1
|
Schaudinn C, Rydzewski K, Meister B, Grunow R, Heuner K. Francisella tularensis subsp. holarctica wild-type is able to colonize natural aquatic ex vivo biofilms. Front Microbiol 2023; 14:1113412. [PMID: 36860486 PMCID: PMC9969146 DOI: 10.3389/fmicb.2023.1113412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Biofilms are a matrix-associated lifestyle of microbial communities, often enabling survivability and persistence of such bacteria. The objective of this study was to investigate the survival of the wild-type strain A-271 of Francisella tularensis subsp. holarctica (Fth) in a natural aquatic ex vivo biofilm. To that purpose, we allowed Fth A-271 to produce its own biofilm on solid surfaces but also to colonize naturally formed biofilms from aquatic habitats, which were infected with Francisella in the laboratory. The survival rates of the bacteria in biofilms were compared to those of planktonic bacteria as a function of the employed culture condition. It could be shown by light- and electron microscopy that Fth is able to form a complex, matrix-associated biofilm. The biofilm form of Francisella showed longer cultivability on agar plates in natural water when compared to planktonic (free-living) bacteria. Be it as a part of the existing ex vivo biofilm or free-floating above as planktonic bacteria, more than 80% of Francisella were not only able to survive under these conditions for 28 days, but even managed to establish microcolonies and areas with their own exclusive biofilm architecture within the ex vivo biofilm. Here, we can demonstrate for the first time that a Francisella tularensis wild-type strain (Type B) is able to successfully colonize an aquatic multi-species ex vivo biofilm. It is worthwhile to speculate that Fth might become more persistent in the environment when it forms its own biofilm or integrates in an existing one. Multi-species biofilms have been shown to be more resistant against stress compared to single-species biofilms. This may have an important impact on the long-term survival of Francisella in aquatic habitats and infection cycles in nature.
Collapse
Affiliation(s)
- Christoph Schaudinn
- Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - Kerstin Rydzewski
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany,Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Beate Meister
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Roland Grunow
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Klaus Heuner
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany,Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany,*Correspondence: Klaus Heuner, ✉
| |
Collapse
|
2
|
Mlynek KD, Lopez CT, Fetterer DP, Williams JA, Bozue JA. Phase Variation of LPS and Capsule Is Responsible for Stochastic Biofilm Formation in Francisella tularensis. Front Cell Infect Microbiol 2022; 11:808550. [PMID: 35096655 PMCID: PMC8795689 DOI: 10.3389/fcimb.2021.808550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
Biofilms have been established as an important lifestyle for bacteria in nature as these structured communities often enable survivability and persistence in a multitude of environments. Francisella tularensis is a facultative intracellular Gram-negative bacterium found throughout much of the northern hemisphere. However, biofilm formation remains understudied and poorly understood in F. tularensis as non-substantial biofilms are typically observed in vitro by the clinically relevant subspecies F. tularensis subsp. tularensis and F. tularensis subsp. holarctica (Type A and B, respectively). Herein, we report conditions under which robust biofilm development was observed in a stochastic, but reproducible manner in Type A and B isolates. The frequency at which biofilm was observed increased temporally and appeared switch-like as progeny from the initial biofilm quickly formed biofilm in a predictable manner regardless of time or propagation with fresh media. The Type B isolates used for this study were found to more readily switch on biofilm formation than Type A isolates. Additionally, pH was found to function as an environmental checkpoint for biofilm initiation independently of the heritable cellular switch. Multiple colony morphologies were observed in biofilm positive cultures leading to the identification of a particular subset of grey variants that constitutively produce biofilm. Further, we found that constitutive biofilm forming isolates delay the onset of a viable non-culturable state. In this study, we demonstrate that a robust biofilm can be developed by clinically relevant F. tularensis isolates, provide a mechanism for biofilm initiation and examine the potential role of biofilm formation.
