activation of type II receptor. IL-2Rγ is involved in the alteration of the epidermal barrier and in the regulation of IL-13Rα2 expression. Observation of IL-2Rγ expression by keratinocytes inside AD lesional skin suggests a role for this receptor subunit in the disease.
Collapse
Affiliation(s)
- Audrey Progneaux
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Céline Evrard
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Valérie De Glas
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Alix Fontaine
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Céline Dotreppe
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Evelyne De Vuyst
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Arjen F Nikkels
- Department of Dermatology, CHU of Sart Tilman, University of Liège, Liège, Belgium
| | | | - Laure Dumoutier
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Catherine Lambert de Rouvroit
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Yves Poumay
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
20
|
Swindell WR, Bojanowski K, Chaudhuri RK. Isosorbide Fatty Acid Diesters Have Synergistic Anti-Inflammatory Effects in Cytokine-Induced Tissue Culture Models of Atopic Dermatitis. Int J Mol Sci 2022; 23:ijms232214307. [PMID: 36430783 PMCID: PMC9696169 DOI: 10.3390/ijms232214307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic disease in which epidermal barrier disruption triggers Th2-mediated eruption of eczematous lesions. Topical emollients are a cornerstone of chronic management. This study evaluated efficacy of two plant-derived oil derivatives, isosorbide di-(linoleate/oleate) (IDL) and isosorbide dicaprylate (IDC), using AD-like tissue culture models. Treatment of reconstituted human epidermis with cytokine cocktail (IL-4 + IL-13 + TNF-α + IL-31) compromised the epidermal barrier, but this was prevented by co-treatment with IDL and IDC. Cytokine stimulation also dysregulated expression of keratinocyte (KC) differentiation genes whereas treatment with IDC or IDL + IDC up-regulated genes associated with early (but not late) KC differentiation. Although neither IDL nor IDC inhibited Th2 cytokine responses, both compounds repressed TNF-α-induced genes and IDL + IDC led to synergistic down-regulation of inflammatory (IL1B, ITGA5) and neurogenic pruritus (TRPA1) mediators. Treatment of cytokine-stimulated skin explants with IDC decreased lactate dehydrogenase (LDH) secretion by more than 50% (more than observed with cyclosporine) and in vitro LDH activity was inhibited by IDL and IDC. These results demonstrate anti-inflammatory mechanisms of isosorbide fatty acid diesters in AD-like skin models. Our findings highlight the multifunctional potential of plant oil derivatives as topical ingredients and support studies of IDL and IDC as therapeutic candidates.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| | | | | |
Collapse
|
21
|
Kim K, Kim H, Sung GY. Effects of Indole-3-Lactic Acid, a Metabolite of Tryptophan, on IL-4 and IL-13-Induced Human Skin-Equivalent Atopic Dermatitis Models. Int J Mol Sci 2022; 23:13520. [PMID: 36362303 PMCID: PMC9655012 DOI: 10.3390/ijms232113520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
Indole-3-lactic acid (I3LA) is a well-known metabolite involved in tryptophan metabolism. Indole derivatives are involved in the differentiation of immune cells and the synthesis of cytokines via the aryl hydrocarbon receptors for modulating immunity, and the indole derivatives may be involved in allergic responses. I3LA was selected as a candidate substance for the treatment of atopic dermatitis (AD), and its inhibitory effect on AD progression was investigated. Full-thickness human skin equivalents (HSEs) consisting of human-derived cells were generated on microfluidic chips and stimulated with major AD-inducing factors. The induced AD-HSEs were treated with I3LA for 7 days, and this affected the AD-associated genetic biomarkers and increased the expression of the major constituent proteins of the skin barrier. After the treatment for 14 days, the surface became rough and sloughed off, and there was no significant difference between the increased AD-related mRNA expression and the skin barrier protein expression. Therefore, the short-term use of I3LA for approximately one week is considered to be effective in suppressing AD.
Collapse
Affiliation(s)
- Kyunghee Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Hyeju Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
22
|
Anti-Itching and Anti-Inflammatory Effects of Kushenol F via the Inhibition of TSLP Production. Pharmaceuticals (Basel) 2022; 15:ph15111347. [DOI: 10.3390/ph15111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that results from eczema, itching, disrupted barrier function and aberrant cutaneous immune responses. The aim of the present study was to assess the efficacy of kushenol F as an effective treatment for AD via the suppression of thymic stromal lymphopoietin (TSLP) production. The results of the present study demonstrated that the clinical symptoms of AD were less severe and there was reduced ear thickening and scratching behavior in kushenol F-treated Dermatophagoides farinae extract (DFE)/1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD mice. Histopathological analysis demonstrated that kushenol F decreased the DFE/DNCB-induced infiltration of eosinophil and mast cells and TSLP protein expression levels. Furthermore, kushenol F-treated mice exhibited significantly lower concentrations of serum histamine, IgE and IgG2a compared with the DFE/DNCB-induced control mice. Kushenol F also significantly decreased phosphorylated NF-κB and IKK levels and the mRNA expression levels of IL-1β and IL-6 in cytokine combination-induced human keratinocytes. The results of the present study suggested that kushenol F may be a potential therapeutic candidate for the treatment of AD via reducing TSLP levels.
