1
|
Charneca S, Hernando A, Almada-Correia I, Polido-Pereira J, Vieira A, Sousa J, Almeida AS, Motta C, Barreto G, Eklund KK, Alonso-Pérez A, Gómez R, Cicci F, Mauro D, Pinho SS, Fonseca JE, Costa-Reis P, Guerreiro CS. TASTY trial: protocol for a study on the triad of nutrition, intestinal microbiota and rheumatoid arthritis. Nutr J 2025; 24:52. [PMID: 40189532 PMCID: PMC11974026 DOI: 10.1186/s12937-025-01089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/06/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND The gut microbiota has been implicated in the onset and progression of Rheumatoid Arthritis (RA). It has been proposed that gut dysbiosis impairs gut barrier function, leading to alterations in mucosal integrity and immunity. This disruption allows bacterial translocation, contributing to the perpetuation of the inflammatory process. Since diet is recognised as a key environmental factor influencing the gut microbiota, nutritional interventions targeting RA activity are currently being explored. This study aims to investigate whether a dietary intervention based on a typical Mediterranean Diet enriched with fermented foods (MedDiet +) can impact the gut microbiota, intestinal permeability, and RA-related outcomes. METHODS One hundred RA patients are being recruited at Unidade Local de Saúde (ULS) Santa Maria in Lisbon, Portugal, and randomly assigned to either the intervention (MedDiet +) or the control group. The 12-week nutritional intervention includes a personalised dietary plan following the MedDiet + pattern, along with educational resources, food basket deliveries, and clinical culinary workshops, all developed and monitored weekly by registered dietitians. The control group receives standardised general healthy diet recommendations at baseline. The intervention's effects will be assessed by evaluating disease activity, functional status, quality of life, intestinal permeability, endotoxemia, inflammatory biomarkers, intestinal and oral microbiota, serum proteomics, and serum glycome profile characterisation. DISCUSSION We anticipate obtaining integrative insights into the interplay between diet, the gut, and RA, while also exploring the underlying mechanisms driving these changes. This study, conducted by a multidisciplinary research team of registered dietitians, rheumatologists, biologists, and immunologists, aims to bridge the current gap between nutrition-related knowledge and RA. TRIAL REGISTRATION Registered in ClinicalTrials.gov (NCT06758817; date of registry: January 6th 2025).
Collapse
Affiliation(s)
- Sofia Charneca
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana Hernando
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Inês Almada-Correia
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Joaquim Polido-Pereira
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Serviço de Reumatologia, ULS Santa Maria, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Adriana Vieira
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Joana Sousa
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana Santos Almeida
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Carla Motta
- Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Gonçalo Barreto
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, 00029, Finland.
| | - Kari K Eklund
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, 00029, Finland
- Department of Rheumatology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706, Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706, Santiago de Compostela, Spain
| | - Francesco Cicci
- Dipartimento di Medicina di Precisione, Università Della Campania L. Vanvitelli, Naples, Italy
| | - Daniele Mauro
- Dipartimento di Medicina di Precisione, Università Della Campania L. Vanvitelli, Naples, Italy
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3s), University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Eurico Fonseca
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Serviço de Reumatologia, ULS Santa Maria, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Patrícia Costa-Reis
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Pediatric Rheumatology Unit, ULS Santa Maria, Lisbon, Portugal
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Köpsel M, Kostka T, Rodriguez-Werner M, Esatbeyoglu T. The influence of fruit juice extracts on glucose intestinal transporters and antioxidant genes in a Caco-2 and HT29-MTX co-culture cell system. Food Funct 2025; 16:1423-1441. [PMID: 39895307 DOI: 10.1039/d4fo03950e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In recent years, the interest of consumers in fruit juice extracts as nutraceuticals has increased. Fruits, especially red berries, contain valuable bioactive compounds such as polyphenols. Polyphenols are often associated with anti-oxidant, anti-inflammatory, anti-diabetic, anti-cancer, cardioprotective and gastroprotective properties. However, the relationship between the various effects of fruit juice extracts and their influence on the permeability of the intestinal barrier, as well as their influence on glucose transport across the intestinal membrane, is not known. Therefore, in the present study, anthocyanins and copigments were obtained from 11 fruit juice extracts by XAD7 column chromatography and characterized their health-promoting effects, as well as their influence on the intestinal membrane. Chokeberry, pomegranate and blueberry extracts showed the highest antioxidant activity, but showed incomplete regeneration of the intestinal membrane upon treatment-induced higher permeability. This may depended on the high anthocyanin level of these extracts. Treatments with gojiberry extract, elderberry extract and the copigment fraction of apple achieved the best suitable regeneration of the intestinal barrier. The transcription of epithelial glucose transporters GLUT1 und GLUT2 as well as for the oxidative stress genes catalase (CAT) and superoxide dismutase (SOD) were most effectively reduced by chokeberry extract. To sum up, fruit juice extracts possess high antioxidant potentials and can reduce the expression of antioxidant enzymes and glucose transporters in colon cells. While the glucose uptake may be reduced, the intestinal permeability is increased, which varies due to the extract composition. Therefore, fruit juice extracts need to be fractionated and characterized in more detail to identify the health-beneficial compounds.
Collapse
Affiliation(s)
- Magdalena Köpsel
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Tina Kostka
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Strasse 52, 67663 Kaiserslautern, Germany.
| | | | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| |
Collapse
|
3
|
Kennedy EC, Ross FC, O'Shea CA, Lavelle A, Ross P, Dempsey E, Stanton C, Hawkes CP. Observational study protocol: the faecal microbiome in the acute stage of new-onset paediatric type 1 diabetes in an Irish cohort. BMJ Open 2025; 15:e089206. [PMID: 39890137 PMCID: PMC11784173 DOI: 10.1136/bmjopen-2024-089206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/06/2024] [Indexed: 02/03/2025] Open
Abstract
INTRODUCTION Type 1 diabetes (T1D) is an autoimmune-mediated disorder caused by the destruction of pancreatic beta cells. Although there is an underlying genetic predisposition to developing T1D, the trigger is multifactorial and likely includes environmental factors. The intestinal microbiome has been identified as one such factor. Previous studies have illustrated differences in the microbiota of people with T1D compared with healthy controls. This study aims to describe the evolution of the microbiome and metabolome during the first year of clinical T1D, or stage 3 T1D diagnosis, and investigate whether there are differences in the microbiome and metabolome of children who present with and without diabetic ketoacidosis. The study will also explore possible associations between the microbiome, metabolome, glycaemic control and beta cell reserve. METHODS AND ANALYSIS This prospective cohort study will include children with newly diagnosed T1D and sibling controls (n=100, males and females) and their faecal microbiome will be characterised using shotgun metagenomic sequencing at multiple time points during the first year of diagnosis. We will develop a microbial culture biobank based on culturomic studies of stool samples from the healthy controls that will support future investigation. Metabolomic analysis will aim to identify additional biomarkers which may be involved in disease presentation and progression. Through this initial exploratory study, we aim to identify specific microbial biomarkers which may be used as future interventional targets throughout the various stages of T1D progression. ETHICS AND DISSEMINATION This study has been approved by the Clinical Research Ethics Committee of the Cork Teaching Hospitals. Study results will be available to patients with T1D and their families, carers, support networks and microbiome societies and other researchers. TRIAL REGISTRATION NUMBER The clinicaltrials.gov registration number for this trial is NCT06157736.
Collapse
Affiliation(s)
- Elaine Catherine Kennedy
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Fiona Catherine Ross
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Aonghus Lavelle
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre Moorepark, Moorepark, Ireland
| | - Colin Patrick Hawkes
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Chong S, Lin M, Chong D, Jensen S, Lau NS. A systematic review on gut microbiota in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2025; 15:1486793. [PMID: 39897957 PMCID: PMC11782031 DOI: 10.3389/fendo.2024.1486793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
Aims/hypothesis The gut microbiota play crucial roles in the digestion and degradation of nutrients, synthesis of biological agents, development of the immune system, and maintenance of gastrointestinal integrity. Gut dysbiosis is thought to be associated with type 2 diabetes mellitus (T2DM), one of the world's fastest growing diseases. The aim of this systematic review is to identify differences in the composition and diversity of the gut microbiota in individuals with T2DM. Methods A systematic search was conducted to identify studies reporting on the difference in gut microbiota composition between individuals with T2DM and healthy controls. Relevant studies were evaluated, and their characteristics and results were extracted using a standardized data extraction form. The studies were assessed for risk of bias and their findings were reported narratively. Results 58 observational studies published between 2010 and 2024 were included. Beta diversity was commonly reported to be different between individuals with T2DM and healthy individuals. Genera Lactobacillus, Escherichia-Shigella, Enterococcus, Subdoligranulum and Fusobacteria were found to be positively associated; while Akkermansia, Bifidobacterium, Bacteroides, Roseburia, Faecalibacteirum and Prevotella were found to be negatively associated with T2DM. Conclusions This systematic review demonstrates a strong association between T2DM and gut dysbiosis, as evidenced by differential microbial abundances and altered diversity indices. Among these taxa, Escherichia-Shigella is consistently associated with T2DM, whereas Faecalibacterium prausnitzii appears to offer a protective effect against T2DM. However, the heterogeneity and observational nature of these studies preclude the establishment of causative relationships. Future research should incorporate age, diet and medication-matched controls, and include functional analysis of these gut microbes. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023459937.
Collapse
Affiliation(s)
- Serena Chong
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- South West Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Mike Lin
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Garvan Institute of Research, Sydney, NSW, Australia
| | - Deborah Chong
- Animal Health Laboratory, Department of Natural Resources and Environment Tasmania, Tasmania, TAS, Australia
| | - Slade Jensen
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- Infectious Disease and Microbiology, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine Antibiotic Resistance and Mobile Elements Groups, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Namson S. Lau
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- South West Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Liverpool Diabetes Collaboration, Ingham Institute of Applied Medical Research, Sydney, NSW, Australia
| |
Collapse
|
5
|
Chasov V, Gilyazova E, Ganeeva I, Zmievskaya E, Davletshin D, Valiullina A, Bulatov E. Gut Microbiota Modulation: A Novel Strategy for Rheumatoid Arthritis Therapy. Biomolecules 2024; 14:1653. [PMID: 39766360 PMCID: PMC11674688 DOI: 10.3390/biom14121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to joint inflammation, progressive tissue damage and significant disability, severely impacting patients' quality of life. While the exact mechanisms underlying RA remain elusive, growing evidence suggests a strong link between intestinal microbiota dysbiosis and the disease's development and progression. Differences in microbial composition between healthy individuals and RA patients point to the role of gut microbiota in modulating immune responses and promoting inflammation. Therapies targeting microbiota restoration have demonstrated promise in improving treatment efficacy, enhancing patient outcomes and slowing disease progression. However, the complex interplay between gut microbiota and autoimmune pathways in RA requires further investigation to establish causative relationships and mechanisms. Here, we review the current understanding of the gut microbiota's role in RA pathogenesis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Vitaly Chasov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Elvina Gilyazova
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Irina Ganeeva
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Ekaterina Zmievskaya
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Damir Davletshin
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Aygul Valiullina
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Emil Bulatov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
6
|
Yuan X, Wang W, Lin W, Wu J, Du R. The relationship between cereal intake and 3 common inflammatory joint diseases: A 2-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40738. [PMID: 39654226 PMCID: PMC11630992 DOI: 10.1097/md.0000000000040738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
The association between cereal intake and inflammatory joint disease remains controversial. This study aims to use Mendelian randomization to comprehensively evaluate the causal relationship between cereal grain intake and Inflammatory joint diseases, including rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. This investigation used publicly available data from genome-wide association studies to aggregate statistics on the association between cereal intake and inflammatory joint disease. Several methods were employed to estimate 2-sample causality. The results of the random-effects inverse variance-weighted method analysis indicated that higher cereal intake reduced the risk of developing rheumatoid arthritis (odds ratio [OR] = 0.554; 95% confidence interval [CI]: 0.324-0. 948; P = .031) and psoriatic arthritis (OR = 0.336; 95% CI: 0.123-0.918; P = .033), and the results of the Mendelian randomization-Egger regression analysis showed no horizontal pleiotropy (P > .05) for the included single nucleotide polymorphisms. Using the leave-one-out method, no single nucleotide polymorphism was found to affect the overall effect estimate significantly, and there was no heterogeneity. Cereal intake had no causal effect on the risk of developing ankylosing spondylitis (OR = 0.636; 95% CI: 0.236-1.711; P = .370). There is genetic evidence that cereal consumption reduces the risk of developing Inflammatory joint diseases such as rheumatoid arthritis and psoriatic arthritis.