Collapse
Affiliation(s)
- Kevin D. Mlynek
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Christopher T. Lopez
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - David P. Fetterer
- Division of Biostatistics, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Janice A. Williams
- Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Joel A. Bozue
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| |
Collapse
|
3
|
Herrero-Cófreces S, Mougeot F, Lambin X, Luque-Larena JJ. Linking Zoonosis Emergence to Farmland Invasion by Fluctuating Herbivores: Common Vole Populations and Tularemia Outbreaks in NW Spain. Front Vet Sci 2021; 8:698454. [PMID: 34458354 PMCID: PMC8397442 DOI: 10.3389/fvets.2021.698454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
The expansion and intensification of agriculture are driving profound changes in ecosystems worldwide, favoring the (re)emergence of many human infectious diseases. Muroid rodents are a key host group for zoonotic infectious pathogens and frequently invade farming environments, promoting disease transmission and spillover. Understanding the role that fluctuating populations of farm dwelling rodents play in the epidemiology of zoonotic diseases is paramount to improve prevention schemes. Here, we review a decade of research on the colonization of farming environments in NW Spain by common voles (Microtus arvalis) and its public health impacts, specifically periodic tularemia outbreaks in humans. The spread of this colonizing rodent was analogous to an invasion process and was putatively triggered by the transformation and irrigation of agricultural habitats that created a novel terrestrial-aquatic interface. This irruptive rodent host is an effective amplifier for the Francisella tularensis bacterium during population outbreaks, and human tularemia episodes are tightly linked in time and space to periodic (cyclic) variations in vole abundance. Beyond the information accumulated to date, several key knowledge gaps about this pathogen-rodent epidemiological link remain unaddressed, namely (i) did colonizing vole introduce or amplified pre-existing F. tularensis? (ii) which features of the “Francisella—Microtus” relationship are crucial for the epidemiology of tularemia? (iii) how virulent and persistent F. tularensis infection is for voles under natural conditions? and (iv) where does the bacterium persist during inter-epizootics? Future research should focus on more integrated, community-based approaches in order to understand the details and dynamics of disease circulation in ecosystems colonized by highly fluctuating hosts.
Collapse
Affiliation(s)
- Silvia Herrero-Cófreces
- Dpto. Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Universidad de Valladolid, Palencia, Spain
| | - François Mougeot
- Grupo de Gestión de Recursos Cinegéticos y Fauna Silvestre, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Juan José Luque-Larena
- Dpto. Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Universidad de Valladolid, Palencia, Spain
| |
Collapse
|
4
|
Shevtsov V, Kairzhanova A, Shevtsov A, Shustov A, Kalendar R, Abdrakhmanov S, Lukhnova L, Izbanova U, Ramankulov Y, Vergnaud G. Genetic diversity of Francisella tularensis subsp. holarctica in Kazakhstan. PLoS Negl Trop Dis 2021; 15:e0009419. [PMID: 33999916 PMCID: PMC8158875 DOI: 10.1371/journal.pntd.0009419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/27/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022] Open
Abstract
Tularemia is a highly dangerous zoonotic infection due to the bacteria Francisella tularensis. Low genetic diversity promoted the use of polymorphic tandem repeats (MLVA) as first-line assay for genetic description. Whole genome sequencing (WGS) is becoming increasingly accessible, opening the perspective of a time when WGS might become the universal genotyping assay. The main goal of this study was to describe F. tularensis strains circulating in Kazakhstan based on WGS data and develop a MLVA assay compatible with in vitro and in silico analysis. In vitro MLVA genotyping and WGS were performed for the vaccine strain and for 38 strains isolated in Kazakhstan from natural water bodies, ticks, rodents, carnivores, and from one migratory bird, an Isabellina wheatear captured in a rodent burrow. The two genotyping approaches were congruent and allowed to attribute all strains to two F. tularensis holarctica lineages, B.4 and B.12. The seven tandem repeats polymorphic in the investigated strain collection could be typed in a single multiplex PCR assay. Identical MLVA genotypes were produced by in vitro and in silico analysis, demonstrating full compatibility between the two approaches. The strains from Kazakhstan were compared to all publicly available WGS data of worldwide origin by whole genome SNP (wgSNP) analysis. Genotypes differing at a single SNP position were collected within a time interval of more than fifty years, from locations separated from each other by more than one thousand kilometers, supporting a role for migratory birds in the worldwide spread of the bacteria. Genotyping of Francisella tularensis has become a routine practice in epidemiology. Despite rapidly accumulating knowledge, the phylogeography of the pathogen is still poorly understood and discussions about geographic and temporal origins continue. One important reason is the poor characterization of the pathogen in many tularemia-endemic countries. This article describes the genetic diversity of Francisella tularensis subsp. holarctica in Kazakhstan using tandem repeat polymorphisms as well as whole genome sequencing. Thirty-nine strains were analyzed and two lineages were identified, namely B.4 and B.12. The study demonstrates a wider distribution of genotype B.4 in Asia, and identified a more basal branching point in this subclade. The obtained data support the Asian origin hypothesis for F. tularensis. The finding of identical genotypes in strains separated in time by decades and a thousand-kilometers geographic distance, confirms the ability of the bacteria for long-term preservation and fast long distances spread. The isolation of F. tularensis subsp. holarctica from the bird species Isabellina wheatear allows speculating about a major contribution of birds to the phylogeography of the pathogen. A genotyping protocol was developed utilizing seven polymorphic tandem repeats, two of which were identified within the framework of this work. The in vitro and in silico results are identical when using sequencing reads of 300 base-pairs or more.