Collapse
|
23
|
Cadau S, Gault M, Berthelemy N, Hsu CY, Danoux L, Pelletier N, Goudounèche D, Pons C, Leprince C, André-Frei V, Simon M, Pain S. An Inflamed and Infected Reconstructed Human Epidermis to Study Atopic Dermatitis and Skin Care Ingredients. Int J Mol Sci 2022; 23:12880. [PMID: 36361668 PMCID: PMC9656979 DOI: 10.3390/ijms232112880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 08/22/2023] Open
Abstract
Atopic dermatitis (AD), the most common inflammatory skin disorder, is a multifactorial disease characterized by a genetic predisposition, epidermal barrier disruption, a strong T helper (Th) type 2 immune reaction to environmental antigens and an altered cutaneous microbiome. Microbial dysbiosis characterized by the prevalence of Staphylococcus aureus (S. aureus) has been shown to exacerbate AD. In recent years, in vitro models of AD have been developed, but none of them reproduce all of the pathophysiological features. To better mimic AD, we developed reconstructed human epidermis (RHE) exposed to a Th2 pro-inflammatory cytokine cocktail and S. aureus. This model well reproduced some of the vicious loops involved in AD, with alterations at the physical, microbial and immune levels. Our results strongly suggest that S. aureus acquired a higher virulence potential when the epidermis was challenged with inflammatory cytokines, thus later contributing to the chronic inflammatory status. Furthermore, a topical application of a Castanea sativa extract was shown to prevent the apparition of the AD-like phenotype. It increased filaggrin, claudin-1 and loricrin expressions and controlled S. aureus by impairing its biofilm formation, enzymatic activities and inflammatory potential.
Collapse
Affiliation(s)
- Sébastien Cadau
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Manon Gault
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Nicolas Berthelemy
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Chiung-Yueh Hsu
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Louis Danoux
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Nicolas Pelletier
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Dominique Goudounèche
- Centre de Microscopie Electronique Appliquée à la Biologie, Paul Sabatier University, 133, Route de Narbonne, 31062 Toulouse, France
| | - Carole Pons
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051and Inserm UMR1291, CHU Purpan BP 3028, CEDEX 3, 31024 Toulouse, France
| | - Corinne Leprince
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051and Inserm UMR1291, CHU Purpan BP 3028, CEDEX 3, 31024 Toulouse, France
| | - Valérie André-Frei
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051and Inserm UMR1291, CHU Purpan BP 3028, CEDEX 3, 31024 Toulouse, France
| | - Sabine Pain
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| |
Collapse
|
24
|
Mihindukulasooriya SP, Dinh DTT, Herath KHINM, Kim HJ, Han EJ, Cho J, Ko MO, Jeon YJ, Ahn G, Jee Y. Sargassum horneri extract containing polyphenol alleviates DNCB-induced atopic dermatitis in NC/Nga mice through restoring skin barrier function. Histol Histopathol 2022; 37:839-852. [PMID: 35634683 DOI: 10.14670/hh-18-473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by skin barrier dysfunction. Sargassum horneri (S. horneri) is a brown alga that has been widely used in traditional medicine of eastern Asian countries. Recent studies proved that a brown alga S. horneri has anti-inflammatory activity. In this study, we investigated the effect of S. horneri ethanol extract (SHE) against AD in 2,4-dinitrobenzene (DNCB) induced AD in NC/Nga mice. We observed that SHE treatment decreased the epidermal thickness and epidermal hyperplasia that had been worsened through DNCB application. Moreover, SHE significantly inhibited the proliferation of mast cells and decreased the expression of IL-13 on CD4⁺ cells prompted by elevated thymic stromal lymphopoietin (TSLP) expression in DNCB-induced AD in mice. We also demonstrated that SHE directly inhibited the expression of keratinocyte-produced TSLP known to exacerbate skin barrier impairment. Especially, the decrease of filaggrin, an integral component of proper skin barrier function through a function in aggregating keratin filaments, observed in DNCB-induced AD mice was significantly improved when treated with SHE. More importantly, we proved that SHE was able to decrease the serum levels of IgG₁ and IgG₂ₐ, two crucial factors of AD, indicating the protective effect of SHE. Taken together, our findings suggest that SHE may protect NC/Nga mice against DNCB-induced AD via promoting skin barrier function.
Collapse
Affiliation(s)
| | - Duong Thi Thuy Dinh
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
| | - Kalahe Hewage Iresha Nadeeka Madushani Herath
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
- Department of Biosystems Engineering, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Sri Lanka
| | - Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, Jeju, Republic of Korea
| | - Eui-Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - Jinhee Cho
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Mi-Ok Ko
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, Republic of Korea
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea.
| |
Collapse
|
25
|
Kim K, Kim H, Sung GY. An Interleukin-4 and Interleukin-13 Induced Atopic Dermatitis Human Skin Equivalent Model by a Skin-On-A-Chip. Int J Mol Sci 2022; 23:ijms23042116. [PMID: 35216228 PMCID: PMC8878506 DOI: 10.3390/ijms23042116] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 12/27/2022] Open
Abstract
Currently, the mechanism of progression of atopic dermatitis (AD) is not well understood because there is no physiologically appropriate disease model in terms of disease complexity and multifactoriality. Type 2 inflammation, mediated by interleukin (IL)-4 and IL-13, plays an important role in AD. In this study, full-thickness human skin equivalents consisting of human-derived cells were fabricated from pumpless microfluidic chips and stimulated with IL-4 and IL-13. The morphological properties, gene expression, cytokine secretion and protein expression of the stimulated human skin equivalent (HSE) epidermis were investigated. The results showed epidermal and spongy formations similar to those observed in lesions in AD, and decreased expression of barrier-related filaggrin, loricrin and involucrin genes and proteins induced by IL-4Rα signaling. In addition, we induced the expression of carbonic anhydrase II (CAII), a gene specifically expressed in the epidermis of patients with AD. Thus, AD human skin equivalents can be used to mimic the key pathological features of atopic dermatitis, overcoming the limitations of existing studies that rely solely on mouse models and have been unable to translate their effects to humans. Our results will be useful for future research on the development of therapeutic agents for atopic dermatitis.