Collapse
Affiliation(s)
- Xujing Yuan
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Wang
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxun Lin
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Wu
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Du
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Han W, Xu Y, Qimuge S, Wang C, Su X. Peptide BG From Bitter Gourd ( Momordica Charantia) Improves Adjuvant-Induced Arthritis by Modulating the Necroptosis/Neutrophil Extracellular Traps/Inflammation Axis and the Gut Microbiota. Mediators Inflamm 2024; 2024:1995952. [PMID: 39669913 PMCID: PMC11637617 DOI: 10.1155/mi/1995952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Background: BG is a novel bioactive peptide derived from bitter gourd (Momordica charantia), known for its anti-inflammatory and immunomodulatory properties. In the present study, our objective is to investigate the functional roles and mechanisms of BG in the context of rheumatoid arthritis (RA). Methods: A rat model of adjuvant-induced arthritis (AIA) was established by administering complete Freund's adjuvant (CFA). The viability of BG-mediated AIA was evaluated by assessing changes in rat body weight, joint swelling, ankle joint pathology, inflammation, necroptosis, the formation of neutrophil extracellular traps (NETs), and gut microbiota. Results: The results of the study showed that peptide BG was effective in improving weight loss, joint swelling, serum IgM-rheumatoid factor (IgM-RF) level, and pathological injury of ankle joint in rats with AIA. BG administration resulted in a decrease in erythrocyte sedimentation rate, serum C-reactive protein (CRP), and inflammatory factor (interferon-γ (IFN-γ), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α)) in AIA rats. Additionally, the administration of CFA resulted in an increase in the protein levels of myeloperoxidase (MPO), neutrophil elastase (NE), citrullinated histone H3 (CitH3), peptidyl arginine deiminase 4 (PAD4), p-mixed lineage kinase domain-like (p-MLKL), and cleaved caspase 8. However, this increase was found to be inhibited by BG treatment. Furthermore, it has been found that peptide BG possesses the capacity to regulate the species composition structure of the intestinal microbiota, thereby, facilitating the reestablishment of microbial diversity and equilibrium. Conclusion: Peptide BG has demonstrated efficacy in ameliorating AIA through its regulation of the necroptosis/NETs/inflammation axis and the gut microbiota. This finding underscores the potential of BG as a promising therapeutic intervention for RA.
Collapse
Affiliation(s)
- Wenyan Han
- School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yanan Xu
- Clinical Medical Research Center, Inner Mongolia Bioactive Peptide Engineering Laboratory, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Suyila Qimuge
- Clinical Medical Research Center, Inner Mongolia Bioactive Peptide Engineering Laboratory, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Changshan Wang
- School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xiulan Su
- Clinical Medical Research Center, Inner Mongolia Bioactive Peptide Engineering Laboratory, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
8
|
Guilliams TG, Weintraub JL, Spar M. Intestinal Permeability In Subjects With Rheumatoid Arthritis: A Critical Therapeutic Priority. Integr Med (Encinitas) 2024; 23:16-26. [PMID: 39534664 PMCID: PMC11552960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Rheumatoid arthritis is increasingly being recognized as the synovial manifestation of a group of systemic autoinflammatory conditions known as immune-mediated inflammatory diseases. While each of these conditions displays unique diagnostic signs and symptoms based on the tissue targeted by inflammation, most immune-mediated inflammatory diseases share common features, including their immune-signaling pathways. Owing to these similarities, great advances have emerged in the past few decades using therapies designed to block downstream inflammatory mediators (eg, cytokine-blocking biologics, Janus Kinase (JAK) inhibitors). Unfortunately, fewer advances have been made in therapies that have the potential to target the upstream antecedents and triggers of these complex inflammatory diseases, such as the immunologic chain of events triggered by intestinal hyperpermeability (ie, leaky gut) or gastrointestinal dysbiosis (ie, alterations in the gut microbiota). In the past few decades, intestinal hyperpermeability has emerged as an important antecedent for a wide range of chronic immunological and metabolic conditions, including celiac disease, obesity, cardiovascular disease, and a number of immune-mediated inflammatory diseases such as inflammatory bowel disease, psoriasis, and rheumatoid arthritis. In this narrative review, we discuss the growing awareness that biomarkers of intestinal permeability are frequently associated with non-gastrointestinal immune-mediated inflammatory diseases, particularly those associated with the gut-joint axis, such as rheumatoid arthritis. We suggest that measures of intestinal permeability, along with lifestyle and nutrient interventions that target gut-barrier function, may be important adjunctive clinical tools to help patients with rheumatoid arthritis achieve and maintain remission.
Collapse
Affiliation(s)
- Thomas G. Guilliams
- Scientific Director, AndHealth, Columbus, Ohio; Founder and Director of the Point Institute, Stevens Point, Wisconsin; Adjunct Associate Professor, School of Pharmacy, University of Wisconsin—Madison
| | - Jill L. Weintraub
- Rheumatology Advisor, AndHealth, Columbus, Ohio; Integrative Rheumatology Consultants, Westchester and New York, New York
| | - Myles Spar
- VP and National Director of Medical Services, AndHealth, Columbus, Ohio; Associate Professor, Andrew Weil Center for Integrative Medicine, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
9
|
Qi P, Chen X, Tian J, Zhong K, Qi Z, Li M, Xie X. The gut homeostasis-immune system axis: novel insights into rheumatoid arthritis pathogenesis and treatment. Front Immunol 2024; 15:1482214. [PMID: 39391302 PMCID: PMC11464316 DOI: 10.3389/fimmu.2024.1482214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Rheumatoid arthritis is a widely prevalent autoimmune bone disease that imposes a significant burden on global healthcare systems due to its increasing incidence. In recent years, attention has focused on the interaction between gut homeostasis and the immune system, particularly in relation to bone health. Dysbiosis, which refers to an imbalance in the composition and function of the gut microbiota, has been shown to drive immune dysregulation through mechanisms such as the release of pro-inflammatory metabolites, increased gut permeability, and impaired regulatory T cell function. These factors collectively contribute to immune system imbalance, promoting the onset and progression of Rheumatoid arthritis. Dysbiosis induces both local and systemic inflammatory responses, activating key pro-inflammatory cytokines such as tumor necrosis factor-alpha, Interleukin-6, and Interleukin-17, which exacerbate joint inflammation and damage. Investigating the complex interactions between gut homeostasis and immune regulation in the context of Rheumatoid arthritis pathogenesis holds promise for identifying new therapeutic targets, revealing novel mechanisms of disease progression, and offering innovative strategies for clinical treatment.
Collapse
Affiliation(s)
- Peng Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xin Chen
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jiexiang Tian
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Kexin Zhong
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhonghua Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Menghan Li
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xingwen Xie
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
10
|
Li Z, Wan M, Wang M, Duan J, Jiang S. Modulation of gut microbiota on intestinal permeability: A novel strategy for treating gastrointestinal related diseases. Int Immunopharmacol 2024; 137:112416. [PMID: 38852521 DOI: 10.1016/j.intimp.2024.112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Accumulating evidence emphasizes the critical reciprocity between gut microbiota and intestinal barrier function in maintaining the gastrointestinal homeostasis. Given the fundamental role caused by intestinal permeability, which has been scrutinized as a measurable potential indicator of perturbed barrier function in clinical researches, it seems not surprising that recent decades have been marked by augmented efforts to determine the interaction between intestinal microbes and permeability of the individual. However, despite the significant progress in characterizing intestinal permeability and the commensal bacteria in the intestine, the mechanisms involved are still far from being thoroughly revealed. In the present review, based on multiomic methods, high-throughput sequencing and molecular biology techniques, the impacts of gut microbiota on intestinal permeability as well as their complex interaction networks are systematically summarized. Furthermore, the diseases related to intestinal permeability and main causes of changes in intestinal permeability are briefly introduced. The purpose of this review is to provide a novel prospection to elucidate the correlation between intestinal microbiota and permeability, and to explore a promising solution for diagnosis and treatment of gastrointestinal related diseases.
Collapse
Affiliation(s)
- Zhuotong Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Meiyu Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Mingyang Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| |
Collapse
|
11
|
Mucientes A, Lisbona-Montañez JM, Mena-Vázquez N, Ruiz-Limón P, Manrique-Arija S, García-Studer A, Ortiz-Márquez F, Fernández-Nebro A. Intestinal Dysbiosis, Tight Junction Proteins, and Inflammation in Rheumatoid Arthritis Patients: A Cross-Sectional Study. Int J Mol Sci 2024; 25:8649. [PMID: 39201334 PMCID: PMC11354395 DOI: 10.3390/ijms25168649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Recent studies point to intestinal permeability as an important factor in the establishment and development of rheumatoid arthritis (RA). Tight junctions (TJs) play a major role in intestinal homeostasis. The alteration of this homeostasis is related to RA. Furthermore, RA patients present dysbiosis and a lower microbiota diversity compared to healthy individuals. A cross-sectional study including RA patients and sex- and age-matched healthy controls was performed. The quantification of TJ proteins was carried out by ELISA. Gut microbiota was evaluated by NGS platform Ion Torrent S. The inflammatory variables included were DAS28, CRP, inflammatory cytokines (IL-6, IL-1, TNF-α) and oxidised LDL. Claudin-1 levels showed significant differences between groups. Results evidenced a correlation between claudin-1 values and age (r: -0.293; p < 0.05), IL6 (r: -0.290; p < 0.05) and CRP (r: -0.327; p < 0.05), and between zonulin values and both age (r: 0.267; p < 0.05) and TNFα (r: 0.266; p < 0.05). Moreover, claudin-1 and CRP levels are related in RA patients (β: -0.619; p: 0.045), and in patients with high inflammatory activity, the abundance of the genus Veillonella is positively associated with claudin-1 levels (β: 39.000; p: 0.004).
Collapse
Affiliation(s)
- Arkaitz Mucientes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - José Manuel Lisbona-Montañez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Natalia Mena-Vázquez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Patricia Ruiz-Limón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Sara Manrique-Arija
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Aimara García-Studer
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Fernando Ortiz-Márquez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Antonio Fernández-Nebro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
12
|
Corbetta P, Lonati E, Pagliari S, Mauri M, Cazzaniga E, Botto L, Campone L, Palestini P, Bulbarelli A. Flavonoids-Enriched Vegetal Extract Prevents the Activation of NFκB Downstream Mechanisms in a Bowel Disease In Vitro Model. Int J Mol Sci 2024; 25:7869. [PMID: 39063111 PMCID: PMC11277009 DOI: 10.3390/ijms25147869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) incidence has increased in the last decades due to changes in dietary habits. IBDs are characterized by intestinal epithelial barrier disruption, increased inflammatory mediator production and excessive tissue injury. Since the current treatments are not sufficient to achieve and maintain remission, complementary and alternative medicine (CAM) becomes a primary practice as a co-adjuvant for the therapy. Thus, the intake of functional food enriched in vegetal extracts represents a promising nutritional strategy. This study evaluates the anti-inflammatory effects of artichoke, caihua and fenugreek vegetal extract original blend (ACFB) in an in vitro model of gut barrier mimicking the early acute phases of the disease. Caco2 cells cultured on transwell supports were treated with digested ACFB before exposure to pro-inflammatory cytokines. The pre-treatment counteracts the increase in barrier permeability induced by the inflammatory stimulus, as demonstrated by the evaluation of TEER and CLDN-2 parameters. In parallel, ACFB reduces p65NF-κB pro-inflammatory pathway activation that results in the decrement of COX-2 expression as PGE2 and IL-8 secretion. ACFB properties might be due to the synergistic effects of different flavonoids, indicating it as a valid candidate for new formulation in the prevention/mitigation of non-communicable diseases.