Collapse
Affiliation(s)
| | - Alma Kairzhanova
- National Center for Biotechnology, Nur Sultan, Kazakhstan
- S. Seifullin Kazakh Agrotechnical University, Nur Sultan, Kazakhstan
| | - Alexandr Shevtsov
- National Center for Biotechnology, Nur Sultan, Kazakhstan
- * E-mail: (AS); (GV)
| | | | | | | | - Larissa Lukhnova
- National Scientific Center for Especially Dangerous Infections named by Masgut Aykimbayev, Almaty, Kazakhstan
| | - Uinkul Izbanova
- National Scientific Center for Especially Dangerous Infections named by Masgut Aykimbayev, Almaty, Kazakhstan
| | - Yerlan Ramankulov
- National Center for Biotechnology, Nur Sultan, Kazakhstan
- School of Science and Technology Nazarbayev University, Nur Sultan, Kazakhstan
| | - Gilles Vergnaud
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
- * E-mail: (AS); (GV)
| |
Collapse
|
5
|
Golovliov I, Bäckman S, Granberg M, Salomonsson E, Lundmark E, Näslund J, Busch JD, Birdsell D, Sahl JW, Wagner DM, Johansson A, Forsman M, Thelaus J. Long-Term Survival of Virulent Tularemia Pathogens outside a Host in Conditions That Mimic Natural Aquatic Environments. Appl Environ Microbiol 2021; 87:e02713-20. [PMID: 33397692 PMCID: PMC8104992 DOI: 10.1128/aem.02713-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023] Open
Abstract
Francisella tularensis, the causative agent of the zoonotic disease tularemia, can cause seasonal outbreaks of acute febrile illness in humans with disease peaks in late summer to autumn. Interestingly, its mechanisms for environmental persistence between outbreaks are poorly understood. One hypothesis is that F. tularensis forms biofilms in aquatic environments. We utilized two fully virulent wild-type strains: FSC200 (Francisella tularensis subsp. holarctica) and Schu S4 (Francisella tularensis subsp. tularensis) and three control strains, the attenuated live vaccine strain (LVS; F. tularensis subsp. holarctica), a Schu S4 ΔwbtI mutant that is documented to form biofilms, and the low-virulence strain U112 of the closely related species Francisella novicida Strains were incubated in saline solution (0.9% NaCl) microcosms for 24 weeks at both 4°C and 20°C, whereupon viability and biofilm formation were measured. These temperatures were selected to approximate winter and summer temperatures of fresh water in Scandinavia, respectively. U112 and Schu S4 ΔwbtI formed biofilms, but F. tularensis strains FSC200 and Schu S4 and the LVS did not. All strains exhibited prolonged viability at 4°C compared to 20°C. U112 and FSC200 displayed remarkable long-term persistence at 4°C, with only 1- and 2-fold log reductions, respectively, of viable cells after 24 weeks. Schu S4 exhibited lower survival, yielding no viable cells by week 20. At 24 weeks, cells from FSC200, but not from Schu S4, were still fully virulent in mice. Taken together, these results demonstrate biofilm-independent, long-term survival of pathogenic F. tularensis subsp. holarctica in conditions that mimic overwinter survival in aquatic environments.IMPORTANCE Tularemia, a disease caused by the environmental bacterium Francisella tularensis, is characterized by acute febrile illness. F. tularensis is highly infectious: as few as 10 organisms can cause human disease. Tularemia is not known to be spread from person to person. Rather, all human infections are independently acquired from the environment via the bite of blood-feeding arthropods, ingestion of infected food or water, or inhalation of aerosolized bacteria. Despite the environmental origins of human disease events, the ecological factors governing the long-term persistence of F. tularensis in nature between seasonal human outbreaks are poorly understood. The significance of our research is in identifying conditions that promote long-term survival of fully virulent F. tularensis outside a mammalian host or insect vector. These conditions are similar to those found in natural aquatic environments in winter and provide important new insights on how F. tularensis may persist long-term in the environment.
Collapse
Affiliation(s)
- Igor Golovliov
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Stina Bäckman
- Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden
| | - Malin Granberg
- Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden
| | - Emelie Salomonsson
- Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden
| | - Eva Lundmark
- Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden
| | - Jonas Näslund
- Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden
| | - Joseph D Busch
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Dawn Birdsell
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - David M Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Anders Johansson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Mats Forsman
- Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden
| | - Johanna Thelaus
- Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden
| |
Collapse
|
6
|
Mechanisms Affecting the Acquisition, Persistence and Transmission of Francisella tularensis in Ticks. Microorganisms 2020; 8:microorganisms8111639. [PMID: 33114018 PMCID: PMC7690693 DOI: 10.3390/microorganisms8111639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
Over 600,000 vector-borne disease cases were reported in the United States (U.S.) in the past 13 years, of which more than three-quarters were tick-borne diseases. Although Lyme disease accounts for the majority of tick-borne disease cases in the U.S., tularemia cases have been increasing over the past decade, with >220 cases reported yearly. However, when comparing Borrelia burgdorferi (causative agent of Lyme disease) and Francisella tularensis (causative agent of tularemia), the low infectious dose (<10 bacteria), high morbidity and mortality rates, and potential transmission of tularemia by multiple tick vectors have raised national concerns about future tularemia outbreaks. Despite these concerns, little is known about how F. tularensis is acquired by, persists in, or is transmitted by ticks. Moreover, the role of one or more tick vectors in transmitting F. tularensis to humans remains a major question. Finally, virtually no studies have examined how F. tularensis adapts to life in the tick (vs. the mammalian host), how tick endosymbionts affect F. tularensis infections, or whether other factors (e.g., tick immunity) impact the ability of F. tularensis to infect ticks. This review will assess our current understanding of each of these issues and will offer a framework for future studies, which could help us better understand tularemia and other tick-borne diseases.