Collapse
Affiliation(s)
- Kyunghee Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea;
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea;
| | - Hyeju Kim
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea;
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea;
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea;
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
- Correspondence:
| |
Collapse
|
26
|
Guo Z, Tong C, Jacków J, Doucet YS, Abaci HE, Zeng W, Hansen C, Hayashi R, DeLorenzo D, Rami A, Pappalardo A, Lumpkin EA, Christiano AM. Engineering human skin model innervated with itch sensory neuron-like cells differentiated from induced pluripotent stem cells. Bioeng Transl Med 2022; 7:e10247. [PMID: 35111948 PMCID: PMC8780951 DOI: 10.1002/btm2.10247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/15/2022] Open
Abstract
Atopic dermatitis (AD), driven by interleukins (IL-4/IL-13), is a chronic inflammatory skin disease characterized by intensive pruritus. However, it is unclear how immune signaling and sensory response pathways cross talk with each other. We differentiated itch sensory neuron-like cells (ISNLCs) from iPSC lines. These ISNLCs displayed neural markers and action potentials and responded specifically to itch-specific stimuli. These ISNLCs expressed receptors specific for IL-4/IL-13 and were activated directly by the two cytokines. We successfully innervated these ISNLCs into full thickness human skin constructs. These innervated skin grafts can be used in clinical applications such as wound healing. Moreover, the availability of such innervated skin models will be valuable to develop drugs to treat skin diseases such as AD.
Collapse
Affiliation(s)
- Zongyou Guo
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Chi‐Kun Tong
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Joanna Jacków
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Yanne S. Doucet
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Hasan E. Abaci
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Wangyong Zeng
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Corey Hansen
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Ryota Hayashi
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | | | - Avina Rami
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | | | | | | |
Collapse
|
27
|
Roh YJ, Noh HH, Koo NY, Shin SH, Lee MK, Park KY, Seo SJ. Development of In Vitro Co-Culture Model to Mimic the Cell to Cell Communication in Response to Urban PM 2.5. Ann Dermatol 2022; 34:110-117. [PMID: 35450307 PMCID: PMC8989910 DOI: 10.5021/ad.2022.34.2.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Background Airborne particulate matter (PM), a widespread air contaminant, is a complex mixture of solids and aerosols composed of particles suspended in the air. PM is associated with inflammatory responses and may worsen inflammatory skin diseases. However, the mechanisms through which PM affects atopic dermatitis (AD) remain unclear. Objective To establish an in vitro model that more accurately mimics AD using human keratinocyte (HaCaT), dermal fibroblast (HDF), and mast cell (HMC-1) and using this model to investigate the mechanism through which PMs affect AD. Methods An AD-like in vitro model was established by seeding HaCaT, HDF, and HMC-1 cells with recombinant human interleukin (IL)-1α and polyinosinic:polycytidylic acid. We confirmed the effect of PM on the inflammatory cytokine expression of a triple-cell culture model. SRM 1649b Urban Dust, which is mainly composed of polycyclic aromatic hydrocarbons, was used as the reference PM. The effects of PM on the expression levels of proinflammatory cytokines and skin barrier markers were assessed using quantitative real-time polymerase chain reaction and western blotting. Inflammatory cytokine levels were measured using an enzyme-linked immunosorbent assay. Results Interactions between various skin cell types were evaluated using a co-culture system. PM treatment increased mRNA and protein levels of the inflammatory cytokines IL-6, IL-1α, tumor necrosis factor-α, IL-4, and IL-1β and decreased the expression of the skin barrier markers filaggrin and loricrin. Conclusion Our results suggest that an in vitro triple-cell culture model using HaCaT, HDF, and HMC-1 cells may be reliable for obtaining more physiological, functional, and reproducible data on AD and skin barriers.
Collapse
Affiliation(s)
- Yoon Jin Roh
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Hyun Ha Noh
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Na Yeon Koo
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Sun Hye Shin
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
28
|
Confirming the TMEM232 gene associated with atopic dermatitis through targeted capture sequencing. Sci Rep 2021; 11:21830. [PMID: 34750414 PMCID: PMC8576034 DOI: 10.1038/s41598-021-01194-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/19/2021] [Indexed: 11/08/2022] Open
Abstract
Atopic dermatitis (AD) is a common and complex skin disorder, and the 5q22.1 region had been reported to be associated with AD. To confirm the susceptibility gene for AD in the 5q22.1 region by haplotype and targeted capture sequencing. The haplotypes were reconstructed with the genotyping data of four SNPs and six deletions from 3624 Chinese Hans AD patients and 5076 controls. The targeted capture sequencing spanning 5q22.1 region was performed in the selected samples. The gene level enrichment analysis was done using loss of function variants. A total of 62 haplotypes were found, and the H15 haplotype had the strongest association with AD (P = 3.92 × 10-10, OR 0.17, 95% CI 0.09-0.32). However, no co-segregation mutation sites were found in the sequencing analysis within the 16 selected samples, while the enrichment analysis indicated that TMEM232 was significantly associated with AD (P = 7.33 × 10-5, OR 0.33, 95% CI 0.19-0.58). This study confirms previous findings that the TMEM232 gene is associated with AD by haplotype analysis and targeted capture sequencing.
Collapse
|
29
|
Moon S, Kim DH, Shin JU. In Vitro Models Mimicking Immune Response in the Skin. Yonsei Med J 2021; 62:969-980. [PMID: 34672130 PMCID: PMC8542468 DOI: 10.3349/ymj.2021.62.11.969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
The skin is the first line of defense of our body, and it is composed of the epidermis and dermis with diverse immune cells. Various in vitro models have been investigated to recapitulate the immunological functions of the skin and to model inflammatory skin diseases. The simplest model is a two-dimensional (2D) co-culture system, which helps understand the direct and indirect cell-to-cell interactions between immune and structural cells; however, it has limitations when observing three-dimensional (3D) interactions or reproducing skin barriers. Conversely, 3D skin constructs can mimic the human skin characteristics in terms of epidermal and dermal structures, barrier functions, cell migration, and cell-to-cell interaction in the 3D space. Recently, as the importance of neuro-immune-cutaneous interactions in the inflammatory response is emerging, 3D skin constructs containing both immune cells and neurons are being developed. A microfluidic culture device called "skin-on-a-chip," which simulates the structures and functions of the human skin with perfusion, was also developed to mimic immune cell migration through the vascular system. This review summarizes the in vitro skin models with immune components, focusing on two highly prevalent chronic inflammatory skin diseases: atopic dermatitis and psoriasis. The development of these models will be valuable in studying the pathophysiology of skin diseases and evaluating the efficacy and toxicity of new drugs.