Collapse
Affiliation(s)
- Paolo Corbetta
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Stefania Pagliari
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Mario Mauri
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Luca Campone
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| |
Collapse
|
13
|
Sunami Y, Sugaya K, Takahashi K. G protein-coupled receptors related to autoimmunity in postural orthostatic tachycardia syndrome. Immunol Med 2024:1-8. [PMID: 38900132 DOI: 10.1080/25785826.2024.2370079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is characterized by exaggerated orthostatic tachycardia in the absence of orthostatic hypotension. The pathophysiology of POTS may involve hypovolemia, autonomic neuropathy, a hyperadrenergic state, and cardiovascular deconditioning, any of which can co-occur in the same patient. Furthermore, there is growing evidence of the role of autoimmunity in a subset of POTS cases. In recent years, investigators have described an increased rate of autoimmune comorbidities as evidenced by the finding of several types of neural receptor autoantibody and non-specific autoimmune marker in patients with POTS. In particular, the association of the disease with several types of anti-G protein-coupled receptor (GPCR) antibodies and POTS has frequently been noted. A previous study reported that autoantibodies to muscarinic AChRs may play an important role in POTS with persistent, gastrointestinal symptoms. To date, POTS is recognized as one of the sequelae of coronavirus disease 2019 (COVID-19) and its frequency and pathogenesis are still largely unknown. Multiple autoantibody types occur in COVID-related, autonomic disorders, suggesting the presence of autoimmune pathology in these disorders. Herein, we review the association of anti-GPCR autoantibodies with disorders of the autonomic nervous system, in particular POTS, and provide a new perspective for understanding POTS-related autoimmunity.
Collapse
Affiliation(s)
- Yoko Sunami
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
14
|
Wang X, Yuan W, Yang C, Wang Z, Zhang J, Xu D, Sun X, Sun W. Emerging role of gut microbiota in autoimmune diseases. Front Immunol 2024; 15:1365554. [PMID: 38765017 PMCID: PMC11099291 DOI: 10.3389/fimmu.2024.1365554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Accumulating studies have indicated that the gut microbiota plays a pivotal role in the onset of autoimmune diseases by engaging in complex interactions with the host. This review aims to provide a comprehensive overview of the existing literatures concerning the relationship between the gut microbiota and autoimmune diseases, shedding light on the complex interplay between the gut microbiota, the host and the immune system. Furthermore, we aim to summarize the impacts and potential mechanisms that underlie the interactions between the gut microbiota and the host in autoimmune diseases, primarily focusing on systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, type 1 diabetes mellitus, ulcerative colitis and psoriasis. The present review will emphasize the clinical significance and potential applications of interventions based on the gut microbiota as innovative adjunctive therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Yuan
- Department of Radiation Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chunjuan Yang
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Zhangxue Wang
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Donghua Xu
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xicai Sun
- Department of Hospital Office, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Wenchang Sun
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
15
|
Peng Y, Huang Y, Li H, Li C, Wu Y, Wang X, Wang Q, He J, Miao C. Associations between rheumatoid arthritis and intestinal flora, with special emphasis on RA pathologic mechanisms to treatment strategies. Microb Pathog 2024; 188:106563. [PMID: 38331355 DOI: 10.1016/j.micpath.2024.106563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/01/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that primarily affects the joints. Individuals at risk for RA and people with RA develop intestinal dysbiosis. The changes in intestinal flora composition in preclinical and confirmed RA patients suggest that intestinal flora imbalance may play an important role in the induction and persistence of RA. METHODS Based on the current research on the interaction between RA and intestinal microbiota, intestinal microbiota metabolites and intestinal barrier changes. This paper systematically summarized the changes in intestinal microbiota in RA patients, the metabolites of intestinal flora, and the influence mechanism of intestinal barrier on RA, and further discussed the influence of drugs for RA on intestinal flora and its mechanism of action. RESULTS Compared with healthy controls, α diversity analysis of intestinal flora showed no significant difference, β diversity analysis showed significant differences. The intestinal flora produces bioactive metabolites, such as short-chain fatty acids and aromatic amino acids, which have anti-inflammatory effects. Abnormal intestinal flora leads to impaired barrier function and mucosal immune dysfunction, promoting the development of inflammation. Traditional Chinese medicine (TCM) and chemical drugs can also alleviate RA by regulating intestinal flora, intestinal flora metabolites, and intestinal barrier. Intestinal flora is closely related to the pathogenesis of RA and may become potential biomarkers for the diagnosis and treatment of RA. CONCLUSIONS Intestinal flora and its metabolites play an important role in the pathogenesis of autoimmune diseases such as RA, and are expected to become a new target for clinical diagnosis and treatment, providing a new idea for targeted treatment of RA.
Collapse
Affiliation(s)
- Yanhui Peng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hui Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chen Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaomei Wang
- Department of Humanistic Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qiang Wang
- Department of Pharmaceutical Preparation, Anhui University of Science and Technology, Fengyang, Anhui, China
| | - Juan He
- Department of Gynecology, Anhui Maternal and Child Health Hospital, Hefei, Anhui, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
16
|
Ryguła I, Pikiewicz W, Grabarek BO, Wójcik M, Kaminiów K. The Role of the Gut Microbiome and Microbial Dysbiosis in Common Skin Diseases. Int J Mol Sci 2024; 25:1984. [PMID: 38396663 PMCID: PMC10889245 DOI: 10.3390/ijms25041984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Dermatoses are an increasingly common problem, particularly in developed countries. The causes of this phenomenon include genetic factors and environmental elements. More and more scientific reports suggest that the gut microbiome, more specifically its dysbiosis, also plays an important role in the induction and progression of diseases, including dermatological diseases. The gut microbiome is recognised as the largest endocrine organ, and has a key function in maintaining human homeostasis. In this review, the authors will take a close look at the link between the gut-skin axis and the pathogenesis of dermatoses such as atopic dermatitis, psoriasis, alopecia areata, and acne. The authors will also focus on the role of probiotics in remodelling the microbiome and the alleviation of dermatoses.
Collapse
Affiliation(s)
- Izabella Ryguła
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Wojciech Pikiewicz
- Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dabrowa Gornicza, Poland; (W.P.); (B.O.G.); (M.W.)
| | - Beniamin Oskar Grabarek
- Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dabrowa Gornicza, Poland; (W.P.); (B.O.G.); (M.W.)
| | - Michał Wójcik
- Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dabrowa Gornicza, Poland; (W.P.); (B.O.G.); (M.W.)
| | - Konrad Kaminiów
- Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dabrowa Gornicza, Poland; (W.P.); (B.O.G.); (M.W.)
| |
Collapse
|
17
|
Blenkinsopp HC, Seidler K, Barrow M. Microbial Imbalance and Intestinal Permeability in the Pathogenesis of Rheumatoid Arthritis: A Mechanism Review with a Focus on Bacterial Translocation, Citrullination, and Probiotic Intervention. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:59-76. [PMID: 37294082 DOI: 10.1080/27697061.2023.2211129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/01/2023] [Indexed: 06/10/2023]
Abstract
This review aims to investigate the role of intestinal permeability (IP) in rheumatoid arthritis (RA), following the hypotheses that leakage of intestinal microbes can influence increased citrullination of peptides leading to anti-citrullinated protein antibody (ACPA) production and inflammation in RA; and that leaked microbes can migrate to the peripheral joints, leading to immune responses and synovitis in peripheral joints. This review explored the evidence for the link between microbial dysbiosis and increased IP in the inflammatory state in RA, as well as the role of increased citrullination and bacterial translocation in the link between microbiota and immune responses in RA. Furthermore, this research aims to evaluate the potential effect of probiotics on RA symptoms and pathogenesis via proposed mechanisms, including the support of microbial balance and suppression of inflammatory factors in RA. A systematic literature search was conducted in three tranches (review, mechanism, intervention). 71 peer-reviewed papers met the inclusions criteria and are summarized in a narrative analysis. Primary studies were critically appraised, synthesized and their relevance to clinical practice evaluated. Evidence found in this mechanism review consistently supported intestinal dysbiosis and increased IP in arthritis. An altered intestinal microbiome was demonstrated in RA with specific microbes such as Collinsella and Eggerthella correlating with increased IP, mucosal inflammation, and immune responses. Hypercitrullination and ACPA production correlated with arthritic symptoms and intestinal microbes were shown to influence hypercitrullination. Some in vitro and animal studies demonstrated a link between leakage of microbes and bacterial translocation, but further research is needed to elucidate the link between IP and citrullination. Probiotic intervention studies evidenced reductions in inflammatory markers IL-6 and TNFα, associated with proliferation of synovial tissue and pain perception in RA joint inflammation. Despite some conflict in the literature, probiotics may present a promising nutritional intervention in the suppression of both, disease activity and inflammatory markers.Key teaching pointsThere is evidence for a dysbiotic profile of the RA gut with specific RA-associated microbes.Increased intestinal permeability and leakage of PAD enzyme facilitates citrullination of peptides.Hypercitrullination and ACPA production correlate to arthritic signs.Microbial leakage and translocation plays a role in the pathogenesis of RA.Probiotics (e.g. L. Casei 01) may reduce inflammation and ameliorate RA symptoms.
Collapse
Affiliation(s)
- Holly C Blenkinsopp
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| | - Karin Seidler
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| | - Michelle Barrow
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| |
Collapse
|
18
|
Tu X, Ren H, Bu S. Therapeutic effects of curcumin on constipation-predominant irritable bowel syndrome is associated with modulating gut microbiota and neurotransmitters. Front Microbiol 2023; 14:1274559. [PMID: 38163069 PMCID: PMC10757613 DOI: 10.3389/fmicb.2023.1274559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Constipation-predominant irritable bowel syndrome (IBS-C) is a functional bowel disease that affects 10-20% of the population worldwide. Curcumin (CUR) is widely used in traditional Chinese medicine to treat IBS, but its mechanism of action needs further investigation. Methods In this study, we used mosapride (MOS) as a positive control to evaluate the changes in gut microbiota in IBS-C rat models after treatment with CUR or MOS by analyzing 16S rDNA variation. In addition, we used enzyme immunoassay kits and immunohistochemical analysis to investigate whether CUR or MOS influenced serotonin (5-HT), substance P (SP), and vasoactive intestinal peptide (VIP) levels in the serum and colon of IBS-C rats. Results The study showed that rats supplemented with CUR showed significantly increased fecal weight, fecal water content, small intestine transit rate and significantly decreased serum levels of 5-HT, VIP and SP compared to the IBS group (p < 0.05). In addition, treatment with CUR changed the relative abundance of Blautia, Sutterella, Acetanaerobacterium and Ruminococcus2 in the gut microbiota. Discussion This study showed that the efficacy of CUR on IBS-C was possibly by modulating the microbiota and lowering the serum levels of HT, SP, and VIP.
