1
|
Bayram S, Ülger Y. Association of PNPLA3 rs738409 C > G and rs2896019 T > G Polymorphisms with Nonalcoholic Fatty Liver Disease in a Turkish Population from Adıyaman Province. Genet Test Mol Biomarkers 2025; 29:63-73. [PMID: 40101239 DOI: 10.1089/gtmb.2024.0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Objectives: The purpose of this study was to investigate the effect of patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 C > G and rs2896019 T > G polymorphisms on genetic susceptibility to nonalcoholic fatty liver disease (NAFLD) in a Turkish population from Adıyaman province, located in the Southeast Anatolia Region of Turkey. Materials and Methods: This hospital-based molecular epidemiological case-control study analyzed the PNPLA3 rs738409 C > G and rs2896019 T > G polymorphisms in 335 NAFLD cases and 410 healthy controls. Genotype frequencies were determined using real-time polymerase chain reaction with the TaqMan assay. The association with NAFLD susceptibility was evaluated by calculating odds ratios (ORs) and 95% confidence intervals (CIs) using an unconditional logistic regression model. Results: We found that the PNPLA3 rs738409 C > G (CC vs. GG: OR = 1.90, 95% CI = 1.05-3.44) and rs2896019 T > G (TT vs. GG: OR = 3.24, 95% CI = 1.44-7.27) polymorphisms were linked to an increased risk of NAFLD in almost all genetic models (p < 0.05). In addition, the PNPLA3 Grs738409/Grs2896019 haplotype was associated with NAFLD development (p < 0.05). Significant differences in alanine aminotransferase and aspartate aminotransferase enzyme levels were observed across the genotypes of these polymorphisms (p < 0.05). Conclusion: This is the first study on PNPLA3 single nucleotide polymorphisms (SNPs) and NAFLD in the Turkish population of Adıyaman Province, Southeast Anatolia. Our findings suggest that the PNPLA3 rs738409 C > G and rs2896019 T > G polymorphisms, along with their haplotypes, may influence NAFLD susceptibility. Further independent studies with larger sample sizes and diverse populations are needed to confirm these results.
Collapse
Affiliation(s)
- Süleyman Bayram
- Faculty of Health Sciences, Department of Public Health Nursing, Adıyaman University, Adıyaman, Turkey
| | - Yakup Ülger
- Faculty of Medicine, Department of Gastroenterology, Çukurova University, Adana, Turkey
| |
Collapse
|
2
|
Mollazadeh S, Saeedi N, Al-Asady AM, Ghorbani E, Khazaei M, Ryzhikov M, Avan A, Hassanian SM. Exploring Hepatocellular Carcinoma Pathogenesis: The Influence of Genetic Polymorphisms. Curr Pharm Des 2025; 31:432-442. [PMID: 39297458 DOI: 10.2174/0113816128327773240827062719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/23/2024] [Indexed: 02/20/2025]
Abstract
Hepatocellular carcinoma (HCC) is influenced by several factors, among which genetic polymorphisms play a key role. Polymorphisms in various genes affect key pathways involved in HCC development, including metabolism, expression of inflammatory cytokines, cell proliferation, and apoptosis regulation. These polymorphisms induce differential effects on susceptibility to HCC, disease progression, and treatment outcomes. Understanding the effect of genetic variations on HCC pathogenesis is essential to elucidate underlying mechanisms and identify potential therapeutic targets. This review explores the diverse roles of genetic polymorphisms in HCC, providing insights into the complex interplay between genetic factors and disease development.
Collapse
Affiliation(s)
- Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nikoo Saeedi
- Student Research Committee, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | | | - Elnaz Ghorbani
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Weiskirchen R, Lonardo A. PNPLA3 as a driver of steatotic liver disease: navigating from pathobiology to the clinics via epidemiology. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2024; 8:355-77. [DOI: 10.20517/jtgg.2024.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Steatotic liver disease (SLD), particularly metabolic dysfunction-associated SLD, represents a significant public health concern worldwide. Among the various factors implicated in the development and progression of this condition, the patatin-like phospholipase domain-containing protein 3 (PNPLA3 ) gene has emerged as a critical player. Variants of PNPLA3 are associated with altered lipid metabolism, leading to increased hepatic fat accumulation and subsequent inflammation and fibrosis. Understanding the role of PNPLA3 not only enhances our comprehension of the pathomechanisms driving SLD but also informs potential therapeutic strategies. The molecular mechanisms through which PNPLA3 variants contribute to lipid dysregulation and hepatocyte injury in SLD are critically discussed in the present review article. We extensively analyze clinical cohorts and population-based studies underpinning the association between PNPLA3 polymorphisms and the risk of developing SLD, and its liver-related and protean extrahepatic outcomes, in concert with other risk modifiers, notably including age, sex, and ethnicity in adults and children. We also discuss the increasingly recognized role played by the PNPLA3 gene in liver transplantation, autoimmune hepatitis, and acquired immunodeficiency syndrome. Finally, we examine the clinical implications of PNPLA3 diagnostics regarding risk stratification and targeted therapies for patients affected by SLD in the context of precision medicine approaches.
Collapse
|
4
|
Amari C, Carletti M, Yan S, Michaud M, Salvaing J. Lipid droplets degradation mechanisms from microalgae to mammals, a comparative overview. Biochimie 2024; 227:19-34. [PMID: 39299537 DOI: 10.1016/j.biochi.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Lipid droplets (LDs) are organelles composed of a hydrophobic core (mostly triacylglycerols and steryl esters) delineated by a lipid monolayer and found throughout the tree of life. LDs were seen for a long time as simple energy storage organelles but recent works highlighted their versatile roles in several fundamental cellular processes, particularly during stress response. LDs biogenesis occurs in the ER and their number and size can be dynamically regulated depending on their function, e.g. during development or stress. Understanding their biogenesis and degradation mechanisms is thus essential to better apprehend their roles. LDs degradation can occur in the cytosol by lipolysis or after their internalization into lytic compartments (e.g. vacuoles or lysosomes) using diverse mechanisms that depend on the considered organism, tissue, developmental stage or environmental condition. In this review, we summarize our current knowledge on the different LDs degradation pathways in several main phyla of model organisms, unicellular or pluricellular, photosynthetic or not (budding yeast, mammals, land plants and microalgae). We highlight the conservation of the main degradation pathways throughout evolution, but also the differences between organisms, or inside an organism between different organs. Finally, we discuss how this comparison can help to shed light on relationships between LDs degradation pathways and LDs functions.
Collapse
Affiliation(s)
- Chems Amari
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France; Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Marta Carletti
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Siqi Yan
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Juliette Salvaing
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
5
|
Hermanson JB, Tolba SA, Chrisler EA, Leone VA. Gut microbes, diet, and genetics as drivers of metabolic liver disease: a narrative review outlining implications for precision medicine. J Nutr Biochem 2024; 133:109704. [PMID: 39029595 PMCID: PMC11480923 DOI: 10.1016/j.jnutbio.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing in prevalence, impacting over a third of the global population. The advanced form of MASLD, Metabolic dysfunction-associated steatohepatitis (MASH), is on track to become the number one indication for liver transplant. FDA-approved pharmacological agents are limited for MASH, despite over 400 ongoing clinical trials, with only a single drug (resmetirom) currently on the market. This is likely due to the heterogeneous nature of disease pathophysiology, which involves interactions between highly individualized genetic and environmental factors. To apply precision medicine approaches that overcome interpersonal variability, in-depth insights into interactions between genetics, nutrition, and the gut microbiome are needed, given that each have emerged as dynamic contributors to MASLD and MASH pathogenesis. Here, we discuss the associations and molecular underpinnings of several of these factors individually and outline their interactions in the context of both patient-based studies and preclinical animal model systems. Finally, we highlight gaps in knowledge that will require further investigation to aid in successfully implementing precision medicine to prevent and alleviate MASLD and MASH.
Collapse
Affiliation(s)
- Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samar A Tolba
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Evan A Chrisler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
6
|
Xia M, Varmazyad M, Pla-Palacín I, Gavlock DC, DeBiasio R, LaRocca G, Reese C, Florentino RM, Faccioli LAP, Brown JA, Vernetti LA, Schurdak M, Stern AM, Gough A, Behari J, Soto-Gutierrez A, Taylor DL, Miedel MT. Comparison of wild-type and high-risk PNPLA3 variants in a human biomimetic liver microphysiology system for metabolic dysfunction-associated steatotic liver disease precision therapy. Front Cell Dev Biol 2024; 12:1423936. [PMID: 39324073 PMCID: PMC11422722 DOI: 10.3389/fcell.2024.1423936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a worldwide health epidemic with a global occurrence of approximately 30%. The pathogenesis of MASLD is a complex, multisystem disorder driven by multiple factors, including genetics, lifestyle, and the environment. Patient heterogeneity presents challenges in developing MASLD therapeutics, creating patient cohorts for clinical trials, and optimizing therapeutic strategies for specific patient cohorts. Implementing pre-clinical experimental models for drug development creates a significant challenge as simple in vitro systems and animal models do not fully recapitulate critical steps in the pathogenesis and the complexity of MASLD progression. To address this, we implemented a precision medicine strategy that couples the use of our liver acinus microphysiology system (LAMPS) constructed with patient-derived primary cells. We investigated the MASLD-associated genetic variant patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 (I148M variant) in primary hepatocytes as it is associated with MASLD progression. We constructed the LAMPS with genotyped wild-type and variant PNPLA3 hepatocytes, together with key non-parenchymal cells, and quantified the reproducibility of the model. We altered media components to mimic blood chemistries, including insulin, glucose, free fatty acids, and immune-activating molecules to reflect normal fasting (NF), early metabolic syndrome (EMS), and late metabolic syndrome (LMS) conditions. Finally, we investigated the response to treatment with resmetirom, an approved drug for metabolic syndrome-associated steatohepatitis (MASH), the progressive form of MASLD. This study, using primary cells, serves as a benchmark for studies using "patient biomimetic twins" constructed with patient induced pluripotent stem cell (iPSC)-derived liver cells using a panel of reproducible metrics. We observed increased steatosis, immune activation, stellate cell activation, and secretion of pro-fibrotic markers in the PNPLA3 GG variant compared to the wild-type CC LAMPS, consistent with the clinical characterization of this variant. We also observed greater resmetirom efficacy in the PNPLA3 wild-type CC LAMPS compared to the GG variant in multiple MASLD metrics, including steatosis, stellate cell activation, and the secretion of pro-fibrotic markers. In conclusion, our study demonstrates the capability of the LAMPS platform for the development of MASLD precision therapeutics, enrichment of patient cohorts for clinical trials, and optimization of therapeutic strategies for patient subgroups with different clinical traits and disease stages.