Collapse
Affiliation(s)
- Sujin Moon
- CHA University College of Medicine, Seongnam, Korea
| | - Dong Hyun Kim
- CHA University College of Medicine, Seongnam, Korea
- Department of Dermatology, CHA Bundang Medical Center, Seongnam, Korea
| | - Jung U Shin
- CHA University College of Medicine, Seongnam, Korea
- Department of Dermatology, CHA Bundang Medical Center, Seongnam, Korea.
| |
Collapse
|
30
|
Immunomodulatory and Anti-inflammatory Effects of Asiatic Acid in a DNCB-Induced Atopic Dermatitis Animal Model. Nutrients 2021; 13:nu13072448. [PMID: 34371956 PMCID: PMC8308735 DOI: 10.3390/nu13072448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022] Open
Abstract
We examined the immunomodulatory and anti-inflammatory effects of asiatic acid (AA) in atopic dermatitis (AD). AA treatment (5–20 µg/mL) dose-dependently suppressed the tumor necrosis factor (TNF)-α level and interleukin (IL)-6 protein expression in interferon (IFN)-γ + TNF-α-treated HaCaT cells. The 2,4-dinitrocholrlbenzene (DNCB)-induced AD animal model was developed by administering two AA concentrations (30 and 75 mg/kg/d: AD + AA-L and AD + AA-H groups, respectively) for 18 days. Interestingly, AA treatment decreased AD skin lesions formation and affected other AD characteristics, such as increased ear thickness, lymph node and spleen size, dermal and epidermal thickness, collagen deposition, and mast cell infiltration in dorsal skin. In addition, in the DNCB-induced AD animal model, AA treatment downregulated the mRNA expression level of AD-related cytokines, such as Th1- (TNF-α and IL-1β and -12) and Th2 (IL-4, -5, -6, -13, and -31)-related cytokines as well as that of cyclooxygenase-2 and CXCL9. Moreover, in the AA treatment group, the protein level of inflammatory cytokines, including COX-2, IL-6, TNF-α, and IL-8, as well as the NF-κB and MAPK signaling pathways, were decreased. Overall, our study confirmed that AA administration inhibited AD skin lesion formation via enhancing immunomodulation and inhibiting inflammation. Thus, AA can be used as palliative medication for regulating AD symptoms.
Collapse
|
31
|
Modulation of Gene Expression in a Sterile Atopic Dermatitis Model and Inhibition of Staphylococcus aureus Adhesion by Fucoidan. Dermatopathology (Basel) 2021; 8:69-83. [PMID: 33806193 PMCID: PMC8103255 DOI: 10.3390/dermatopathology8020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/12/2023] Open
Abstract
Atopic dermatitis is a multifactorial pathology that includes perturbations of gene expression and increased adhesion of Staphylococcus aureus. Fucoidans are seaweed-derived sulfated fucose-rich polysaccharides that are known to be anti-inflammatory and may inhibit adhesion of pathogens. Fucoidan was assessed for effects on gene expression of an in vitro 3D model of atopic dermatitis. It was also assessed for inhibitory effects on the adhesion of bacteria onto 3D reconstructed skin. Fucoidan significantly altered gene expression in the atopic dermatitis model, and there was a trend to reduce periostin levels. Fucoidan significantly inhibited the adhesion of Staphylococcus aureus and Cutibacterium acnes but did not affect the adhesion of Staphylococcus epidermidis. Fucoidan may be a useful topical agent to assist in the management of atopic dermatitis.
Collapse
|
32
|
Massimini M, Dalle Vedove E, Bachetti B, Di Pierro F, Ribecco C, D'Addario C, Pucci M. Polyphenols and Cannabidiol Modulate Transcriptional Regulation of Th1/Th2 Inflammatory Genes Related to Canine Atopic Dermatitis. Front Vet Sci 2021; 8:606197. [PMID: 33763461 PMCID: PMC7982812 DOI: 10.3389/fvets.2021.606197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Canine atopic dermatitis (AD) is a multifactorial allergic disease associated with immune and abnormal skin barrier dysfunction and it is one of the primary causes of pruritus. Using a novel in vitro model of AD, here we tried to revert the alteration of transcriptional regulation of AD canine key genes testing a nutraceutical mixture containing flavonoids, stilbene, and cannabinoids, which are already well-known for their applications within dermatology diseases. The nutraceutical mixture induced in inflamed cells a significant downregulation (p < 0.05) of the gene expression of ccl2, ccl17, and tslp in keratinocytes and of ccl2, ccl17, and il31ra in monocytes. Consistent with the observed alterations of tslp, ccl2, ccl17, and il31ra messenger RNA (mRNA) levels, a significant increase (p < 0.05) of DNA methylation at specific CpG sites on the gene regulatory regions was found. These results lay the foundation for the use of these natural bioactives in veterinary medicine and provide a model for deeper understanding of their mechanisms of action, with potential translation to human research.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
33
|
Rizaldy D, Toriyama M, Kato H, Fukui R, Fujita F, Nakamura M, Okada F, Morita A, Ishii KJ. Increase in primary cilia in the epidermis of patients with atopic dermatitis and psoriasis. Exp Dermatol 2021; 30:792-803. [PMID: 33455013 DOI: 10.1111/exd.14285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Primary cilia influence cell activity, and thus have a unique role in maintaining cell proliferation and differentiation. In atopic dermatitis (AD) and psoriasis, areas of skin inflammation exhibit dysregulated keratinocyte homeostasis. The role of primary cilia in these conditions remains unclear. The objectives of this study is to elucidate the incidence of primary cilia in skin inflammation and the potential mechanism underlying the dysregulation of keratinocytes. Primary cilia were observed using immunofluorescence staining. Normal skin samples were compared with skin samples from patients with AD or psoriasis in terms of cilia numbers and length. The effect of cytokine stimulation on ciliogenesis in keratinocytes was analysed using a primary keratinocyte culture. IFT88, an important ciliary intraflagellar protein, was blocked in Th2 and Th17 cytokines-stimulated keratinocytes. These effects were analysed with quantitative polymerase chain reaction and Western blot. Significant increases in ciliated cells were observed in AD and psoriasis skin samples compared with normal skin samples. The stimulation of keratinocytes using Th2 and Th17 cytokines modulated the formation of primary cilia. The amount of IFT88 in the primary cilia associated with the phosphorylation of JNK, but not p38, in keratinocytes stimulated with interleukin-13, 17A and 22. An increase of ciliated cells in the epidermis may impair keratinocyte differentiation under stress conditions caused by inflammation in both AD and psoriasis patients.