Collapse
|
7
|
Seiwald S, Simeon A, Hofer E, Weiss G, Bellmann-Weiler R. Tularemia Goes West: Epidemiology of an Emerging Infection in Austria. Microorganisms 2020; 8:E1597. [PMID: 33081341 PMCID: PMC7602993 DOI: 10.3390/microorganisms8101597] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
The zoonotic disease tularemia is caused by the Gram-negative bacterium Francisella tularensis, with the two major subspecies tularensis and holarctica being responsible for infections in humans and animals. The F. tularensis subspecies holarctica is less virulent and prevalent in Europe and Asia. Over the last few centuries, few epidemic outbreaks and low numbers of infections have been registered in the eastern part of Austria, specifically in the provinces of Lower Austria, Burgenland, and Styria. The reported infections were mostly associated with hunting hares and the skinning of carcasses. Within the last decade, ticks have been identified as important vectors in Tyrol and served as first evidence for the spread of F. tularensis to Western Austria. In 2018, the pathogen was detected in hares in the provinces of Tyrol, Vorarlberg, and Salzburg. We presume that F. tularensis is now established in most regions of Austria, and that the investigation of potential host and vector animals should be spotlighted by public institutions. Tularemia in humans presents with various clinical manifestations. As glandular, ulceroglandular, and typhoidal forms occur in Austria, this infectious disease should be considered as a differential diagnosis of unknown fever.
Collapse
Affiliation(s)
- Stefanie Seiwald
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (A.S.); (G.W.)
| | - Anja Simeon
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (A.S.); (G.W.)
| | - Erwin Hofer
- Institute for Veterinary Disease Control, Austrian Agency for Health and Food Safety (AGES), 2340 Mödling, Austria;
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (A.S.); (G.W.)
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (A.S.); (G.W.)
| |
Collapse
|
8
|
Drehmann M, Springer A, Lindau A, Fachet K, Mai S, Thoma D, Schneider CR, Chitimia-Dobler L, Bröker M, Dobler G, Mackenstedt U, Strube C. The Spatial Distribution of Dermacentor Ticks (Ixodidae) in Germany-Evidence of a Continuing Spread of Dermacentor reticulatus. Front Vet Sci 2020; 7:578220. [PMID: 33088837 PMCID: PMC7544815 DOI: 10.3389/fvets.2020.578220] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
In Europe, two tick species of the genus Dermacentor occur, Dermacentor marginatus and Dermacentor reticulatus. When the spatial distribution of both species in Germany was studied comprehensively for the first time in 1976, D. marginatus populations were recorded along the Rhine and Main river valleys in southwestern Germany, while D. reticulatus was very rare. In the last 50 years, however, a considerable range expansion of D. reticulatus has been noted in several European countries. To assess the current distribution of Dermacentor spp. in Germany, citizens were asked to send in ticks suspected to belong to the genus Dermacentor or that were of “unusual” appearance. From February 2019 until February 2020, 3,902 Dermacentor ticks were received in total. Of those, 15.48% (604/3,902) were identified as D. marginatus and 84.24% (3,287/3,902) as D. reticulatus, while 11 specimens could not be identified to species level. The majority of D. reticulatus specimens was collected from dogs (1,212/2,535; 47.12%), while D. marginatus was mostly collected from horses (184/526; 34.98%). Our results confirm that the adults of both Dermacentor species are active all year round. D. reticulatus specimens were sent in from all federal states except the Free and Hanseatic City of Hamburg, while D. marginatus specimens were only received from locations in southwestern Germany. Overall, data obtained from this citizen-science study show that D. reticulatus has significantly expanded its range, especially in northern Germany. Regarding D. marginatus, new locations northwest of the previous range were detected, although the distribution has remained rather stable as compared to D. reticulatus. The spread of D. reticulatus, the vector of Babesia canis, is of major importance for veterinarians and dog owners in terms of canine babesiosis outbreaks or endemization in hitherto B. canis-free areas. Thus, veterinarians and veterinary students need to be informed about the new situation to be able to give adequate advice to dog owners on the extended D. reticulatus range and appropriate control measures.