Collapse
Affiliation(s)
- Mengying Xia
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mahboubeh Varmazyad
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Iris Pla-Palacín
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dillon C. Gavlock
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard DeBiasio
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gregory LaRocca
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Celeste Reese
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rodrigo M. Florentino
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lanuza A. P. Faccioli
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jacquelyn A. Brown
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lawrence A. Vernetti
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark Schurdak
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew M. Stern
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Albert Gough
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jaideep Behari
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alejandro Soto-Gutierrez
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - D. Lansing Taylor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark T. Miedel
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Shin MR, Kim MJ, Lee JA, Lee ES, Park HJ, Roh SS. Coix Sprouts Affect Triglyceride Metabolism in Huh7 Cells and High-Fat Diet-Induced Obese Mice. J Med Food 2024; 27:728-739. [PMID: 38808469 DOI: 10.1089/jmf.2023.k.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Lipolysis is the hydrolysis of triglycerides (TGs), commonly known as fats. Intracellular lipolysis of TG is associated with adipose triglyceride lipase (ATGL), which provides fatty acids during times of metabolic need. The aim of this study was to determine whether Coix lacryma-jobi L. var. ma-yuen Stapf (Coix) sprouts (CS) can alleviate obesity through lipolysis. Overall, we investigated the potential of CS under in vitro and in vivo conditions and confirmed the underlying mechanisms. Huh7 cells were exposed to free fatty acids (FFAs), and C57BL/6J mice were fed a 60% high-fat diet. When FFA were introduced into Huh7 cells, the intracellular TG levels increased within the Huh7 cells. However, CS treatment significantly reduced intracellular TG levels. Furthermore, CS decreased the expression of Pparγ and Srebp1c mRNA and downregulated the mutant Pnpla3 (I148M) mRNA. Notably, CS significantly upregulated ATGL expression. CS treatment at a dose of 200 mg/kg/day resulted in a significant and dose-dependent decrease in body weight gain and epididymal adipose tissue weight. Specifically, the group treated with CS (200 mg/kg/day) exhibited a significant modulation of serum lipid biomarkers. In addition, CS ameliorated histological alterations in both the liver and adipose tissues. In summary, CS efficiently inhibited lipid accumulation through the activation of the lipolytic enzyme ATGL coupled with the suppression of enzymes involved in TG synthesis. Consequently, CS show promise as a potential anti-obesity agent.
Collapse
Affiliation(s)
- Mi-Rae Shin
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Min Ju Kim
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Jin A Lee
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Eun Song Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Eumseong, Republic of Korea
| | - Hae-Jin Park
- DHU Bio Convergence Testing Center, Daegu Haany University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| |
Collapse
|
8
|
Xia M, Varmazyad M, Palacin IP, Gavlock DC, Debiasio R, LaRocca G, Reese C, Florentino R, Faccioli LAP, Brown JA, Vernetti LA, Schurdak ME, Stern AM, Gough A, Behari J, Soto-Gutierrez A, Taylor DL, Miedel M. Comparison of Wild-Type and High-risk PNPLA3 variants in a Human Biomimetic Liver Microphysiology System for Metabolic Dysfunction-associated Steatotic Liver Disease Precision Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590608. [PMID: 38712213 PMCID: PMC11071381 DOI: 10.1101/2024.04.22.590608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a worldwide health epidemic with a global occurrence of approximately 30%. The pathogenesis of MASLD is a complex, multisystem disorder driven by multiple factors including genetics, lifestyle, and the environment. Patient heterogeneity presents challenges for developing MASLD therapeutics, creation of patient cohorts for clinical trials and optimization of therapeutic strategies for specific patient cohorts. Implementing pre-clinical experimental models for drug development creates a significant challenge as simple in vitro systems and animal models do not fully recapitulate critical steps in the pathogenesis and the complexity of MASLD progression. To address this, we implemented a precision medicine strategy that couples the use of our liver acinus microphysiology system (LAMPS) constructed with patient-derived primary cells. We investigated the MASLD-associated genetic variant PNPLA3 rs738409 (I148M variant) in primary hepatocytes, as it is associated with MASLD progression. We constructed LAMPS with genotyped wild type and variant PNPLA3 hepatocytes together with key non-parenchymal cells and quantified the reproducibility of the model. We altered media components to mimic blood chemistries, including insulin, glucose, free fatty acids, and immune activating molecules to reflect normal fasting (NF), early metabolic syndrome (EMS) and late metabolic syndrome (LMS) conditions. Finally, we investigated the response to treatment with resmetirom, an approved drug for metabolic syndrome-associated steatohepatitis (MASH), the progressive form of MASLD. This study using primary cells serves as a benchmark for studies using patient biomimetic twins constructed with patient iPSC-derived liver cells using a panel of reproducible metrics. We observed increased steatosis, immune activation, stellate cell activation and secretion of pro-fibrotic markers in the PNPLA3 GG variant compared to wild type CC LAMPS, consistent with the clinical characterization of this variant. We also observed greater resmetirom efficacy in PNPLA3 wild type CC LAMPS compared to the GG variant in multiple MASLD metrics including steatosis, stellate cell activation and the secretion of pro-fibrotic markers. In conclusion, our study demonstrates the capability of the LAMPS platform for the development of MASLD precision therapeutics, enrichment of patient cohorts for clinical trials, and optimization of therapeutic strategies for patient subgroups with different clinical traits and disease stages.
Collapse
|
9
|
Wongtrakul W, Charatcharoenwitthaya N, Charatcharoenwitthaya P. Lean non-alcoholic fatty liver disease and the risk of all-cause mortality: An updated meta-analysis. Ann Hepatol 2024; 29:101288. [PMID: 38278181 DOI: 10.1016/j.aohep.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/11/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
INTRODUCTION AND OBJECTIVES Cohort studies reported controversial results regarding the long-term prognosis of patients with lean non-alcoholic fatty liver disease (NAFLD) compared to non-lean NAFLD patients. This updated meta-analysis aimed to estimate the magnitude of the association between lean body mass index and all-cause mortality risk in NAFLD patients. MATERIALS AND METHODS We systematically searched the EMBASE and MEDLINE databases from inception to March 2023 to identify observational studies that reported hazard ratio (HR) for all-cause mortality of patients with lean NAFLD versus those with non-lean, overweight, or obese NAFLD. Multivariable-adjusted hazard ratios (HRs) for all-cause mortality were pooled using a random effects model. RESULTS Fourteen studies with 94,181 NAFLD patients (11.3 % with lean NAFLD) and 7,443 fatal events over a median follow-up of 8.4 years (IQR, 6.6-17.4 years) were included. Patients with lean NAFLD had a higher risk of all-cause mortality than those with non-lean NAFLD (random-effects HR 1.61, 95 % CI 1.37-1.89; I2=77 %). The magnitude of this risk remained unchanged even after stratified analysis by measures of NAFLD diagnosis, study country, cohort setting, length of follow-up, adjustment with fibrosis stage/cirrhosis, and the Newcastle-Ottawa Scale. The risk was independent of age, sex, and cardiometabolic risk factors. Sensitivity analyses did not alter these findings. The funnel plot and Egger's test revealed no significant publication bias. CONCLUSIONS This meta-analysis revealed that lean NAFLD is associated with an approximately 1.6-fold increased mortality risk. Further studies are needed to unravel the existing but complex link between lean NAFLD and an increased risk of death.
Collapse
Affiliation(s)
- Wasit Wongtrakul
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natthinee Charatcharoenwitthaya
- Division of Endocrinology and Metabolism. Department of Medicine, Faculty of Medicine Thammasat University, Pathumthani, Thailand
| | - Phunchai Charatcharoenwitthaya
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
10
|
Montero-Vallejo R, Maya-Miles D, Ampuero J, Martín F, Romero-Gómez M, Gallego-Durán R. Novel insights into metabolic-associated steatotic liver disease preclinical models. Liver Int 2024; 44:644-662. [PMID: 38291855 DOI: 10.1111/liv.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) encompasses a wide spectrum of metabolic conditions associated with an excess of fat accumulation in the liver, ranging from simple hepatic steatosis to cirrhosis and hepatocellular carcinoma. Finding appropriate tools to study its development and progression is essential to address essential unmet therapeutic and staging needs. This review discusses advantages and shortcomings of different dietary, chemical and genetic factors that can be used to mimic this disease and its progression in mice from a hepatic and metabolic point of view. Also, this review will highlight some additional factors and considerations that could have a strong impact on the outcomes of our model to end up providing recommendations and a checklist to facilitate the selection of the appropriate MASLD preclinical model based on clinical aims.
Collapse
Affiliation(s)
- Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Douglas Maya-Miles
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University Pablo Olavide-University of Seville-CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| |
Collapse
|
11
|
Tauriainen MM, Csader S, Lankinen M, Lo KK, Chen C, Lahtinen O, El-Nezamy H, Laakso M, Schwab U. PNPLA3 Genotype and Dietary Fat Modify Concentrations of Plasma and Fecal Short Chain Fatty Acids and Plasma Branched-Chain Amino Acids. Nutrients 2024; 16:261. [PMID: 38257154 PMCID: PMC10819939 DOI: 10.3390/nu16020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The GG genotype of the Patatin-like phosphatase domain-containing 3 (PNPLA3), dietary fat, short-chain fatty acids (SCFA) and branched-chain amino acids (BCAA) are linked with non-alcoholic fatty liver disease. We studied the impact of the quality of dietary fat on plasma (p) and fecal (f) SCFA and p-BCAA in men homozygous for the PNPLA3 rs738409 variant (I148M). Eighty-eight randomly assigned men (age 67.8 ± 4.3 years, body mass index 27.1 ± 2.5 kg/m2) participated in a 12-week diet intervention. The recommended diet (RD) group followed the National and Nordic nutrition recommendations for fat intake. The average diet (AD) group followed the average fat intake in Finland. The intervention resulted in a decrease in total p-SCFAs and iso-butyric acid in the RD group (p = 0.041 and p = 0.002). Valeric acid (p-VA) increased in participants with the GG genotype regardless of the diet (RD, 3.6 ± 0.6 to 7.0 ± 0.6 µmol/g, p = 0.005 and AD, 3.8 ± 0.3 to 9.7 ± 8.5 µmol/g, p = 0.015). Also, genotype relation to p-VA was seen statistically significantly in the RD group (CC: 3.7 ± 0.4 to 4.2 ± 1.7 µmol/g and GG: 3.6 ± 0.6 to 7.0 ± 0.6 µmol/g, p = 0.0026 for time and p = 0.004 for time and genotype). P-VA, unlike any other SCFA, correlated positively with plasma gamma-glutamyl transferase (r = 0.240, p = 0.025). Total p-BCAAs concentration changed in the AD group comparing PNPLA3 CC and GG genotypes (CC: 612 ± 184 to 532 ± 149 µmol/g and GG: 587 ± 182 to 590 ± 130 µmol/g, p = 0.015 for time). Valine decreased in the RD group (p = 0.009), and leucine decreased in the AD group (p = 0.043). RD decreased total fecal SCFA, acetic acid (f-AA), and butyric acid (f-BA) in those with CC genotype (p = 0.006, 0.013 and 0.005, respectively). Our results suggest that the PNPLA3 genotype modifies the effect of dietary fat modification for p-VA, total f-SCFA, f-AA and f-BA, and total p-BCAA.