Collapse
Affiliation(s)
- Defri Rizaldy
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Mock up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Manami Toriyama
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Mock up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory for Molecular Signal Transduction, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroko Kato
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Mock up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Runa Fukui
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Mock up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Fumitaka Fujita
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Mock up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Mandom Corporation, Osaka, Japan
| | - Motoki Nakamura
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Fumihiro Okada
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Mandom Corporation, Osaka, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Ken J Ishii
- Laboratory of Mock up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Hennies HC, Poumay Y. Skin Disease Models In Vitro and Inflammatory Mechanisms: Predictability for Drug Development. Handb Exp Pharmacol 2021; 265:187-218. [PMID: 33387068 DOI: 10.1007/164_2020_428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Investigative skin biology, analysis of human skin diseases, and numerous clinical and pharmaceutical applications rely on skin models characterized by reproducibility and predictability. Traditionally, such models include animal models, mainly rodents, and cellular models. While animal models are highly useful in many studies, they are being replaced by human cellular models in more and more approaches amid recent technological development due to ethical considerations. The culture of keratinocytes and fibroblasts has been used in cell biology for many years. However, only the development of co-culture and three-dimensional epidermis and full-skin models have fundamentally contributed to our understanding of cell-cell interaction and cell signalling in the skin, keratinocyte adhesion and differentiation, and mechanisms of skin barrier function. The modelling of skin diseases has highlighted properties of the skin important for its integrity and cutaneous development. Examples of monogenic as well as complex diseases including atopic dermatitis and psoriasis have demonstrated the role of skin models to identify pathomechanisms and drug targets. Recent investigations have indicated that 3D skin models are well suitable for drug testing and preclinical studies of topical therapies. The analysis of skin diseases has recognized the importance of inflammatory mechanisms and immune responses and thus other cell types such as dendritic cells and T cells in the skin. Current developments include the production of more complete skin models comprising a range of different cell types. Organ models and even multi-organ systems are being developed for the analysis of higher levels of cellular interaction and drug responses and are among the most recent innovations in skin modelling. They promise improved robustness and flexibility and aim at a body-on-a-chip solution for comprehensive pharmaceutical in vitro studies.
Collapse
Affiliation(s)
- Hans Christian Hennies
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK. .,Cologne Center for Genomics, University Hospital Cologne, Cologne, Germany.
| | - Yves Poumay
- Faculty of Medicine, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
35
|
Jiménez M, Muñoz FC, Cervantes-García D, Cervantes MM, Hernández-Mercado A, Barrón-García B, Moreno Hernández-Duque JL, Rodríguez-Carlos A, Rivas-Santiago B, Salinas E. Protective Effect of Glycomacropeptide on the Atopic Dermatitis-Like Dysfunctional Skin Barrier in Rats. J Med Food 2020; 23:1216-1224. [DOI: 10.1089/jmf.2019.0247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mariela Jiménez
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| | - Fabiola C. Muñoz
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| | - Daniel Cervantes-García
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
- National Council of Science and Technology, Mexico City, México
| | - Maritza M. Cervantes
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| | | | - Berenice Barrón-García
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| | | | - Adrián Rodríguez-Carlos
- Medical Research Unit from Zacatecas, Mexican Institute of Social Security, Zacatecas, México
| | - Bruno Rivas-Santiago
- Medical Research Unit from Zacatecas, Mexican Institute of Social Security, Zacatecas, México
| | - Eva Salinas
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| |
Collapse
|
36
|
Wang X, Li S, Liu J, Kong D, Han X, Lei P, Xu M, Guan H, Hou D. Ameliorative effects of sea buckthorn oil on DNCB induced atopic dermatitis model mice via regulation the balance of Th1/Th2. BMC Complement Med Ther 2020; 20:263. [PMID: 32843010 PMCID: PMC7449066 DOI: 10.1186/s12906-020-02997-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a worldwide chronic skin disease which burden public health. Sea buckthorn (SBT) (Hippophae rhamnoides L., Elaeagnaceae) oil, as a traditional herbal medicine, has been used for disease treatment for many years. The effects of SBT oil on AD mouse model induced by repeated administration of 2,4-dinitrochlorobenzene (DNCB) in BALB/c mice was evaluated in this study. METHODS Mice were divided into four groups including the normal control group, AD model group, AD model group treated with SBT oil (5 ml/kg) and AD model group treated with SBT oil (10 ml/kg). Same volume at different concentrations of SBT oil was applied daily on the latter two groups by gavage for 15 days following AD model induction. The function of skin barrier and the production of IL-4, IFN-γ, TNF-α and TSLP were examined after animal sacrifice. The migration and mature of langerhans cell (LCs) in lymph node was further assessed by flow cytometry. RESULTS SBT oil alleviated dermatitis scores, decreased ear thickness, prevented infiltration of mast cell, reduced lymph node weight and depressed activity of Th2 cells. SBT oil also reduced the expression of IL-4, IFN-γ, TNF-α and TSLP in ear tissue, IgE level in serum and mRNA relative expression of IL-4, IFN-γ, TNF-α in lymph node. Moreover, SBT oil inhibited the migration of LCs cells from local lesions to lymph node and it's mature in lymph node. CONCLUSIONS These results suggest SBT oil had a beneficial effect either systemic or regional on DNCB-induced AD mice via maintain the balance of Th1/Th2 and may be a potential complementary candidate for AD treatment.