Collapse
Affiliation(s)
- Xiaoting Tu
- Department of Gastroenterology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Hongyan Ren
- Shanghai Mobio Biomedical Technology Co. Ltd., Shanghai, China
| | - Shurui Bu
- Department of Gastroenterology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
19
|
Blair LM, Akhund-Zade J, Katsamakis ZA, Smibert OC, Wolfe AE, Giardina P, Slingerland J, Bercovici S, Perales MA, Taur Y, van den Brink MRM, Peled JU, Markey KA. Circulating microbial cell-free DNA is increased during neutropenia after hematopoietic stem cell transplantation. Blood Adv 2023; 7:6744-6750. [PMID: 37399491 PMCID: PMC10651422 DOI: 10.1182/bloodadvances.2023010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
We used a next-generation sequencing platform to characterize microbial cell-free DNA (mcfDNA) in plasma samples from patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HCT). In this observational study, we sought to characterize plasma mcfDNA in order to explore its potential association with the immunologic complications of transplantation. We compared serially collected patient samples with plasma collected from healthy control subjects. We observed changes in total mcfDNA burden in the plasma after transplantation, which was most striking during the early posttransplant neutropenic phase. This elevation could be attributed to a number of specific bacterial taxa, including Veillonella, Bacteroides, and Prevotella (genus level). For an additional cohort of patients, we compared the data of mcfDNA from plasma with 16s-ribosomal RNA sequencing data from stool samples collected at matched time points. In a number of patients, we confirmed that mcfDNA derived from specific microbial taxa (eg, Enterococcus) could also be observed in the matched stool sample. Quantification of mcfDNA may generate novel insights into mechanisms by which the intestinal microbiome influences systemic cell populations and, thus, has been associated with outcomes for patients with cancer.
Collapse
Affiliation(s)
| | | | - Zoe A. Katsamakis
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Olivia C. Smibert
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
- Department of Infectious Diseases, Peter McCallum Cancer Centre, Melbourne, VIC, Australia
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC, Australia
| | - Alex E. Wolfe
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Paul Giardina
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John Slingerland
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine Weill Cornell Medical College, New York, NY
| | - Ying Taur
- Department of Medicine, Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marcel R. M. van den Brink
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine Weill Cornell Medical College, New York, NY
- Immunology Program, Sloan Kettering Institute, New York, NY
| | - Jonathan U. Peled
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine Weill Cornell Medical College, New York, NY
| | - Kate A. Markey
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
20
|
Ying ZH, Mao CL, Xie W, Yu CH. Postbiotics in rheumatoid arthritis: emerging mechanisms and intervention perspectives. Front Microbiol 2023; 14:1290015. [PMID: 38029106 PMCID: PMC10662086 DOI: 10.3389/fmicb.2023.1290015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent chronic autoimmune disease that affects individuals of all age groups. Recently, the association between RA and the gut microbiome has led to the investigation of postbiotics as potential therapeutic strategies. Postbiotics refer to inactivated microbial cells, cellular components, or their metabolites that are specifically intended for the microbiota. Postbiotics not only profoundly influence the occurrence and development of RA, but they also mediate various inflammatory pathways, immune processes, and bone metabolism. Although they offer a variety of mechanisms and may even be superior to more conventional "biotics" such as probiotics and prebiotics, research on their efficacy and clinical significance in RA with disruptions to the intestinal microbiota remains limited. In this review, we provide an overview of the concept of postbiotics and summarize the current knowledge regarding postbiotics and their potential use in RA therapy. Postbiotics show potential as a viable adjunctive therapy option for RA.
Collapse
Affiliation(s)
- Zhen-Hua Ying
- Zhejiang Key Laboratory of Arthritis Diagnosis and Research, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Cheng-Liang Mao
- Zhejiang Key Laboratory of Arthritis Diagnosis and Research, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang University of Technology, Hangzhou, China
| | - Wei Xie
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, China
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Chen-Huan Yu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| |
Collapse
|
21
|
Thakkar A, Vora A, Kaur G, Akhtar J. Dysbiosis and Alzheimer's disease: role of probiotics, prebiotics and synbiotics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2911-2923. [PMID: 37284896 DOI: 10.1007/s00210-023-02554-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by dementia and the accumulation of amyloid beta in the brain. Recently, microbial dysbiosis has been identified as one of the major factors involved in the onset and progression of AD. Imbalance in gut microbiota is known to affect central nervous system (CNS) functions through the gut-brain axis and involves inflammatory, immune, neuroendocrine and metabolic pathways. An altered gut microbiome is known to affect the gut and BBB permeability, resulting in imbalance in levels of neurotransmitters and neuroactive peptides/factors. Restoration of levels of beneficial microorganisms in the gut has demonstrated promising effects in AD in pre-clinical and clinical studies. The current review enlists the important beneficial microbial species present in the gut, the effect of their metabolites on CNS, mechanisms involved in dysbiosis related to AD and the beneficial effects of probiotics on AD. It also highlights challenges involved in large-scale manufacturing and quality control of probiotic formulations.
Collapse
Affiliation(s)
- Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India.
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Jamal Akhtar
- Central Council for Research in Unani Medicine, Ministry of AYUSH, New Delhi, India
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This article aims to provide an up-to-date review of small intestinal bacterial overgrowth (SIBO), including etiology and risk factors, clinical manifestations, diagnostic evaluation for suspected SIBO, and therapeutic options. RECENT FINDINGS Recent advances in breath testing, capsule and urine-based testing have opened new avenues and improved diagnostic yield of SIBO. Nonantibiotic-based treatment strategies have shown promising results in initial trials. SUMMARY Small intestinal bacterial overgrowth (SIBO) is a condition defined by the excess bacteria or changes in bacterial composition of the small intestine. These are associated with various gastrointestinal (GI) symptoms such as bloating, abdominal distension, diarrhea, nutrient deficiencies, and even frank weight loss. Small bowel jejunal aspirate of >10 5 CFU/ml has traditionally been considered the gold standard for diagnosis. Glucose and lactulose breath testing have become more common in clinical practice as they are noninvasive, easily accessible, and have lower cost. Treatment focuses on the eradication of excess bacteria in the small bowel and is traditionally done with the use of oral antibiotics. Other emerging therapies may include probiotics, diet manipulation, and prokinetic agents.
Collapse
Affiliation(s)
- Hammad Zafar
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Florida, Weston, Florida, USA
| | | | | |
Collapse
|
23
|
Wu M, Chen C, Lei H, Cao Z, Zhang C, Du R, Zhang C, Song Y, Qin M, Zhou J, Lu Y, Wang X, Zhang L. Dietary Isoquercetin Ameliorates Bone Loss via Restoration of the Gut Microbiota and Lipopolysaccharide-Triggered Inflammatory Status in Ovariectomy Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15981-15990. [PMID: 37852299 DOI: 10.1021/acs.jafc.3c00205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Osteoporosis is one of the skeletal degenerative diseases accompanied by bone loss and microstructure disruption. Given that the gut-bone signaling axis highly contributes to bone health, here, dietary isoquercetin (IQ) was shown to effectively improve postmenopausal osteoporosis (PMO) in an ovariectomy (OVX) mouse model through the modulation of the gut-bone cross-talk. An in vivo study showed that OVX induced striking disruption of the microbial community, subsequently causing gut leakage and gut barrier dysfunction. As a result, lipopolysaccharide (LPS)-triggered inflammatory cytokines released from the intestine to bone marrow were determined to be associated with bone loss in OVX mice. Long-term dietary IQ effectively improved microbial community and gut barrier function in the OVX mice and thus markedly improved bone loss and host inflammatory status by repressing the NF-κB signaling pathway. An in vitro study further revealed that IQ treatments dose-dependently inhibited LPS-induced inflammation and partly promoted the proliferation and differentiation of osteoblasts. These results provide new evidence that dietary IQ has the potential for osteoporosis treatment.
Collapse
Affiliation(s)
- Mengjing Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Du
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyu Qin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
- Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Yujing Lu
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xian Wang
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Charneca S, Ferro M, Vasques J, Carolino E, Martins-Martinho J, Duarte-Monteiro AM, Dourado E, Fonseca JE, Guerreiro CS. The Mediterranean diet, and not dietary inflammatory index, is associated with rheumatoid arthritis disease activity, the impact of disease and functional disability. Eur J Nutr 2023; 62:2827-2839. [PMID: 37355497 DOI: 10.1007/s00394-023-03196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
PURPOSE To assess the relationship between adherence to the Mediterranean Diet (MD) /individual Dietary Inflammatory Index (DII) and disease activity, disease impact, and functional status in Rheumatoid Arthritis (RA) patients. METHODS RA patients followed at a hospital in Lisbon, Portugal, were recruited. DII was calculated using dietary intake data collected with a food frequency questionnaire (FFQ). Adherence to the MD was obtained using the 14-item Mediterranean Diet assessment tool. Disease Activity Score of 28 Joints (DAS28) and the DAS28 calculated with C-Reactive Protein (DAS28-CRP) were used to assess disease activity. Impact of disease and functional status were evaluated using the Rheumatoid Arthritis Impact of Disease (RAID) questionnaire and the Health Assessment Questionnaire (HAQ), respectively. RESULTS 120 patients (73.3% female, 61.8 ± 10.1 years of age) were included. Patients with higher adherence to the MD had significantly lower DAS28-CRP (median 3.27(2.37) vs 2.77(1.49), p = 0.030), RAID (median 5.65(2.38) vs 3.51(4.51), p = 0.032) and HAQ (median 1.00(0.56) vs 0.56(1.03), p = 0.013) scores. Higher adherence to the MD reduced the odds of having a higher DAS28 by 70% (OR = 0.303, 95%CI = (0.261, 0.347), p = 0.003). Lower adherence to MD was associated with higher DAS28-CRP (β = - 0.164, p = 0.001), higher RAID (β = - 0.311, p < 0.0001), and higher HAQ scores (β = - 0.089, p = 0.001), irrespective of age, gender, BMI and pharmacological therapy. Mean DII of our cohort was not significantly different from the Portuguese population (0.00 ± 0.17 vs - 0.10 ± 1.46, p = 0.578). No associations between macronutrient intake or DII and RA outcomes were found. CONCLUSIONS Higher adherence to the MD was associated with lower disease activity, lower impact of disease, and lower functional disability in RA patients.
Collapse
Affiliation(s)
- Sofia Charneca
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Margarida Ferro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - João Vasques
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC- Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Joana Martins-Martinho
- Serviço de Reumatologia, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Ana Margarida Duarte-Monteiro
- Serviço de Reumatologia, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Eduardo Dourado
- Serviço de Reumatologia, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal.
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal.
| | - João Eurico Fonseca
- Serviço de Reumatologia, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| |
Collapse
|
25
|
Niño-Narvión J, Rojo-López MI, Martinez-Santos P, Rossell J, Ruiz-Alcaraz AJ, Alonso N, Ramos-Molina B, Mauricio D, Julve J. NAD+ Precursors and Intestinal Inflammation: Therapeutic Insights Involving Gut Microbiota. Nutrients 2023; 15:2992. [PMID: 37447318 DOI: 10.3390/nu15132992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The oxidized form of nicotinamide adenine dinucleotide (NAD+) is a critical metabolite for living cells. NAD+ may act either as a cofactor for many cellular reactions as well as a coenzyme for different NAD+-consuming enzymes involved in the physiological homeostasis of different organs and systems. In mammals, NAD+ is synthesized from either tryptophan or other vitamin B3 intermediates that act as NAD+ precursors. Recent research suggests that NAD+ precursors play a crucial role in maintaining the integrity of the gut barrier. Indeed, its deficiency has been associated with enhanced gut inflammation and leakage, and dysbiosis. Conversely, NAD+-increasing therapies may confer protection against intestinal inflammation in experimental conditions and human patients, with accumulating evidence indicating that such favorable effects could be, at least in part, mediated by concomitant changes in the composition of intestinal microbiota. However, the mechanisms by which NAD+-based treatments affect the microbiota are still poorly understood. In this context, we have focused specifically on the impact of NAD+ deficiency on intestinal inflammation and dysbiosis in animal and human models. We have further explored the relationship between NAD+ and improved host intestinal metabolism and immunity and the composition of microbiota in vivo. Overall, this comprehensive review aims to provide a new perspective on the effect of NAD+-increasing strategies on host intestinal physiology.