Collapse
Affiliation(s)
- Milla-Maria Tauriainen
- Department of Medicine, Endoscopy Unit, Kuopio University Hospital, 70029 Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Susanne Csader
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Olli Lahtinen
- Diagnostic Imaging Centre, Department of Clinical Radiology, Kuopio University Hospital, 70029 Kuopio, Finland;
| | - Hani El-Nezamy
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland;
- Department of Medicine, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70029 Kuopio, Finland
| |
Collapse
|
12
|
Faccioli LA, Dias ML, Martins-Santos R, Paredes BD, Takiya CM, dos Santos Goldenberg RC. Resident Liver Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:23-51. [DOI: 10.1016/b978-0-443-15289-4.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Huang G, Wallace DF, Powell EE, Rahman T, Clark PJ, Subramaniam VN. Gene Variants Implicated in Steatotic Liver Disease: Opportunities for Diagnostics and Therapeutics. Biomedicines 2023; 11:2809. [PMID: 37893185 PMCID: PMC10604560 DOI: 10.3390/biomedicines11102809] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) describes a steatotic (or fatty) liver occurring as a consequence of a combination of metabolic, environmental, and genetic factors, in the absence of significant alcohol consumption and other liver diseases. NAFLD is a spectrum of conditions. Steatosis in the absence of inflammation is relatively benign, but the disease can progress into more severe forms like non-alcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma. NAFLD onset and progression are complex, as it is affected by many risk factors. The interaction between genetic predisposition and other factors partially explains the large variability of NAFLD phenotype and natural history. Numerous genes and variants have been identified through large-scale genome-wide association studies (GWAS) that are associated with NAFLD and one or more subtypes of the disease. Among them, the largest effect size and most consistent association have been patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), and membrane-bound O-acyltransferase domain containing 7 (MBOAT7) genes. Extensive in vitro and in vivo studies have been conducted on these variants to validate these associations. The focus of this review is to highlight the genetics underpinning the molecular mechanisms driving the onset and progression of NAFLD and how they could potentially be used to improve genetic-based diagnostic testing of the disease and develop personalized, targeted therapeutics.
Collapse
Affiliation(s)
- Gary Huang
- Hepatogenomics Research Group, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Daniel F. Wallace
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Metallogenomics Laboratory, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Elizabeth E. Powell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Liver Disease Research, Translational Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4101, Australia
| | - Tony Rahman
- Department of Gastroenterology and Hepatology, Prince Charles Hospital, Brisbane, QLD 4032, Australia;
| | - Paul J. Clark
- Mater Adult Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4101, Australia;
| | - V. Nathan Subramaniam
- Hepatogenomics Research Group, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| |
Collapse
|
14
|
Shi F, Zhao M, Zheng S, Zheng L, Wang H. Advances in genetic variation in metabolism-related fatty liver disease. Front Genet 2023; 14:1213916. [PMID: 37753315 PMCID: PMC10518415 DOI: 10.3389/fgene.2023.1213916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Metabolism-related fatty liver disease (MAFLD) is the most common form of chronic liver disease in the world. Its pathogenesis is influenced by both environmental and genetic factors. With the upgrading of gene screening methods and the development of human genome project, whole genome scanning has been widely used to screen genes related to MAFLD, and more and more genetic variation factors related to MAFLD susceptibility have been discovered. There are genetic variants that are highly correlated with the occurrence and development of MAFLD, and there are genetic variants that are protective of MAFLD. These genetic variants affect the development of MAFLD by influencing lipid metabolism and insulin resistance. Therefore, in-depth analysis of different mechanisms of genetic variation and targeting of specific genetic variation genes may provide a new idea for the early prediction and diagnosis of diseases and individualized precision therapy, which may be a promising strategy for the treatment of MAFLD.
Collapse
Affiliation(s)
- Fan Shi
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
15
|
Robea MA, Balmus IM, Girleanu I, Huiban L, Muzica C, Ciobica A, Stanciu C, Cimpoesu CD, Trifan A. Coagulation Dysfunctions in Non-Alcoholic Fatty Liver Disease-Oxidative Stress and Inflammation Relevance. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1614. [PMID: 37763733 PMCID: PMC10535217 DOI: 10.3390/medicina59091614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. Its incidence is progressively rising and it is possibly becoming a worldwide epidemic. NAFLD encompasses a spectrum of diseases accounting for the chronic accumulation of fat within the hepatocytes due to various causes, excluding excessive alcohol consumption. In this study, we aimed to focus on finding evidence regarding the implications of oxidative stress and inflammatory processes that form the multifaceted pathophysiological tableau in relation to thrombotic events that co-occur in NAFLD and associated chronic liver diseases. Recent evidence on the pathophysiology of NAFLD suggests that a complex pattern of multidirectional components, such as prooxidative, proinflammatory, and prothrombotic components, better explains the multiple factors that promote the mechanisms underlying the fatty acid excess and subsequent processes. As there is extensive evidence on the multi-component nature of NAFLD pathophysiology, further studies could address the complex interactions that underlie the development and progression of the disease. Therefore, this study aimed to describe possible pathophysiological mechanisms connecting the molecular impairments with the various clinical manifestations, focusing especially on the interactions among oxidative stress, inflammation, and coagulation dysfunctions. Thus, we described the possible bidirectional modulation among coagulation homeostasis, oxidative stress, and inflammation that occurs in the various stages of NAFLD.
Collapse
Affiliation(s)
- Madalina Andreea Robea
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.R.); (I.-M.B.); (C.D.C.)
| | - Ioana-Miruna Balmus
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.R.); (I.-M.B.); (C.D.C.)
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Alexandru Lapusneanu Street, No. 26, 700057 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Laura Huiban
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue, No. 8, 700506 Iasi, Romania;
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, Sector 5, 050094 Bucuresti, Romania
| | - Carol Stanciu
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue, No. 8, 700506 Iasi, Romania;
| | - Carmen Diana Cimpoesu
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.R.); (I.-M.B.); (C.D.C.)
- Department of Emergency Medicine, Emergency County Hospital “Sf. Spiridon”, 700111 Iasi, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, Blvd. Independentei 1, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue, No. 8, 700506 Iasi, Romania;
| |
Collapse
|
16
|
Schilcher K, Dayoub R, Kubitza M, Riepl J, Klein K, Buechler C, Melter M, Weiss TS. Saturated Fat-Mediated Upregulation of IL-32 and CCL20 in Hepatocytes Contributes to Higher Expression of These Fibrosis-Driving Molecules in MASLD. Int J Mol Sci 2023; 24:13222. [PMID: 37686029 PMCID: PMC10487578 DOI: 10.3390/ijms241713222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases, ranging from liver steatosis to metabolic dysfunction-associated steatohepatitis (MASH), increasing the risk of developing cirrhosis and hepatocellular carcinoma (HCC). Fibrosis within MASLD is critical for disease development; therefore, the identification of fibrosis-driving factors is indispensable. We analyzed the expression of interleukin 32 (IL-32) and chemokine CC ligand 20 (CCL20), which are known to be linked with inflammation and fibrosis, and for their expression in MASLD and hepatoma cells. RT-PCR, ELISA and Western blotting analyses were performed in both human liver samples and an in vitro steatosis model. IL-32 and CCL20 mRNA expression was increased in tissues of patients with NASH compared to normal liver tissue. Stratification for patatin-like phospholipase domain-containing protein 3 (PNPLA3) status revealed significance for IL-32 only in patients with I148M (rs738409, CG/GG) carrier status. Furthermore, a positive correlation was observed between IL-32 expression and steatosis grade, and between IL-32 as well as CCL20 expression and fibrosis grade. Treatment with the saturated fatty acid palmitic acid (PA) induced mRNA and protein expression of IL-32 and CCL20 in hepatoma cells. This induction was mitigated by the substitution of PA with monounsaturated oleic acid (OA), suggesting the involvement of oxidative stress. Consequently, analysis of stress-induced signaling pathways showed the activation of Erk1/2 and p38 MAPK, which led to an enhanced expression of IL-32 and CCL20. In conclusion, cellular stress in liver epithelial cells induced by PA enhances the expression of IL-32 and CCL20, both known to trigger inflammation and fibrosis.
Collapse
Affiliation(s)
- Katharina Schilcher
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Rania Dayoub
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marion Kubitza
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Jakob Riepl
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, 70376 Stuttgart, Germany
| | - Christa Buechler
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Melter
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas S. Weiss
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
- Center for Liver Cell Research, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
17
|
Gou Y, Wang L, Zhao J, Xu X, Xu H, Xie F, Wang Y, Feng Y, Zhang J, Zhang Y. PNPLA3-I148M Variant Promotes the Progression of Liver Fibrosis by Inducing Mitochondrial Dysfunction. Int J Mol Sci 2023; 24:ijms24119681. [PMID: 37298640 DOI: 10.3390/ijms24119681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 polymorphism (I148M) is strongly associated with non-alcoholic steatohepatitis and advanced fibrosis; however, the underlying mechanisms remain largely unknown. In this study, we investigated the effect of PNPLA3-I148M on the activation of hepatic stellate cell line LX-2 and the progression of liver fibrosis. Immunofluorescence staining and enzyme-linked immunosorbent assay were used to detect lipid accumulation. The expression levels of fibrosis, cholesterol metabolism, and mitochondria-related markers were measured via real-time PCR or western blotting. Electron microscopy was applied to analyze the ultrastructure of the mitochondria. Mitochondrial respiration was measured by a Seahorse XFe96 analyzer. PNPLA3-I148M significantly promoted intracellular free cholesterol aggregation in LX-2 cells by decreasing cholesterol efflux protein (ABCG1) expression; it subsequently induced mitochondrial dysfunction characterized by attenuated ATP production and mitochondrial membrane potential, elevated ROS levels, caused mitochondrial structural damage, altered the oxygen consumption rate, and decreased the expression of mitochondrial-function-related proteins. Our results demonstrated for the first time that PNPLA3-I148M causes mitochondrial dysfunction of LX-2 cells through the accumulation of free cholesterol, thereby promoting the activation of LX-2 cells and the development of liver fibrosis.
Collapse
Affiliation(s)
- Yusong Gou
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Lifei Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinhan Zhao
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaoyi Xu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hangfei Xu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Fang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Yanjun Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jing Zhang
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing 100069, China
| |
Collapse
|
18
|
Lulić AM, Katalinić M. The PNPLA family of enzymes: characterisation and biological role. Arh Hig Rada Toksikol 2023; 74:75-89. [PMID: 37357879 PMCID: PMC10291501 DOI: 10.2478/aiht-2023-74-3723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/01/2023] [Accepted: 05/01/2023] [Indexed: 06/27/2023] Open
Abstract
This paper brings a brief review of the human patatin-like phospholipase domain-containing protein (PNPLA) family. Even though it consists of only nine members, their physiological roles and mechanisms of their catalytic activity are not fully understood. However, the results of a number of knock-out and gain- or loss-of-function research models suggest that these enzymes have an important role in maintaining the homeostasis and integrity of organelle membranes, in cell growth, signalling, cell death, and the metabolism of lipids such as triacylglycerol, phospholipids, ceramides, and retinyl esters. Research has also revealed a connection between PNPLA family member mutations or irregular catalytic activity and the development of various diseases. Here we summarise important findings published so far and discuss their structure, localisation in the cell, distribution in the tissues, specificity for substrates, and their potential physiological role, especially in view of their potential as drug targets.