Collapse
Affiliation(s)
- Xinxin Wang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China.,Basic Medical and Forensic Medicine, Baotou Medical college, Baotou, Inner Mongolia, PR China
| | - Sijia Li
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| | - Jiping Liu
- Neurosurgery Department, Northern Hospital of Inner Mongolia, Baotou, Inner Mongolia, PR China
| | - Dongning Kong
- Liaoning Dongning Pharmceutical Co., Ltd., Fuxin, Liaoning, PR China
| | - Xiaowei Han
- College of Integrated Traditional Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Chongshan Road NO.79, Shenyang, Liaoning, 110847, P.R. China
| | - Ping Lei
- College of Integrated Traditional Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Chongshan Road NO.79, Shenyang, Liaoning, 110847, P.R. China
| | - Ming Xu
- College of Integrated Traditional Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Chongshan Road NO.79, Shenyang, Liaoning, 110847, P.R. China
| | - Hongquan Guan
- College of Integrated Traditional Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Chongshan Road NO.79, Shenyang, Liaoning, 110847, P.R. China.
| | - Diandong Hou
- College of Integrated Traditional Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Chongshan Road NO.79, Shenyang, Liaoning, 110847, P.R. China.
| |
Collapse
|
37
|
Dijkhoff IM, Drasler B, Karakocak BB, Petri-Fink A, Valacchi G, Eeman M, Rothen-Rutishauser B. Impact of airborne particulate matter on skin: a systematic review from epidemiology to in vitro studies. Part Fibre Toxicol 2020; 17:35. [PMID: 32711561 PMCID: PMC7382801 DOI: 10.1186/s12989-020-00366-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Air pollution is killing close to 5 million people a year, and harming billions more. Air pollution levels remain extremely high in many parts of the world, and air pollution-associated premature deaths have been reported for urbanized areas, particularly linked to the presence of airborne nano-sized and ultrafine particles. MAIN TEXT To date, most of the research studies did focus on the adverse effects of air pollution on the human cardiovascular and respiratory systems. Although the skin is in direct contact with air pollutants, their damaging effects on the skin are still under investigation. Epidemiological data suggested a correlation between exposure to air pollutants and aggravation of symptoms of chronic immunological skin diseases. In this study, a systematic literature review was conducted to understand the current knowledge on the effects of airborne particulate matter on human skin. It aims at providing a deeper understanding of the interactions between air pollutants and skin to further assess their potential risks for human health. CONCLUSION Particulate matter was shown to induce a skin barrier dysfunction and provoke the formation of reactive oxygen species through direct and indirect mechanisms, leading to oxidative stress and induced activation of the inflammatory cascade in human skin. Moreover, a positive correlation was reported between extrinsic aging and atopic eczema relative risk with increasing particulate matter exposure.
Collapse
Affiliation(s)
- Irini M Dijkhoff
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Bedia Begum Karakocak
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
- Department of Animal Sciences, PHHI NCRC, North Carolina State University, Kannapolis, NC, USA
| | | | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
38
|
Beken B, Serttas R, Yazicioglu M, Turkekul K, Erdogan S. Quercetin Improves Inflammation, Oxidative Stress, and Impaired Wound Healing in Atopic Dermatitis Model of Human Keratinocytes. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2020; 33:69-79. [PMID: 34678092 DOI: 10.1089/ped.2019.1137] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Atopic dermatitis (AD) is a common inflammatory skin disease with complex pathogenesis. Natural flavonoids exhibit strong anti-inflammatory and antioxidant properties in many human diseases. In this study, the potential bioactive effect of quercetin, a polyphenolic plant-derived flavonoid, on the AD model of human keratinocytes was evaluated. Methods: Immortalized human HaCaT keratinocytes were treated with interleukin (IL) -4, -13, and tumor necrosis factor-α to mimic AD features in vitro. Then effects of quercetin on inflammation, oxidative stress, and wound healing were assessed. Results: Pretreatment of the cells with 1.5 μM of quercetin significantly reduced the expression of AD-induced IL-1β, IL-6, IL-8, and thymic stromal lymphopoietin, while it strongly enhanced the expression of superoxide dismutase-1 (SOD1), SOD2, catalase, glutathione peroxidase, and IL-10. Quercetin promoted wound healing by inducing epithelial-mesenchymal transition, which was supported by the upregulation of Twist and Snail mRNA expression. Unexpectedly, quercetin pretreatment of AD-induced cells upregulated the mRNA expression of occludin and E-cadherin, while downregulating matrix metalloproteinase 1 (MMP1), MMP2, and MMP9 expression. The pretreatment inhibited AD-induced phosphorylation of extracellular signal-regulated kinase 1/2/mitogen-activated protein kinase (ERK1/2 MAPK) and the expression of nuclear factor-kappa B (NF-κB), but it did not alter signal transducer and activator of transcription 6 (STAT6) phosphorylation. Conclusion: Quercetin may serve as a potential bioactive substance for atopic dermatitis-related symptoms through anti-inflammatory and antioxidant activities along with its acceleration of wound healing via ERK1/2 MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Burcin Beken
- Department of Pediatric Allergy and Immunology, School of Medicine, Trakya University, Edirne, Turkey
| | - Riza Serttas
- Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
| | - Mehtap Yazicioglu
- Department of Pediatric Allergy and Immunology, School of Medicine, Trakya University, Edirne, Turkey
| | - Kader Turkekul
- Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
| | - Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
39
|
Chen HH, Lin CC, Tung YT, Chao YH, Huang WC, Lee PY. Combination Therapy of Acarbose and Cyclosporine a Ameliorates Imiquimod-Induced Psoriasis-Like Dermatitis in Mice. Molecules 2020; 25:molecules25081822. [PMID: 32316255 PMCID: PMC7221909 DOI: 10.3390/molecules25081822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 01/10/2023] Open
Abstract
Moderate to severe psoriasis, an immune-mediated inflammatory disease, adversely affects patients' lives. Cyclosporin A (CsA), an effective immunomodulator, is used to treat psoriasis. CsA is ineffective at low doses and toxic at high doses. Acarbose (Acar), a common antidiabetic drug with anti-inflammatory and immunomodulatory effects, reduces imiquimod (IMQ)-induced psoriasis severity. Combinations of systemic drugs are generally more efficacious and safer than higher doses of single drugs. We observed that mice treated with a combination of Acar (250 mg/kg) and low-dose CsA (10 or 20 mg/kg) exhibited significantly milder IMQ-induced psoriasis-like dermatitis and smoother back skin than those treated with Acar (250 mg/kg), low-dose CsA (10 or 20 mg/kg), or IMQ alone. The combination therapy significantly reduced serum and skin levels of Th17-related cytokines (interleukin (IL)-17A, IL-22, and IL-23) and the Th1-related cytokine tumor necrosis factor-α (TNF-α) compared with Acar, low-dose CsA, and IMQ alone. Additionally, the combination therapy significantly reduced the percentages of IL-17- and IL-22-producing CD4+ T-cells (Th17 and Th22 cells, respectively) and increased that of Treg cells. Our data suggested that Acar and low-dose CsA in combination alleviates psoriatic skin lesions by inhibiting inflammation. The findings provide new insights into the effects of immunomodulatory drugs in psoriasis treatment.