Collapse
Affiliation(s)
- Julia Niño-Narvión
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grupo de Obesidad y Metabolismo, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia (UMU), 30120 Murcia, Spain
| | | | | | - Joana Rossell
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 08041 Barcelona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia (UMU), 30120 Murcia, Spain
| | - Núria Alonso
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias I Pujol, 08916 Badalona, Spain
| | - Bruno Ramos-Molina
- Grupo de Obesidad y Metabolismo, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain
| | - Didac Mauricio
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 08041 Barcelona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Faculty of Medicine, University of Vic/Central University of Catalonia (UVIC/UCC), 08500 Vic, Spain
| | - Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 08041 Barcelona, Spain
| |
Collapse
|
26
|
Charneca S, Hernando A, Costa-Reis P, Guerreiro CS. Beyond Seasoning-The Role of Herbs and Spices in Rheumatic Diseases. Nutrients 2023; 15:2812. [PMID: 37375716 PMCID: PMC10300823 DOI: 10.3390/nu15122812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Although we have witnessed remarkable progress in understanding the biological mechanisms that lead to the development of rheumatic diseases (RDs), remission is still not achieved in a substantial proportion of patients with the available pharmacological treatment. As a consequence, patients are increasingly looking for complementary adjuvant therapies, including dietary interventions. Herbs and spices have a long historical use, across various cultures worldwide, for both culinary and medicinal purposes. The interest in herbs and spices, beyond their seasoning properties, has dramatically grown in many immune-mediated diseases, including in RDs. Increasing evidence highlights their richness in bioactive molecules, such as sulfur-containing compounds, tannins, alkaloids, phenolic diterpenes, and vitamins, as well as their antioxidant, anti-inflammatory, antitumorigenic, and anticarcinogenic properties. Cinnamon, garlic, ginger, turmeric, and saffron are the most popular spices used in RDs and will be explored throughout this manuscript. With this paper, we intend to provide an updated review of the mechanisms whereby herbs and spices may be of interest in RDs, including through gut microbiota modulation, as well as summarize human studies investigating their effects in Rheumatoid Arthritis, Osteoarthritis, and Fibromyalgia.
Collapse
Affiliation(s)
- Sofia Charneca
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; (S.C.); (A.H.); (C.S.G.)
| | - Ana Hernando
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; (S.C.); (A.H.); (C.S.G.)
| | - Patrícia Costa-Reis
- Unidade de Reumatologia Pediátrica do Centro Hospitalar Universitário Lisboa Norte, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Clínica Universitária de Pediatria, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; (S.C.); (A.H.); (C.S.G.)
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
27
|
Heidt C, Kämmerer U, Fobker M, Rüffer A, Marquardt T, Reuss-Borst M. Assessment of Intestinal Permeability and Inflammation Bio-Markers in Patients with Rheumatoid Arthritis. Nutrients 2023; 15:nu15102386. [PMID: 37242269 DOI: 10.3390/nu15102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Increased intestinal permeability and inflammation, both fueled by dysbiosis, appear to contribute to rheumatoid arthritis (RA) pathogenesis. This single-center pilot study aimed to investigate zonulin, a marker of intestinal permeability, and calprotectin, a marker of intestinal inflammation, measured in serum and fecal samples of RA patients using commercially available kits. We also analyzed plasma lipopolysaccharide (LPS) levels, a marker of intestinal permeability and inflammation. Furthermore, univariate, and multivariate regression analyses were carried out to determine whether or not there were associations of zonulin and calprotectin with LPS, BMI, gender, age, RA-specific parameters, fiber intake, and short-chain fatty acids in the gut. Serum zonulin levels were more likely to be abnormal with a longer disease duration and fecal zonulin levels were inversely associated with age. A strong association between fecal and serum calprotectin and between fecal calprotectin and LPS were found in males, but not in females, independent of other biomarkers, suggesting that fecal calprotectin may be a more specific biomarker than serum calprotectin is of intestinal inflammation in RA. Since this was a proof-of-principle study without a healthy control group, further research is needed to validate fecal and serum zonulin as valid biomarkers of RA in comparison with other promising biomarkers.
Collapse
Affiliation(s)
- Christina Heidt
- University of Muenster, D-48149 Muenster, Germany
- Department of General Pediatrics, Metabolic Diseases, University of Muenster, Albert-Schweitzer-Campus, D-48149 Muenster, Germany
| | - Ulrike Kämmerer
- Department of Obstetrics and Gynaecology, University Hospital of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Manfred Fobker
- Centre of Laboratory Medicine, University Hospital Muenster, D-48149 Muenster, Germany
| | | | - Thorsten Marquardt
- Department of General Pediatrics, Metabolic Diseases, University of Muenster, Albert-Schweitzer-Campus, D-48149 Muenster, Germany
| | - Monika Reuss-Borst
- Hescuro Center for Rehabilitation and Prevention Bad Bocklet, D-97708 Bad Bocklet, Germany
- Department of Nephrology and Rheumatology, Georg-August University of Goettingen, D-37075 Goettingen, Germany
| |
Collapse
|
28
|
Zaragoza-García O, Castro-Alarcón N, Pérez-Rubio G, Falfán-Valencia R, Briceño O, Navarro-Zarza JE, Parra-Rojas I, Tello M, Guzmán-Guzmán IP. Serum Levels of IFABP2 and Differences in Lactobacillus and Porphyromonas gingivalis Abundance on Gut Microbiota Are Associated with Poor Therapeutic Response in Rheumatoid Arthritis: A Pilot Study. Int J Mol Sci 2023; 24:ijms24031958. [PMID: 36768285 PMCID: PMC9916456 DOI: 10.3390/ijms24031958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Intestinal dysbiosis is related to the physiopathology and clinical manifestation of rheumatoid arthritis (RA) and the response to pharmacologic treatment. The objectives of this study were (1) to analyze the effect of conventional synthetic disease modifying anti-rheumatic drugs (csDMARDs) on the abundance of gut microbiota's bacteria; (2) to evaluate the relationship between the differences in microbial abundance with the serum levels of intestinal fatty-acid binding protein 2 (IFABP2), cytokines, and the response phenotype to csDMARDs therapy in RA. A cross-sectional study was conducted on 23 women diagnosed with RA. The abundance of bacteria in gut microbiota was determined with qPCR. The ELISA technique determined serum levels of IFABP2, TNF-α, IL-10, and IL-17A. We found that the accumulated dose of methotrexate or prednisone is negatively associated with the abundance of Lactobacillus but positively associated with the abundance of Bacteroides fragilis. The Lactobacillus/Porphyromonas gingivalis ratio was associated with the Disease Activity Score-28 for RA with Erythrocyte Sedimentation Rate (DAS28-ESR) (r = 0.778, p = 0.030) and with the levels of IL-17A (r = 0.785, p = 0.027) in the group treated with csDMARD. Moreover, a relation between the serum levels of IFABP2 and TNF-α (r = 0.593, p = 0.035) was observed in the group treated with csDMARD. The serum levels of IFABP2 were higher in patients with secondary non-response to csDMARDs therapy. In conclusion, our results suggest that the ratios of gut microbiota's bacteria and intestinal permeability seems to establish the preamble for therapeutic secondary non-response in RA.
Collapse
Affiliation(s)
- Oscar Zaragoza-García
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Natividad Castro-Alarcón
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Olivia Briceño
- Infectious Diseases Research Center, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | | | - Isela Parra-Rojas
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mario Tello
- Bacterial Metagenomics Laboratory, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 8320000, Chile
| | - Iris Paola Guzmán-Guzmán
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
- Correspondence: or
| |
Collapse
|
29
|
Schinnerling K, Penny HA, Soto JA, Melo-Gonzalez F. Immune Responses at Host Barriers and Their Importance in Systemic Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:3-24. [PMID: 37093419 DOI: 10.1007/978-3-031-26163-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Host barriers such as the skin, the lung mucosa, the intestinal mucosa and the oral cavity are crucial at preventing contact with potential threats and are populated by a diverse population of innate and adaptive immune cells. Alterations in antigen recognition driven by genetic and environmental factors can lead to autoimmune systemic diseases such rheumatoid arthritis, systemic lupus erythematosus and food allergy. Here we review how different immune cells residing at epithelial barriers, host-derived signals and environmental signals are involved in the initiation and progression of autoimmune responses in these diseases. We discuss how regulation of innate responses at these barriers and the influence of environmental factors such as the microbiota can affect the susceptibility to develop local and systemic autoimmune responses particularly in the cases of food allergy, systemic lupus erythematosus and rheumatoid arthritis. Induction of pathogenic autoreactive immune responses at host barriers in these diseases can contribute to the initiation and progression of their pathogenesis.
Collapse
Affiliation(s)
| | - Hugo A Penny
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK
| | - Jorge A Soto
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| | - Felipe Melo-Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
30
|
Crosstalk between Resveratrol and Gut Barrier: A Review. Int J Mol Sci 2022; 23:ijms232315279. [PMID: 36499603 PMCID: PMC9739931 DOI: 10.3390/ijms232315279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
The plant-based nutraceuticals are receiving increasing interest in recent time. The high attraction to the phytochemicals is associated with their anti-inflammatory and antioxidant activities, which can lead to reduced risk of the development of cardiovascular and other non-communicable diseases. One of the most disseminated groups of plant bioactives are phenolic compounds. It was recently hypothesized that phenolic compounds can have the ability to improve the functioning of the gut barrier. The available studies showed that one of the polyphenols, resveratrol, has great potential to improve the integrity of the gut barrier. Very promising results have been obtained with in vitro and animal models. Still, more clinical trials must be performed to evaluate the effect of resveratrol on the gut barrier, especially in individuals with increased intestinal permeability. Moreover, the interplay between phenolic compounds, intestinal microbiota and gut barrier should be carefully evaluated in the future. Therefore, this review offers an overview of the current knowledge about the interaction between polyphenols with a special emphasis on resveratrol and the gut barrier, summarizes the available methods to evaluate the intestinal permeability, discusses the current research gaps and proposes the directions for future studies in this research area.
Collapse
|
31
|
Jiang L, Shang M, Yu S, Liu Y, Zhang H, Zhou Y, Wang M, Wang T, Li H, Liu Z, Zhang X. A high-fiber diet synergizes with Prevotella copri and exacerbates rheumatoid arthritis. Cell Mol Immunol 2022; 19:1414-1424. [PMID: 36323929 PMCID: PMC9709035 DOI: 10.1038/s41423-022-00934-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Both preclinical and established rheumatoid arthritis (RA) patients display alterations in the gut microbiome. Prevotella spp. are preferentially enriched in a subset of RA patients. Here, we isolated a Prevotella strain, P. copri RA, from the feces of RA patients and showed that colonization of P. copri RA exacerbated arthritis in a collagen-induced arthritis (CIA) model. With the presence of P. copri RA colonization, a high-fiber diet exacerbated arthritis via microbial alterations and intestinal inflammation. Colonization of P. copri together with a high-fiber diet enabled the digestion of complex fiber, which led to the overproduction of organic acids, including fumarate, succinate and short-chain fatty acids. Succinate promoted proinflammatory responses in macrophages, and supplementation with succinate exacerbated arthritis in the CIA model. Our findings highlight the importance of dysbiosis when evaluating the effects of dietary interventions on RA pathogenesis and provide new insight into dietary interventions or microbiome modifications to improve RA management.