Collapse
Affiliation(s)
- Ana-Marija Lulić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| |
Collapse
|
19
|
Wijarnpreecha K, Li F, Lundin SK, Suresh D, Song MW, Tao C, Chen VL, Lok ASF. Higher mortality among lean patients with non-alcoholic fatty liver disease despite fewer metabolic comorbidities. Aliment Pharmacol Ther 2023; 57:1014-1027. [PMID: 36815445 PMCID: PMC10682563 DOI: 10.1111/apt.17424] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) can develop in individuals who are not overweight. Whether lean persons with NAFLD have lower mortality and lower incidence of cirrhosis, cardiovascular diseases (CVD), diabetes mellitus (DM) and cancer than overweight/obese persons with NAFLD remains inconclusive. We compared mortality and incidence of cirrhosis, CVD, DM and cancer between lean versus non-lean persons with NAFLD. METHODS This is a retrospective study of adults with NAFLD in a single centre from 2012 to 2021. Primary outcomes were mortality and new diagnosis of cirrhosis, CVD, DM and cancer. Outcomes were modelled using competing risk analysis and Cox proportional hazards regression analysis. RESULTS A total of 18,594 and 13,420 patients were identified for cross-sectional and longitudinal analysis respectively: approximately 11% lean, 25% overweight, 28% class 1 obesity and 35% class 2-3 obesity. The median age was 51.0 years, 54.6% were women. The median follow-up was 49.3 months. Lean patients had lower prevalence of metabolic diseases at baseline and lower incidence of cirrhosis and DM than non-lean patients and no difference in CVD, any cancer or obesity-related cancer during follow-up. However, lean patients had significantly higher mortality with incidence per 1000 person-years of 16.67, 10.11, 7.37 and 8.99, respectively, in lean, overweight, obesity class 1 and obesity class 2-3 groups respectively. CONCLUSIONS Lean patients with NAFLD had higher mortality despite lower incidence of cirrhosis and DM, and similar incidence of CVD and cancer and merit similar if not more attention as non-lean patients with NAFLD.
Collapse
Affiliation(s)
- Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Fang Li
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sori K. Lundin
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Deepika Suresh
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Michael W. Song
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Cui Tao
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Vincent L. Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Anna S. F. Lok
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Zhao J, Lee K, Toh HC, Lam KP, Neo SY. Unravelling the role of obesity and lipids during tumor progression. Front Pharmacol 2023; 14:1163160. [PMID: 37063269 PMCID: PMC10097918 DOI: 10.3389/fphar.2023.1163160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
The dysregulation of the biochemical pathways in cancer promotes oncogenic transformations and metastatic potential. Recent studies have shed light on how obesity and altered lipid metabolism could be the driving force for tumor progression. Here, in this review, we focus on liver cancer and discuss how obesity and lipid-driven metabolic reprogramming affect tumor, immune, and stroma cells in the tumor microenvironment and, in turn, how alterations in these cells synergize to influence and contribute to tumor growth and dissemination. With increasing evidence on how obesity exacerbates inflammation and immune tolerance, we also touch upon the impact of obesity and altered lipid metabolism on tumor immune escape.
Collapse
Affiliation(s)
- Junzhe Zhao
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Keene Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Kong Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi Yong Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Oncology and Pathology, Karolinska Institute, Solna, Sweden
- *Correspondence: Shi Yong Neo,
| |
Collapse
|
21
|
Nachit M, Montemagno C, Clerc R, Ahmadi M, Briand F, Bacot S, Devoogdt N, Serdjebi C, Ghezzi C, Sulpice T, Broisat A, Leclercq IA, Perret P. Molecular imaging of liver inflammation using an anti-VCAM-1 nanobody. Nat Commun 2023; 14:1062. [PMID: 36828835 PMCID: PMC9957989 DOI: 10.1038/s41467-023-36776-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
To date, a biopsy is mandatory to evaluate parenchymal inflammation in the liver. Here, we evaluated whether molecular imaging of vascular cell adhesion molecule-1 (VCAM-1) could be used as an alternative non-invasive tool to detect liver inflammation in the setting of chronic liver disease. To do so, we radiolabeled anti-VCAM-1 nanobody (99mTc-cAbVCAM1-5) and used single-photon emission computed tomography (SPECT) to quantify liver uptake in preclinical models of non-alcoholic fatty liver disease (NAFLD) with various degree of liver inflammation: wild-type mice fed a normal or high-fat diet (HFD), FOZ fed a HFD and C57BL6/J fed a choline-deficient or -supplemented HFD. 99mTc-cAbVCAM1-5 uptake strongly correlates with liver histological inflammatory score and with molecular inflammatory markers. The diagnostic power to detect any degree of liver inflammation is excellent (AUROC 0.85-0.99). These data build the rationale to investigate 99mTc-cAbVCAM1-5 imaging to detect liver inflammation in patients with NAFLD, a largely unmet medical need.
Collapse
Affiliation(s)
- Maxime Nachit
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | - Romain Clerc
- Univ. Grenoble Alpes, INSERM, LRB, 38000, Grenoble, France
| | - Mitra Ahmadi
- Univ. Grenoble Alpes, INSERM, LRB, 38000, Grenoble, France
| | | | - Sandrine Bacot
- Univ. Grenoble Alpes, INSERM, LRB, 38000, Grenoble, France
| | - Nick Devoogdt
- Department of Medical Imaging, Laboratory of in vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | - Alexis Broisat
- Univ. Grenoble Alpes, INSERM, LRB, 38000, Grenoble, France.
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Pascale Perret
- Univ. Grenoble Alpes, INSERM, LRB, 38000, Grenoble, France
| |
Collapse
|
22
|
Soremekun C, Machipisa T, Soremekun O, Pirie F, Oyekanmi N, Motala AA, Chikowore T, Fatumo S. Multivariate GWAS analysis reveals loci associated with liver functions in continental African populations. PLoS One 2023; 18:e0280344. [PMID: 36809439 PMCID: PMC9942994 DOI: 10.1371/journal.pone.0280344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/27/2022] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Liver disease is any condition that causes liver damage and inflammation and may likely affect the function of the liver. Vital biochemical screening tools that can be used to evaluate the health of the liver and help diagnose, prevent, monitor, and control the development of liver disease are known as liver function tests (LFT). LFTs are performed to estimate the level of liver biomarkers in the blood. Several factors are associated with differences in concentration levels of LFTs in individuals, such as genetic and environmental factors. The aim of our study was to identify genetic loci associated with liver biomarker levels with a shared genetic basis in continental Africans, using a multivariate genome-wide association study (GWAS) approach. METHODS We used two distinct African populations, the Ugandan Genome Resource (UGR = 6,407) and South African Zulu cohort (SZC = 2,598). The six LFTs used in our analysis were: aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total bilirubin, and albumin. A multivariate GWAS of LFTs was conducted using the exact linear mixed model (mvLMM) approach implemented in GEMMA and the resulting P-values were presented in Manhattan and quantile-quantile (QQ) plots. First, we attempted to replicate the findings of the UGR cohort in SZC. Secondly, given that the genetic architecture of UGR is different from that of SZC, we further undertook similar analysis in the SZC and discussed the results separately. RESULTS A total of 59 SNPs reached genome-wide significance (P = 5x10-8) in the UGR cohort and with 13 SNPs successfully replicated in SZC. These included a novel lead SNP near the RHPN1 locus (lead SNP rs374279268, P-value = 4.79x10-9, Effect Allele Frequency (EAF) = 0.989) and a lead SNP at the RGS11 locus (lead SNP rs148110594, P-value = 2.34x10-8, EAF = 0.928). 17 SNPs were significant in the SZC, while all the SNPs fall within a signal on chromosome 2, rs1976391 mapped to UGT1A was identified as the lead SNP within this region. CONCLUSIONS Using multivariate GWAS method improves the power to detect novel genotype-phenotype associations for liver functions not found with the standard univariate GWAS in the same dataset.
Collapse
Affiliation(s)
- Chisom Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- Department of Immunology and Molecular Biology, College of Health Science, Makerere University, Kampala, Uganda
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Tafadzwa Machipisa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Department of Medicine, Hatter Institute for Cardiovascular Diseases Research in Africa and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Ontario, Canada
| | - Opeyemi Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Fraser Pirie
- Department of Diabetes and Endocrinology, University of KwaZulu-Natal, Durban, South Africa
| | - Nashiru Oyekanmi
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Ayesha A. Motala
- Department of Diabetes and Endocrinology, University of KwaZulu-Natal, Durban, South Africa
| | - Tinashe Chikowore
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Pediatrics, MRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Segun Fatumo
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
23
|
Suceveanu AI, Micu SI, Stoian AP, Mazilu L, Gherghina V, Parepa IR, Suceveanu AP. Genetics and Epigenetics in Nonalcoholic Fatty Liver Disease. ESSENTIALS OF NON-ALCOHOLIC FATTY LIVER DISEASE 2023:59-71. [DOI: 10.1007/978-3-031-33548-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Gheorghe L, Iacob S. Nonalcoholic Fatty Liver Disease Within Other Causes of Chronic Liver Diseases. ESSENTIALS OF NON-ALCOHOLIC FATTY LIVER DISEASE 2023:133-147. [DOI: 10.1007/978-3-031-33548-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Srinivasan S, Maurya MR, Ramachandran S, Fahy E, Subramaniam S. MetGENE: gene-centric metabolomics information retrieval tool. Gigascience 2022; 12:giad089. [PMID: 37983749 PMCID: PMC10659118 DOI: 10.1093/gigascience/giad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/14/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Biomedical research often involves contextual integration of multimodal and multiomic data in search of mechanisms for improved diagnosis, treatment, and monitoring. Researchers need to access information from diverse sources, comprising data in various and sometimes incongruent formats. The downstream processing of the data to decipher mechanisms by reconstructing networks and developing quantitative models warrants considerable effort. RESULTS MetGENE is a knowledge-based, gene-centric data aggregator that hierarchically retrieves information about the gene(s), their related pathway(s), reaction(s), metabolite(s), and metabolomic studies from standard data repositories under one dashboard to enable ease of access through centralization of relevant information. We note that MetGENE focuses only on those genes that encode for proteins directly associated with metabolites. All other gene-metabolite associations are beyond the current scope of MetGENE. Further, the information can be contextualized by filtering by species, anatomy (tissue), and condition (disease or phenotype). CONCLUSIONS MetGENE is an open-source tool that aggregates metabolite information for a given gene(s) and presents them in different computable formats (e.g., JSON) for further integration with other omics studies. MetGENE is available at https://bdcw.org/MetGENE/index.php.