Collapse
Affiliation(s)
- Marco Drehmann
- Department of Parasitology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Alexander Lindau
- Department of Parasitology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Katrin Fachet
- Department of Parasitology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Sabrina Mai
- Department of Parasitology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Dorothea Thoma
- Department of Parasitology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Carina R Schneider
- Department of Parasitology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Lidia Chitimia-Dobler
- Department of Parasitology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.,Bundeswehr Institute of Microbiology, Munich, Germany
| | | | - Gerhard Dobler
- Department of Parasitology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.,Bundeswehr Institute of Microbiology, Munich, Germany
| | - Ute Mackenstedt
- Department of Parasitology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
9
|
Cross AR, Baldwin VM, Roy S, Essex-Lopresti AE, Prior JL, Harmer NJ. Zoonoses under our noses. Microbes Infect 2019; 21:10-19. [PMID: 29913297 PMCID: PMC6386771 DOI: 10.1016/j.micinf.2018.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/22/2022]
Abstract
One Health is an effective approach for the management of zoonotic disease in humans, animals and environments. Examples of the management of bacterial zoonoses in Europe and across the globe demonstrate that One Health approaches of international surveillance, information-sharing and appropriate intervention methods are required to successfully prevent and control disease outbreaks in both endemic and non-endemic regions. Additionally, a One Health approach enables effective preparation and response to bioterrorism threats.
Collapse
Affiliation(s)
- Alice R Cross
- Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD United Kingdom.
| | - Victoria M Baldwin
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ United Kingdom
| | - Sumita Roy
- Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD United Kingdom
| | | | - Joann L Prior
- Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD United Kingdom; Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ United Kingdom; London School of Hygiene & Tropical Medicine, Kepple Street, London WC1E 7HT United Kingdom
| | - Nicholas J Harmer
- Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD United Kingdom
| |
Collapse
|
10
|
Pilo P. Phylogenetic Lineages of Francisella tularensis in Animals. Front Cell Infect Microbiol 2018; 8:258. [PMID: 30109216 PMCID: PMC6079424 DOI: 10.3389/fcimb.2018.00258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/11/2018] [Indexed: 12/24/2022] Open
Abstract
Tularemia is a zoonotic disease caused by the facultative intracellular bacterium Francisella tularensis. This microorganism can infect a plethora of animal species and its ecology is particularly complex. Much research was performed to understand its biology but many questions are still open, especially concerning the life cycle of this bacterium in the environment related to physical and biological parameters. Numerous animals are major hosts of F. tularensis but precise reservoir species are not yet well defined. Moreover, the exact range of species susceptible to tularemia is not clear and is complicated by the differences in virulence and ecology observed among the subspecies of F. tularensis. Indeed, different life cycles in nature, including the animal species concerned, were previously described for F. tularensis subsp. tularensis and F. tularensis subsp. holarctica. Recently, molecular techniques showing adequate discrimination between strains were developed, leading to the possibility to investigate links between phylogenetic lineages and infection in animals. New perspectives in research are now possible thanks to the information available and the simplicity of the molecular procedures. Current studies are unfolding the evolution of F. tularensis and these developments will lead to the elucidation of geographical and ecological differences observed by veterinarians, microbiologists and conservation biologists. However, systematic, coordinated collection of data and extensive sampling are important to efficiently assemble the findings of future research.
Collapse
Affiliation(s)
- Paola Pilo
- Vetsuisse Faculty, Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
|
12
|
Timofeev V, Bakhteeva I, Titareva G, Kopylov P, Christiany D, Mokrievich A, Dyatlov I, Vergnaud G. Russian isolates enlarge the known geographic diversity of Francisella tularensis subsp. mediasiatica. PLoS One 2017; 12:e0183714. [PMID: 28873421 PMCID: PMC5584958 DOI: 10.1371/journal.pone.0183714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/09/2017] [Indexed: 11/18/2022] Open
Abstract
Francisella tularensis, a small Gram-negative bacterium, is capable of infecting a wide range of animals, including humans, and causes a plague-like disease called tularemia—a highly contagious disease with a high mortality rate. Because of these characteristics, F. tularensis is considered a potential agent of biological terrorism. Currently, F. tularensis is divided into four subspecies, which differ in their virulence and geographic distribution. Two of them, subsp. tularensis (primarily found in North America) and subsp. holarctica (widespread across the Northern Hemisphere), are responsible for tularemia in humans. Subsp. novicida is almost avirulent in humans. The fourth subspecies, subsp. mediasiatica, is the least studied because of its limited distribution and impact in human health. It is found only in sparsely populated regions of Central Asia. In this report, we describe the first focus of naturally circulating F. tularensis subsp. mediasiatica in Russia. We isolated and characterized 18 strains of this subspecies in the Altai region. All strains were highly virulent in mice. The virulence of subsp. mediasiatica in a vaccinated mouse model is intermediate between that of subsp. tularensis and subsp. holarctica. Based on a multiple-locus variable number tandem repeat analysis (MLVA), we show that the Altaic population of F. tularensis subsp. mediasiatica is genetically distinct from the classical Central Asian population, and probably is endemic to Southern Siberia. We propose to subdivide the mediasiatica subspecies into three phylogeographic groups, M.I, M.II and M.III.