Collapse
Affiliation(s)
- Lingjuan Jiang
- Department of Medical Research Center, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengmeng Shang
- Department of Medical Research Center, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shengnan Yu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hui Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yangzhong Zhou
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tingting Wang
- Department of Medical Research Center, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hui Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhihua Liu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
32
|
Berthelot JM, Darrieutort-Laffite C, Le Goff B. Contribution of HLA DRB1, PTPN22, and CTLA4, to RA dysbiosis. Joint Bone Spine 2022; 89:105446. [PMID: 35940545 DOI: 10.1016/j.jbspin.2022.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/27/2022]
Abstract
This narrative review gathers current evidence for a contribution of rheumatoid arthritis (RA) HLA-DRB1, PTPN22 and CTLA4 polymorphisms to the gut dysbiosis observed in RA, especially at its onset (transient excess of Prevotella). The gut microbiome contains elements which are 30% heritable, including genera like Bacteroides and Veillonella, and to a lesser extent Prevotella. The first months/year seems a critical period for the selection of a core of microbiota, that should be considered as a second self by the immune system, and tolerized by regulatory T and B cells. Imperfect tolerization may increase the risk of RA following further repeated silent translocations of various gut microorganisms, including Prevotella copri, from gut to joints (fostered by a concurrent loss in gut mucosa of protective bacteria like Faecalibacterium prausnitzii). Genetics studies confirmed that Prevotella copri was partly heritable, and strong associations were observed between the overall microbial composition of stools and the HLA-DRB1 RA risk allele, either in a US cohort (P=0.00001), or the Twins UK cohort (P=0.033). This finding also stands for persons still free from RA, and was replicated in the Swiss SCREEN-RA cohort. Gene variants of PTPN22 also modify intestinal microbiota composition, compromise granulocyte-mediated antibacterial defence in gut, and reduce the suppressive effect of gut regulatory B cells. CTLA4 variants may similarly contribute to RA dysbiosis, since immunotherapy by CTLA-4 blockade depends on microbiota, and CTLA4 activates T follicular regulatory cells to reduce immune responses to segmented filamentous bacteria. Suggestions for future works are made.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Unit, Nantes University Hospital, Hôtel-Dieu, CHU Nantes, Place Alexis Ricordeau, 44093 Nantes Cedex 01, France.
| | - Christelle Darrieutort-Laffite
- Rheumatology Unit, Nantes University Hospital, Hôtel-Dieu, CHU Nantes, Place Alexis Ricordeau, 44093 Nantes Cedex 01, France
| | - Benoît Le Goff
- Rheumatology Unit, Nantes University Hospital, Hôtel-Dieu, CHU Nantes, Place Alexis Ricordeau, 44093 Nantes Cedex 01, France
| |
Collapse
|
33
|
Guo R, Li S, Zhang Y, Zhang Y, Wang G, Ullah H, Ma Y, Yan Q. Dysbiotic Oral and Gut Viromes in Untreated and Treated Rheumatoid Arthritis Patients. Microbiol Spectr 2022; 10:e0034822. [PMID: 36040159 PMCID: PMC9603985 DOI: 10.1128/spectrum.00348-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is influenced by oral and gut bacteria; however, much less is known about the relationship between oral or gut viromes and RA. Here, we performed whole-oral- and whole-gut-virome analyses based on shotgun sequencing of 497 samples. A comparative analysis of the oral and gut viromes in healthy controls and untreated and treated RA patients was performed, and system interaction networks among viruses, bacteria, and RA-associated clinical indices were constructed to address the potential relationship between the virome and RA by principal-coordinate analysis, distance-based redundancy analysis, permutational multivariate analysis, Spearman correlation coefficient analysis, and random-forest model analysis. The results showed that the viromes could be profiled in dental plaque, saliva, and fecal samples, among which saliva had the highest within-sample diversity. Importantly, significantly different diversities and compositions of the oral (i.e., dental plaque and saliva) viromes were observed not only between RA patients and healthy controls but also between untreated and treated RA patients, yet there were relatively minor differences in the gut viromes. Furthermore, to understand how these viruses affected the bacteriome, a virus-bacterium interaction network was constructed from dental plaque, saliva, and fecal samples of RA patients. Additionally, some RA-associated oral taxa, including Lactococcus phage (vOTU70), Bacteroides vulgatus, Lactococcus lactis, Escherichia coli, and Neisseria elongata, were correlated with the RA-related clinical indices. Whole-virome analysis illustrated the potential role of the oral and gut viromes in affecting our body either directly or via bacteria, which characterized neglected and new candidates contributing to the development of RA. IMPORTANCE Our results demonstrated community variation among dental plaque, saliva, and fecal viromes. In oral and gut samples from untreated and treated RA patients, the perturbance of viral composition and the correlation network of microbes and RA-associated clinical indices might be involved in the pathogenicity of RA. The findings in this study expand the knowledge of the potential role of oral and gut viral communities in the development of RA and may contribute to research on correlations between viruses and other diseases.
Collapse
Affiliation(s)
- Ruochun Guo
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Puensum Genetech Institute, Wuhan, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yu Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Guangyang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hayan Ullah
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
34
|
Overgaard SH, Sørensen SB, Munk HL, Nexøe AB, Glerup H, Henriksen RH, Guldmann T, Pedersen N, Saboori S, Hvid L, Dahlerup JF, Hvas CL, Jawhara M, Andersen KW, Pedersen AK, Nielsen OH, Bergenheim F, Brodersen JB, Heitmann BL, Halldorsson TI, Holmskov U, Bygum A, Christensen R, Kjeldsen J, Ellingsen T, Andersen V. Impact of fibre and red/processed meat intake on treatment outcomes among patients with chronic inflammatory diseases initiating biological therapy: A prospective cohort study. Front Nutr 2022; 9:985732. [PMID: 36313095 PMCID: PMC9609158 DOI: 10.3389/fnut.2022.985732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/20/2022] [Indexed: 12/27/2022] Open
Abstract
Background Biologic disease-modifying drugs have revolutionised the treatment of a number of chronic inflammatory diseases (CID). However, up to 60% of the patients do not have a sufficient response to treatment and there is a need for optimization of treatment strategies. Objective To investigate if the treatment outcome of biological therapy is associated with the habitual dietary intake of fibre and red/processed meat in patients with a CID. Methods In this multicentre prospective cohort study, we consecutively enrolled 233 adult patients with a diagnosis of Crohn's Disease, Ulcerative Colitis, Rheumatoid Arthritis (RA), Axial Spondyloarthritis, Psoriatic Arthritis and Psoriasis, for whom biologic therapy was planned, over a 3 year period. Patients with completed baseline food frequency questionnaires were stratified into a high fibre/low red and processed meat exposed group (HFLM) and an unexposed group (low fibre/high red and processed meat intake = LFHM). The primary outcome was the proportion of patients with a clinical response to biologic therapy after 14-16 weeks of treatment. Results Of the 193 patients included in our primary analysis, 114 (59%) had a clinical response to biologic therapy. In the HFLM group (N = 64), 41 (64%) patients responded to treatment compared to 73 (56%) in the LFHM group (N = 129), but the difference was not statistically significant (OR: 1.48, 0.72-3.05). For RA patients however, HFLM diet was associated with a more likely clinical response (82% vs. 35%; OR: 9.84, 1.35-71.56). Conclusion Habitual HFLM intake did not affect the clinical response to biological treatment across CIDs. HFLM diet in RA patients might be associated with better odds for responding to biological treatment, but this would need confirmation in a randomised trial. Trial registration (clinicaltrials.gov), identifier [NCT03173144].
Collapse
Affiliation(s)
- Silja H. Overgaard
- The Molecular Diagnostics and Clinical Research Unit, Departement of Blood Samples, Biochemistry and Immunology, University Hospital of Southern Denmark, Aabenraa, Denmark,Section for Biostatistics and Evidence-Based Research, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark,*Correspondence: Silja H. Overgaard
| | - Signe B. Sørensen
- The Molecular Diagnostics and Clinical Research Unit, Departement of Blood Samples, Biochemistry and Immunology, University Hospital of Southern Denmark, Aabenraa, Denmark,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Heidi L. Munk
- Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Anders B. Nexøe
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark,Department of Cancer and Inflammation Research, Odense University Hospital, Odense, Denmark,Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Henning Glerup
- University Research Clinic for Innovative Patient Pathways, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Rikke H. Henriksen
- University Research Clinic for Innovative Patient Pathways, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Tanja Guldmann
- University Research Clinic for Innovative Patient Pathways, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Natalia Pedersen
- Department of Gastroenterology, Slagelse Hospital, Slagelse, Denmark
| | - Sanaz Saboori
- Department of Gastroenterology, Slagelse Hospital, Slagelse, Denmark
| | - Lone Hvid
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Jens F. Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian L. Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Mohamad Jawhara
- The Molecular Diagnostics and Clinical Research Unit, Departement of Blood Samples, Biochemistry and Immunology, University Hospital of Southern Denmark, Aabenraa, Denmark,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark,Department of Surgery, University Hospital of Southern Denmark, Aabenraa, Denmark
| | - Karina W. Andersen
- The Molecular Diagnostics and Clinical Research Unit, Departement of Blood Samples, Biochemistry and Immunology, University Hospital of Southern Denmark, Aabenraa, Denmark,Department of Surgery, University Hospital of Southern Denmark, Aabenraa, Denmark
| | - Andreas K. Pedersen
- Department of Research and Learning, University Hospital of Southern Denmark, Aabenraa, Denmark
| | - Ole H. Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Fredrik Bergenheim
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Jacob B. Brodersen
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark,Department of Gastroenterology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | - Berit L. Heitmann
- Research Unit for Dietary Studies, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark,Section for General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Thorhallur I. Halldorsson
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anette Bygum
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark,Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Robin Christensen
- Section for Biostatistics and Evidence-Based Research, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark,Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Jens Kjeldsen
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark,Research Unit of Medical Gastroenterology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Torkell Ellingsen
- Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Vibeke Andersen
- The Molecular Diagnostics and Clinical Research Unit, Departement of Blood Samples, Biochemistry and Immunology, University Hospital of Southern Denmark, Aabenraa, Denmark,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark,Open Patient Data Explorative Network, Department of Clinical Research, University of Southern, Odense, Denmark
| |
Collapse
|
35
|
Dahshan D, Gallagher N, Workman A, Perdue J, Aikens J, Schmicker T, Shuler FD. Targeting the Gut Microbiome for Inflammation and Pain Management in Orthopedic Conditions. Orthopedics 2022; 45:e226-e234. [PMID: 35700403 DOI: 10.3928/01477447-20220608-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human gut microbiome can be altered with probiotics, prebiotics, synbiotics, and anti-inflammatory foods and spices as part of an evidence-based strategy that targets inflammation and pain in common orthopedic conditions. Implementing these strategies avoids adverse effects associated with nonsteroidal anti-inflammatory drugs and minimizes the potential for opioid use. This review focuses exclusively on human trials studying the effects of gut microbiome alterations to address pain and inflammatory markers in common orthopedic conditions: osteoarthritis, rheumatoid arthritis, fractures/osteoporosis, and bone pain associated with chemotherapy. Individualized supplementation strategies can be further explored with the information in this review. [Orthopedics. 2022;45(5):e226-e234.].
Collapse
|
36
|
Ruiz-Limón P, Mena-Vázquez N, Moreno-Indias I, Manrique-Arija S, Lisbona-Montañez JM, Cano-García L, Tinahones FJ, Fernández-Nebro A. Collinsella is associated with cumulative inflammatory burden in an established rheumatoid arthritis cohort. Biomed Pharmacother 2022; 153:113518. [DOI: 10.1016/j.biopha.2022.113518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/11/2022] Open
|
37
|
Majnik J, Császár-Nagy N, Böcskei G, Bender T, Nagy G. Non-pharmacological treatment in difficult-to-treat rheumatoid arthritis. Front Med (Lausanne) 2022; 9:991677. [PMID: 36106320 PMCID: PMC9465607 DOI: 10.3389/fmed.2022.991677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Although the management of rheumatoid arthritis (RA) has improved remarkably with new pharmacological therapies, there is still a significant part of patients not reaching treatment goals. Difficult-to-treat RA (D2TRA) is a complex entity involving several factors apart from persistent inflammation, thereafter requiring a holistic management approach. As pharmacological treatment options are often limited in D2TRA, the need for non-pharmacological treatments (NPT) is even more pronounced. The mechanism of action of non-pharmacological treatments is not well investigated, NPTs seem to have a complex, holistic effect including the immune, neural and endocrine system, which can have a significant additive benefit together with targeted pharmacotherapies in the treatment of D2TRA. In this review we summarize the current knowledge on different NPT in rheumatoid arthritis, and we propose a NPT plan to follow when managing D2TRA patients.