Collapse
Affiliation(s)
- Sumana Srinivasan
- University of California San Diego, Department of Bioengineering, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Mano R Maurya
- University of California San Diego, Department of Bioengineering, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Srinivasan Ramachandran
- University of California San Diego, Department of Bioengineering, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Eoin Fahy
- University of California San Diego, Department of Bioengineering, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Shankar Subramaniam
- University of California San Diego, Department of Bioengineering, 9500 Gilman Dr, La Jolla, CA 92093, United States
- University of California San Diego, San Diego Supercomputer Center, Department of Computer Science and Engineering, Department of Cellular and Molecular Medicine, 9500 Gilman Drive, La Jolla, CA 92093, United States
| |
Collapse
|
26
|
Riazi K, Swain MG, Congly SE, Kaplan GG, Shaheen AA. Race and Ethnicity in Non-Alcoholic Fatty Liver Disease (NAFLD): A Narrative Review. Nutrients 2022; 14:4556. [PMID: 36364818 PMCID: PMC9658200 DOI: 10.3390/nu14214556] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant public health concern worldwide with a complex etiology attributed to behavioural, environmental, and genetic causes. The worldwide prevalence of NAFLD is estimated to be 32.4% and constantly rising. Global data, however, indicate considerable heterogeneity among studies for both NAFLD prevalence and incidence. Identifying variables that affect the estimated epidemiological measures is essential to all stakeholders, including patients, researchers, healthcare providers, and policymakers. Besides helping with the research on disease etiology, it helps to identify individuals at risk of the disease, which in turn will outline the focus of the preventive measures and help to fittingly tailor individualized treatments, targeted prevention, screening, or treatment programs. Several studies suggest differences in the prevalence and severity of NAFLD by race or ethnicity, which may be linked to differences in lifestyle, diet, metabolic comorbidity profile, and genetic background, among others. Race/ethnicity research is essential as it can provide valuable information regarding biological and genetic differences among people with similar cultural, dietary, and geographical backgrounds. In this review, we examined the existing literature on race/ethnicity differences in susceptibility to NAFLD and discussed the contributing variables to such differences, including diet and physical activity, the comorbidity profile, and genetic susceptibility. We also reviewed the limitations of race/ethnicity studies in NAFLD.
Collapse
Affiliation(s)
- Kiarash Riazi
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Mark G. Swain
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Stephen E. Congly
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Gilaad G. Kaplan
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Abdel-Aziz Shaheen
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
27
|
Vachher M, Bansal S, Kumar B, Yadav S, Burman A. Deciphering the role of aberrant DNA methylation in NAFLD and NASH. Heliyon 2022; 8:e11119. [PMID: 36299516 PMCID: PMC9589178 DOI: 10.1016/j.heliyon.2022.e11119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is mounting incessantly, and it is emerging as the most frequent cause of chronic and end stage liver disorders. It is the starting point for a range of conditions from simple steatosis to more progressive nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Dysregulation of insulin secretion and dyslipidemia due to obesity and other lifestyle variables are the primary contributors to establishment of NAFLD. Onset and progression of NAFLD is orchestrated by an interplay of metabolic environment with genetic and epigenetic factors. An incompletely understood mechanism of NAFLD progression has greatly hampered the progress in identification of novel prognostic and therapeutic strategies. Emerging evidence suggests altered DNA methylation pattern as a key determinant of NAFLD pathogenesis. Environmental and lifestyle factors can manipulate DNA methylation patterns in a reversible manner, which manifests as changes in gene expression. In this review we attempt to highlight the importance of DNA methylation in establishment and progression of NAFLD. Development of novel diagnostic, prognostic and therapeutic strategies centered around DNA methylation signatures and modifiers has also been explored.
Collapse
|
28
|
Rauff B, Alzahrani B, Chudhary SA, Nasir B, Mahmood S, Bhinder MA, Faheem M, Amar A. PNPLA3 and TM6SF2 genetic variants and hepatic fibrosis and cirrhosis in Pakistani chronic hepatitis C patients: a genetic association study. BMC Gastroenterol 2022; 22:401. [PMID: 36028802 PMCID: PMC9414345 DOI: 10.1186/s12876-022-02469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/02/2022] [Indexed: 01/10/2023] Open
Abstract
Background The present study investigates if common missense functional variants p.I148M and p.E167K in PNPLA3 and TM6SF2 genes, respectively, associate with development of hepatic fibrosis and cirrhosis in a geographically novel cohort of Pakistani chronic hepatitis C (CHC) patients.
Methods In total, 502 Pakistani CHC patients [242 males, median age 40 years, 220 with significant hepatic fibrosis, including 114 with cirrhosis] were genotyped for PNPLA3 and TM6SF2 variants using TaqMan genotyping assays. Associations between genotypes, biochemical and clinical parameters were evaluated. Results Genotypic distributions for PNPLA3 and TM6SF2 polymorphisms conformed to Hardy–Weinberg equilibrium and did not associate with fibrosis grades ≥ F2 or cirrhosis in any of the genetic models tested (all p = > 0.05). PNPLA3 and TM6SF2 variants did not modulate baseline characteristics and serum markers of liver injury in CHC patients. Similarly, increasing number of risk alleles of PNPLA3 and TM6SF2 polymorphisms had no trend effect on serum liver enzyme activities or proportion of CHC patients with significant or advanced fibrosis or cirrhosis (p = > 0.05). The same trend of no association with hepatic fibrosis or cirrhosis persisted in the multivariate logistic regression models adjusting for age, gender, body mass index and HCV viral load (p = > 0.05). Conclusions PNPLA3 and TM6SF2 variants do not appear to modulate development of hepatic fibrosis or cirrhosis in present CHC patients of Pakistani origin, and may be of more relevance in liver pathology involving abnormalities in hepatic fat accumulation. These results also reflect the divergent associations observed for different genetic modifiers of hepatic fibrosis and cirrhosis in distinct ethnicities.
Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02469-6.
Collapse
Affiliation(s)
- Bisma Rauff
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia.,Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Narowal Campus, Narowal, Pakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Shafiq A Chudhary
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Bilal Nasir
- Department of Medicine, Lahore General Hospital, Lahore, Pakistan
| | - Saqib Mahmood
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Munir Ahmad Bhinder
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ali Amar
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
29
|
Patsenker E, Thangapandi VR, Knittelfelder O, Palladini A, Hefti M, Beil-Wagner J, Rogler G, Buch T, Shevchenko A, Hampe J, Stickel F. The Pnpla3 Variant I148M Reveals Protective Effects Towards Hepatocellular Carcinoma in Mice via Restoration of Omega-3 Polyunsaturated Fats. J Nutr Biochem 2022; 108:109081. [PMID: 35691594 DOI: 10.1016/j.jnutbio.2022.109081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/02/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022]
Abstract
Alcohol consumption and high caloric diet are leading causes of progressive fatty liver disease. Genetic variant rs738409 in patatin-like phospholipase domain-containing protein 3 (PNPLA3 rs738409 C>G) has been repeatedly described as one of the major risk loci for alcoholic liver cirrhosis (ALC) and hepatocellular carcinoma (HCC) in humans, however, the mechanism behind this association is incompletely understood. We generated mice carrying the rs738409 variant (PNPLA3 I148M) in order to detect genotype-phenotype relationships in mice upon chow and alcohol-high fat/high sugar diet (EtOH/WD). We could clearly demonstrate that the presence of rs738409 per se is sufficient to induce spontaneous development of steatosis after one year in mice on a chow diet, whereas in the setting of unhealthy diet feeding, PNPLA3 I148M did not affect hepatic inflammation or fibrosis, but induced a striking lipid remodelling, microvesicular steatosis and protected from HCC formation. Using shot gun lipidomics, we detected a striking restoration of reduced long chain-polyunsaturated fatty acids (LC-PUFA)-containing TGs, docosapentaenoic acid (C22:5 n3) and omega-3-derived eicosanoids (5-HEPE, 20-HEPE, 19,20-EDP, 21-HDHA) in PNPLA3 I148M mice upon EtOH/WD. At the molecular level, PNPLA3 I148M modulated enzymes for fatty acid and TG transport and metabolism. These findings suggest (dietary) lipids as an important and independent driver of hepatic tumorigenesis. Genetic variant in PNPLA3 exerted protective effects in mice, conflicting with findings in humans. Species-related differences in physiology and metabolism should be taken into account when modelling unhealthy human lifestyle, as genetic mouse models may not always allow for translation of insight gained in humans.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Department of Gastroenterology and Hepatology, University of Zurich, 8091 Zurich, Switzerland.
| | - Veera Raghavan Thangapandi
- Department of Gastroenterology and Hepatology, Universitätsklinikum Dresden, 01304 Dresden, Germany; Center for Regenerative Therapies, TU Dresden, 01307 Dresden, Germany
| | - Oskar Knittelfelder
- Max Plank Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Michaela Hefti
- Department of Gastroenterology and Hepatology, University of Zurich, 8091 Zurich, Switzerland
| | - Jane Beil-Wagner
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University of Zurich, 8091 Zurich, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Andrej Shevchenko
- Max Plank Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jochen Hampe
- Department of Gastroenterology and Hepatology, Universitätsklinikum Dresden, 01304 Dresden, Germany; Center for Regenerative Therapies, TU Dresden, 01307 Dresden, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
30
|
Baicalin ameliorates alcohol-induced hepatic steatosis by suppressing SREBP1c elicited PNPLA3 competitive binding to ATGL. Arch Biochem Biophys 2022; 722:109236. [DOI: 10.1016/j.abb.2022.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022]
|
31
|
Dinarello A, Tesoriere A, Martini P, Fontana CM, Volpato D, Badenetti L, Terrin F, Facchinello N, Romualdi C, Carnevali O, Dalla Valle L, Argenton F. Zebrafish Mutant Lines Reveal the Interplay between nr3c1 and nr3c2 in the GC-Dependent Regulation of Gene Transcription. Int J Mol Sci 2022; 23:2678. [PMID: 35269817 PMCID: PMC8910431 DOI: 10.3390/ijms23052678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Glucocorticoids mainly exert their biological functions through their cognate receptor, encoded by the nr3c1 gene. Here, we analysed the glucocorticoids mechanism of action taking advantage of the availability of different zebrafish mutant lines for their receptor. The differences in gene expression patterns between the zebrafish gr knock-out and the grs357 mutant line, in which a point mutation prevents binding of the receptor to the hormone-responsive elements, reveal an intricate network of GC-dependent transcription. Particularly, we show that Stat3 transcriptional activity mainly relies on glucocorticoid receptor GR tethering activity: several Stat3 target genes are induced upon glucocorticoid GC exposure both in wild type and in grs357/s357 larvae, but not in gr knock-out zebrafish. To understand the interplay between GC, their receptor, and the mineralocorticoid receptor, which is evolutionarily and structurally related to the GR, we generated an mr knock-out line and observed that several GC-target genes also need a functional mineralocorticoid receptor MR to be correctly transcribed. All in all, zebrafish mutants and transgenic models allow in vivo analysis of GR transcriptional activities and interactions with other transcription factors such as MR and Stat3 in an in-depth and rapid way.