Collapse
Affiliation(s)
- Vitalii Timofeev
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Moscow Region, Russia
- * E-mail: (VT); (GV)
| | - Irina Bakhteeva
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Moscow Region, Russia
| | - Galina Titareva
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Moscow Region, Russia
| | - Pavel Kopylov
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Moscow Region, Russia
| | - David Christiany
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Alexander Mokrievich
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Moscow Region, Russia
| | - Ivan Dyatlov
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Moscow Region, Russia
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- * E-mail: (VT); (GV)
| |
Collapse
|
13
|
Abstract
Tularemia is a zoonotic disease that occurs in the Northern Hemisphere caused by the gammabacterium Francisella tularensis. The most severe form of human tularemia occurs in the central USA and involves a rabbit enzootic cycle, ixodid tick vectors, and F. tularensis subspecies tularensis genotype A1. Enzootic tularemia is thought to have a spring-summer seasonality corresponding to the questing activity of its primary tick vectors. Domestic cats, another common incidental host, acquire the infection by preying on infected rabbits. The seasonality of tularemia in cats, which demonstrate a bimodal seasonal incidence curve with peaks in the spring and late summer-fall, may serve as a surrogate for the seasonality of the disease in its enzootic host. Human tularemia shows a unimodal late spring, early summer peak, which correlates to the seasonal questing activity of tick vectors of human tularemia. This difference in seasonality suggests that different tick species or tick life stages are involved in maintenance of the enzootic rabbit-tick cycle.
Collapse
|
14
|
Brown VR, Adney DR, Olea-Popelka F, Bowen RA. Prior Inoculation with Type B Strains of Francisella tularensis Provides Partial Protection against Virulent Type A Strains in Cottontail Rabbits. PLoS One 2015; 10:e0140723. [PMID: 26474413 PMCID: PMC4608750 DOI: 10.1371/journal.pone.0140723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
Francisella tularensis is a highly virulent bacterium that is capable of causing severe disease (tularemia) in a wide range of species. This organism is characterized into two distinct subspecies: tularensis (type A) and holarctica (type B) which vary in several crucial ways, with some type A strains having been found to be considerably more virulent in humans and laboratory animals. Cottontail rabbits have been widely implicated as a reservoir species for this subspecies; however, experimental inoculation in our laboratory revealed type A organisms to be highly virulent, resulting in 100% mortality following challenge with 50-100 organisms. Inoculation of cottontail rabbits with the same number of organisms from type B strains of bacteria was found to be rarely lethal and to result in a robust humoral immune response. The objective of this study was to characterize the protection afforded by a prior challenge with type B strains against a later inoculation with a type A strain in North American cottontail rabbits (Sylvilagus spp). Previous infection with a type B strain of organism was found to lengthen survival time and in some cases prevent death following inoculation with a type A2 strain of F. tularensis. In contrast, inoculation of a type A1b strain was uniformly lethal in cottontail rabbits irrespective of a prior type B inoculation. These findings provide important insight about the role cottontail rabbits may play in environmental maintenance and transmission of this organism.
Collapse
Affiliation(s)
- Vienna R. Brown
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Danielle R. Adney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Francisco Olea-Popelka
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Richard A. Bowen
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
- * E-mail:
| |
Collapse
|
15
|
PATHOGENESIS AND IMMUNE RESPONSES OF FRANCISELLA TULARENSIS STRAINS IN WILD-CAUGHT COTTONTAIL RABBITS (SYLVILAGUS SPP.). J Wildl Dis 2015; 51:564-75. [PMID: 25984770 DOI: 10.7589/2015-02-030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Francisella tularensis is a highly virulent, zoonotic bacterium that causes significant natural disease and is of concern as an organism for bioterrorism. Serologic testing of wildlife is frequently used to monitor spatial patterns of infection and to quantify exposure. Cottontail rabbits (Sylvilagus spp.) are a natural reservoir for F. tularensis in the US, although very little work has been done experimentally to determine how these animals respond to infection; thus, information gathered from field samples can be difficult to interpret. We characterized clinical disease, bacteremia, pathology, and antibody kinetics of North American cottontail rabbits experimentally infected with five strains of F. tularensis. Rabbits were infected with four field strains, including MA00-2987 (type A1b), WY96-3418 (type A2), KY99-3387, and OR96-0246 (type B), and with SchuS4 (type A1a), a widely used, virulent laboratory strain. Infection with the different strains of the bacterium resulted in varied patterns of clinical disease, gross pathology, and histopathology. Each of the type A strains were highly virulent, with rabbits succumbing to infection 3-13 d after infection. At necropsy, numerous microabscesses were observed in the livers and spleens of most rabbits, associated with high bacterial organ burdens. In contrast, most rabbits infected with type B strains developed mild fever and became lethargic, but the disease was infrequently lethal. Those rabbits infected with type B strains that survived past 14 d developed a robust humoral immune response, and F. tularensis was not isolated from liver, spleen, or lung of those animals. Understanding F. tularensis infection in a natural reservoir species can guide serosurveillance and generate new insights into environmental maintenance of this pathogen.