Collapse
Affiliation(s)
- Hsin-Hua Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Chi-Chien Lin
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-C.L.); (Y.-H.C.)
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan;
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Ya-Hsuan Chao
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-C.L.); (Y.-H.C.)
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan;
| | - Po-Ying Lee
- Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei 280, Taiwan
- Correspondence:
| |
Collapse
|
40
|
Igalan from Inula helenium (L.) suppresses the atopic dermatitis-like response in stimulated HaCaT keratinocytes via JAK/STAT3 signaling. Inflamm Res 2020; 69:309-319. [DOI: 10.1007/s00011-020-01322-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
|
41
|
Liu Q, Wang H, Wang X, Lu M, Tan X, Peng L, Tan F, Xiao T, Xiao S, Xia Y. Experimental atopic dermatitis is dependent on the TWEAK/Fn14 signaling pathway. Clin Exp Immunol 2020; 199:56-67. [PMID: 31515807 PMCID: PMC6904660 DOI: 10.1111/cei.13373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/23/2022] Open
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) acts through its receptor fibroblast growth factor inducible 14 (Fn14), and participates in skin inflammation. Both TWEAK and Fn14 are highly expressed in skin lesions of patients with atopic dermatitis. The purpose of this study was to further explore the effect of Fn14 inhibition on experimental atopic dermatitis. Experimental atopic dermatitis was induced in the wild-type and Fn14 knock-out BALB/c mice. The effect of TWEAK/Fn14 interaction on keratinocytes was studied in an in-vitro model of atopic dermatitis. Fn14 deficiency ameliorates skin lesions in the mice model, accompanied by less infiltration of inflammatory cells and lower local levels of proinflammatory cytokines, including TWEAK, TNF-α and interleukin (IL)-17. Fn14 deficiency also attenuates the up-regulation of TNFR1 in skin lesions of atopic dermatitis. Moreover, topical TWEAK exacerbates skin lesion in the wild-type but not in the Fn14 knock-out mice. In vitro, TWEAK enhances the expressions of IL-17, IL-18 and IFN-γ in keratinocytes under atopic dermatitis-like inflammation. These results suggest that Fn14 deficiency protects mice from experimental atopic dermatitis, involving the attenuation of inflammatory responses and keratinocyte apoptosis. In the context of atopic dermatitis-like inflammation, TWEAK modulates keratinocytes via a TNFR1-mediated pathway.
Collapse
Affiliation(s)
- Q. Liu
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - H. Wang
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - X. Wang
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - M. Lu
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - X. Tan
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - L. Peng
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - F. Tan
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - T. Xiao
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - S. Xiao
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - Y. Xia
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| |
Collapse
|
42
|
Hubaux R, Bastin C, Salmon M. On the relevance of an in vitro reconstructed human epidermis model for drug screening in atopic dermatitis. Exp Dermatol 2019; 27:1403-1407. [PMID: 30339308 DOI: 10.1111/exd.13810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022]
Abstract
Recent advances in the development of human-based in vitro models offer new tools for drug screening and mechanistic investigations of new therapeutic agents. However, there is a lack of evidence that disease models respond favourably to potential drug candidates. Atopic dermatitis (AD) is a very common disease associated with an altered skin barrier and chronic inflammation. Here, we demonstrate that the AD-like features of a reconstructed human epidermis (RHE) model treated with Th2 cytokines are reversed in the presence of molecules known to have a beneficial effect on damaged skin as a result of modulating various signalling cascades including the Liver X Receptors and JAK/STAT pathways. This work shows that standardized and reproducible RHE are relevant models for therapeutic research assessing new drug candidates aiming to restore epidermal integrity in an inflammatory environment.