Collapse
Affiliation(s)
- Alberto Dinarello
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Annachiara Tesoriere
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Camilla Maria Fontana
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Davide Volpato
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Lorenzo Badenetti
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Francesca Terrin
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Nicola Facchinello
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Chiara Romualdi
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Francesco Argenton
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| |
Collapse
|
32
|
Di Ciaula A, Bonfrate L, Krawczyk M, Frühbeck G, Portincasa P. Synergistic and Detrimental Effects of Alcohol Intake on Progression of Liver Steatosis. Int J Mol Sci 2022; 23:ijms23052636. [PMID: 35269779 PMCID: PMC8910376 DOI: 10.3390/ijms23052636] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the most common liver disorders worldwide and the major causes of non-viral liver cirrhosis in the general population. In NAFLD, metabolic abnormalities, obesity, and metabolic syndrome are the driving factors for liver damage with no or minimal alcohol consumption. ALD refers to liver damage caused by excess alcohol intake in individuals drinking more than 5 to 10 daily units for years. Although NAFLD and ALD are nosologically considered two distinct entities, they show a continuum and exert synergistic effects on the progression toward liver cirrhosis. The current view is that low alcohol use might also increase the risk of advanced clinical liver disease in NAFLD, whereas metabolic factors increase the risk of cirrhosis among alcohol risk drinkers. Therefore, special interest is now addressed to individuals with metabolic abnormalities who consume small amounts of alcohol or who binge drink, for the role of light-to-moderate alcohol use in fibrosis progression and clinical severity of the liver disease. Evidence shows that in the presence of NAFLD, there is no liver-safe limit of alcohol intake. We discuss the epidemiological and clinical features of NAFLD/ALD, aspects of alcohol metabolism, and mechanisms of damage concerning steatosis, fibrosis, cumulative effects, and deleterious consequences which include hepatocellular carcinoma.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School—Piazza Giulio Cesare 11, 70124 Bari, Italy; (A.D.C.); (L.B.)
| | - Leonilde Bonfrate
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School—Piazza Giulio Cesare 11, 70124 Bari, Italy; (A.D.C.); (L.B.)
| | - Marcin Krawczyk
- Department of Medicine II Saarland University Medical Center, Saarland University, 66424 Homburg, Germany;
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Gema Frühbeck
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 31009 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31009 Pamplona, Spain
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School—Piazza Giulio Cesare 11, 70124 Bari, Italy; (A.D.C.); (L.B.)
- Correspondence:
| |
Collapse
|
33
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 345] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
34
|
PNPLA3 rs738409 associates with alcoholic liver cirrhosis but not with serum levels of IL6, IL10, IL8 or CCL2 in the Russian population. Ann Hepatol 2021; 20:100247. [PMID: 32871288 DOI: 10.1016/j.aohep.2020.08.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Polymorphic variant rs738409 within the PNPLA3 gene associates with alcoholic liver cirrhosis (ALC) in heavy drinkers of various ancestry but has not yet been established in the Russian population characterized by high incidence of ALC. PNPLA3 rs738409 involvement in the inflammatory process has been proposed as one of the mechanisms of liver dysfunction. Relationship between the PNPLA3 polymorphism and the biochemical markers of inflammation in patients with ALC remains unclear. The current study revealed the association between the rs738409 polymorphism, liver cirrhosis and serum cytokines in heavy drinkers in the Russian population. MATERIALS AND METHODS The serum levels of IL6, IL10, IL8, and CCL2 along with PNPLA3 rs738409 polymorphism were determined in heavy drinkers (AA, n=71) and heavy drinkers with diagnosed liver cirrhosis (ALC, n=110). All of the recruited individuals were Caucasians and belonged to the Russian population. RESULTS Heavy drinkers carrying PNPLA3 rs738409 CG or CG+GG genotypes as compared with CC genotype carriers or G allele as compared with C allele carriers had significant risk of ALC. In ALC levels of interleukins and CCL2 increased as compared with AA. PNPLA3 rs738409 CC carriers had lower cirrhosis stage as compared with CG+GG carriers, however there were no differences of IL6, IL10, IL8 or CCL2 levels between G allele carriers and non-carriers in heavy drinkers. CONCLUSION Thus, in the Russian population heavy drinkers carrying PNPLA3 rs738409 G allele are at higher risk of ALC, however the presence of rs738409 allele does not influence the serum cytokine levels.
Collapse
|
35
|
Gavril OI, Arhire LI, Gavrilescu O, Dranga M, Barboi O, Gavril RS, Popescu R, Cijevschi Prelipcean C, Trifan AV, Mihai C. Role of PNPLA3 in the Assessment and Monitoring of Hepatic Steatosis and Fibrosis in Patients with Chronic Hepatitis C Infection Who Achieved a Sustained Virologic Response. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111153. [PMID: 34833371 PMCID: PMC8618282 DOI: 10.3390/medicina57111153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
Background and Objectives: Hepatic diseases are an important public health problem. All patients with chronic hepatitis C virus (HCV) infection receive treatment, regardless of hepatic fibrosis severity. However, evaluation of hepatic fibrosis and steatosis is still useful in assessing evolution, prognosis and monitoring of hepatic disease, especially after treatment with direct-acting antivirals (DAAs). The aim of this study was to assess the link between patatin-like phospholipase domain-containing 3 (PNPLA3) polymorphism and the degree of hepatic steatosis and fibrosis in patients with chronic HCV infection, as well as changes in steatosis and fibrosis three monthsafter obtaining a sustained viral response (SVR). Materials and Methods:Ourstudy included 100 patients with chronic hepatitis C (CHC) infection and compensated cirrhosis who received DAA treatment and who were evaluated using Fibromax prior to and 3 months after SVR. The influence of PNPLA3 (CC, CG, GG) genotype among these patients on the degree of post-treatment regression of steatosis and fibrosis was assessed. Results: Regression was noticed in the degree of both hepatic steatosis and hepatic fibrosis post-DAA treatment (three months after SVR). Analysis of the correlation between PNPLA3 genotype and fibrosis indicated that the average level of fibrosis (F) before DAA treatment was higher in patients with the GG genotype than in patients with the CC or CG genotype. Three months after SVR, the average level of fibrosis decreased; however, it remained significantly increased in GG subjects compared to that in CC or CG patients. The degree of hepatic steatosis before treatment was not significantly different among patients with different PNPLA3 genotypes, and no significant correlations were observed three months after SVR. Conclusions: The genetic variants of PNPLA3 influence the evolution of hepatic fibrosis. The GG subtype plays an important role in the degree of hepatic fibrosis both before and after treatment (three months after SVR)and could be a prognostic marker for assessment of post-SVR evolution.
Collapse
Affiliation(s)
- Oana Irina Gavril
- Department of Medical Specialties (I), Faculty of Medicine, “Grigore T. Popa” Universityof Medicine and Pharmacy, 700111 Iași, Romania; (O.I.G.); (O.G.); (M.D.); (O.B.); (C.C.P.); (A.-V.T.); (C.M.)
| | - Lidia Iuliana Arhire
- Department of Medical Specialties (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iași, Romania;
| | - Otilia Gavrilescu
- Department of Medical Specialties (I), Faculty of Medicine, “Grigore T. Popa” Universityof Medicine and Pharmacy, 700111 Iași, Romania; (O.I.G.); (O.G.); (M.D.); (O.B.); (C.C.P.); (A.-V.T.); (C.M.)
| | - Mihaela Dranga
- Department of Medical Specialties (I), Faculty of Medicine, “Grigore T. Popa” Universityof Medicine and Pharmacy, 700111 Iași, Romania; (O.I.G.); (O.G.); (M.D.); (O.B.); (C.C.P.); (A.-V.T.); (C.M.)
| | - Oana Barboi
- Department of Medical Specialties (I), Faculty of Medicine, “Grigore T. Popa” Universityof Medicine and Pharmacy, 700111 Iași, Romania; (O.I.G.); (O.G.); (M.D.); (O.B.); (C.C.P.); (A.-V.T.); (C.M.)
| | - Radu Sebastian Gavril
- Department of Medical Specialties (I), Faculty of Medicine, “Grigore T. Popa” Universityof Medicine and Pharmacy, 700111 Iași, Romania; (O.I.G.); (O.G.); (M.D.); (O.B.); (C.C.P.); (A.-V.T.); (C.M.)
- Correspondence: ; Tel.: +40-74-040-4797
| | - Roxana Popescu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iași, Romania;
| | - Cristina Cijevschi Prelipcean
- Department of Medical Specialties (I), Faculty of Medicine, “Grigore T. Popa” Universityof Medicine and Pharmacy, 700111 Iași, Romania; (O.I.G.); (O.G.); (M.D.); (O.B.); (C.C.P.); (A.-V.T.); (C.M.)
| | - Anca-Victorita Trifan
- Department of Medical Specialties (I), Faculty of Medicine, “Grigore T. Popa” Universityof Medicine and Pharmacy, 700111 Iași, Romania; (O.I.G.); (O.G.); (M.D.); (O.B.); (C.C.P.); (A.-V.T.); (C.M.)
| | - Catalina Mihai
- Department of Medical Specialties (I), Faculty of Medicine, “Grigore T. Popa” Universityof Medicine and Pharmacy, 700111 Iași, Romania; (O.I.G.); (O.G.); (M.D.); (O.B.); (C.C.P.); (A.-V.T.); (C.M.)
| |
Collapse
|
36
|
Siphepho PY, Liu YT, Shabangu CS, Huang JF, Huang CF, Yeh ML, Yu ML, Wang SC. The Impact of Steatosis on Chronic Hepatitis C Progression and Response to Antiviral Treatments. Biomedicines 2021; 9:1491. [PMID: 34680608 PMCID: PMC8533513 DOI: 10.3390/biomedicines9101491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic derangement is characteristic in patients with hepatitis C virus (HCV) infection. Aside from established liver injury, various extrahepatic metabolic disorders impact the natural history of the disease, clinical outcomes, and the efficacy of antiviral therapy. The presence of steatosis, recently redefined as metabolic-associated fatty liver disease (MAFLD), is a common feature in HCV-infected patients, induced by host and/or viral factors. Most chronic HCV-infected (CHC) patients have mild steatosis within the periportal region of the liver with an estimated prevalence of 40% to 86%. Indeed, this is higher than the 19% to 50% prevalence observed in patients with other chronic liver diseases such as chronic hepatitis B (CHB). The histological manifestations of HCV infection are frequently observed in genotype 3 (G-3), where relative to other genotypes, the prevalence and severity of steatosis is also increased. Steatosis may independently influence the treatment efficacy of either interferon-based or interferon-free antiviral regimens. This review aimed to provide updated evidence of the prevalence and risk factors behind HCV-associated steatosis, as well as explore the impact of steatosis on HCV-related outcomes.
Collapse
Affiliation(s)
- Phumelele Yvonne Siphepho
- Program in Tropical Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.Y.S.); (M.-L.Y.)
- Center for Cancer Research, Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (J.-F.H.)
| | - Yi-Ting Liu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ciniso Sylvester Shabangu
- Center for Cancer Research, Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (J.-F.H.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jee-Fu Huang
- Center for Cancer Research, Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (J.-F.H.)