Collapse
|
16
|
Abstract
Tularemia is considered to have existed in Anatolia for several thousand years. There are suspicions regarding its use in biological warfare in the Neshite-Arzawan conflict. The causative agent of tularemia may have first been used as a biological weapon in 1320-1318 BC. The disease has recently become a significant re-emerging disease globally as well as in Turkey. In the period of 2001-2010, Kosovo had the highest annual incidence in Europe at a rate of 5.2 per 100,000. Sweden, Finland, Slovakia, Czech Republic, Norway, Serbia-Montenegro, Hungary, Bulgaria, and Croatia follow with rates of 2.80, 1.19, 1.0, 0.81, 0.42, 0.4, 0.36, 0.21, and 0.15 per 100,000 people, respectively. Tularemia in Turkey was first reported in the soldiers living in the region very close to the Kaynarca Stream of Thrace in 1936. It has started to gain more and more importance, especially in recent decades in Turkey, due to a very high number of cases and its spread throughout the country. A total of 431 tularemia cases were recorded in Turkey in 2005, but a significant reduction was observed in the number of the cases in the next three years; the number of patients decreased to 71 in 2008. The number of cases increased again in 2009 and continued in subsequent years. The number of cases reached 428, 1531, 2151, and 607 in 2009, 2010, 2011, and 2012, respectively. The number of cases peaked in 2011 in Turkey, and was in fact higher than the total number of cases in all European Union countries. The number of cases is higher in females than males in Turkey. In Turkey, 52% of cases of tularemia diagnoses occur from December to March and the most common clinical presentation is the oropharyngeal form caused by contaminated water. Rodents are the most likely sources of tularemia outbreaks in Turkey as well as in Kosovo. Organisms such as ticks, flies and mosquitoes are vectors of tularemia transmission to mammals. Because ticks can carry the bacteria by both transovarial and transstadial transmission, they play a role in the life cycle of tularemia as both reservoir and vector.
Collapse
Affiliation(s)
- Saban Gürcan
- Department of Medical Microbiology, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
17
|
Thelaus J, Andersson A, Broman T, Bäckman S, Granberg M, Karlsson L, Kuoppa K, Larsson E, Lundmark E, Lundström JO, Mathisen P, Näslund J, Schäfer M, Wahab T, Forsman M. Francisella tularensis subspecies holarctica occurs in Swedish mosquitoes, persists through the developmental stages of laboratory-infected mosquitoes and is transmissible during blood feeding. MICROBIAL ECOLOGY 2014; 67:96-107. [PMID: 24057273 PMCID: PMC3907667 DOI: 10.1007/s00248-013-0285-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 08/28/2013] [Indexed: 05/29/2023]
Abstract
In Sweden, mosquitoes are considered the major vectors of the bacterium Francisella tularensis subsp. holarctica, which causes tularaemia. The aim of this study was to investigate whether mosquitoes acquire the bacterium as aquatic larvae and transmit the disease as adults. Mosquitoes sampled in a Swedish area where tularaemia is endemic (Örebro) were positive for the presence of F. tularensis deoxyribonucleic acid throughout the summer. Presence of the clinically relevant F. tularensis subsp. holarctica was confirmed in 11 out of the 14 mosquito species sampled. Experiments performed using laboratory-reared Aedes aegypti confirmed that F. tularensis subsp. holarctica was transstadially maintained from orally infected larvae to adult mosquitoes and that 25% of the adults exposed as larvae were positive for the presence of F. tularensis-specific sequences for at least 2 weeks. In addition, we found that F. tularensis subsp. holarctica was transmitted to 58% of the adult mosquitoes feeding on diseased mice. In a small-scale in vivo transmission experiment with F. tularensis subsp. holarctica-positive adult mosquitoes and susceptible mice, none of the animals developed tularaemia. However, we confirmed that there was transmission of the bacterium to blood vials by mosquitoes that had been exposed to the bacterium in the larval stage. Taken together, these results provide evidence that mosquitoes play a role in disease transmission in part of Sweden where tularaemia recurs.