Collapse
Affiliation(s)
- Roland Hubaux
- StratiCELL Laboratories, Research and Development, Isnes, Belgium
| | - Coralie Bastin
- StratiCELL Laboratories, Research and Development, Isnes, Belgium
| | - Michel Salmon
- StratiCELL Laboratories, Research and Development, Isnes, Belgium
| |
Collapse
|
43
|
He H, Gao X, Wang X, Li X, Jiang X, Xie Z, Ma K, Ma J, Umezawa K, Zhang Y. Comparison of anti-atopic dermatitis activities between DHMEQ and tacrolimus ointments in mouse model without stratum corneum. Int Immunopharmacol 2019; 71:43-51. [PMID: 30877873 DOI: 10.1016/j.intimp.2019.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
This study is aimed to further investigate the anti-atopic dermatitis (AD) activities of dehydroxymethylepoxyquinomicin (DHMEQ) ointment and compare its effect with that of tacrolimus ointment based on the previous study that DHMEQ improves AD-like lesions. AD were induced by 2,4-dinitroclilorobenzene/oxazolone (DNCB/OX) repeatedly on the ears of BABL/C mice while medical tape was additionally used to disrupt stratum corneum in order to exacerbate the lesions. The mice were randomly divided into groups, which are normal, vehicle, DHMEQ (0.1%) and tacrolimus (0.1%). Those in the last two groups were externally applied with DHMEQ ointment and tacrolimus ointment, respectively. The results showed that both of them significantly improved dermatitis symptoms of DNCB/OX-induced AD-like lesions, such as redness, itching, weeping, scaling and thickening of the skin, while reducing epidermis thickness, dermis thickness and the number of mast cells as well, which were examined histopathologically. In contrast with DHMEQ, tacrolimus led to a significant decrease in body weight after long-term application. Both DHMEQ and tacrolimus suppress DNCB-induced increase of serum total IgE and attenuate expression of inflammatory factors IL-4, IL-6, IL-13, IL-1β and interferon (IFN)-γ in the disrupted ear tissues. On the other hand, the mice applied with tacrolimus became obviously irritable, jumping up and down, and inflammatory exudation on the lesioned-skin surface of the mice was remarkably observed. Contrary to the side effects made by tacrolimus, DHMEQ didn't cause any adverse stimulus response. As a conclusion, DHMEQ is safer, milder and more suitable for long-term use than tacrolimus for the treatment of AD-like lesions.
Collapse
Affiliation(s)
- Huan He
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxiao Gao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaomin Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxue Jiang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhehui Xie
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ke Ma
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun Ma
- Department of Research and Development, Shenzhen Wanhe Pharmaceutical Co., Ltd., Shenzhen 518057, China
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
| | - Yuyang Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
44
|
Dancik Y, Sriram G, Rout B, Zou Y, Bigliardi-Qi M, Bigliardi PL. Physical and compositional analysis of differently cultured 3D human skin equivalents by confocal Raman spectroscopy. Analyst 2019; 143:1065-1076. [PMID: 29368763 DOI: 10.1039/c7an01675a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three-dimensional skin equivalents are increasingly gaining acceptance as non-animal based experimental models of human skin. They are particularly suited to studying differences in physical and compositional properties of normal and diseased skin and their impact on the skin's barrier function. Typically, a culture protocol yielding a model of normal skin is modified to create a model simulating a pathology. Skin layer thicknesses and lipid/protein contents are compared using methods that are invasive, precluding further experiments on the same replicates, and which may be prone to artefacts. We show here that confocal Raman spectroscopy (CRS) is a valuable method for non-invasive discrimination of skin equivalents grown under different culture conditions. Using 3D full-thickness skin equivalents developed in-house, we measure significant differences in stratum corneum and viable epidermis apparent thicknesses resulting from a 7-day difference in the cultures' air-lift phase and from supplementation of the culture medium with interleukin 4. Furthermore, stratum corneum thicknesses obtained by CRS are up to 2.6-fold higher than values measured from histological photomicrographs. Regarding composition, CRS reveals the differential effects of the culture protocol modifications on ceramide, cholesterol and protein composition as a function of depth in the stratum corneum.
Collapse
Affiliation(s)
- Y Dancik
- Experimental Dermatology Laboratory, Institute of Medical Biology, A*STAR, 8a Biomedical Grove, #06-06, Singapore 138648.
| | | | | | | | | | | |
Collapse
|
45
|
Lee SH, Bae IH, Choi H, Choi HW, Oh S, Marinho PA, Min DJ, Kim DY, Lee TR, Lee CS, Lee J. Ameliorating effect of dipotassium glycyrrhizinate on an IL-4- and IL-13-induced atopic dermatitis-like skin-equivalent model. Arch Dermatol Res 2018; 311:131-140. [PMID: 30506356 DOI: 10.1007/s00403-018-1883-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/26/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that is not fully understood. Defects in skin barrier function and dysregulation of the Th2 immune response are thought to be pivotal in AD pathogenesis. In this study, we used keratinocytes and AD-like skin equivalent models using Th2 cytokines IL-4 and IL-13. The keratinocytes and AD-like skin model were used to investigate the effect of dipotassium glycyrrhizinate (KG), which is widely used as an anti-inflammatory agent for AD treatment. KG decreased AD-related gene expression in keratinocytes stimulated with Th2 cytokines. KG alleviated AD-like phenotypes and gene expression patterns and inhibited release of AD-related cytokines in the AD-like skin equivalent models. These findings indicate KG has potential effectiveness in AD treatment and AD-like skin equivalent models may be useful for understanding AD pathogenesis.
Collapse
Affiliation(s)
- Sung Hoon Lee
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea.,Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyunggi-do, 16419, Republic of Korea
| | - Il-Hong Bae
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea.,Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hyangtae Choi
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Hyeong Won Choi
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Soojung Oh
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Paulo A Marinho
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Dae Jin Min
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Tae Ryong Lee
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Chang Seok Lee
- Department of Beauty and Cosmetic Science, Eulji University, Sanseong-daero, Sugeong-gu, Seongnam-si, Gyeonggi-do, 13135, Republic of Korea.
| | - Jongsung Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyunggi-do, 16419, Republic of Korea.
| |
Collapse
|
46
|
Rademacher F, Simanski M, Gläser R, Harder J. Skin microbiota and human 3D skin models. Exp Dermatol 2018; 27:489-494. [PMID: 29464787 DOI: 10.1111/exd.13517] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2018] [Indexed: 12/17/2022]
Abstract
Although the role of the microbiota in skin homeostasis is still emerging, there is growing evidence that an intact microbiota supports the skin barrier. The increasing number of research efforts that are trying to shed more light on the human skin-microbiota interaction requires the use of suitable experimental models. Three-dimensional (3D) skin equivalents have been established as a valuable tool in dermatological research because they contain a fully differentiated epidermal barrier that reflects the morphological and molecular characteristics of normal human epidermis. In this review, we provide an overview of current 3D skin models and illustrate the potential of 3D skin models to study the human skin-microbiota interplay.
Collapse
Affiliation(s)
- Franziska Rademacher
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maren Simanski
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Regine Gläser
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jürgen Harder
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|