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Lung Yu
- Program in Tropical Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.Y.S.); (M.-L.Y.)
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chi Wang
- Center for Cancer Research, Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (J.-F.H.)
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
37
|
Caligiuri A, Gentilini A, Pastore M, Gitto S, Marra F. Cellular and Molecular Mechanisms Underlying Liver Fibrosis Regression. Cells 2021; 10:cells10102759. [PMID: 34685739 PMCID: PMC8534788 DOI: 10.3390/cells10102759] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury of different etiologies may result in hepatic fibrosis, a scar formation process consisting in altered deposition of extracellular matrix. Progression of fibrosis can lead to impaired liver architecture and function, resulting in cirrhosis and organ failure. Although fibrosis was previous thought to be an irreversible process, recent evidence convincingly demonstrated resolution of fibrosis in different organs when the cause of injury is removed. In the liver, due to its high regenerative ability, the extent of fibrosis regression and reversion to normal architecture is higher than in other tissues, even in advanced disease. The mechanisms of liver fibrosis resolution can be recapitulated in the following main points: removal of injurious factors causing chronic hepatic damage, elimination, or inactivation of myofibroblasts (through various cell fates, including apoptosis, senescence, and reprogramming), inactivation of inflammatory response and induction of anti-inflammatory/restorative pathways, and degradation of extracellular matrix. In this review, we will discuss the major cellular and molecular mechanisms underlying the regression of fibrosis/cirrhosis and the potential therapeutic approaches aimed at reversing the fibrogenic process.
Collapse
|
38
|
Zhu B, Chan SL, Li J, Li K, Wu H, Cui K, Chen H. Non-alcoholic Steatohepatitis Pathogenesis, Diagnosis, and Treatment. Front Cardiovasc Med 2021; 8:742382. [PMID: 34557535 PMCID: PMC8452937 DOI: 10.3389/fcvm.2021.742382] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
There has been a rise in the prevalence of non-alcohol fatty liver disease (NAFLD) due to the popularity of western diets and sedentary lifestyles. One quarter of NAFLD patients is diagnosed with non-alcoholic steatohepatitis (NASH), with histological evidence not only of fat accumulation in hepatocytes but also of liver cell injury and death due to long-term inflammation. Severe NASH patients have increased risks of cirrhosis and liver cancer. In this review, we discuss the pathogenesis and current methods of diagnosis for NASH, and current status of drug development for this life-threatening liver disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
39
|
Han E, Kim MK, Jang BK, Kim HS. Albuminuria Is Associated with Steatosis Burden in Patients with Type 2 Diabetes Mellitus and Nonalcoholic Fatty Liver Disease. Diabetes Metab J 2021; 45:698-707. [PMID: 33517613 PMCID: PMC8497925 DOI: 10.4093/dmj.2020.0118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study aimed to investigate the association between hepatic steatosis burden and albuminuria in Korean patients with type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD). METHODS We recruited 100 patients with both T2DM and NAFLD, but without chronic kidney disease. Albuminuria was defined as a spot urinary albumin-to-creatinine ratio (ACR) ≥30 mg/g. Transient elastography was performed, and the steatosis burden was quantified by controlled attenuation parameter (CAP) with significant steatosis defined as CAP >302 dB/m. RESULTS The prevalence of significant steatosis and albuminuria was 56.0% and 21.0%, respectively. Subjects with significant steatosis were significantly younger and had a significantly shorter duration of T2DM, greater waist circumference, and higher body mass index, total cholesterol, triglyceride, and low density lipoprotein cholesterol levels, than subjects without severe NAFLD (all P<0.05). Albuminuria was higher in patients with significant steatosis than in patients without significant steatosis (32.1% vs. 6.8%, P=0.002). Urinary ACR showed a correlation with CAP (r=0.331, P=0.001), and multiple linear regression analysis revealed a significant association between a high degree of albuminuria and high CAP value (r=0.321, P=0.001). Additionally, multivariate logistic regression analysis demonstrated the independent association between urinary ACR and significant steatosis after adjustment for confounding factors including age, body mass index, duration of T2DM, low density lipoprotein level, and renin-angiotensin system blocker use (odds ratio, 1.88; 95% confidence interval, 1.31 to 2.71; P=0.001). CONCLUSION T2DM patients with NAFLD had a higher prevalence of albuminuria, which correlated with their steatosis burden.
Collapse
Affiliation(s)
- Eugene Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Mi Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Byoung Kuk Jang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Hye Soon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
- Corresponding author: Hye Soon Kim https://orcid.org/0000-0001-6298-3506 Department of Internal Medicine, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea E-mail:
| |
Collapse
|
40
|
Murray JK, Long J, Liu L, Singh S, Pruitt D, Ollmann M, Swearingen E, Hardy M, Homann O, Wu B, Holder JR, Sham K, Herberich B, Lo MC, Dou H, Shkumatov A, Florio M, Rulifson IC. Identification and Optimization of a Minor Allele-Specific Small Interfering RNA to Prevent PNPLA3 I148M-Driven Nonalcoholic Fatty Liver Disease. Nucleic Acid Ther 2021; 31:324-340. [PMID: 34297902 DOI: 10.1089/nat.2021.0026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human genome wide association studies confirm the association of the rs738409 single nucleotide polymorphism (SNP) in the gene encoding protein patatin like phospholipase domain containing 3 (PNPLA3) with nonalcoholic fatty liver disease (NAFLD); the presence of the resulting mutant PNPLA3 I148M protein is a driver of nonalcoholic steatohepatitis (NASH). While Pnpla3-deficient mice do not display an adverse phenotype, the safety of knocking down endogenous wild type PNPLA3 in humans remains unknown. To expand the scope of a potential targeted NAFLD therapeutic to both homozygous and heterozygous PNPLA3 rs738409 populations, we sought to identify a minor allele-specific small interfering RNA (siRNA). Limiting our search to SNP-spanning triggers, a series of chemically modified siRNA were tested in vitro for activity and selectivity toward PNPLA3 rs738409 mRNA. Conjugation of the siRNA to a triantennary N-acetylgalactosamine (GalNAc) ligand enabled in vivo screening using adeno-associated virus to overexpress human PNPLA3I148M versus human PNPLA3I148I in mouse livers. Structure-activity relationship optimization yielded potent and minor allele-specific compounds that achieved high levels of mRNA and protein knockdown of human PNPLA3I148M but not PNPLA3I148I. Testing of the minor allele-specific siRNA in PNPLA3I148M-expressing mice fed a NASH-inducing diet prevented PNPLA3I148M-driven disease phenotypes, thus demonstrating the potential of a precision medicine approach to treating NAFLD.
Collapse
Affiliation(s)
- Justin K Murray
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Jason Long
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Lei Liu
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Shivani Singh
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Danielle Pruitt
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Michael Ollmann
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Elissa Swearingen
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Miki Hardy
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Oliver Homann
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Bin Wu
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Jerry Ryan Holder
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Kelvin Sham
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Brad Herberich
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Mei-Chu Lo
- Therapeutic Discovery, Amgen Research, South San Francisco, California, USA
| | - Hui Dou
- Therapeutic Discovery, Amgen Research, South San Francisco, California, USA
| | - Artem Shkumatov
- Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, California, USA
| | - Monica Florio
- Cardiometabolic Disorders, Amgen Research, Thousand Oaks, California, USA
| | - Ingrid C Rulifson
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| |
Collapse
|
41
|
Alharshawi K, Aloman C. Murine Models of Alcohol Consumption: Imperfect but Still Potential Source of Novel Biomarkers and Therapeutic Drug Discovery for Alcoholic Liver Disease. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:177-181. [PMID: 34327512 PMCID: PMC8315577 DOI: 10.33696/immunology.3.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Animal models of liver disease are fundamentally important to strengthen our knowledge and understanding of human liver diseases. Murine models of alcohol consumption are utilized to investigate alcoholic liver injury to develop new therapeutic targets. The well accepted and commonly used murine models of chronic alcohol consumption are Meadows-Cook (MC) and Lieber-DeCarli (LD). LD model is based on an isocaloric high-fat liquid diet, but mice under the MC model fed on a regular chow diet with alcohol added to the drinking water. Alcoholic liver disease in real world is frequently diagnosed in patients with obesity and high fat intake, mirroring LD diet. The overlap of the specific effect of ethanol and obesity is difficult to differentiate by clinician and pathologist. In this commentary, we will further discuss our research findings comparing MC and LD as a tool to dissect early alcohol versus increased fat intake detrimental effects on the liver. The critical analysis of these two models could provide evidence to differentiate the specific impact of alcohol on the liver from the combined influence of alcohol and diet. Ultimately, these investigations could uncover potential biomarkers and therapeutic targets for personalized type of alcoholic liver injury.
Collapse
Affiliation(s)
- Khaled Alharshawi
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush Medical College, Chicago, IL 60612, USA
| | - Costica Aloman
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush Medical College, Chicago, IL 60612, USA
| |
Collapse
|
42
|
Hammoudeh SM, Hammoudeh AM, Bhamidimarri PM, Mahboub B, Halwani R, Hamid Q, Rahmani M, Hamoudi R. Insight into molecular mechanisms underlying hepatic dysfunction in severe COVID-19 patients using systems biology. World J Gastroenterol 2021; 27:2850-2870. [PMID: 34135558 PMCID: PMC8173390 DOI: 10.3748/wjg.v27.i21.2850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/30/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19), a pandemic contributing to more than 105 million cases and more than 2.3 million deaths worldwide, was described to be frequently accompanied by extrapulmonary manifestations, including liver dysfunction. Liver dysfunction and elevated liver enzymes were observed in about 53% of COVID-19 patients. AIM To gain insight into transcriptional abnormalities in liver tissue of severe COVID-19 patients that may result in liver dysfunction. METHODS The transcriptome of liver autopsy samples from severe COVID-19 patients against those of non-COVID donors was analyzed. Differentially expressed genes were identified from normalized RNA-seq data and analyzed for the enrichment of functional clusters and pathways. The differentially expressed genes were then compared against the genetic signatures of liver diseases including cirrhosis, fibrosis, non-alcoholic fatty liver disease (NAFLD), and hepatitis A/B/C. Gene expression of some differentially expressed genes was assessed in the blood samples of severe COVID-19 patients with liver dysfunction using qRT-PCR. RESULTS Analysis of the differential transcriptome of the liver tissue of severe COVID-19 patients revealed a significant upregulation of transcripts implicated in tissue remodeling including G-coupled protein receptors family genes, DNAJB1, IGF2, EGFR, and HDGF. Concordantly, the differential transcriptome of severe COVID-19 liver tissues substantially overlapped with the disease signature of liver diseases characterized with pathological tissue remodeling (liver cirrhosis, Fibrosis, NAFLD, and hepatitis A/B/C). Moreover, we observed a significant suppression of transcripts implicated in metabolic pathways as well as mitochondrial function, including cytochrome P450 family members, ACAD11, CIDEB, GNMT, and GPAM. Consequently, drug and xenobiotics metabolism pathways are significantly suppressed suggesting a decrease in liver detoxification capacity. In correspondence with the RNA-seq data analysis, we observed a significant upregulation of DNAJB1 and HSP90AB1 as well as significant downregulation of CYP39A1 in the blood plasma of severe COVID-19 patients with liver dysfunction. CONCLUSION Severe COVID-19 patients appear to experience significant transcriptional shift that may ensue tissue remodeling, mitochondrial dysfunction and lower hepatic detoxification resulting in the clinically observed liver dysfunction.