Collapse
Affiliation(s)
- Judit Majnik
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
- *Correspondence: Judit Majnik,
| | - Noémi Császár-Nagy
- Department of Public Management and Information Technology, Faculty of Science of Public Governance and Administration, National University of Public Service, Budapest, Hungary
| | - Georgina Böcskei
- Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
| | - Tamás Bender
- Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
| | - György Nagy
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
38
|
Romão VC, Fonseca JE. Disease mechanisms in preclinical rheumatoid arthritis: A narrative review. Front Med (Lausanne) 2022; 9:689711. [PMID: 36059838 PMCID: PMC9437632 DOI: 10.3389/fmed.2022.689711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
In the last decades, the concept of preclinical rheumatoid arthritis (RA) has become established. In fact, the discovery that disease mechanisms start years before the onset of clinical RA has been one of the major recent insights in the understanding of RA pathogenesis. In accordance with the complex nature of the disease, preclinical events extend over several sequential phases. In a genetically predisposed host, environmental factors will further increase susceptibility for incident RA. In the initial steps of preclinical disease, immune disturbance mechanisms take place outside the joint compartment, namely in mucosal surfaces, such as the lung, gums or gut. Herein, the persistent immunologic response to altered antigens will lead to breach of tolerance and trigger autoimmunity. In a second phase, the immune response matures and is amplified at a systemic level, with epitope spreading and widening of the autoantibody repertoire. Finally, the synovial and bone compartment are targeted by specific autoantibodies against modified antigens, initiating a local inflammatory response that will eventually culminate in clinically evident synovitis. In this review, we discuss the elaborate disease mechanisms in place during preclinical RA, providing a broad perspective in the light of current evidence.
Collapse
Affiliation(s)
- Vasco C. Romão
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
39
|
Choo C, Mahurkar-Joshi S, Dong TS, Lenhart A, Lagishetty V, Jacobs JP, Labus JS, Jaffe N, Mayer EA, Chang L. Colonic mucosal microbiota is associated with bowel habit subtype and abdominal pain in patients with irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2022; 323:G134-G143. [PMID: 35726867 PMCID: PMC9359639 DOI: 10.1152/ajpgi.00352.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 01/31/2023]
Abstract
Mucosal microbiota differ significantly from fecal microbiota and may play a different role in the pathophysiology of irritable bowel syndrome (IBS). The aims of this study were to determine if the composition of mucosal microbiota differed between IBS, or IBS bowel habit (BH) subtypes, and healthy controls (HCs). Sigmoid colon mucosal biopsies were obtained from 97 Rome-positive patients with IBS (28% IBS-constipation, 38% IBS-diarrhea, 24% IBS-mixed, and 10% IBS-unsubtyped) and 54 HCs, from which DNA was extracted. 16S rRNA gene sequencing and microbial composition analysis were performed. Group differences in α and β diversity and taxonomic level differences were determined using linear regression while controlling for confounding variables. IBS BH subtype was associated with microbial α diversity (P = 0.0003) with significant differences seen in the mucosal microbiota of IBS-constipation versus IBS-diarrhea (P = 0.046). There were no significant differences in α or β diversity in the mucosal microbiota of IBS versus HCs (P = 0.29 and 0.93, respectively), but metagenomic profiling suggested functional differences. The relative abundance of Prevotella_9 copri within IBS was significantly correlated with increased abdominal pain (r = 0.36, P = 0.0003), which has not been previously reported in IBS. Significant differences in the mucosal microbiota were present within IBS BH subtypes but not between IBS and HCs, supporting the possibility of IBS BH subtype-specific pathogenesis. Increased Prevotella copri may contribute to symptoms in patients with IBS.NEW & NOTEWORTHY Gut mucosal microbiota differs significantly from fecal microbiota in irritable bowel syndrome (IBS) and may play a different role in its pathophysiology. Investigation of colonic mucosal microbiota in the largest cohort of patients with IBS and healthy controls accounting for confounding variables, including diet demonstrated significant differences in mucosal microbiota between IBS bowel habit subtypes but not between IBS and healthy controls. In addition, the study reported gut microbiota is associated with abdominal pain in patients with IBS.
Collapse
Affiliation(s)
- Charlene Choo
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - Swapna Mahurkar-Joshi
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California
| | - Tien S Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California
| | - Adrienne Lenhart
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California
| | - Jonathan P Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Jennifer S Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California
| | - Nancee Jaffe
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California
| |
Collapse
|
40
|
Turesson Wadell A, Bärebring L, Hulander E, Gjertsson I, Lindqvist HM, Winkvist A. Inadequate Dietary Nutrient Intake in Patients With Rheumatoid Arthritis in Southwestern Sweden: A Cross-Sectional Study. Front Nutr 2022; 9:915064. [PMID: 35799579 PMCID: PMC9255550 DOI: 10.3389/fnut.2022.915064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPatients with rheumatoid arthritis (RA), who suffer from impaired physical function and fatigue, may have difficulties with grocery shopping and preparing meals. Also, to improve symptoms, patients often experiment with diets but seldom consult a dietitian. Although this could lead to a nutritiously deprived diet, an up-to-date, thorough description of the nutrient intake in Swedish patients with RA is absent. Here, we investigated the habitual dietary energy and nutrient intake in patients with RA living in southwestern Sweden.Materials and MethodsThree-day food records performed at two time points during the ADIRA (Anti-inflammatory Diet In Rheumatoid Arthritis) trial, were used. The intake of energy and nutrients was analyzed using The Swedish Food Composition Database.ResultsA total of 62 participants (50 females, 12 males) were included in the study, where 18 participants completed one 3-day food record and 44 participants completed two 3-day food records. Median (IQR) intake of total fat was above or in the upper range of recommendations (females: 37.1 [32.5, 41.7] energy percent (E%), and males: 40.3 [37.5, 42.9] E%). Median (IQR) intake of saturated fatty acids exceeded recommendations (females: 14.9 [12.5, 17.0] E% and males: 15.4 [12.2, 17.0] E%), while median (IQR) carbohydrate and fiber intakes were below recommendations (females: 41.7 [36.3, 45.4] E% and 17.2 [12.8, 20.9] g, respectively, and males: 38.8 [35.2, 40,3] E% and 18.5 [15.7, 21.0] g, respectively). The reported intake of other macronutrients was in line with recommendations. For several micronutrients, e.g., vitamin A and D, folate, and calcium, median intake was below recommended intake. Vitamin A intake was especially low and did not reach lower intake level (LI) for 14 and 17% of females and males, respectively. For females, about 10% did not reach LI for vitamin D, calcium, and riboflavin.ConclusionWe found that patients with RA residing in southwestern Sweden reported a high intake of saturated fatty acids and low intake of fiber and several micronutrients.Clinical Trial Registration[https://clinicaltrials.gov/ct2/show/NCT02941055?term=NCT02941055&draw=2&rank=1], identifier [NCT02941055].
Collapse
Affiliation(s)
- Anna Turesson Wadell
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Anna Turesson Wadell,
| | - Linnea Bärebring
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Hulander
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helen M. Lindqvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Winkvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
41
|
Abstract
Systemic Lupus Erythematosus is a complex autoimmune disease and its etiology remains unknown. Increased gut permeability has been reported in lupus patients, yet whether it promotes or results from lupus progression is unclear. Recent studies indicate that an impaired intestinal barrier allows the translocation of bacteria and bacterial components into systemic organs, increasing immune cell activation and autoantibody generation. Indeed, induced gut leakage in a mouse model of lupus enhanced disease characteristics, including the production of anti-dsDNA antibody, serum IL-6 as well as cell apoptosis. Gut microbiota dysbiosis has been suggested to be one of the factors that decreases gut barrier integrity by outgrowing harmful bacteria and their products, or by perturbation of gut immune homeostasis, which in turn affects gut barrier integrity. The restoration of microbial balance eliminates gut leakage in mice, further confirming the role of microbiota in maintaining gut barrier integrity. In this review, we discuss recent advances on the association between microbiota dysbiosis and leaky gut, as well as their influences on the progression of lupus. The modifications on host microbiota and gut integrity may offer insights into the development of new lupus treatment.
Collapse
Affiliation(s)
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
42
|
Different Exercise Intensity Associates with Varied Disease Biomarkers of Guts-Microbiome Genera Change in Rats: Preliminary Study. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbiome, a community of microorganisms in the body, is currently used as a biomarker in many disease prognoses. Prevotella, Turicibacte, Bacteroides, Firmicutes/Bacteroidetes are frequently used as a biomarker for rheumatoid arthritis, colorectal cancer, and obesity in ordered. The amount of gut microbiota can be changed depending on various factors such as diet, lifestyle, and exercise. However, there is unclear on how the exercise is really effective to be a disease prevention. The present study aims to investigate the different exercise intensities on gut microbiome abundance changes that could be used as a disease biomarker. Eighteen Sprague-Dawley rats were arranged (n=6 per group) into 3 exercise intensity levels on treadmills including non-exercise group, high -exercise group (20 – 25 m/min for 60 min), and light-exercise group (10 – 15 m/min for 60 min). Rats were weighted every 2 days and stools were collected and preserved in DNA/RNA shield each week. The bacterial 16S rDNA of microbiome in feces samples was sequenced and analyzed. After week eighth of the interventions, from operational taxonomic unit (OTUs) abundance, we found that the relative abundance in bacterial genera in Prevotella and Firmicutes/Bacteroidetes were significantly correlated with the experiment timepoints in different exercise intensities (Pearson’s correlation, P<0.05) compare to other genera. The exercise intensities and exercise durations can affect the relative abundance in the bacteria genus which the abundance genus Prevotella and Firmicutes/Bacteroidetes could be used as a new standard biomarker in exercise as a disease prevention and exercise prescriptions. From the funding limitations, we could conclude the research results based on our data and statistic. Future research should utilize a longer investigation period.
Collapse
|
43
|
Gut–Skin Axis: Unravelling the Connection between the Gut Microbiome and Psoriasis. Biomedicines 2022; 10:biomedicines10051037. [PMID: 35625774 PMCID: PMC9138548 DOI: 10.3390/biomedicines10051037] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
Evidence has shown that gut microbiome plays a role in modulating the development of diseases beyond the gastrointestinal tract, including skin disorders such as psoriasis. The gut–skin axis refers to the bidirectional relationship between the gut microbiome and skin health. This is regulated through several mechanisms such as inflammatory mediators and the immune system. Dysregulation of microbiota has been seen in numerous inflammatory skin conditions such as atopic dermatitis, rosacea, and psoriasis. Understanding how gut microbiome are involved in regulating skin health may lead to development of novel therapies for these skin disorders through microbiome modulation, in particularly psoriasis. In this review, we will compare the microbiota between psoriasis patients and healthy control, explain the concept of gut–skin axis and the effects of gut dysbiosis on skin physiology. We will also review the current evidence on modulating gut microbiome using probiotics in psoriasis.