Collapse
Affiliation(s)
- J Thelaus
- Division of CBRN Defence and Security, Swedish Defence Research Agency, 90182, Umea, Sweden,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Our understanding of the virulence and pathogenesis of Francisella spp. has significantly advanced in recent years, including a new understanding that this organism can form biofilms. What is known so far about Francisella spp. biofilms is summarized here and future research questions are suggested. The molecular basis of biofilm production has begun to be studied, especially the role of extracellular carbohydrates and capsule, quorum sensing and two-component signaling systems. Further work has explored the contribution of amoebae, pili, outer-membrane vesicles, chitinases, and small molecules such as c-di-GMP to Francisella spp. biofilm formation. A role for Francisella spp. biofilm in feeding mosquito larvae has been suggested. As no strong role in virulence has been found yet, Francisella spp. biofilm formation is most likely a key mechanism for environmental survival and persistence. The significance and importance of Francisella spp.’s biofilm phenotype as a critical aspect of its microbial physiology is being developed. Areas for further studies include the potential role of Francisella spp. biofilms in the infection of mammalian hosts and virulence regulation.
Collapse
Affiliation(s)
- Monique L van Hoek
- School of Systems Biology and National Center for Biodefense and Infectious Diseases; George Mason University; Manassas, VA USA
| |
Collapse
|
19
|
Goethert HK, Telford SR. Differential mortality of dog tick vectors due to infection by diverse Francisella tularensis tularensis genotypes. Vector Borne Zoonotic Dis 2011; 11:1263-8. [PMID: 21612530 PMCID: PMC3162643 DOI: 10.1089/vbz.2010.0237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The factors involved in the long-term perpetuation of Francisella tularensis tularensis in nature are poorly understood. Martha's Vineyard, Massachusetts, has become a site of sustained transmission of Type A tularemia, with nearly 100 human cases reported from 2000 to 2010. We have identified a stable focus of F. tularensis transmission there, where the annual prevalence in host-seeking Dermacentor variabilis is about 3%, suggesting that this tick perpetuates the agent. However, laboratory studies have shown that infection with F. tularensis has a profound negative effect on dog tick mortality, presenting a paradox: how can a vector perpetuate an agent that negatively affects its fitness? It may be that experimental infection does not mimic that of natural transmission. Accordingly, we examined the effects that F. tularensis has on the longevity of field-derived ticks. Of 63 PCR-positive ticks collected in early summer, 89% were dead by December compared to 48% of 214 uninfected ticks collected at the same time and site. However, the quantum of F. tularensis DNA within each tick was not correlated with increased mortality. Instead, ticks with an uncommon genotype were more likely to die early than those with the common genotype. We conclude that the interaction between F. tularensis and its vector is complex and certain bacterial genotypes appear to be better adapted to their arthropod host.
Collapse
Affiliation(s)
- Heidi K Goethert
- Division of Infectious Diseases, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA
| | | |
Collapse
|
20
|
Sjöstedt A. Special Topic on Francisella tularensis and Tularemia. Front Microbiol 2011; 2:86. [PMID: 21833327 PMCID: PMC3153047 DOI: 10.3389/fmicb.2011.00086] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 04/11/2011] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anders Sjöstedt
- Department of Clinical Microbiology, Umeå University Umeå, Sweden
| |
Collapse
|
21
|
Akimana C, Kwaik YA. Francisella-arthropod vector interaction and its role in patho-adaptation to infect mammals. Front Microbiol 2011; 2:34. [PMID: 21687425 PMCID: PMC3109307 DOI: 10.3389/fmicb.2011.00034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 02/07/2011] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is a Gram-negative, intracellular, zoonotic bacterium, and is the causative agent of tularemia with a broad host range. Arthropods such as ticks, mosquitoes, and flies maintain F. tularensis in nature by transmitting the bacteria among small mammals. While the tick is largely believed to be a biological vector of F. tularensis, transmission by mosquitoes and flies is largely believed to be mechanical on the mouthpart through interrupted feedings. However, the mechanism of infection of the vectors by F. tularensis is not well understood. Since F. tularensis has not been localized in the salivary gland of the primary human biting ticks, it is thought that bacterial transmission by ticks is through mechanical inoculation of tick feces containing F. tularensis into the skin wound. Drosophila melanogaster is an established good arthropod model for arthropod vectors of tularemia, where F. tularensis infects hemocytes, and is found in hemolymph, as seen in ticks. In addition, phagosome biogenesis and robust intracellular proliferation of F. tularensis in arthropod-derived cells are similar to that in mammalian macrophages. Furthermore, bacterial factors required for infectivity of mammals are often required for infectivity of the fly by F. tularensis. Several host factors that contribute to F. tularensis intracellular pathogenesis in D. melanogaster have been identified, and F. tularensis targets some of the evolutionarily conserved eukaryotic processes to enable intracellular survival and proliferation in evolutionarily distant hosts.
Collapse
Affiliation(s)
- Christine Akimana
- Department of Microbiology and Immunology, College of Medicine, University of Louisville Louisville, KY, USA
| | | |
Collapse
|