Collapse
Affiliation(s)
- Sarah Musa Hammoudeh
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Arabella Musa Hammoudeh
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- General Surgery Department, Tawam Hospital, SEHA, Al-Ain 15258, United Arab Emirates
| | - Poorna Manasa Bhamidimarri
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Bassam Mahboub
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Rashid Hospital, 315 Umm Hurair Second, Dubai Health Authority, Dubai 4545, United Arab Emirates
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Quebec H4A 3J1, Montreal, Canada
| | - Mohamed Rahmani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London W1W 7TY, United Kingdom
| |
Collapse
|
43
|
Bai R, Rebelo A, Kleeff J, Sunami Y. Identification of prognostic lipid droplet-associated genes in pancreatic cancer patients via bioinformatics analysis. Lipids Health Dis 2021; 20:58. [PMID: 34078402 PMCID: PMC8171034 DOI: 10.1186/s12944-021-01476-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Pancreatic cancer is the fourth leading cause of cancer deaths in the United States both in females and in males, and is projected to become the second deadliest cancer by 2030. The overall 5-year survival rate remains at around 10%. Cancer metabolism and specifically lipid metabolism plays an important role in pancreatic cancer progression and metastasis. Lipid droplets can not only store and transfer lipids, but also act as molecular messengers, and signaling factors. As lipid droplets are implicated in reprogramming tumor cell metabolism and in invasion and migration of pancreatic cancer cells, we aimed to identify lipid droplet-associated genes as prognostic markers in pancreatic cancer. METHODS We performed a literature search on review articles related to lipid droplet-associated proteins. To select relevant lipid droplet-associated factors, bioinformatics analysis on the GEPIA platform (data are publicly available) was carried out for selected genes to identify differential expression in pancreatic cancer versus healthy pancreatic tissues. Differentially expressed genes were further analyzed regarding overall survival of pancreatic cancer patients. RESULTS 65 factors were identified as lipid droplet-associated factors. Bioinformatics analysis of 179 pancreatic cancer samples and 171 normal pancreatic tissue samples on the GEPIA platform identified 39 deferentially expressed genes in pancreatic cancer with 36 up-regulated genes (ACSL3, ACSL4, AGPAT2, BSCL2, CAV1, CAV2, CAVIN1, CES1, CIDEC, DGAT1, DGAT2, FAF2, G0S2, HILPDA, HSD17B11, ICE2, LDAH, LIPE, LPCAT1, LPCAT2, LPIN1, MGLL, NAPA, NCEH1, PCYT1A, PLIN2, PLIN3, RAB5A, RAB7A, RAB8A, RAB18, SNAP23, SQLE, VAPA, VCP, VMP1) and 3 down-regulated genes (FITM1, PLIN4, PLIN5). Among 39 differentially expressed factors, seven up-regulated genes (CAV2, CIDEC, HILPDA, HSD17B11, NCEH1, RAB5A, and SQLE) and two down-regulation genes (BSCL2 and FITM1) were significantly associated with overall survival of pancreatic cancer patients. Multivariate Cox regression analysis identified CAV2 as the only independent prognostic factor. CONCLUSIONS Through bioinformatics analysis, we identified nine prognostic relevant differentially expressed genes highlighting the role of lipid droplet-associated factors in pancreatic cancer.
Collapse
Affiliation(s)
- Rubing Bai
- Department of Visceral, Vascular and Endocrine Surgery, University Medical Center, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Artur Rebelo
- Department of Visceral, Vascular and Endocrine Surgery, University Medical Center, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, University Medical Center, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, University Medical Center, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
44
|
Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular Mechanisms of Liver Fibrosis. Front Pharmacol 2021; 12:671640. [PMID: 34025430 PMCID: PMC8134740 DOI: 10.3389/fphar.2021.671640] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is a central organ in the human body, coordinating several key metabolic roles. The structure of the liver which consists of the distinctive arrangement of hepatocytes, hepatic sinusoids, the hepatic artery, portal vein and the central vein, is critical for its function. Due to its unique position in the human body, the liver interacts with components of circulation targeted for the rest of the body and in the process, it is exposed to a vast array of external agents such as dietary metabolites and compounds absorbed through the intestine, including alcohol and drugs, as well as pathogens. Some of these agents may result in injury to the cellular components of liver leading to the activation of the natural wound healing response of the body or fibrogenesis. Long-term injury to liver cells and consistent activation of the fibrogenic response can lead to liver fibrosis such as that seen in chronic alcoholics or clinically obese individuals. Unidentified fibrosis can evolve into more severe consequences over a period of time such as cirrhosis and hepatocellular carcinoma. It is well recognized now that in addition to external agents, genetic predisposition also plays a role in the development of liver fibrosis. An improved understanding of the cellular pathways of fibrosis can illuminate our understanding of this process, and uncover potential therapeutic targets. Here we summarized recent aspects in the understanding of relevant pathways, cellular and molecular drivers of hepatic fibrosis and discuss how this knowledge impact the therapy of respective disease.
Collapse
Affiliation(s)
- Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Komal Chouhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
45
|
Secure and optimized detection of PNPLA3 rs738409 genotype by an improved PCR-restriction fragment length polymorphism method. Biotechniques 2021; 70:345-349. [PMID: 33956487 DOI: 10.2144/btn-2020-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The PNPLA3 reference single-nucleotide polymorphism rs738409 has been identified as a predisposing factor for nonalcoholic fatty liver disease. A simple method based on PCR and restriction fragment length polymorphism (RFLP) analysis had been published to detect the nonpathogenic allele PNPLA3 rs738409 variant. The presence of the pathogenic variant was deduced by the indigestibility of the corresponding PCR product with BtsCI recognizing the nonpathogenic allele. However, one cannot exclude that an enzymatic reaction does not occur for other, more trivial, reasons. For safe and secure detection of the pathogenic PNPLA3 rs738409, we have further developed the PCR-restriction fragment length polymorphism method by adding a second restriction enzyme digest, clearly identifying the correct PNPLA3 alleles and in particular the pathogenic variant.
Collapse
|
46
|
Acharya C, Bajaj JS. Chronic Liver Diseases and the Microbiome-Translating Our Knowledge of Gut Microbiota to Management of Chronic Liver Disease. Gastroenterology 2021; 160:556-572. [PMID: 33253686 PMCID: PMC9026577 DOI: 10.1053/j.gastro.2020.10.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Chronic liver disease is reaching epidemic proportions with the increasing prevalence of obesity, nonalcoholic liver disease, and alcohol overuse worldwide. Most patients are not candidates for liver transplantation even if they have end-stage liver disease. There is growing evidence of a gut microbial basis for many liver diseases, therefore, better diagnostic, prognostic, and therapeutic approaches based on knowledge of gut microbiota are needed. We review the questions that need to be answered to successfully translate our knowledge of the intestinal microbiome and the changes associated with liver disease into practice.
Collapse
|
47
|
Jonas W, Schürmann A. Genetic and epigenetic factors determining NAFLD risk. Mol Metab 2020; 50:101111. [PMID: 33160101 PMCID: PMC8324682 DOI: 10.1016/j.molmet.2020.101111] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatic steatosis is a common chronic liver disease that can progress into more severe stages of NAFLD or promote the development of life-threatening secondary diseases for some of those affected. These include the liver itself (nonalcoholic steatohepatitis or NASH; fibrosis and cirrhosis, and hepatocellular carcinoma) or other organs such as the vessels and the heart (cardiovascular disease) or the islets of Langerhans (type 2 diabetes). In addition to elevated caloric intake and a sedentary lifestyle, genetic and epigenetic predisposition contribute to the development of NAFLD and the secondary diseases. SCOPE OF REVIEW We present data from genome-wide association studies (GWAS) and functional studies in rodents which describe polymorphisms identified in genes relevant for the disease as well as changes caused by altered DNA methylation and gene regulation via specific miRNAs. The review also provides information on the current status of the use of genetic and epigenetic factors as risk markers. MAJOR CONCLUSION With our overview we provide an insight into the genetic and epigenetic landscape of NAFLD and argue about the applicability of currently defined risk scores for risk stratification and conclude that further efforts are needed to make the scores more usable and meaningful.
Collapse
Affiliation(s)
- Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; University of Potsdam, Institute of Nutritional Sciences, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
48
|
Playing Jekyll and Hyde-The Dual Role of Lipids in Fatty Liver Disease. Cells 2020; 9:cells9102244. [PMID: 33036257 PMCID: PMC7601321 DOI: 10.3390/cells9102244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lipids play Jekyll and Hyde in the liver. On the one hand, the lipid-laden status of hepatic stellate cells is a hallmark of healthy liver. On the other hand, the opposite is true for lipid-laden hepatocytes—they obstruct liver function. Neglected lipid accumulation in hepatocytes can progress into hepatic fibrosis, a condition induced by the activation of stellate cells. In their resting state, these cells store substantial quantities of fat-soluble vitamin A (retinyl esters) in large lipid droplets. During activation, these lipid organelles are gradually degraded. Hence, treatment of fatty liver disease is treading a tightrope—unsophisticated targeting of hepatic lipid accumulation might trigger problematic side effects on stellate cells. Therefore, it is of great importance to gain more insight into the highly dynamic lipid metabolism of hepatocytes and stellate cells in both quiescent and activated states. In this review, part of the special issue entitled “Cellular and Molecular Mechanisms underlying the Pathogenesis of Hepatic Fibrosis 2020”, we discuss current and highly versatile aspects of neutral lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease (NAFLD).
Collapse
|
49
|
Zoller H, Wagner S, Schaefer B. Fatty Liver Disease: Metabolic, Genetic, or Both? Hepatol Commun 2020; 4:1239-1241. [PMID: 32923830 PMCID: PMC7471425 DOI: 10.1002/hep4.1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 11/11/2022] Open
Affiliation(s)
- Heinz Zoller
- Department of Medicine Medical University of Innsbruck Innsbruck Austria
- Christian Doppler Laboratory of Iron and Phosphate Biology Medical University of Innsbruck Innsbruck Austria
| | - Sonja Wagner
- Department of Medicine Medical University of Innsbruck Innsbruck Austria
- Christian Doppler Laboratory of Iron and Phosphate Biology Medical University of Innsbruck Innsbruck Austria
| | - Benedikt Schaefer
- Department of Medicine Medical University of Innsbruck Innsbruck Austria
- Christian Doppler Laboratory of Iron and Phosphate Biology Medical University of Innsbruck Innsbruck Austria
| |
Collapse
|