Collapse
|
44
|
Vijay A, Valdes AM. Role of the gut microbiome in chronic diseases: a narrative review. Eur J Clin Nutr 2022; 76:489-501. [PMID: 34584224 PMCID: PMC8477631 DOI: 10.1038/s41430-021-00991-6] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Amrita Vijay
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, The University of Nottingham, Nottingham, UK.
| | - Ana M Valdes
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, The University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| |
Collapse
|
45
|
You K, Yang L, Shen J, Liu B, Guo Y, Chen T, Li G, Lu H. Relationship between Gut Microbiota and Bone Health. Mini Rev Med Chem 2022; 22:2406-2418. [PMID: 35249483 DOI: 10.2174/1389557522666220304230920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Gut microbiota (GM) are microorganisms that live in the host gastrointestinal tract, and their abundance varies throughout the host's life. With the development of sequencing technology, the role of GM in various diseases has been increasingly elucidated. Unlike earlier studies on orthopedic diseases, this review elucidates the correlation between GM health and bone health, and discusses the potential mechanism of GM effects on host metabolism, inflammation, and ability to induce or aggravate some common orthopedic diseases such as osteoarthritis, osteoporosis, rheumatoid arthritis, etc. Finally, the prospective methods of GM manipulation and evaluation of potential GM-targeting strategies in the diagnosis and treatment of orthopedic diseases are reviewed.
Collapse
Affiliation(s)
- Ke You
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Lianjun Yang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Jun Shen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Bin Liu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Yuanqing Guo
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Tao Chen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Guowei Li
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Hai Lu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
46
|
Li Z, Nie L, Li Y, Yang L, Jin L, Du B, Yang J, Zhang X, Cui H, Luobu O. Traditional Tibetan Medicine Twenty-Five Wei'er Tea Pills Ameliorate Rheumatoid Arthritis Based on Chemical Crosstalk Between Gut Microbiota and the Host. Front Pharmacol 2022; 13:828920. [PMID: 35222043 PMCID: PMC8867225 DOI: 10.3389/fphar.2022.828920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Twenty-Five Wei'er Tea Pills (TFP), a traditional Tibetan medicine, has shown to have a promising therapeutic effect in patients with Rheumatoid arthritis (RA), as well as being safe. Nonetheless, there have been limited pharmacological studies that have explored this therapeutic option. As gut microbiota has been proven to have a critical role in the pathogenesis of RA, this study aims to explore and reveal relevant ways by which TFP interacts with the chemical crosstalk between the gut microbiome and its host. 16S rRNA sequencing, combined with un-targeted metabolomics, were conducted on collagen-induced arthritis (CIA) rats. CIA model rats treated with TFP showed significant improvement in weight gain, pathological phenomena in joints, as well as decreased serum levels of TNF-α, IL-6 and increased level of IL-4 and IL-10. Significant dysfunction in the gut microbiome and alteration in serum metabolites were observed in CIA model rats, which were restored by TFP treatment. Coherence analysis indicated that TFP modulated the pathways of histidine metabolism, phenylalanine metabolism, alanine, aspartate, glutamate metabolism, amino sugar and nucleotide sugar metabolism owing to the abundances of Lactobacillus, Bacteroides, Prevotellaceae_UCG-001 and Christensenellaceae_R-7_group in the gut microflora. The corresponding metabolites involved L-histidine, histamine, phenylethylamine, asparagine, L-aspartic acid, D-fructose 1-phosphate, D-Mannose 6-phosphate, D-Glucose 6-phosphate, and Glucose 1-phosphate. In conclusion, this study reveals the ameliorative effects of TFP on RA through the chemical crosstalk that exists between the gut microbiota and its host, and also further enriches our understandings of the pathogenesis of RA.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Basic Medicine, Medical College of Tibet University, Lhasa, China
| | - Lijuan Nie
- Department of Pharmacy, Medical College of Tibet University, Lhasa, China
| | - Yong Li
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa, China
| | - Lu Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lulu Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baozhong Du
- Department of Basic Medicine, Medical College of Tibet University, Lhasa, China
| | - Juan Yang
- Department of Basic Medicine, Medical College of Tibet University, Lhasa, China
| | - Xulin Zhang
- Second Affiliated Hospital of University of South China, Hengyang, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ouzhu Luobu
- Medical College of Tibet University, Lhasa, China
- Affiliated Fukang Hospital of Tibet University, Lhasa, China
| |
Collapse
|
47
|
Association of autoantibodies to muscarinic acetylcholine receptors with gastrointestinal symptoms and disease severity in patients with postural orthostatic tachycardia syndrome. Immunol Res 2022; 70:197-207. [PMID: 34993884 DOI: 10.1007/s12026-021-09256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/01/2021] [Indexed: 11/05/2022]
Abstract
Previous studies have reported a relationship between postural orthostatic tachycardia syndrome (POTS) and positivity for serum autoantibodies against G-protein-coupled receptors (GPCRs). However, the role of these autoantibodies in POTS is unclear. The present retrospective study analyzed the autoimmune etiology of POTS in 24 patients using a head-up tilt test to assess for any correlation between the clinical features of POTS and serum levels of autoantibodies against diverse GPCRs. In total, ten assessment items, including autonomic function tests, were analyzed. Of these, persistent, gastrointestinal symptoms and disease severity showed a significant association with the serum level of anti-muscarinic acetylcholine receptor (mAChRs) antibodies (gastrointestinal symptoms, M1, M2, M5; disease severity, M1, M3, M4, M5) [P <0.05]), while no significant association was found between the clinical features and autoantibodies against adrenergic receptors (α1, α2, β1, β2), angiotensin receptor 1, or endothelin receptor A. The patients were further divided into two groups based on the presence or absence of persistent gastrointestinal symptoms and then were characterized by the ten assessment items and neuropsychological tests, including the Wechsler Adult Intelligence Scale score and Self-Rating Depression Scale score. The results demonstrated a clear difference between the two groups in terms of disease severity, age at onset (older or younger than 20 years), and processing speed index (P <0.05), which were highly consistent with the association between these clinical features and the levels of serum anti-mAChR antibodies, particularly the anti-M5 receptor antibody. These findings suggested that anti-mAChR antibodies may play an important role in a subgroup of POTS patients with persistent gastrointestinal symptoms.
Collapse
|
48
|
Romão VC, Fonseca JE. Etiology and Risk Factors for Rheumatoid Arthritis: A State-of-the-Art Review. Front Med (Lausanne) 2021; 8:689698. [PMID: 34901047 PMCID: PMC8661097 DOI: 10.3389/fmed.2021.689698] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common systemic inflammatory rheumatic disease. It is associated with significant burden at the patient and societal level. Extensive efforts have been devoted to identifying a potential cause for the development of RA. Epidemiological studies have thoroughly investigated the association of several factors with the risk and course of RA. Although a precise etiology remains elusive, the current understanding is that RA is a multifactorial disease, wherein complex interactions between host and environmental factors determine the overall risk of disease susceptibility, persistence and severity. Risk factors related to the host that have been associated with RA development may be divided into genetic; epigenetic; hormonal, reproductive and neuroendocrine; and comorbid host factors. In turn, environmental risk factors include smoking and other airborne exposures; microbiota and infectious agents; diet; and socioeconomic factors. In the present narrative review, aimed at clinicians and researchers in the field of RA, we provide a state-of-the-art overview of the current knowledge on this topic, focusing on recent progresses that have improved our comprehension of disease risk and development.
Collapse
Affiliation(s)
- Vasco C Romão
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal.,Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal.,Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
49
|
Gargari G, Taverniti V, Del Bo' C, Bernardi S, Hidalgo-Liberona N, Meroño T, Andres-Lacueva C, Kroon PA, Cherubini A, Riso P, Guglielmetti S. Higher bacterial DNAemia can affect the impact of a polyphenol-rich dietary pattern on biomarkers of intestinal permeability and cardiovascular risk in older subjects. Eur J Nutr 2021; 61:1209-1220. [PMID: 34727202 DOI: 10.1007/s00394-021-02680-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/11/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE Aging can be characterized by increased systemic low-grade inflammation, altered gut microbiota composition, and increased intestinal permeability (IP). The intake of polyphenol-rich foods is proposed as a promising strategy to positively affect the gut microbiota-immune system-intestinal barrier (IB) axis. In this context, we tested the hypothesis that a PR-dietary intervention would affect the presence of bacterial factors in the bloodstream of older adults. METHODS We collected blood samples within a randomized, controlled, crossover intervention trial in which older volunteers (n = 51) received a polyphenol-enriched and a control diet. We quantified the presence of bacterial DNA in blood by qPCR targeting the 16S rRNA gene (16S; bacterial DNAemia). Blood DNA was taxonomically profiled via 16S sequencing. RESULTS Higher blood 16S levels were associated with higher BMI and markers of IP, inflammation, and dyslipidemia. PR-intervention did not significantly change bacterial DNAemia in the older population (P = 0.103). Nonetheless, the beneficial changes caused by the polyphenol-enriched diet were greatest in participants with higher bacterial DNAemia, specifically in markers related to IP, inflammation and dyslipidemia, and in fecal bacterial taxa. Finally, we found that the bacterial DNA detected in blood mostly belonged to γ-Proteobacteria, whose abundance significantly decreased after the polyphenol-rich diet in subjects with higher bacterial DNAemia at baseline. CONCLUSIONS This study shows that older subjects with higher bacterial DNAemia experienced a beneficial effect from a polyphenol-rich diet. Bacterial DNAemia may be a further relevant marker for the identification of target populations that could benefit more from a protective dietary treatment. REGISTRATION This trial was retrospectively registered at www.isrctn.org (ISRCTN10214981) on April 28, 2017.
Collapse
Affiliation(s)
- Giorgio Gargari
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Valentina Taverniti
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Cristian Del Bo'
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Stefano Bernardi
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), University of Barcelona, Barcelona, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Nicole Hidalgo-Liberona
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), University of Barcelona, Barcelona, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Tomás Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), University of Barcelona, Barcelona, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), University of Barcelona, Barcelona, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Antonio Cherubini
- Geriatria, Accettazione geriatrica e Centro di Ricerca Per l'invecchiamento. IRCCS INRCA, Ancona, Italy
| | - Patrizia Riso
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Simone Guglielmetti
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan, Italy.
| |
Collapse
|
50
|
Kim YM, Hussain Z, Lee YJ, Park H. Altered Intestinal Permeability and Drug Repositioning in a Post-operative Ileus Guinea Pig Model. J Neurogastroenterol Motil 2021; 27:639-649. [PMID: 34642285 PMCID: PMC8521477 DOI: 10.5056/jnm21018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
Background/Aims The aim of this study is to identify the alteration in intestinal permeability with regard to the development of post-operative ileus (POI). Moreover, we investigated drug repositioning in the treatment of POI. Methods An experimental POI model was developed using guinea pigs. To measure intestinal permeability, harvested intestinal membranes of the ileum and proximal colon was used in an Ussing chamber. To identify the mechanisms associated with altered permeability, we measured leukocyte count and expression of calprotectin, claudin-1, claudin-2, and mast cell tryptase. We compared control, POI, and drug groups (mosapride [0.3 mg/kg and 1 mg/kg, orally], glutamine [500 mg/kg, orally], or ketotifen [1 mg/kg, orally] with regard to these parameters. Results Increased permeability after surgery significantly decreased after administration of mosapride, glutamine, or ketotifen. Leukocyte counts increased in the POI group and decreased significantly after administration of mosapride (0.3 mg/kg) in the ileum, and mosapride (0.3 mg/kg and 1 mg/kg), glutamine, or ketotifen in the proximal colon. Increased expression of calprotectin after surgery decreased after administration of mosapride (0.3 mg/kg), glutamine, or ketotifen in the ileum and proximal colon, and mosapride (1 mg/kg) in the ileum. The expression of claudin-1 decreased significantly and that of claudin-2 increased after operation. After administration of glutamine, the expression of both proteins was restored. Finally, mast cell tryptase levels increased in the POI group and decreased significantly after administration of ketotifen. Conclusions The alteration in intestinal permeability is one of the factors involved in the pathogenesis of POI. We repositioned 3 drugs (mosapride, glutamine, and ketotifen) as novel therapeutic agents for POI.
Collapse
Affiliation(s)
- Young Min Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Zahid Hussain
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ju Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|